Problem [B2 from IMO 1972]
f and g are real-valued functions defined on the real line. For all x and y,

$$
f(x+y)+f(x-y)=2 f(x) g(y)
$$

f is not identically zero and $|f(x)| \leq 1$ for all x. Prove that $|g(x)| \leq 1$ for all x.

Tom Hales' Solution

Note first that $|f(x) \| g(y)|^{l} \leq 1$ for all $l \geq 0$, by induction on l. For the induction step:

$$
\begin{aligned}
2|f(x) \| g(y)|^{l+1} & =|2 f(x) g(y) \| g(y)|^{l} \\
& =|f(x+y)+f(x-y) \| g(y)|^{l} \\
& \leq\left|f (x + y) \left\|\left.g(y)\right|^{l}+|f(x-y) \| g(y)|^{l}\right.\right. \\
& \leq 2
\end{aligned}
$$

Now suppose that $|g(y)|>1$ for some y. We know $f(z) \neq 0$ for some z, but then $|f(z) \| g(y)|^{l} \rightarrow \infty$ as $l \rightarrow \infty$, contradicting the bound.

