
A proposed syntax for binders in Mizar

Freek Wiedijk

University of Nijmegen

Abstract. Binders like ‘lim’ (for limits), ‘
∑

’ (for summation) and ‘
∫

’
(for integration) are an essential part of the language of mathematics.
They are the ‘higher order’ elements of mathematical expressions.
At the TYPES meeting of 2003 in Turin, Andrzej Trybulec told me
that the reason that Mizar did not have binders was that nobody had
proposed a good syntax for them yet. To take this reason away, we will
present a syntax for binders in Mizar.

1 Introduction

1.1 Problem

One of the main difficulties when trying to ‘sell’ the mathematical language of
the Mizar system [2, 3] to real mathematicians is its lack of binders. Consider
for instance the formula1:

∫

xn dx =
xn+1

n+ 1

In the current Mizar language this has to be rendered like:

for f st for x holds f.x = x to_power n holds

(integral f).x = (x to_power (n + 1))/(n + 1)

instead of as the more concise and readable:

(integral x of x to_power n).x = (x to_power (n + 1))/(n + 1)

Clearly adding binders to the Mizar language will improve it. Therefore we will
propose a notation for binders, in the hope that some day it will be implemented.

At the TYPES meeting of 2003 I showed a rough version of this proposal to
Andrzej Trybulec and Czeslaw Bylinski. This note is a worked out version of the
same concept.

1 In this example
∫

is an indefinite integral that is not very subtle (it can be taken
to be an abbreviation of

∫ x

0
), because there is no constant of integration. A more

intelligent formal version of indefinite integration is certainly possible.

2 Freek Wiedijk

1.2 Approach

We will look for a notation that fits the current style of the Mizar language. For
instance keywords will be preferred over symbols. Therefore a notation like:

\x. x^2 + 1

(the way λ-terms are written in the HOL Light system [1]) will not be considered
to be as ‘Mizar like’ as:

lambda x of x^2 + 1

Another goal will be that the binders will behave similarly to the first order
Mizar operators (‘functors’) with respect to overloading and implicit arguments.

1.3 Related Work

Most proof assistants for mathematics are based on a higher order logic. This
means that they have λ-abstraction as a fundamental building block, and there-
fore binders are natural for them. In this respect Mizar is uncommon.

In higher order systems binders often are represented by a functional applied
to a λ-term. A binder B will thus be represented like:

B(λx. f(x))

instead of it having ‘first class’ status:

Bx. f(x)

Sometimes the fact that binders are functionals applied to λ-terms is hidden with
syntactic sugar. For instance in HOL Light, after one says parse_as_binder

"integral" the term:

(integral) (\x. x^2 + 1)

will be pretty-printed by the system as:

integral x. x^2 + 1

and it also can (and generally will) be entered into the system like this. However,
internally it still has the structure of the first term.

An example of a binder that in a type theoretical system is not defined with
the aid of the λ-binder is the product type Πx.A(x).

In our proposed Mizar notation all binders will be first class objects. The
lambda binder that we will show in Section 4 will have no special status among
the other examples.

1.4 Contribution

This note shows how binders can be added to the Mizar system in a natural way.

A proposed syntax for binders in Mizar 3

1.5 Outline

In Section 2 we will present our proposed syntax for Mizar binders in an abstract
way. In Sections 3, 4 and 5 we will illustrate our proposal through examples.
Finally in Section 6 we will discuss.

2 Syntax

The syntax that we propose for Mizar binders is2:

binder x [where x is type] at args of body

The way a binder will be defined is:

definition let args; [assume conditions;]
binder { f (type1) → type2 }
binder x [where x is type1] at args of f(x) → type3

means . . . ;
. . .
end

(In such a definition the ‘where is’ clause is always redundant, because type1 is
also present in the typing of the f . However we allow it for orthogonality.)

To be able to introduce binder symbols, we also will need a new category in
the vocabularies. We propose to use the letter ‘B’ for this.

Note that the binder notation uses the keywords at, of and binder, together
with the keywords where and is that are also used in the Fränkel operator (the
Mizar notation for set comprehension).

3 Finite sums

As an example of what our proposed notation looks like in practice, take the
following equation:

n
∑

i=1

i =
n(n+ 1)

2

It becomes:

sum i at 1,n of i = n∗(n + 1)/2;

To be able to write this formula, we need a vocabulary that contains the following
lines3:
2 We underline all binders to make the structure of these examples clearer, but these
underlinings do not represent anything special in the ASCII of the Mizar file. Look
at Section 5 for examples written in a plain typewriter font.

3 The symbol sum′ is the operator that in the MML is defined in RVSUM_1:def 10. It
is the functor that sums a finite sequence of complex numbers. The symbol sum is
the binder that we define from it.

4 Freek Wiedijk

O sum′

B sum

Here is a way that the binder sum might then be defined:

reserve i,n,a,b for natural number;

definition let n;
binder { f(natural number) → complex number }
sum i at n of f(i) → complex number
means

ex f’ being FinSequence of COMPLEX st len f’ = n &
(for i st i < n holds f’.(i + 1) = f(i)) & it = sum′ f’;

existence . . . ;
uniqueness . . . ;
end;

definition let a,b;
binder { f(natural number) → complex number }
sum i at a,b of f(i) → complex number
equals

(sum i at b + 1 of f(i)) − (sum i at a of f(i));
coherence . . . ;
end;

Note that ‘sum i at n’ means
∑

i<n, while ‘sum i at a,b’ means
∑b

i=a.

4 λ-abstraction

The most elementary binder is λ-abstraction (although it is not the most impor-
tant one: lim,

∑

and
∫

are more important for real mathematics). As an example
λ-abstraction is also interesting because it shows how implicit arguments behave
with binders.

The λ-term:
λx. x2 + 1

is written:

lambda x of xˆ2 + 1

Here is a possible definition of the lambda binder:

reserve A,B for non empty set;
reserve x for Element of A;

definition let A,B;
binder { f(Element of A) → Element of B }
lambda x of f(x) → Function of A,B

A proposed syntax for binders in Mizar 5

means

for x holds it.x = f(x)
existence . . . ;
uniqueness . . . ;
end;

Note that the arguments A and B to the lambda binder are inferred rather than
being given explicitly in the term.

The β-reduction rule now becomes a scheme4:

scheme beta { A() → non empty set, B() → non empty set,
f(Element of A()) → Element of B(), a() → Element of A() }:

(lambda x where x is Element of A() of f(x)).a() = f(a())
. . . ;

The ‘definitional scheme’ (the equivalent of a definitional theorem for a binder)
of the the definition of lambda is:

scheme lambda def { A() → non empty set, B() → non empty set,
f(Element of A()) → Element of B() } :

for x being Element of A() holds
(lambda x where x is Element of A() of f(x)).x = f(x);

which of course is already very close to this beta scheme.

5 Examples

We now list some more formulas with their proposed Mizar translation. The first
two are repeats from the previous two sections. Instead of displaying the Mizar
fragments in a nice pretty printed format like before, we will show them here in
a plain typewriter font.

n
∑

i=1

i =
n(n+ 1)

2

sum i at 1,n of i = n*(n + 1)/2

λx. x2 + 1

lambda x of x^2 + 1

f is continuous ⇐⇒ lim
x→a

f(x) = f(a) for all a

f is continuous iff for a holds lim x at a of f.x = f.a

4 The double of in ‘. . . of A() of f(x)’ might be a bit confusing. The first of is part of
the type, the second of is part of the binder.

6 Freek Wiedijk

∑

p prime

1

p2
<

1

2

sum p at { p : p is prime } of 1/p^2 < 1/2

∫∫

x2+y2≤1

√

1− x2 + y2 dx dy =
2

3
π

integral z where z is Element of [:REAL,REAL:] at

{ [x,y] : x^2 + y^2 <= 1 } of sqrt(1 - (z‘1)^2 + (z‘2)^2)

= 2/3*pi

The last two examples are interesting because the expressions { p : p is prime

} and { [x,y] : x^2 + y^2 <= 1 } have type set. Therefore these variants of
sum and integral need a ‘permissive definition’ (they need an assumption) to
make sense.5

definition let D be set;

assume D is Subset of NAT;

binder { f(natural number)->complex number }

sum i at D of f(i) means . . .
. . .
end

and:

definition let D be set;

assume D is Subset of [:REAL,REAL:];

binder { f(Element of [:REAL,REAL:])->complex number }

integral z at D of f(z) means . . .
. . .
end

6 Conclusion

6.1 Discussion

Binders are higher order objects. Therefore reasoning about binders in Mizar
will consist of the application of schemes. It is not clear whether this will be
practical.

The style of defining binders that we propose is a mixture of the style of
ordinary (first order) definitions and the style of (higher order) schemes. This
is apparent when comparing the definition of lambda in Section 4 with its def-
initional scheme lambda def. In the definition itself (which has a mixed style)

5 Really in the definition of integral one would also like the set D to be measurable
and the function f to be integrable.

A proposed syntax for binders in Mizar 7

the sets A and B are introduced in a first order style ‘let A,B be non empty
set’, while in its definitional scheme (which has a purely higher order style) they
are introduced in the higher order style ‘{A()→ non empty set, B()→ non empty
set }’. It is not clear whether this mixture of first order and higher order style in
the definition of binders will cause trouble in the implementation.

6.2 Future work

Implement binders in the Mizar system.

Acknowledgments. Thanks to Andrzej Trybulec and Czeslaw Bylinski for dis-
cussing this proposal with me.

References

1. John Harrison. The HOL Light manual (1.1), 2000. <http://www.cl.cam.ac.uk/

users/jrh/hol-light/manual-1.1.ps.gz>.
2. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,

1993. <http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>.
3. F. Wiedijk. Mizar: An Impression. <http://www.cs.kun.nl/~freek/mizar/mizar

intro.ps.gz>, 1999.

