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Abstract. There are two different approaches to formalizing proofs in a
computer: the procedural approach (which is the one of the HOL system)
and the declarative approach (which is the one of the Mizar system).
Most provers are procedural. However declarative proofs are much closer
in style to informal mathematical reasoning than procedural ones.
There have been attempts to put declarative interfaces on top of proce-
dural proof assistants, like John Harrison’s Mizar mode for HOL and
Markus Wenzel’s Isar mode for Isabelle. However in those cases the
declarative assistant is a layer on top of the procedural basis, having
a separate syntax and a different ‘feel’ from the underlying system.
This paper shows that the procedural and the declarative ways of proving
are related and can be integrated seamlessly. It presents an implementa-
tion of the Mizar proof language on top of HOL that consists of only 41
lines of ML. This shows how close the procedural and declarative styles
of proving really are.

1 Introduction

We describe a programming experiment with the HOL system. To be able to
read this paper one has to have some familiarity with both the HOL [10] and
Mizar [12, 17] systems. The software described here is not meant to be used for
serious work (and it certainly doesn’t emulate the full Mizar language). Rather
it’s a kind of ‘thought experiment’ to clarify the relation between the procedural
and declarative styles of proving.

This paper uses HOL for the procedural prover. However the way the paper
integrates Mizar-style proofs with it also applies to other procedural systems
like Coq [2] and Isabelle [14]. For each of these systems a set of ‘Mizar tactics’
could be written as described in this paper, giving them ‘Mizar style’ declarative
proofs without a separate syntactic layer.

The plan of this paper is as follows. It first presents the procedural and
declarative styles of proving and the HOL and Mizar systems. Then Section 6
presents the main idea of the paper which is implementing Mizar steps as HOL
tactics. For each of these ‘Mizar tactics’ this section gives an ML type in the
framework of the HOL system. After that the paper discusses various variations
on this Mizar mode for HOL. The paper concludes with a bigger example and
an outlook. The source code of the Mizar mode is an appendix.
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2 Procedural versus declarative proving

The idea of formalizing mathematical proofs in such a way that a computer
can check the correctness is not new but only recently it has become practical
and popular. Most of the proofs that are currently checked are proofs of the
correctness of computer software or hardware but some people have also been
formalizing other kinds of proofs (for instance of mathematical theorems [3, 6]).

There are two main styles of proof checking programs (the so-called proof
checkers or proof assistants): the procedural style and the declarative style.

The procedural proof checkers descend from a system from the seventies
called LCF [8]. Such a system has a proof state which consists of a set of ‘proof
obligations’. This state is transformed by means of so-called tactics which take a
proof obligation and reduce it to several simpler ones (possibly none). The proof
process starts with the statement to be proved as the sole proof obligation; once
no proof obligations remain, the proof is complete. Procedural proofs consisting
of a sequence of tactics cannot be understood without interactively running them
on a computer because they only contain the transitions between the proof states
and not the proof states themselves.1 Also since the initial proof obligation is
the final statement to be proved, procedural proofs tend to run backwards, from
the conclusion back to the assumptions.

The other two proof checkers from the seventies, Automath [13] and Mizar
[12, 17], both are of the declarative kind. (Another system that is declarative is
the Ontic system by David McAllester [11].) In a declarative system, a proof
doesn’t consist of instructions to transform statements but of those statements
themselves. Furthermore, the statements are present in deductive order: the
assumptions are at the start and the conclusion is at the end.2

The procedural and declarative styles differ in several ways:

– Declarative proofs are closer to informal mathematical reasoning and there-
fore are more readable than procedural proofs because in a declarative proof
the statements are present themselves and in the proper order.

– Most current proof assistants are procedural (perhaps because LCF style
provers are programmable by their users, while declarative systems can gen-
erally only be extended by its developers).

– Declarative proofs can be written without the proof assistant running and
then checked with a batch oriented system. Procedural proofs can only be
developed interactively because the computer has to keep track of the proof
obligations. Indeed, some declarative provers only have a batch mode while
procedural provers always also have an interactive mode.

1 Procedural proofs are therefore sometimes presented using runs of proof scripts (or,
even better, proof trees) showing intermediate goals.

2 The relation between backward and forward reasoning as related to procedural and
declarative proofs is more subtle than is suggested here. Declarative proofs (and in-
formal mathematical reasoning as well) also take backward steps. And many proce-
dural provers also can do forward reasoning. However the particular tactic collections
found in procedural provers tend to be biased towards backward reasoning.



Mizar Light for HOL Light 3

– Since a declarative proof contains a chain of statements, it is fairly robust
with respect to errors. If one step in the proof is erroneous, a declarative
system can recover from the error and check the rest of the proof file reason-
ably well. In contrast, a procedural prover stops checking at the first error it
encounters. So after the point in the file where an error occurs, a procedural
system can’t say much about correctness.

It seems natural to look for a way to integrate the procedural and declarative
approaches to proving. Two attempts to put a declarative interface on a pro-
cedural prover are the Mizar mode for HOL by John Harrison [9] and the Isar
mode for Isabelle by Markus Wenzel [16].

The Mizar mode for HOL by John Harrison is a true integration, in the
sense that the Mizar commands behave like ordinary HOL tactics. However
this doesn’t become clear from the way this mode is presented. For instance,
the Mizar sub-language has a separate parser from the (ML based) HOL proof
language. Also once the Mizar mode is active, the normal parser of the HOL
terms is no longer easily available. This seems to suggest that once the Mizar
mode has been activated, the ‘normal’ style of procedural HOL proving is not
meant to be used anymore.

The Mizar mode for HOL in this paper is a variation on the Mizar mode of
John Harrison. Its main difference with Harrison’s Mizar mode is that the Mizar
primitives are HOL tactics (so are not just compiled to them) and therefore the
integration is very tight. Also the implementation of our Mizar mode takes only
41 lines of ML, which is smaller than Harrison’s implementation which consists
of about 650 lines of ML.

The Isar mode for Isabelle differs from the Mizar mode for HOL in that it
has outgrown the experimental stage and has been used for serious proofs [3, 5,
4]. However it really is a second layer on top of the Isabelle layer (although it
is possible to ‘embed’ tactic scripts in Isar proofs), so in this case there is no
mixture between the two approaches. In fact, both layers have their own proof
state (called ‘the static proof context’ and ‘the dynamic goal state’) which are
to be synchronized at certain checkpoints. This is presented as a benefit because
it makes it possible to give a different order to the proof steps from the order
imposed by the underlying procedural basis but it shows that there is no tight
integration.

Two other declarative systems that integrate declarative proofs with higher
order logic are the SPL system by Vincent Zammit [18] and the Declare system
by Don Syme [15]. These two systems are not meant as a declarative interface
to a procedural prover. Instead they are autonomous declarative systems. (The
SPL system is implemented on top of the HOL system but it is not an interface
to HOL.)

Procedural and declarative proof checkers both might or might not satisfy
what Henk Barendregt calls the de Bruijn principle and the Poincaré principle

[1]. This paper is about the relation between procedural and declarative proof
styles. This is unrelated to the issue of whether a system should satisfy either of
these principles or how to make it do so.
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3 Example: the drinker

As a running example in this paper, we will use the so-called drinker’s principle.
This says that in every group of people one can point to one person in the group
such that if that person drinks then all the people in the group drink. This
somewhat surprising statement becomes in first order predicate logic:

∃x.
(

P (x)→ ∀y. P (y)
)

The HOL version of this is:

?x:A. P x ==> !y. P y

(so in HOL ‘?’ is the existential quantifier and ‘!’ is the universal quantifier) and
the Mizar version is:

ex x st P x implies for y holds P y

Here is an informal proof of the drinker’s principle (we will see below how this
textual version compares both to the proofs of this statement in the HOL and
Mizar systems):

Suppose that P (x) is false for some x. Then for that x the implication

holds because from a false proposition one may deduce anything. That

means that in this case the proposition follows.

Now suppose that P (x) is false for no x. Then P (x) is true for all x. But

that statement is the conclusion of the implication and so the proposition

again follows.

Almost all example proofs in this paper are proofs of this simple statement. In
Section 8 we will present a bigger example.

4 HOL

The HOL system [7] by Mike Gordon is a descendant from LCF that imple-
ments Church’s Higher Order Logic (hence the acronym ‘HOL’), which is a clas-
sical higher order logic encoded by simply typed lambda calculus with ML style
polymorphism. The system guarantees the correctness of its proofs by reducing
everything in LCF style to a ‘proof kernel’, which because of its small size (nine
pages of ML code, about half of which is comment) can be thoroughly checked
for correctness by inspection.

The HOL system has had several implementations: HOL88, HOL90, HOL98,
ProofPower (a commercial version) and HOL Light. The HOL Light system
[10] which is the HOL re-implementation by John Harrison, is the version of
the system that we have used for this paper (but all versions are similar). It has
been written in CAML Light and consists of slightly under two megabytes of ML
source, which implement a mathematical framework containing a formalization
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of the real numbers, analysis and transcendental functions and several decision
procedures for both logical and arithmetical problems. It has been both used for
computer science applications and for formalizing pure mathematics (like the
fundamental theorem of algebra).

The drinker’s principle can be proved in HOL in the following way:

let DRINKER = prove

(‘?x:A. P x ==> !y. P y‘,

ASM_CASES_TAC ‘?x:A. ~P x‘ THEN

RULE_ASSUM_TAC (REWRITE_RULE[NOT_EXISTS_THM]) THENL

[POP_ASSUM CHOOSE_TAC; ALL_TAC] THEN

EXISTS_TAC ‘x:A‘ THEN

ASM_REWRITE_TAC[]);;

There are various ways to prove this statement, but this tactic sequence is a
fairly normal way to prove something like this in HOL.

5 Mizar

The Mizar system [12, 17] by Andrzej Trybulec and his group in Bialystok,
Poland, is a declarative prover that goes back to the seventies. It implements
classical first order logic with ZFC-style set theory. The current version, called
PC Mizar, dates from 1989. It consists of a suite of Pascal programs which are
distributed compiled for Intel processors (both Windows and Linux). These pro-
grams are accompanied by a huge library of all kinds of mathematics, in the
form of a series of 686 so-called ‘articles’ which together are about 1.3 million
lines of Mizar.

In Mizar a proof of the drinker’s principle looks like:

ex x st P x implies for y holds P y

proof

per cases;

suppose A0: ex x st not P x;

consider a such that A1: not P a by A0;

take a;

assume A2: P a;

A3: contradiction by A1,A2;

thus A4: for y holds P y by A3;

suppose A5: for x holds P x;

consider a such that A6: not contradiction;

take a;

thus A7: P a implies for y holds P y by A5;

end;

Note that this is readable and similar to the informal proof in Section 3.
The Mizar system has many interesting ideas. For instance it has a com-

plicated type system with polymorphic types, overloading, subtyping and type
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modifiers called ‘adjectives’, together with powerful type inference rules. Also it
has a mathematical looking operator syntax with not only prefix and infix oper-
ators but also ‘aroundfix’ operators, which behave like brackets. However in this
paper we will restrict ourselves to the proof language of Mizar. That means that
from now on we will only have HOL types and HOL term syntax and we will
not mix those with Mizar types and Mizar term syntax. The same restriction
to just the proof fragment of Mizar was chosen for the Mizar mode for HOL by
John Harrison.

The reasoning part of Mizar turns out to be simple. In its basic form it is
given by the following context free grammar:

proposition = [ label : ] formula

statement = proposition justification

justification =
empty

| by label {, label}
| proof {step} [ cases ] end

step =
statement ;

| assume proposition ;

| consider variable {, variable}
such that proposition {and proposition} justification ;

| let variable {, variable} ;
| take term {, term} ;
| thus statement ;

cases = per cases justification ; {suppose proposition ; {step}}

empty =

The main Mizar proof feature that is missing from this language fragment is the
use of ‘.=’ for equational reasoning.

Note that this grammar has only seven kinds of proof elements: a statement
without keyword, assume, consider, let, per cases, take and thus. (Compare
this with the hundreds of different tactics, tacticals, conversions and conversion-
als that appear all over the HOL proofs.)

6 Mizar as HOL tactics

We will compare the way the Mizar and HOL systems implement natural deduc-
tion. That will lead to a natural ML type (in the framework of HOL) for each
of the Mizar steps. The table that lists these types is the essence of our Mizar
implementation on top of HOL. (The appendix will show how to implement the
Mizar steps according to these types.)

There are two kinds of Mizar steps:

– skeleton steps: the natural deduction way of reasoning
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– forward steps: statements that get added to the context after having been
justified with the ‘by’ justification

The natural deduction rules correspond to Mizar steps according to following
table (rules for which a ‘–’ appears in this table are implemented as forward
steps and don’t have a Mizar step of their own):

natural deduction Mizar

→ introduction assume

→ elimination –
∧ introduction thus

∧ elimination –
∨ introduction –
∨ elimination per cases

∀ introduction let

∀ elimination –
∃ introduction take

∃ elimination consider

The HOL language has natural deduction as well. The main difference is that
the Mizar steps make the propositions explicit that the HOL steps leave implicit.

Compare the two ways to do→ introduction. Suppose we want to reduce the
goal:

A,B ` (C → D)→ E

to:
A,B, (C → D) ` E

(this is the introduction rule because a goal oriented prover reasons backwards).
The Mizar step doing this is:

assume A2: C implies D;

(here ‘A2’ is the label of the assumption). The same is accomplished in HOL by:

DISCH_TAC

or if we write out the proof state transformation explicitly:

it : goalstack = 1 subgoal (1 total)

0 [‘A‘]

1 [‘B‘]

‘(C ==> D) ==> E‘

#e DISCH_TAC;;

it : goalstack = 1 subgoal (1 total)

0 [‘A‘]

1 [‘B‘]

2 [‘C ==> D‘]

‘E‘
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The Mizar statement gives the ‘redundant’ information what the discharged
statement is and where it ends up in the context. We can imitate this in HOL
by defining a tactic ASSUME_A such that the HOL tactic becomes:

ASSUME_A(2,‘C ==> D‘)

or explicitly:

it : goalstack = 1 subgoal (1 total)

0 [‘A‘]

1 [‘B‘]

‘(C ==> D) ==> E‘

#e (ASSUME_A(2,‘C ==> D‘));;

it : goalstack = 1 subgoal (1 total)

0 [‘A‘]

1 [‘B‘]

2 [‘C ==> D‘]

‘E‘

All that the ASSUME_A tactic does is check that the number and statement fit
and then apply DISCH_TAC.

The ASSUME_A tactic has the type:

int × term → tactic

If we continue along this line of thought, it turns out that every Mizar construc-
tion has a ‘natural’ HOL type. The table that gives these types is the essence of
our Mizar mode for HOL:

A int × term → tactic → tactic

ASSUME_A int × term → tactic

BY int list → thm list → tactic

CONSIDER term list → (int × term) list → tactic → tactic

LET term list → tactic

PER_CASES tactic → ((int × term) × tactic) list → tactic

TAKE term list → tactic

THUS_A int × term → tactic → tactic

Note that this table corresponds to the Mizar proof grammar from Section 5.
Implementing these eight tactics is trivial, as shown in the appendix. The first
of these tactics, the A tactic, corresponds to a Mizar step without a keyword: a
forward reasoning step. The BY tactic is used to justify steps. It takes two lists
of arguments. The first list is a list of integers referring to the assumption list of
the current goal, the second list is a list of thms.

Now we can write down the proof of the drinker’s principle as a normal HOL
proof (so with prove and a chain of tactics put together with THEN), this time
using the ‘Mizar tactics’:
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let DRINKER = prove

(‘?x:A. P x ==> !y. P y‘,

PER_CASES (BY [][])

[(0,‘?x:A. ~P x‘),

(CONSIDER [‘a:A‘] [(1,‘~(P:A->bool) a‘)] (BY [0][]) THEN

TAKE [‘a:A‘] THEN

ASSUME_A(2,‘(P:A->bool) a‘) THEN

A(3,‘F‘) (BY [1;2][]) THEN

THUS_A(4,‘!y:A. P y‘) (BY [3][]))

;(0,‘!x:A. P x‘),

(CONSIDER [‘a:A‘] [] (BY [][]) THEN

TAKE [‘a:A‘] THEN

THUS_A(1,‘P a ==> !y:A. P y‘) (BY [0][]))]);;

Note that this is similar to the Mizar version of this proof from Section 5. The
main difference is that type annotations are needed (‘(P:A->bool) a‘ instead
of ‘P a‘). This problem of having to put type annotations in terms is standard
in HOL. A possible approach to this problem will be presented in Section 7.5.

7 Enhancements

The Mizar tactics that we presented in the previous section are very basic. They
can be enhanced in various ways. Because we lack the space we don’t give all
the details. Curious readers are referred to the HOL Light source file miz.ml at
the URL <http://www.cs.kun.nl/~freek/mizar/miz.ml>.

7.1 The BECAUSE tactic

The common way to justify a Mizar step in our Mizar mode is with a justification
that looks like:

(BY [local statement list][global statement list])

This has the prover ‘hardwired in’ (in the implementation from the appendix,
this prover first tries REWRITE_TAC and if that fails tries MESON_TAC). However
the BY tactic is built on top of a tactic called ‘BECAUSE’ which has the type:

(thm list → tactic) → int list → thm list → tactic

This means that one can use it with any tactic that has the type thm list

→ tactic like REWRITE_TAC, SIMP_TAC, MESON_TAC and so on. (One also could
use it with tactics like ASM_REWRITE_TAC but that would be silly, because the
assumptions already are accessible through the ‘local statements’ argument.) For
instance one could justify a step by:

(BECAUSE ONCE_SIMP_TAC[local statement list][global statement list])

This would prove the statement being justified using the ONCE_SIMP_TAC tactic
with the relevant thms.

The BECAUSE tactic gives control over the exact behavior of the prover if that
is needed, making a refined version of BY unnecessary.
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7.2 A more powerful ASSUME A tactic

The ASSUME_A tactic is the declarative version of the procedural DISCH_TAC tac-
tic. The implementation from the appendix mirrors DISCH_TAC exactly. However
since the ASSUME_A tactic contains the statement that is discharged, it can be
more general. It becomes more powerful if we implement it as:

let ASSUME_A (n,tm) =

DISJ_CASES_THEN2

(fun th -> REWRITE_TAC[th] THEN N_ASSUME_TAC n th)

(fun th -> REWRITE_TAC[REWRITE_RULE[] th] THEN

MIZ_ERROR_TAC "ASSUME_A" [n])

(SPEC tm EXCLUDED_MIDDLE);;

For instance in that case one can use it to reason by contradiction:

it : goalstack = 1 subgoal (1 total)

‘A‘

#e (ASSUME_A(0,‘~A‘));;

it : goalstack = 1 subgoal (1 total)

0 [‘~A‘]

‘F‘

This is also how the assume step of the real Mizar system behaves.

7.3 An interactive version of the PER CASES tactic

The PER_CASES tactic has the type:

PER_CASES : tactic → ((int × term) × tactic) list → tactic

In order to debug a proof interactively a version that has type:

PER_CASES : tactic → (int × term) list → tactic

and that leaves the cases as subgoals is more practical. Using this variant makes
the proof look less like Mizar because the list of the statements of the cases has
been separated from the list of proofs of the cases.

A hybrid is also possible that has the type of the original PER_CASES but
doesn’t require all the cases to be completely proved after the tactic finishes.

7.4 Tactics versus proofs

Some of the tactic arguments of the Mizar tactics not only have to reduce the
proof obligations but they have to prove the goal altogether. So those arguments
are more ‘proofs’ than ‘tactics’. One might try to reflect this in the typing of the
Mizar tactics by at certain places changing tactic (which is defined as goal →
goalstate) to goal→ thm. The second type is in a way a special case (‘subtype’)
of the first. Then functions:
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PROOF : tactic → goal → thm

PER : (goal → thm) → tactic

map these two types to each other and:

prove’ : term × (goal → thm) → thm

runs a proof. Using this approach, the Mizar mode tactics will get the following
type assignments:

A int × term → (goal → thm) → tactic

ASSUME_A int × term → tactic

BY int list → thm list → goal → thm

CASES (goal → thm) → ((int × term) × (goal → thm)) list

→ goal → thm

CONSIDER term list → (int × term) list → (goal → thm) → tactic

LET term list → tactic

TAKE term list → tactic

THUS_A int × term → (goal → thm) → tactic

(Note that we have separated the PER_CASES tactic into a combination of PER
and CASES.) The example proof becomes, using these tactics:

let DRINKER = prove’

(‘?x:A. P x ==> !y. P y‘,

PROOF

(PER (CASES (BY [][])

[(0,‘?x:A. ~P x‘),

PROOF

(CONSIDER [‘a:A‘] [(1,‘~(P:A->bool) a‘)] (BY [0][]) THEN

TAKE [‘a:A‘] THEN

ASSUME_A(2,‘(P:A->bool) a‘) THEN

A(3,‘F‘) (BY [1;2][]) THEN

THUS_A(4,‘!y:A. P y‘) (BY [3][]))

;(0,‘!x:A. P x‘),

PROOF

(CONSIDER [‘a:A‘] [] (BY [][]) THEN

TAKE [‘a:A‘] THEN

THUS_A(1,‘P a ==> !y:A. P y‘) (BY [0][]))])));;

7.5 Terms in context

The HOL system parses a term in an empty context because the HOL imple-
mentation is functional. So if we write an expression of type term it doesn’t
have access to the goal state. This means that ‘n‘ will always be read as a
polymorphic variable, whatever is in the current goal. If a goal talks about a
natural number ‘n‘ of type ‘:num‘, then to instantiate an existential quantifier
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with this ‘n‘ one has to write EXISTS_TAC ‘n:num‘ instead of EXISTS_TAC ‘n‘.
Generally this doesn’t get too bad but it is irritating.

In our Mizar mode this problem is worse because there are more statements
in the tactics. So we might try to modify things for this. The idea is to change
the type term to goal → term everywhere. This means that the ‘term parsing
function’ X will have to get the type string → goal → term. Again a variant
function prove’’ of type (goal → term) × tactic → thm is needed.

If we follow this approach then most type annotations will be gone, except
in the statement of the theorem to be proved and in the arguments of LET and
CONSIDER (where they also are required in the ‘real’ Mizar).

Because in that case the terms are parsed in the context of a goal, we can give
a special meaning to the variables ‘antecedent‘ and ‘thesis‘. See Section 8
for an example of this.

The main disadvantage of this modification to our Mizar mode is that the
original HOL proof scripts will not work anymore because the X function has
been changed. That is a big disadvantage if one wants true integration between
the ‘pure’ HOL and the Mizar mode.

7.6 Out of sequence labels and negative labels

Another thing that can be changed is to be less restrictive which numbers are
allowed for the labels. Until now they had to be the exact position that the
statement would end up in the assumption list of the goal. However there is no
reason not to allow any number and put the statement at that position, padding
the assumption list with ‘T‘ thms if necessary. That way we can make the labels
in the example match the labels in the original Mizar version. If we do this in
the example proof, then the second CONSIDER will see a goal like:

it : goalstack = 1 subgoal (1 total)

0 [‘T‘]

1 [‘T‘]

2 [‘T‘]

3 [‘T‘]

4 [‘T‘]

5 [‘!x. P x‘]

‘?x. P x ==> (!y. P y)‘

Related to this is an enhancement that implements Mizar’s then. In Mizar a step
can refer to the step directly before it with the then prefix. A way to imitate
this in our Mizar mode is to allow negative numbers in the labels, counting back
from the top of the assumption stack. The label -1 will then refer to the top of
the stack (which contains the statement from the previous step). Therefore use
of -1 will behave like then.
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7.7 Symbolic labels

Instead of numeric labels we also can have symbolic labels. HOL Light supports
symbolic labels already. It is straight-forward to change the set of Mizar tactics
to work with these symbolic labels instead of with the numeric positions in the
list of assumptions.

In the rest of this paper we have presented our Mizar mode with numeric
labels. We had two reasons for this:

– In HOL the symbolic labels are almost never used, so proof states that
contain them are un-HOL-like.

– In Mizar the ‘symbolic’ labels generally just are A1, A2, A3, . . . That means
that the Mizar labels really are used as numbers, most of the time. Therefore
we didn’t consider numeric labels un-Mizar-like.

7.8 Error recovery

A declarative proof contains explicit statements for all reasoning steps. Because
of this a declarative system like Mizar can recover from errors and continue
checking proofs after the first error.3 This behavior can be added to our Mizar
mode for HOL by catching the exception if there is an error, and then continue
with the appropriate statement added to the context as an axiom. This was
implemented by using a justification function that just throws an exception.

Having this enhancement of course only gives error recovery for ‘reasoning
errors’ and will not help with other errors like syntax errors or ML type errors.

One of the referees of this paper liked the idea of error recovery for the Mizar
tactics, and suggested a stack on which the goalstates of the erroneous steps
could be stored for later proof debugging. We implemented this idea, but we
think that the standard HOL practice of running a proof one tactic at a time is
more convenient (for which the ‘Mizar tactics with error recovery’ are unusable).

8 Bigger example

In this section we show a larger example of our Mizar mode (it uses the variant
from Section 7.5, so terms are parsed in the context of the proof):

let FIXPOINT = prove’’

(‘!f. (!x:A y. x <= y /\ y <= x ==> (x = y)) /\

(!x y z. x <= y /\ y <= z ==> x <= z) /\

(!x y. x <= y ==> f x <= f y) /\

(!X. ?s. (!x. x IN X ==> s <= x) /\

(!s’. (!x. x IN X ==> s’ <= x) ==> s’ <= s))

==> ?x. f x = x‘,

3 The Mizar mode by John Harrison does not have this feature. Isar satisfies the prin-
ciple that sub-proofs can be checked independently, but the present implementation
simply stops at the first error it encounters.
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LET [‘f:A->A‘] THEN

ASSUME_A(0,‘antecedent‘) THEN

A(1,‘!x y. x <= y /\ y <= x ==> (x = y)‘) (BY [0][]) THEN

A(2,‘!x y z. x <= y /\ y <= z ==> x <= z‘) (BY [0][]) THEN

A(3,‘!x y. x <= y ==> f x <= f y‘)(BY [0][]) THEN

A(4,‘!X. ?s. (!x. x IN X ==> s <= x) /\

(!s’. (!x. x IN X ==> s’ <= x) ==> s’ <= s)‘)

(BY [0][]) THEN

CONSIDER [‘Y:A->bool‘] [(5,‘Y = {b | f b <= b}‘)] (BY [][]) THEN

A(6,‘!b. b IN Y = f b <= b‘) (BY [5][IN_ELIM_THM;BETA_THM]) THEN

CONSIDER [‘a:A‘] [(7,‘!x. x IN Y ==> a <= x‘);

(8,‘!a’. (!x. x IN Y ==> a’ <= x) ==> a’ <= a‘)] (BY [4][]) THEN

TAKE [‘a‘] THEN

A(9,‘!b. b IN Y ==> f a <= b‘)

(LET [‘b:A‘] THEN

ASSUME_A(9,‘b IN Y‘) THEN

A(10,‘f b <= b‘) (BY [6;9][]) THEN

A(11,‘a <= b‘) (BY [7;9][]) THEN

A(12,‘f a <= f b‘) (BY [3;11][]) THEN

THUS_A(13,‘f a <= b‘) (BY [2;10;12][])) THEN

A(10,‘f(a) <= a‘) (BY [8;9][]) THEN

A(11,‘f(f(a)) <= f(a)‘) (BY [3;10][]) THEN

A(12,‘f(a) IN Y‘) (BY [6;11][]) THEN

A(13,‘a <= f(a)‘) (BY [7;12][]) THEN

THUS_A(14,‘thesis‘) (BY [1;10;13][]));;

This is a translation to our framework of an example proof from John Harrison’s
Mizar mode which proves the Knaster-Tarski fixpoint theorem.

9 Conclusion

The tactics that are presented here might be the basis of a realistic system that
offers the best of both the procedural and declarative provers. One hopes this
to be possible: to build a prover that has the readable proofs of the declarative
provers and the programmability of the procedural ones. The Mizar mode for
HOL by John Harrison and the Isar mode for Isabelle might claim to be just
that, but in those systems it feels like one has to learn two provers if one wants
to be able to use both styles of proving.

The Mizar mode of this paper makes clear that that both kinds of prover
are very similar. Although the proofs using our Mizar tactics look awkward and
fragile compared with their Mizar counterparts, we have shown that it is possible
to bridge the gap between the procedural and declarative proof styles in a more
intimate way than had been accomplished thus far.

Acknowledgements. Thanks to Dan Synek, Jan Zwanenburg and the anonymous
referees for valuable comments. Due to space limits we have not been able to
incorporate all of them.
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A Implementation

Here is the full listing of the Mizar implementation as described in Section 6.

1 let miz_error msg nl =

2 failwith (rev_itlist (fun s t -> t^" "^s) (map string_of_int nl) msg);;

3 let MIZ_ERROR_TAC msg nl = fun g -> miz_error msg nl;;

4 let N_ASSUME_TAC n th (asl,_ as g) =

5 if length asl = n then ASSUME_TAC th g else miz_error "N_ASSUME_TAC" [n];;

6 let A (n,tm) tac =

7 SUBGOAL_THEN tm (N_ASSUME_TAC n) THENL

8 [tac THEN MIZ_ERROR_TAC "A" [n]; ALL_TAC];;

9 let ASSUME_A (n,tm) =

10 DISCH_THEN (fun th -> if concl th = tm then N_ASSUME_TAC n th

11 else miz_error "ASSUME_A" [n]);;

12 let (BECAUSE:(thm list -> tactic) -> int list -> thm list -> tactic) =

13 fun tac nl thl (asl,_ as g) ->

14 try tac ((map (fun n -> snd (el (length asl - n - 1) asl)) nl) @ thl) g

15 with _ -> ALL_TAC g;;

16 let BY = BECAUSE (fun thl -> REWRITE_TAC thl THEN MESON_TAC thl);;

17 let CONSIDER =

18 let T = ‘T‘ in

19 fun vl ntml tac ->

20 let ex = itlist (curry mk_exists) vl

21 (itlist (curry mk_conj) (map snd ntml) T) in

22 SUBGOAL_THEN ex

23 ((EVERY_TCL (map X_CHOOSE_THEN vl) THEN_TCL EVERY_TCL (map

24 (fun (n,_) tcl cj ->

25 let th,cj’ = CONJ_PAIR cj in N_ASSUME_TAC n th THEN tcl cj’)

26 ntml)) (K ALL_TAC)) THENL

27 [tac THEN MIZ_ERROR_TAC "CONSIDER" (map fst ntml); ALL_TAC];;

28 let LET = MAP_EVERY X_GEN_TAC;;

29 let PER_CASES =

30 let F = ‘F‘ in

31 fun tac cases ->

32 let dj = itlist (curry mk_disj) (map (snd o fst) cases) F in

33 SUBGOAL_THEN dj

34 (EVERY_TCL (map (fun case -> let n,_ = fst case in

35 (DISJ_CASES_THEN2 (N_ASSUME_TAC n))) cases) CONTR_TAC) THENL

36 ([tac] @ map snd cases) THEN MIZ_ERROR_TAC "PER_CASES" [];;

37 let TAKE = MAP_EVERY EXISTS_TAC;;

38 let THUS_A (n,tm) tac =

39 SUBGOAL_THEN tm ASSUME_TAC THENL

40 [tac THEN MIZ_ERROR_TAC "THUS_A" [n]

41 ;POP_ASSUM (fun th -> N_ASSUME_TAC n th THEN REWRITE_TAC[EQT_INTRO th])];;


