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Abstract. We study de Bruijn’s ‘loss factor’ between the size of an ordinary mathematical expo-
sition and its full formal translation inside a computer. This factor is determined by a combination
of the amount of detail present in the original text and the expressivity of the system used to do
the formalization. For three specific examples this factor turns out to be approximately equal to
four.

1 Loss Factor

In ‘A survey of the project Automath’ de Bruijn wrote (p. 160 in section A.5 of [9] which is a reprint
from [1]):

A very important thing that can be concluded from all writing experiments is the constancy of the
loss factor. The loss factor expresses what we loose in shortness when translating very meticulous

‘ordinary’ mathematics into Automath. This factor may be quite big, something like 10 or 20,

but it is constant: it does not increase if we go further in the book. It would not be too hard to

push the constant factor down by efficient abbreviations.

Here? we briefly study this loss factor, which we call the de Bruijn factor.

When writing a ‘formal proof’ (a proof that is entered in a computer in full detail in such a way that
the computer can check the correctness) there are basically two approaches:

– One takes an existing, non-formal, mathematical text and translates it – more or less faithfully –
into a computer representation.

– One ‘programs’ the proof directly into the formal system, without first creating a ‘natural language’
counterpart.

The first method has the advantage that the formalization automatically will be well documented, and
also it generally seems to be easier to translate a pre-existing text than to think about the proof and
about the mechanics of the formalization at the same time. The de Bruijn factor of course only can be
objectively measured for a formalization of the first kind.
The de Bruijn factor of a formalization depends on two aspects. On the one hand there is the level of

detail in the original, which depends on the ‘character’ of the text that is being translated. There exist
a wide range of mathematical styles, which each have their own level of precision at which the proofs
are elaborated. For instance there are:

– Books that give a detailed development of a subject for foundational purposes, like Whitehead and
Russell’s Principia Mathematica [10].

? The full Automath, Mizar and TEX files that are discussed here can be found on the World Wide Web at the
address <http://www.cs.kun.nl/~freek/factor/>.



– Ancient mathematics, like Euclid’s Elements [4].
– Textbooks for education.
– Handbooks about specific mathematical subjects.
– Papers in computer science that have a strong mathematical flavor.
– Mathematical research papers.

The three cases studied in this note are respectively of the first, fifth and fourth kinds.
On the other hand there is the system that is being used. Some systems have more automation and

more (as de Bruijn called it) ‘efficient abbreviations’ than others. So the de Bruijn factor measures how
efficient a system is. One might imagine a ‘benchmark’ for proof assistants consisting of a number of
mathematical texts in various styles to be represented. However, the technology currently seems not to
be well-developed enough to already put together such a benchmark.

2 Apparent and Intrinsic De Bruijn Factors

The size in bytes of the files of a formalization is not a very meaningful measure. It depends on such
matters as the choice of variable names and the use of whitespace: these factors don’t seem to mean
much for the contents of the files. For instance if indentation is done with tab characters that part of
the file will be eight times as small as when it’s done with space characters: but the file will look the
same in both cases. As another example, the TEX macro name ‘\Leftrightarrow’ for the ‘⇔’ symbol
uses 15 characters, while an encoding like ‘<=>’ uses only 3.
To compensate for these effects it seems natural to ‘squeeze out’ trivial redundancy by compressing

the files before calculating the ratios of their sizes. In fact, use of the tab character can be seen as a
crude way of compressing long runs of spaces.
We will call the ratio of the uncompressed file sizes the apparent de Bruijn factor, and that of the

compressed file sizes the intrinsic de Bruijn factor.
If one uses the intrinsic de Bruijn factor, it isn’t useful any more to remove the white space from the

computer representation of a proof to get a better ratio, because this kind of optimization only has a
minor effect on the size of the compressed file.
Surprisingly it turns out that generally both the ‘natural language’ and the ‘computer’ versions of a

proof compress similarly well. This means that the apparent and intrinsic de Bruijn factors turn out to
be approximately the same.

3 Arithmetic in Automath

The first example for which we will calculate the de Bruijn factor is Jutting’s classic Automath translation
(see section D.2 of [9], a reprint from [6]) of Landau’s Grundlagen der Analysis [7], a cute little book
about the basic laws of arithmetic up to the complex numbers.
To give an impression of the text and its translation, here is a small fragment of a proof (of ‘Satz 27’

on p. 37 of [7]) in the Grundlagen:

1 gehört zu M nach Satz 24. Nicht jedes x gehört zu M; denn für jedes y aus N gehört y + 1
nicht zu M, wegen

y + 1 > y.

together with its rendering in the AUT-QE dialect of the Automath language:

s@[n:nat]

t1:=[x:<n>p]satz24a(n):lbprop(1,n)

s@t2:=[x:nat]t1(x):lb(1)

[l:[x:nat]lb(x)][y:nat][yp:<y>p]



t3:=satz18(y,1):more(pl(y,1),y)

t4:=satz10g(pl(y,1),y,t3):not(lessis(pl(y,1),y))

t5:=th4"l.imp"(<y>p,lessis(pl(y,1),y),yp,t4):not(lbprop(pl(y,1),y))

t6:=th1"l.all"(nat,[x:nat]lbprop(pl(y,1),x),y,t5):not(lb(pl(y,1)))

t7:=mp(lb(pl(y,1)),con,<pl(y,1)>l,t6):con

l@t8:=someapp(nat,p,s,con,[x:nat][y:<x>p]t7(x,y)):con

Note the reference to ‘Satz 24’ at the start of both versions of the fragment.

The sizes of both the TEX and Automath versions of this book, both uncompressed and compressed
(using the Unix gzip utility), and the corresponding de Bruijn factors are given in the following table:

informal formal de Bruijn factor

uncompressed 189K 736K apparent 3.9
compressed 42K 155K intrinsic 3.7

Apparently the de Bruijn factor of Automath for this kind of text is slightly less than four.

4 Computer Science in Mizar

The second example that we will calculate the de Bruijn factor for, is a section from a paper about
‘finite topology’ (pp. 12–17 of [8]), really a mathematical development of the theory of digital filtering
of one-bit images. The translation [5] is in Mizar, which is a more accessible and more high level system
than Automath.

As an example, here’s a fragment of the proof of ‘Theorem 2.1’ (p. 16 of [8]):

Let B and C be non-void subsets of A such that B ∩ C = ∅ and Bb ∩ C = ∅. Then, there

exists an element x in B, and we can construct a set Pn as a procedure described previously and

Pn+1 = Pn.

with as Mizar translation:

given B, C being Subset of the carrier of FT such that

A26:A = B U C and

A27:B <> ∅ and

A28:C <> ∅ and

A29:B ∩ C = ∅ and

A30:B^b ∩ C = ∅;
A31: B c= B^b by Th18 ;

A32: B^b ∩ A = B^b ∩ B U ∅ by A26,A30, BOOLE:70

.= B^b ∩ B by BOOLE:60

.= B by BOOLE:42, A31 ;

consider x being Element of B ;

x ∈ A by A26, BOOLE:def 2,A27 ;

then consider S being FinSequence of bool the carrier of FT such that

A33:len S > 0 and

A34:π(S,1) = {x} and

A35:for i being Nat st i > 0 & i < len S holds π(S,i+1) = π(S,i)^b ∩ A and

A36:A c= π(S,len S) by A25 ;

Note the close syntactical similarity of the requirements on B and C in both versions of the text.



Here are the statistics of this example:

informal formal de Bruijn factor

uncompressed 7.7K 35.3K apparent 4.6
compressed 2.6K 8.0K intrinsic 3.1

So the de Bruijn factor of this text is not much better than that of the previous one. An explanation
might be that the paper that is translated contains much less detail than the Grundlagen book, so the
extra power of Mizar is compensated for by the more loose style of the informal article. For instance, a
number of statements at the end are not proved, but instead it is just stated that:

The following facts are easily derived.

5 Mathematics in Mizar

The final example for which we calculate the de Bruijn factor, is part of an ongoing effort at the Mizar
project to translate a complete mathematical book [3] into the Mizar language. For the book a handbook
from mathematical logic was chosen, which presents the theory of ‘continuous lattices.’ The translation
of this book (which currently is halfway finished) consists of a large number of Mizar articles with names
starting with ‘YELLOW’ and ‘WAYBEL’.
The article that we analyze here [2] is the translation of four pages of the book. Again we give an

example of the style of both the original and the translation. The statement of ‘Corollary 1.13’ (on p. 106
of [3]) is:

If L is a continuous lattice, then (L, σ(L)) is a quasicompact and locally quasicompact sober

space. In particular, (L, σ(L)) is a Baire space.

which gets translated into Mizar as:

L is continuous implies L is compact locally-compact sober Baire

Then the proof of this ‘Corollary’ starts with the following reasoning:

We have to show that a point x ∈ L has a basis of quasicompact neighborhoods. By 1.10 the sets

↑↑y with y ¿ x form a basis for the neighborhoods of the point. But as we know, if x ∈ U ∈ σ(L),
then actually we have a y ∈ U with y ¿ x; hence, ↑y ⊆ U , and so the sets ↑y can be used as

neighborhoods.

to which corresponds the following fragment of the Mizar proof:

thus A5: L is locally-compact

proof let x be Point of L, X be Subset of L such that

A6: x ∈ X and

A7: X is open;

reconsider x’ = x as Element of L by STRUCT_0:def 2;

set bas = { wayabove q where q is Element of L: q << x’ };

A8: bas is basis of x by A1, WAYBEL11:44;

consider y being Element of L such that

A9: y << x’ & y ∈ X by A1, A6, A7, WAYBEL11:43;

X is upper by A7, WAYBEL11:def 4; then

A10: uparrow y c= X by A9, WAYBEL11:42;

set Y = uparrow y;

take Y;



wayabove y ∈ bas by A9; then

A11: wayabove y is open & x ∈ wayabove y by A8, YELLOW_8:21;

wayabove y c= Y by WAYBEL_3:11; then

wayabove y c= Int Y by A11, TOPS_1:56;

hence x ∈ Int Y by A11;

thus Y c= X by A10;

Because this book is ‘more mathematical’ and hence reasons at a higher level than the previous two
examples, the de Bruijn factor is a bit higher:

informal formal de Bruijn factor

uncompressed 11.7K 78.4K apparent 6.7
compressed 4.0K 16.3K intrinsic 4.1

6 The De Bruijn Threshold

It seems plausible that there is a certain value for the de Bruijn factor such that, when proof checkers
become sufficiently powerful that their factor drops below it, people will start using them for serious
work (like verifying the correctness of their mathematics and communicating the precise details of their
work to others). We suggest to call this value the de Bruijn threshold. Like the de Bruijn factor of a
system, it probably depends on the kind of mathematics.
As it probably is not possible to get a formalization to be as short as its informal version, it is to be

hoped that the de Bruijn threshold of something interesting won’t be less than one.
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