
Mizar: An Impression

Freek Wiedijk

Nijmegen University

<freek@cs.kun.nl>

Abstract

This note presents an introduction to the Mizar system, followed by a brief

comparison between Mizar and Coq. Appended are a Mizar grammar and an

annotated example of a complete Mizar article.

1 What It Is

Mizar is a system for representing mathematical proof in a computer such that a
program can check the correctness. It has been developed by Andrzej Trybulec
and his team in Bialystok, Poland since about 1973. The Mizar language is quite
close to the language of informal mathematics (‘the mathematical vernacular’).
Mizar is based on a ZF-like set theory with classical first order logic. Part of
the Mizar project is the development of a large database of mathematics which
currently numbers 587 ‘articles’ taking 41 megabytes (even without the proofs it’s 6
megabytes). A major project currently underway is the translation to Mizar (under
direction of Grzegorz Bancerek) of a real mathematics book: ‘A Compendium of
Continuous Lattices’ [1].

Mizar has had a number of dialects. ‘Mizar MSE’ (also called ‘baby Mizar’) is
a toy language not meant for real applications. The current implementation of the
full Mizar language is called ‘PC Mizar’. It’s written in Turbo/Borland Pascal and
runs only under DOS/Windows. Functionally it’s basically one program, ‘mizf’,
that non-interactively checks a Mizar file for its correctness.

The Mizar system doesn’t have much documentation. The text that most re-
sembles a manual1 is ‘An Outline of PC Mizar’ by MichaÃl Muzalewski [3].

A way to explore the Mizar language that works surprisingly well is to study
the Mizar syntax (see appendix B on page 16 for a context free grammar) and for
specific constructions to search the Mizar library for examples.

2 Definitions

A Mizar article consists of an ‘environ’ header which indicates what other arti-
cles from the Mizar library it refers to, followed by a sequence of definitions and
theorems.

A definition has the general shape:

definition

let arguments;

assume preconditions;

func pattern -> type means :label: statement;

1An electronic version of this manual is available on the World Wide Web at the address

<http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>

1

correctness proof

end;

The pattern presents the way the operation is written (both normal function no-
tation and operator notation are possible; and not all arguments need to be present
in the pattern: Mizar supports implicit arguments). In the defining statement the
defined object is referred to as ‘it’. The correctness proof has to show existence
and uniqueness of the defined object given the preconditions.

A definition of the form:

func pattern -> type means :label:

it = expression;

can be abbreviated as:

func pattern -> type equals :label: expression;

Here is an example of a definition, the definition of ‘log’ (from article ‘POWER’):

reserve a,b for Real;

definition

let a,b;

assume A1: a>0 & a<>1 and A2: b>0;

func log(a,b) -> Real means

:Def3: a to_power it = b;

existence

251 lines of existence proof omitted

uniqueness by A1,Th57;

end;

(The ‘reserve’ statement reserves variables for a certain type: the type of a reserved
variable needn’t be given. So because of the ‘reserve’ statement in the first line,
the ‘let a,b’ means ‘let a,b be Real’.)

And here is the definition of subtraction (from ‘REAL_1’):

reserve x,y for Real;

definition

let x,y;

func x-y -> Real equals :Def3: x+(-y);

correctness;

end;

(The ‘correctness’ at the end is an abbreviation of all elements of the correctness
proof that are left to be proved: for a definition with ‘means’ these are ‘existence’
and ‘uniqueness’; and for a definition with ‘equals’ it’s ‘coherence’, which says
that the object has the correct type. In this example correctness is obvious, so
there’s no ‘by’ justification needed.)

Apart from ‘func’ definitions for functions, Mizar has ‘pred’ definitions for pred-
icates and ‘mode’ and ‘attr’ definitions for types (for an explanation of Mizar types,
see section 5 below). These are syntactically rather similar to the ‘func’ definitions
and will not be explained in detail.

In the definition of functions and predicates synonyms and antonyms can be
given and properties like commutativity, symmetry, reflexivity and irreflexivity can
be indicated. The Mizar system will magically ‘know’ about these things, and
variations on the same expression will behave like they are merely syntactic variants.
For instance because the definition of ≤ (in ‘ARYTM’) is:

2

definition

let x,y be Element of REAL;

pred x ≤ y means

6 lines of definition

89 lines of correctness proof

synonym y ≥ x;

antonym y < x;

antonym x > y;

end;

it doesn’t matter whether one writes x < y or y > x. Also it means that theorems
about < often also are usable (probably with a contraposition of an implication) to
prove statements about ≥.

3 Theorems

The major part of a Mizar article consists of theorems (just like the major part of
a computer program source consists of procedures/functions). A theorem has the
shape:

theorem label: statement

proof

proof steps

end;

An example of a theorem (from article ‘IRRAT_1’):

theorem T2:

ex x, y st x is irrational & y is irrational &

x.^.y is rational

proof

set w =
√
2;

H1: w is irrational by INT_2:44,T1;

w>0 by AXIOMS:22,SQUARE_1:84;

then (w.^.w).^.w = w.^.(w•w) by POWER:38

.= w.^.(w2) by SQUARE_1:58

.= w.^.2 by SQUARE_1:88

.= w2 by POWER:53

.= 2 by SQUARE_1:88;

then H2: (w.^.w).^.w is rational by RAT_1:8;

per cases;

suppose H3: w.^.w is rational;

take w, w;

thus thesis by H1,H3;

suppose H4: w.^.w is irrational;

take w.^.w, w;

thus thesis by H1,H2,H4;

end;

(Note that Mizar uses ‘high ASCII’ characters, like ‘
√

’, ‘•’ and ‘2’ which in the
DOS character set have ASCII codes 251, 249 and 253.) Various elements in this
example will be discussed below.

Mizar statements are those of the language of first order logic (using the key-
words ‘contradiction’, ‘not’, ‘&’, ‘or’, ‘implies’, ‘iff’, ‘for . . . holds’ and ‘ex

3

. . . st’). The atomic formulas of this language either are instances of predicates
(often written as an infix operator, with ‘=’ being one of the most important), or
statements stating that an expression ‘is’ a type or adjective.

The only slight deviation from this is that a combination of a universal quan-
tification and an implication is usually not written as:

for variable holds (statement implies statement)

but as:

for variable st statement holds statement

A source of confusion might be that Mizar has both ‘&’ versus ‘and’ and ‘st’
versus ‘such that’. The first variants are syntax of first order formulas, the second
variants are keywords that are part of Mizar statements.

Another ‘duplication’ is that Mizar has defined ‘func’ functions (Mizar calls
those defined operations ‘functors’), versus functions in the underlying set theory
(sets of Kuratowski pairs). An application of the first kind of function is written
f(x) while that of the second kind is f.x (with an infix dot operator).

A third such ‘duplication’ is between ‘x ∈ X’ and ‘x is Element of X’. The
first is the primitive binary predicate from set theory, the second is a typing state-
ment (saying that ‘x’ has type ‘Element of X’). For each set, ‘Element of’ gives
the type of its elements. For instance: ‘REAL’ is a set, but ‘Real’ which is defined
to be ‘Element of REAL’ is a type. So it is ‘x ∈ REAL’, but ‘x is Real’ or ‘x is

Element of REAL’.
A Mizar proof consists of a list of proof steps. Such a proof step basically has

the shape:

label: statement by labels;

For instance, an example of a Mizar proof step is:

H1: w is irrational by INT_2:44,T1;

Here the statement is ‘w is irrational’, it’s labeled ‘H1’, and it’s a conse-
quence of the statements labeled ‘INT_2:44’ and ‘T1’, which are:

:: INT_2:44

2 is prime

(the 44th theorem from article ‘INT_2’) and:

T1: p is prime implies sqrt p is irrational

(which was proved earlier in the same file).
A label in the list after the ‘by’ keyword either is a label from an earlier theorem

or proof step in the same file, or it’s a reference to a theorem from a different Mizar
article. In the latter case it looks like:

article name:sequence number

(so while ‘local’ references are by name, ‘outside’ references are by number). One
can look up these sequence numbers by browsing the ‘abstract’ files of the library,
which are the articles in which automatically proofs have been removed and sequence
numbers have been inserted.

Instead of referring to the label of the immediately preceding step, one may also
prefix the proof step with the keyword ‘then’. So:

4

A: statement by labels;

B: next statement by A,more labels;

can be written as:

statement by labels;

then B: next statement by more labels;

Apart from these kind of steps (called ‘diffuse’ reasoning steps) there are steps
that relate to the statement that’s being proved (‘skeleton’ steps). At each moment
there is a ‘current’ statement that has to be proved: the skeleton steps transform
that statement. For instance suppose that the statement to be proved looks like:

A implies B & C

Then the following skeleton proves it, using the ‘assume’ and ‘thus’ skeleton
steps:

assume label: A;

diffuse steps

thus B by labels;

more diffuse steps

thus C by labels;

After the ‘assume’ step the statement to be proved has been reduced to B & C.
And after the first ‘thus’ it has become C.

The combination ‘then thus’ isn’t syntactically correct: it is written as ‘hence’.
So ‘hence’ means that the statement follows from the previous step (‘then’) and
that it is part of what was to be proved (‘thus’).

So at each moment in a Mizar proof there’s a statement that’s left to be proved.
This statement may be referred to by the keyword ‘thesis’. Often a proof or
subproof ends with ‘hence thesis’ (the Mizar library contains this construction
36885 times).

The ‘assume’ and ‘thus’ steps correspond in the system of natural deduction to
implication introduction and conjunction introduction. Other skeleton steps are:

• ‘let’ for universal introduction:

let variable be type;

• ‘consider’ for existential elimination:

consider variable being type such that properties

by labels;

(the statements referred to by the labels have to justify the appropriate exis-
tential statement)

• ‘take’ for existential introduction:

take expression;

• ‘per cases’ for disjunction elimination:

per cases by labels;

suppose label: statement;

proof for the first case

suppose label: another statement;

proof for the second case

more cases

5

Not all natural deduction rules have a Mizar skeleton step for a counterpart:
some are handled as a diffuse step.

In Mizar a proof can contain subproofs. The part of a proof step of the form:

. . . by labels;

is called its justification. It is not full first order provability, but some weaker variant
that can be decided quickly (approximately: in only one of the premises universal
quantors may be instantiated; on the other hand it’s quite good at reasoning from
type information, at applying equalities, and at deducing existential statements).
This ‘by’ justification sometimes isn’t sufficient: so a statement also may also be
justified by a full proof in the form:

label: statement

proof

proof steps

end;

Note that there is no semicolon after the statement (that semicolon would count
for an ‘empty’ justification). In the case that a full proof like this is given, the
statement can be omitted with the ‘now . . . end’ construction:

label:

now

proof steps

end;

In that case the statement that is proved (that the label refers to) is ‘calculated’
from the proof.

Mizar also has support for equational reasoning. One can write:

label: expression = expression by labels

.= expression by labels

more steps

.= expression by labels;

The transitivity of these equalities is handled automatically: the label will refer
to the equality of the initial and final expressions.

And Mizar supports higher order statements. When invoking such a ‘scheme’
its name is not put after the keyword ‘by’ but after the keyword ‘from’, and it
takes arguments. These arguments are not the ‘higher order parameters’ which are
between braces in the definition of the scheme (those are determined automatically),
but instead the ‘conditions’ after the ‘provided’.

The scheme for doing induction on natural numbers is defined (in article ‘NAT_1’)
by:

scheme Ind { P[Nat] } :

for k holds P[k]

provided

A1: P[0] and

A2: for k st P[k] holds P[k+1]

16 lines of proof omitted

(the square brackets mean that P is a predicate: functions are written with round
brackets; even when such a parameter function is a constant those brackets have to
be written). The ‘Ind’ scheme then is applied like:

label: statement from Ind(label,label);

in which the two labels refer to the instances of the two ‘provided’ statements that
this scheme needs (which of course are the base and induction step cases).

6

4 Syntax

Expressions in a Mizar text look rather mathematical. This is caused by two things:
the Mizar library uses the high ASCII part of the DOS character set (which contains
lots of ‘mathematical’ symbols) and in Mizar-expressions various styles of operators
are allowed (prefix, postfix, infix and ‘bracket-like’).

The Mizar lexical syntax isn’t fixed. In fact, a Mizar article generally consists
of two files: the article file (with a name ending with ‘.miz’) and the vocabulary
file (ending with ‘.voc’; which has to be in a subdirectory called ‘dict’ in order for
the system to be able to find it). This last kind of file presents lexical elements. It
contains both the ‘identifiers’ from the definitions as well as the operator symbols.
Such a vocabulary file contains for each lexical element a line that starts with a
capital letter giving the lexical category of the symbol (the symbols for functions,
predicates, modes, etc. all have different lexical categories), then the symbol itself
and then possibly a priority.

So the Mizar library really consists of a number of articles together with a
number of vocabularies. The articles can be browsed in source format, but the
vocabularies are only present in ‘compiled’ form. The program ‘findvoc -w’ is
used to find out from which vocabulary a specific symbol comes. For instance the
command:

findvoc -w .

has as output:

vocabulary: FUNC

O. 100

which tells us that ‘.’ is an operator symbol (at the lexical level there’s no difference
between infix, prefix or postfix operators, so it can be used in all three ways) from
the vocabulary ‘FUNC’ and that it has priority 100 (if there are multiple definitions
of a ‘.’ operator they all have this priority).

For the analysis of the expression:

f.x

three aspects can be distinguished: the lexical analysis (there are three tokens: ‘f’,
‘.’ and ‘x’), the way the expression has to be parsed (the pattern from:

reserve x for set;

reserve f for Function;

definition

let f,x;

func f.x -> set means

:: FUNCT_1:def 4

[x,it] ∈ f if x ∈ dom f otherwise it = 0;

end;

is the one that applies here) and the ‘notion’ that it refers to (the ‘meaning’ of the ‘.’
operator). These three aspects correspond exactly to the ‘vocabulary’, ‘notation’
and ‘constructors’ directives in the ‘environ’ header of an article. So in order to
be able to process this ‘f.x’ expression correctly, the directives:

vocabulary FUNC;

notation FUNCT_1;

constructors FUNCT_1;

7

have to be present. Note that, although often the names of a vocabulary and the
article it belongs to are identical, this need not be the case (here it’s FUNC versus
FUNCT_1): the ‘name spaces’ of article names and vocabulary names are separate.

Although it’s quite hard to get the ‘environ’ header of an article right, these
three directives are the ones that are most difficult to understand. The ‘theorems’,
‘schemes’ and ‘clusters’ directives are straightforward: in order to be able to use
a theorem, scheme or cluster from an article, the name of that article has to be
present in the appropriate directive.

The ‘definitions’ directive is only about definitional expansion (what in type
theory is called ‘delta reduction’). This directive says that the Mizar system is
allowed to ‘unfold’ all definitions from the articles that are listed. The theorems
(with ‘def’ in front of the number) that stem from definitions are theorems, and the
relevant directive for them is the ‘theorems’ directive. The ‘definitions’ directive
is used rarely.

The ‘requirements’ directive currently has only one possible instance:

requirements ARYTM;

It means that the Mizar system will ‘know’ about natural numbers and about
some identities and inequalities between them.

For instance the inequality

1<>0;

doesn’t need any justification when the ARYTM requirement is present.
A Mizar operator can take more than two arguments, but in that case brackets

have to be around them and commas in between. So legal postfix operators are:

x f

(x) f

(x,y) f

. . .

and for instance a legal infix operator is:

(x,y) f (z,v,w)

Note that the ‘ordinary’ function application notation fits this paradigm.
Function identifiers and operator symbols have type ‘O’ in a vocabulary file. In

Mizar also bracket-like notation is allowed: for this the vocabulary types ‘K’ and ‘L’
are present. Because ‘<*’ has type ‘K’ and ‘*>’ has type ‘L’ (both from vocabulary
‘FINSEQ’), the expression:

<* x *>

is a legal pattern (it denotes a one element finite sequence).

5 Types

Although the semantics of Mizar is untyped set theory (the axioms of Mizar are the
ZF axioms plus a rather strong axiom – which implies the axiom of choice – about
the existence of arbitrarily large unreachable cardinals), the language itself is typed.
But the types are a property of the expressions of the language, not of the objects
(the sets) which those expressions refer to, so the language is not based on ‘type
theory’. Types are used to disambiguate expressions (operators can be overloaded
and are determined by the types of their arguments) and for reasoning.

Mizar typings are either written as:

8

variable be type

or as:

variable being type

(in a ‘let’ one probably would use the first and in a ‘for’ one would use the second:
but both variants may be used everywhere).

Mizar types are built from ‘modes’ and ‘attributes’. A Mizar type is an in-
stance of a mode (which is a parametrised type), possibly prefixed with a number
of adjectives (an adjective is an attribute or the negation of an attribute).

For instance, in the type:

non empty Subset of NAT

the mode ‘Subset’ is applied to the expression ‘NAT’ (which denotes the set of
natural numbers) giving the type ‘Subset of NAT’. To this type then the adjective
‘non empty’ has been added, which is the negation of the attribute ‘empty’.

Every Mizar type has an ancestor type. This leads to a tree-like type hierarchy
of which the root type is ‘Any’ (or its synonym ‘set’). At every node of this tree
there is a ‘Boolean algebra’-like structure given by the adjectives. The Mizar system
knows how to ‘widen’ types following this structure.

In Mizar it’s possible to give an expression some explicit type. For this there is
the ‘reconsider’ construction, which is a variant of the ‘set’ statement. The way
to locally name an expression in Mizar is:

set variable = expression;

After this, variable behaves like expression has been substituted for it every-
where. A ‘reconsider’ is like that, only then the expression gets a different type.
It looks like:

reconsider variable = expression as type

by labels;

(Note that the ‘consider’ and ‘reconsider’ statements are not related: the
first uses an existential statement to find a new object with some properties, the
second ‘casts’ an already known object given by an expression to some type.)

The type machinery of Mizar is rather well developed. In particular Mizar
has so-called ‘clusters’ to be able to automatically deduce extra type information:
clusters allow the Mizar system to manipulate sets of adjectives. There are three
kind of cluster definitions: the first kind states that some combination of adjectives
gives a non-empty type (this needs to be known to the system, because Mizar types
all have to be provably non-empty), the second kind tells that some combination
of adjectives implies other adjectives, and the third kind tells that an expression of
some shape has some adjectives.

An example of the first kind of cluster (from article ‘HIDDEN’) is:

definition

cluster non empty set;

end;

(there’s no proof because ‘HIDDEN’ and ‘TARSKI’ are the two ‘special’ articles which
supply the axiomatics of Mizar). It states that the type ‘non empty set’ is inhab-
ited. If this cluster weren’t known, something like:

let X be non empty set;

9

wouldn’t be allowed, because in that case the system wouldn’t know that ‘non
empty set’ is a properly non-empty type.

An example of the second kind of cluster statement (from ‘BINTREE1’) is:

definition

cluster binary -> finite-order Tree;

28 lines of proof omitted

end;

This says that every expression that has type ‘binary Tree’ has the adjec-
tive ‘finite-order’ as well (so it really has the more informative type ‘binary
finite-order Tree’).

A third kind of cluster (from ‘ABIAN’):

definition

let i be even Integer;

cluster i+1 -> odd;

5 lines of proof omitted

end;

This last kind of cluster is very powerful, because lots of properties of expressions
can be derived automatically with it, but it sometimes significantly slows down the
system.

Mizar has the ‘redefine’ statement, which means that an operation can have
multiple definitions in which all but the first one have a ‘redefine’ keyword added.
Those redefinitions may be underspecified (all other information is copied from the
original definition), they may be defined on a smaller set of arguments, but they do
have to be proved ‘compatible’ with the original definition.

This can be used to give the same operation multiple types. For instance because
of (from ‘NAT_1’):

reserve k,n for Nat;

definition

let n,k;

redefine func n+k -> Nat;

18 lines of proof omitted

end;

the Mizar system knows that the sum of two natural numbers will be a natural
number (because the ‘redefined’ version of the operation is syntactically selected
when the arguments are natural numbers: for that the articles in the ‘notation’
directive have to be in the proper order) even although the addition operation
originally was defined for real numbers (and in that definition has type Real).
But because of the ‘redefine’, although the redefinition has type Nat, all existing
theorems about the original operation of type Real still apply for it as well.

6 Semantics

The semantics of Mizar is fairly straightforward. Mizar is about ZF style set theory
with first order logic.

However, there is the subtlety of undefined expressions. The semantics of Mizar
‘solves’ the problem of undefined expressions in a way that leads to some unexpected
properties. Firstly it means that types are not only ‘syntactic sugar’ coding predi-
cates (instead they ‘mean’ something on the level of the semantics). And secondly

10

it means that the axiom of choice is provable from the way Mizar implements first
order logic.

A Mizar ‘func’ operation can have preconditions. The proof that the operation
is well defined uses these preconditions. However, when applying such an operation
there is no need to prove that the preconditions hold: they may be false. So, while
for instance a precondition of division is that the denominator has to be unequal to
zero, one is allowed to write expressions like 1/0.

The semantics of Mizar doesn’t tell anything about the result of applying an
operation for which the preconditions fail. If the preconditions are true, the defining
statement from the definition is guaranteed to hold; but when the preconditions are
false, you don’t know anything. So 1/0 is an unknown object. A different way of
looking at this is that the function that maps Mizar expressions to their meaning
isn’t unique: on ‘undefined’ expressions it can take any value.

The one exception to this rule is that the type of an undefined expression still
has to apply. So, although we don’t know what 1/0 is, we do know that it has
to be a real number (as the division operation has type ‘Real’). So the defining
statement (which is a predicate on the object that’s being defined) is not relevant
when the preconditions fail, but the type is.

This difference in semantical treatment of unary predicates and types coding
those predicates is clear from the following example. Let ‘something’ be some
(irrelevant) statement. Then write:

reserve X for set;

definition

let X;

assume A: contradiction;

func choice(X) -> Element of X means

:Def_choice: something;

correctness by A;

end;

definition

let X;

assume A: contradiction;

func choice1(X) means

:Def_choice1: it is Element of X & something;

correctness by A;

end;

(Because the precondition is ‘contradiction’ of course these operations are well
defined whenever the preconditions hold.) The ‘choice’ and ‘choice1’ functions
seem minor variations of each other. But because of the way the semantics treats
undefined expressions we can prove:

theorem AC:

choice(X) is Element of X;

but we can’t prove:

theorem AC1:

choice1(X) is Element of X

proof

thus thesis by Def_choice1;

::> *4

end;

11

(The *4 line is the error message that the ‘mizf’ checker inserts in the file, number
4 meaning that the ‘by’ inference doesn’t hold. It is explained by the Mizar checker
as ‘This inference is not accepted’.)

Note that theorem ‘AC’ gives a ‘uniform’ axiom of choice. (The axiom of choice
also follows from Mizar’s set-theoretical axioms, but it clearly already is ‘hard wired’
in the way Mizar treats first order logic.)

The meaning of the type ‘Element of X’ when X is an empty set, is some un-
known but non-empty class (all Mizar types are non-empty). In Mizar the state-
ment:

ex x st x is Element of ∅

(stating that there exists some ‘Element of ∅’) is provable (‘consider x being

Element of ∅; take x;’). But the seemingly contradictory statement:

not ex x st x ∈ ∅

is provable as well, because it’s a theorem of ZF. (This does not mean that the
semantics of Mizar isn’t sound, but just that ‘Element of’ has a strange interpre-
tation.) One would expect the definition of the ‘Element’ mode (in ‘HIDDEN’) to
have precondition ‘X is non empty’, but this is not the case.

In order to ‘build’ mathematical structures, Mizar also has ‘struct’ types. They
are defined like:

struct(ancestor struct) struct name (#

field name -> type,

field name -> type,

more fields

field name -> type

#)

(The ‘(#’ and ‘#)’ brackets may be replaced with high ASCII characters looking
like ‘<<’ and ‘>>’: in fact this notation is the more common one.)

An object of such a struct type is then written like:

struct name (# value,value, . . . value #)

and a field is selected from a struct by:

the field name of struct expression

As an example of a struct, here is the way topological spaces are introduced in
Mizar (from articles ‘STRUCT_0’ and ‘PRE_TOPC’):

struct 1-sorted (#

carrier -> set

#);

struct(1-sorted) TopStruct (#

carrier -> set,

topology -> Subset-Family of the carrier

#);

definition

let IT be TopStruct;

attr IT is TopSpace-like means

the carrier of IT ∈ the topology of IT &

12

(for a being Subset-Family of the carrier of IT

st a c= the topology of IT

holds union a ∈ the topology of IT) &

(for a,b being Subset of the carrier of IT st

a ∈ the topology of IT & b ∈ the topology of IT

holds a ∩ b ∈ the topology of IT);

end;

definition

mode TopSpace is TopSpace-like TopStruct;

end;

The specific semantics of structs in terms of the underlying set theory is not
really interesting: some ad hoc coding will do the job (choosing some set for the
field names and interpreting the struct as a partial function from that set will
work). Because of the way struct types widen, an object will also be of a struct

type if it has more fields than is required by the definition. The adjective ‘strict’
means that such extra fields should be absent.

7 Comparison To Coq

The Mizar system is quite dissimilar to systems from the LCF tradition like Coq.
We here will compare Mizar specifically to Coq, but a similar comparison holds to
other LCF-like systems like HOL, Nuprl, Isabelle, etc.

The most striking difference between Mizar and Coq is that Mizar is a batch
checker which checks a whole file at a time (the ‘@proof’ keyword gives some control
in this respect by allowing one to suppress the checking of specific proofs), while Coq
is an interactive system (this is similar to the difference in spirit between compiled
and interpreted programming languages). One of the places that this shows is in
the readability of the formalizations: a Coq file is just a long list of ‘commands’, so
it has a linear structure and the commands aren’t designed for readability, while a
Mizar text has much more structure and is quite accessible without having to ‘run’
the file.

Another difference is that Mizar doesn’t have ‘proof objects’: the system doesn’t
reduce its correctness to the correctness of a small ‘kernel’ that only knows about
a few primitives. There also is a difference in the kind of logic in the two systems:
Coq’s kernel is based on ‘type theory’ which naturally has a constructive logic, while
Mizar is very much a classical system.

The Mizar project has more automation than Coq and it has less automation.
The step used most in Mizar is the ‘by’ inference; in Coq the common tactics are
more elementary than that. The ‘by’ inference knows how to reason with types,
it is able to use equalities and it’s able to logically combine the information from
many statements (the maximum: 22 statements in ‘GENEALG1’). While it’s not full
first order inference its power is close to the kind of reasoning steps a human would
take (the Mizar system has the ‘relinfer’ program to eliminate superfluous steps,
and running it shows that ‘by’ is more powerful than one tends to expect). So for
the majority of the steps Mizar is more powerful than Coq. On the other hand,
the Coq system isn’t ‘closed’, it can be extended with arbitrarily powerful ‘tactics’.
These tactics, like ‘Omega’ and ‘Ring’, are able to solve involved domain specific
tasks and don’t have a Mizar counterpart. Also, the Coq system is able to ‘reflect’
on algorithms: it’s able to state an algorithm inside the system, to prove that it
is correct, and then to execute it, making it possible to extend the system ‘from
within’. This also is a reason that Coq is, in a sense, more powerful than Mizar.

13

Another difference between Mizar and Coq is that Coq mainly reasons backwards
from the statement that is to be proved, while Mizar reasons forwards. Basically
the Mizar ‘skeleton’ steps correspond to the Coq tactics and reduce the statement
that’s to be proved, while the ‘diffuse’ steps reason forward from already known
statements. Most of the steps in a Mizar proof are diffuse steps.

A difference that’s not so much a difference between the languages or systems,
as well as a difference between the projects, is that the Mizar project has given
a big priority to the development of a large and organized library. The Mizar
system intentionally makes it hard to create projects of more than a few files (it is
possible, but the system gets slow), stimulating Mizar users to submit their work
for integration into the Mizar library. And the Mizar library is continuously being
reorganized and changed by the Mizar group (the ‘library committee’), turning it
into a structured and consistent whole. This wouldn’t be possible if they didn’t
‘own’ the files.

Here’s an example of a change that has been made to the Mizar library at
some time. In the Mizar library the real numbers are constructed from the rational
numbers as Dedekind cuts. But in the construction of the set ‘REAL’ it ‘cuts out’ the
copy of the rationals and ‘glues in’ the ‘original’ rationals (similarly the integers are
glued inside the rationals and the natural numbers glued inside the integers). That
way the natural numbers are a subset of the reals but also the natural numbers are
the natural natural numbers, i.e., the finite ordinals. So the real number 0 is the
natural number 0 is the empty set. This cutting-and-pasting of sets of numbers
is a ‘hack’, but it also is quite nice. The complex numbers don’t contain the real
numbers in this fashion yet, but a change like this ‘to put the real numbers inside
the complex numbers’ has been planned.

So the Mizar library is significantly more well developed than the Coq library.
For instance it already contains a full construction of the real numbers (the Coq
library only has the real numbers axiomatically) with lots of properties proved.
(On the other hand, the Mizar library currently doesn’t yet contain a definition
of the rather elementary notion of ‘polynomial’ so it’s not that rich yet.) Also
Mizar is much more mathematical than Coq. Mizar is primarily about abstract
mathematics while Coq has much more a focus on topics from computer science
like proving functional programs correct.

Yet another difference: Coq is much more ‘mainstream science’ than Mizar.
Mizar is an old-fashioned system that not many people know (if we take the fair
assumption that every Mizar user has written an article for the Mizar library then
there are 117 people in the world knowing Mizar), there is hardly any documentation
about it and it doesn’t run on the usual platform for this kind of system (which
is a Sun running Unix). On the other hand Coq actively follows the theoretical
developments from the type theory community, it’s well known, has many users, is
well documented and is available for all major platforms.

John Harrrison has written a ‘Mizar mode’ for HOL. To create a Mizar interface
for a LCF style prover like HOL or Coq, one has to write a tactic that is able to
do ‘by’ inference (Harrison decided to implement full first order provability, which
is more powerful but less efficient), and one has to write a parser for the Mizar
syntax. Because the semantics and the type systems of Mizar and Coq are not the
same, there are differences there to be bridged too. Having a system that combines
the strengths of Mizar and Coq will be nice (it will be a ‘Mizar’ that has proof
objects) but doing it by ‘enhancing’ Coq will be rather inelegant (there will be
duplications of functionality) and inefficient. And really, from the point of view of
the mathematically inclined user Mizar already contains everything that one needs.

14

References

[1] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott.
A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg,
New York, 1980.

[2] J. Kotowicz, B. Madras, and M. Korolkiewicz. Basic notation of universal alge-
bra. Journal of Formalized Mathematics, 4, 1992.

[3] M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,
1993.

A How To Run Mizar

Select three directories:

• distdir : to unzip the Mizar distribution in

• mizardir : for the installed Mizar system

• workdir : for your articles

The recommended choice for mizardir is ‘C:\MIZAR’, although everything works fine
if you put it elsewhere.

To install the Mizar system, get the zipped installation files from:

<ftp://ftp.mizar.org/verversion/disks.zip/>

(the ‘version’ of the system described in this note is ‘5-3.07’). Unzip them all
inside distdir . Then run the install command:

distdir\install distdir\ mizardir

This installs everything apart from the sources of the Mizar library in ‘mizar-
dir\MML’. These sources are really not very important (not even for reference to
the library: the abstracts in ‘mizardir\ABSTR’ are much more suitable for that).
To unpack the sources of the Mizar library too, run the ‘FMnumber.EXE’ files from
distdir inside ‘mizardir\MML’.

Now add:

set mizfiles=mizardir

to the appropriate ‘AUTOEXEC.BAT’ file, add mizardir to the DOS search PATH, and
the installation will be complete.

To write an article create two subdirectories:

• workdir\TEXT

• workdir\DICT

Supposing the name of the article you’ll be going to work on is ‘FOO’, then create:

• workdir\TEXT\FOO.MIZ

• workdir\DICT\FOO.VOC

which are your article and vocabulary files.
To check the article for correctness, cd to workdir and run the command:

mizf text\foo

(the mizf checker will add the suffix ‘.miz’ by itself). This will check the file, and
will put the error messages inside the checked file (so it might be necessary to close
the file in the editor before running the ‘mizf’ command).

15

B Grammar

Mizar-Article =
‘environ’
{ ‘vocabulary’ File-Name-List ‘;’ |

(‘notation’ |
‘constructors’ |
‘clusters’ |
‘definitions’ |
‘theorems’ |
‘schemes’) File-Name-List ‘;’ |

‘requirements’ File-Name-List ‘;’ }
(‘begin’ { Text-Item }) { . . . } .

Text-Item =
‘reserve’ Identifier-List ‘for’ Type-Expression-List ‘;’ |
‘definition’
{ Definition-Item }
[‘redefine’ { Definition-Item }]
‘end’ ‘;’ |

Structure-Definition |
‘theorem’ Proposition Justification ‘;’ |
[‘scheme’] Identifier

‘{’ (Identifier-List ‘[’ Type-Expression-List ‘]’ |
Identifier-List ‘(’ Type-Expression-List ‘)’ ‘->’ Type-Expression)
{ ‘,’ . . . } ‘}’

‘:’ Formula-Expression
[‘provided’ Proposition { ‘and’ . . . }]
Justification ‘;’ |

Auxiliary-Item |
‘canceled’ [Numeral] ‘;’ .

Definition-Item =
Assumption |
Auxiliary-Item |
Structure-Definition |
‘mode’ M-Symbol [‘of’ Identifier-List]

([‘->’ Type-Expression] [‘means’ Definiens] ‘;’
Correctness-Conditions |

‘is’ Type-Expression ‘;’)
{ ‘synonym’ M-Symbol [‘of’ Identifier-List] ‘;’ } |

‘func’ Functor-Pattern [‘->’ Type-Expression]
[(‘means’ | ‘equals’) Definiens] ‘;’
Correctness-Conditions

{ ‘commutativity’ Justification ‘;’ }
{ ‘synonym’ Functor-Pattern ‘;’ } |

‘pred’ Predicate-Pattern [‘means’ Definiens] ‘;’
Correctness-Conditions

{ ‘symmetry’ Justification ‘;’ |
‘connectedness’ Justification ‘;’ |
‘reflexivity’ Justification ‘;’ |
‘irreflexivity’ Justification ‘;’ }

{ (‘synonym’ | ‘antonym’) Predicate-Pattern ‘;’ } |

16

‘attr’ Identifier ‘is’ V-Symbol ‘means’ Definiens ‘;’
[Correctness-Conditions]
{ (‘synonym’ | ‘antonym’)

(Identifier ‘is’ V-Symbol | Predicate-Pattern) ‘;’ } |
‘canceled’ [Numeral] |
‘cluster’ Adjective-Cluster Type-Expression ‘;’ Correctness-Conditions |
‘cluster’ Adjective-Cluster ‘->’ Adjective-Cluster Type-Expression ‘;’
Correctness-Conditions |

‘cluster’ Term-Expression ‘->’ Adjective-Cluster ‘;’
Correctness-Conditions .

Structure-Definition =
‘struct’ [‘(’ Type-Expression-List ‘)’] G-Symbol [‘over’ Identifier-List]

‘(#’ (U-Symbol { ‘,’ . . . } ‘->’ Type-Expression) { ‘,’ . . . } ‘#)’ ‘;’ .

Definiens =
[‘:’ Identifier ‘:’] (Formula-Expression | Term-Expression) |
[‘:’ Identifier ‘:’]

((Formula-Expression | Term-Expression) ‘if’ Formula-Expression)
{ ‘,’ . . . }
[‘otherwise’ (Formula-Expression | Term-Expression)] .

Functor-Pattern =
[Functor-Loci] O-Symbol [Functor-Loci] |
K-Symbol Identifier-List L-Symbol .

Functor-Loci =
Identifier |
‘(’ Identifier-List ‘)’ .

Predicate-Pattern = [Identifier-List] R-Symbol [Identifier-List] .

Correctness-Conditions =
{ ‘existence’ Justification ‘;’ |

‘uniqueness’ Justification ‘;’ |
‘coherence’ Justification ‘;’ |
‘compatibility’ Justification ‘;’ |
‘consistency’ Justification ‘;’ }

[‘correctness’ Justification ‘;’] .

Justification =
Simple-Justification |
(‘proof’ | ‘@proof’) Reasoning ‘end’ .

Reasoning =
{ Reasoning-Item }

[‘per’ ‘cases’ Simple-Justification ‘;’
((‘case’ (Proposition | Conditions) ‘;’ { Reasoning-Item })

{ . . . } |
(‘suppose’ (Proposition | Conditions) ‘;’ { Reasoning-Item })
{ . . . })] .

Reasoning-Item =
Auxiliary-Item |
Assumption |
(‘thus’ | ‘hence’) Statement |
‘take’ (Term-Expression | Identifier ‘=’ Term-Expression) { ‘,’ . . . } ‘;’ .

Auxiliary-Item =
[‘then’] Statement |
‘set’ (Identifier ‘=’ Term-Expression) { ‘,’ . . . } ‘;’ |

17

‘deffunc’ Identifier ‘(’ [Type-Expression-List] ‘)’ ‘=’ Term-Expression |
‘defpred’ Identifier ‘[’ [Type-Expression-List] ‘]’ ‘means’
Formula-Expression .

Assumption =
(‘let’ | ‘given’) Qualified-Variables [‘such’ Conditions] ‘;’ |
‘assume’ (Proposition | Conditions) ‘;’ .

Statement =
[‘then’]

(Proposition Justification ‘;’ |
‘consider’ Qualified-Variables [‘such’ Conditions]
Simple-Justification ‘;’ |

‘reconsider’
(Identifier ‘=’ Term-Expression | Identifier) { ‘,’ . . . }
‘as’ Type-Expression Simple-Justification ‘;’ |

Term-Expression ‘=’ Term-Expression Simple-Justification

‘.=’ (Term-Expression Simple-Justification) { ‘.=’ . . . }) |
[Identifier ‘:’] ‘now’ Reasoning ‘end’ ‘;’ .

Simple-Justification =
[‘by’ Reference { ‘,’ . . . }] |
‘from’ Identifier [‘(’ Reference { ‘,’ . . . } ‘)’] .

Reference =
Identifier |
File-Name ‘:’ (Numeral | ‘def’ Numeral) { ‘,’ . . . } .

Conditions = ‘that’ Proposition { ‘and’ . . . } .

Proposition = [Identifier ‘:’] Formula-Expression .

Formula-Expression =
‘(’ Formula-Expression ‘)’ |
[Term-Expression-List] R-Symbol [Term-Expression-List] |
Identifier [‘[’ Term-Expression-List ‘]’] |
Term-Expression ‘is’ { [‘non’] V-Symbol } |
Term-Expression ‘is’ Type-Expression |
Quantified-Formula-Expression |
Formula-Expression ‘&’ Formula-Expression |
Formula-Expression ‘or’ Formula-Expression |
Formula-Expression ‘implies’ Formula-Expression |
Formula-Expression ‘iff’ Formula-Expression |
‘not’ Formula-Expression |
‘contradiction’ |
‘thesis’ .

Quantified-Formula-Expression =
‘for’ Qualified-Variables [‘st’ Formula-Expression]

(‘holds’ Formula-Expression | Quantified-Formula-Expression) |
‘ex’ Qualified-Variables ‘st’ Formula-Expression .

Qualified-Variables =
Identifier-List |
(Identifier-List (‘being’ | ‘be’) Type-Expression) { ‘,’ . . . }

[‘,’ Identifier-List] .

Type-Expression =
‘(’ Type-Expression ‘)’ |
Adjective-Cluster M-Symbol [‘of’ Term-Expression-List] |
Adjective-Cluster G-Symbol [‘over’ Term-Expression-List] .

18

Adjective-Cluster = { [‘non’] V-Symbol } .

Term-Expression =
‘(’ Term-Expression ‘)’ |
[Arguments] O-Symbol [Arguments] |
K-Symbol Term-Expression-List L-Symbol |
Identifier ‘(’ [Term-Expression-List] ‘)’ |
G-Symbol ‘(#’ Term-Expression-List ‘#)’ |
Identifier |
‘{’ Term-Expression

[(‘where’ Identifier-List ‘is’ Type-Expression) { ‘,’ . . . }]
‘:’ Formula-Expression ‘}’ |

Numeral |
Term-Expression ‘qua’ Type-Expression |
‘the’ U-Symbol ‘of’ Term-Expression |
‘the’ U-Symbol |
‘$1’ | ‘$2’ | ‘$3’ | ‘$4’ | ‘$5’ | ‘$6’ | ‘$7’ | ‘$8’ |
‘it’ .

Arguments =
Term-Expression |
‘(’ Term-Expression-List ‘)’ .

File-Name-List = File-Name { ‘,’ . . . } .

Identifier-List = Identifier { ‘,’ . . . } .

Type-Expression-List = Type-Expression { ‘,’ . . . } .

Term-Expression-List = Term-Expression { ‘,’ . . . } .

C Axioms

Here are the undefined notions and axioms of the Mizar system: everything in the
Mizar library is defined and proved from just this. (This is the content of articles
‘HIDDEN’ and ‘TARSKI’. Axiom ‘TARSKI:8’ was omitted because it’s derivable from
‘TARSKI:def 5’.)

definition mode Any; synonym set; end;

reserve x,y,z,u for Any, N,M,X,Y,Z for set;

definition let x,y; pred x = y; reflexivity; symmetry; antonym x <> y; end;

definition let x,X; pred x ∈ X; antisymmetry; end;

definition let X; attr X is empty; end;

definition cluster empty set; cluster non empty set; end;

definition func ∅ -> empty set; end;

definition let X; mode Element of X; end;

definition let X; func bool X -> non empty set; end;

definition let X; mode Subset of X is Element of bool X; end;

definition let X be non empty set; cluster non empty Subset of X; end;

definition let X,Y; pred X c= Y; reflexivity; end;

definition let D be non empty set, X be non empty Subset of D;

redefine mode Element of X -> Element of D;

end;

theorem (for x holds x ∈ X iff x ∈ Y) implies X = Y;

definition let y; func {y} -> set means x ∈ it iff x = y;

let z; func {y,z} -> set means x ∈ it iff x = y or x = z;

commutativity;

19

end;

definition let y; cluster {y} -> non empty;

let z; cluster {y,z} -> non empty;

end;

definition let X,Y; redefine pred X c= Y means x ∈ X implies x ∈ Y; end;

definition let X;

func union X -> set means x ∈ it iff ex Y st x ∈ Y & Y ∈ X;

end;

theorem X = bool Y iff for Z holds Z ∈ X iff Z c= Y;

theorem x ∈ X implies ex Y st Y ∈ X & not ex x st x ∈ X & x ∈ Y;

scheme Fraenkel {A()->set, P[Any,Any]}:

ex X st for x holds x ∈ X iff ex y st y ∈ A() & P[y,x]

provided

for x,y,z st P[x,y] & P[x,z] holds y = z;

definition let x,y; func [x,y] equals {{x,y},{x}}; end;

definition let X,Y;

pred X ≈ Y means ex Z st

(for x st x ∈ X ex y st y ∈ Y & [x,y] ∈ Z) &

(for y st y ∈ Y ex x st x ∈ X & [x,y] ∈ Z) &

for x,y,z,u st [x,y] ∈ Z & [z,u] ∈ Z holds x = z iff y = u;

end;

:: Axiom der unerreichbaren Mengen

theorem ex M st N ∈ M &

(for X,Y holds X ∈ M & Y c= X implies Y ∈ M) &

(for X holds X ∈ M implies bool X ∈ M) &

(for X holds X c= M implies X ≈ M or X ∈ M);

D Complete Example

Here is an example of a complete Mizar text: it’s the article ‘UNIALG_1’ from
the Mizar library, article number 303 by JarosÃlaw Kotowicz, Beata Madras and
MaÃlgorzata Korolkiewicz [2]. It defines the type ‘Universal_Algebra’ (together
with the notions of ‘arity’ and ‘signature’) which is the Mizar implementation of
‘one-sorted algebras’ from the theory of universal algebra.

We both give here the ‘abstract’ file ‘UNIALG_1.ABS’ as well as the full Mizar
article ‘UNIALG_1.MIZ’. Interspersed are explanations. Sometimes the explanations
contain Mizar text from other articles: the main text of the ‘UNIALG_1’ article can
be recognized because it is not indented and because it has line numbers in the left
margin.

D.1 Abstract

In order to find out what’s in an article from the Mizar library, one generally only
looks at its ‘abstract’ file. This is generated automatically from the full article. In
it all proofs have been removed and ‘sequence numbers’ like ‘UNIALG_1:5’ for the
theorems and ‘UNIALG_1:def 11’ for the definitions have been inserted automati-
cally.

1 :: Basic Notation of Universal Algebra

2 :: by Jaros{\l}aw Kotowicz, Beata Madras and Ma{\l}gorzata Korolkiewicz

3 ::

4 :: Received December 29, 1992

5 :: Copyright (c) 1992 Association of Mizar Users

7 environ

9 vocabulary UNIALG, PFUNC1, FINSEQ, FUNC_REL, FUNC, FINITER2, PBOOLE, UNIALG_D;

10 notation ARYTM, NAT_1, STRUCT_0, TARSKI, RELAT_1, FUNCT_1, FINSEQ_1, FUNCOP_1,

11 PARTFUN1, ZF_REFLE;

12 clusters TARSKI, FINSEQ_1, RELSET_1, STRUCT_0, ARYTM, PARTFUN1, FUNCOP_1;

20

13 constructors FINSEQ_4, STRUCT_0, ZF_REFLE, FUNCOP_1, PARTFUN1;

14 requirements ARYTM;

This is the ‘environ’ header of the article. It mentions the various vocabularies
(in the ‘vocabulary’ directive) and articles (in the ‘notation’, ‘clusters’ and
‘constructors’ directives) from the Mizar library that the article uses. The only
special items in this header are the vocabulary ‘UNIALG’ which is the one that’s
‘special’ to this article, and the ‘ARYTM’ label, which is neither a vocabulary name
nor an article name.

The vocabulary file ‘UNIALG.VOC’ is not explicitely present in the Mizar distri-
bution but only as part of the ‘compiled’ vocabulary library ‘MML.VCB’. However, it
can be printed with the command ‘listvoc UNIALG’:

GUAStr

Ucharact

Vhomogeneous

Vquasi_total

Vpartial

OOpers 128

MUniversal_Algebra

Oarity 128

Osignature

These are the ‘func’ (‘O’), ‘mode’ (‘M’), ‘attr’ (‘V’), ‘struct’ (‘G’) and ‘struct
field’ (‘U’) symbols which are ‘new’ to this article. These symbols correspond to the
definitions from lines 62, 63, 75, 82, 105, /, 142, 150 and 161 of the abstract, and
lines 153, 154, 176, 182, 257, /, 343, 351 and 395 of the full article. The operation
‘Opers’ does not appear in this article, but is defined in article ‘UNIALG_2’ (both
articles share the vocabulary).

17 begin

A Mizar article consists of one or more ‘sections’, each of which starts with
‘begin’ (there is no corresponding ‘end’). This article only has one section.

20 reserve A for set,

21 a for Element of A,

22 x,y for FinSequence of A,

23 h for PartFunc of A*,A ,

24 n,m for Nat,

25 z for set;

These reservations are straight-forward: note that some of them only can be
used when there’s an ‘A’ in scope.

The most interesting type from this list is that of ‘h’:

PartFunc of A*,A

The postfix operator ‘*’ is defined in article ‘FINSEQ_1’ (the easiest way to
determine this is to click on it in the web version2 of the Mizar library) as:

definition let D be set;

func D* -> set means x ∈ it iff x is FinSequence of D;

end;

(definitions as presented here are taken from the abstracts and so don’t contain
proofs), with the operator symbol ‘*’ defined in vocabulary ‘FINSEQ’ as:

2<http://www.mizar.org/JFM/mmlident.html>

21

O* 128

while the mode ‘FinSequence’ comes from the same article:

definition let n;

func Seg n -> set equals { k : 1 ≤ k & k ≤ n };

end;

definition let IT be Relation;

attr IT is FinSequence-like means ex n st dom IT = Seg n;

end;

definition

mode FinSequence is FinSequence-like Function;

end;

definition let D be set;

mode FinSequence of D -> FinSequence means rng it c= D;

end;

The ‘PartFunc’ mode is defined in article ‘PARTFUN1’ as:

definition let X,Y;

mode PartFunc of X,Y is Function-like Relation of X,Y;

end;

so ‘PartFunc of A*,A’ means ‘partial function from A* to A’. The general way to
name a mode is:

mode-name of parameter,parameter,. . .

which explains the slightly unnatural syntax.

27 definition let A;

28 let IT be PartFunc of A*,A;

29 attr IT is homogeneous means

30 :: UNIALG_1:def 1

31 for x,y st x ∈ dom IT & y ∈ dom IT holds len x = len y;

32 end;

34 definition let A;

35 let IT be PartFunc of A*,A;

36 attr IT is quasi_total means

37 :: UNIALG_1:def 2

38 for x,y st len x = len y & x ∈ dom IT holds y ∈ dom IT;

39 end;

41 definition let A be non empty set;

42 cluster homogeneous quasi_total non empty PartFunc of A*,A;

43 end;

This cluster states that the type:

homogeneous quasi_total non empty PartFunc of A*,A

is inhabited. It is needed (because Mizar types have to be non-empty) to be allowed
to use the adjectives ‘homogeneous’, ‘quasi_total’ and ‘non empty’ (alone or in
combination) with types of the form ‘PartFunc of A*,A’. Without it for instance
the types:

homogeneous quasi_total non empty PartFunc of A*,A

homogeneous non empty PartFunc of A*,A

homogeneous non empty

PartFunc of (the carrier of U)*,the carrier of U

in lines 50, 149 and 165-166 of this abstract wouldn’t be legal (in the proofs there
appear 11 more types like this).

22

45 theorem :: UNIALG_1:1

46 h is non empty iff dom h <> ∅;

48 theorem :: UNIALG_1:2

49 for A being non empty set, a being Element of A

50 holds {<∅>A} -->a is homogeneous quasi_total non empty PartFunc of A*,A;

The operator <∅>A denotes the empty finite sequence with elements of type A.
It is defined in article ‘FINSEQ_1’ as:

definition redefine func ∅; synonym <∅>; end;

definition let D be set;

func <∅>(D) -> empty FinSequence of D equals <∅>;
end;

where the operator symbol ‘<∅>’ is from vocabulary ‘FINSEQ’:

O<∅> 254

In this, ‘∅’ is the name of the empty set as introduced in article ‘HIDDEN’:

definition

func ∅ -> empty set;

end;

and vocabulary ‘HIDDEN’:

O∅ 128

(Because ‘HIDDEN’ is one of the two files presenting the axioms of the Mizar system
there is no ‘means’ or ‘equals’ in this definition. Also, the ‘HIDDEN’ article and the
‘HIDDEN’ vocabulary are always present and so they don’t need to be listed in the
‘environ’ header of the article.)

The braces ‘{ . . . }’ denote the one element set. It is defined in article ‘TARSKI’:

definition let y;

func {y} -> set means x ∈ it iff x = y;

end;

The symbols ‘{’ and ‘}’ occur on their own in the Mizar syntax too, and are not in
a vocabulary.

The infix operator ‘-->’ creates a constant function on a set. It is defined in
article ‘FUNCOP_1’:

definition let A, a be set;

func A --> a -> set equals [:A, {a}:];

end;

and vocabulary ‘FINITER2’:

O--> 16

Here [: . . . :] is the Cartesian product from article ‘ZFMISC_1’:

definition let X1,X2;

func [: X1,X2 :] means

z ∈ it iff ex x,y st x ∈ X1 & y ∈ X2 & z = [x,y];

end;

and ‘[. . .]’ is the Kuratowski pair from article ‘TARSKI’:

definition

func [x,y] equals {{x,y},{x}};

end;

23

52 theorem :: UNIALG_1:3

53 for A being non empty set, a being Element of A

54 holds {<∅>A} -->a is Element of PFuncs(A*,A);

The func ‘PFuncs’ is defined in article ‘PARTFUN1’:

definition let X,Y;

func PFuncs(X,Y) -> set means

x ∈ it iff

ex f being Function st x = f & dom f c= X & rng f c= Y;

end;

56 definition let A;

57 mode PFuncFinSequence of A -> FinSequence of PFuncs(A*,A) means

58 :: UNIALG_1:def 3

59 not contradiction;

60 end;

Despite what the official Mizar grammar (appendix B on page 16) suggests, the
redundant characterization ‘means not contradiction’ may not be omitted.

62 struct (1-sorted) UAStr 〈〈 carrier -> set,

63 charact -> PFuncFinSequence of the carrier〉〉;

So the struct ‘UAStr’ that underlies the implementation of the notion of ‘al-
gebra’ in Mizar has two fields: ‘carrier’ which is the ‘sort’ of the algebra, and
‘charact’ which is the sequence of ‘functions’ of the algebra.

The ancestor struct ‘1-sorted’ is defined in article ‘STRUCT_0’:

definition

struct 1-sorted 〈〈carrier -> set〉〉;
end;

65 definition

66 cluster non empty strict UAStr;

67 end;

This cluster states that there exists a non empty strict UAStr. It is not used
in this article.

Note that because the type ‘UAStr’ widens to ‘1-sorted’, which is narrower
than ‘set’, the adjective ‘non empty’ refers to the definition:

definition let S be 1-sorted;

attr S is empty means the carrier of S is empty;

end;

from article ‘STRUCT_0’, instead of to the definition:

definition let X be set;

attr X is empty;

end;

from article ‘HIDDEN’.

69 definition let D be non empty set, c be PFuncFinSequence of D;

70 cluster UAStr 〈〈D,c 〉〉 -> non empty;

71 end;

This cluster causes expressions of the shape ‘UAStr〈〈D,c〉〉’, with D having the
adjective ‘non empty’, to gain the adjective ‘non empty’ too. It is used in line 323
of the article.

24

73 definition let A;

74 let IT be PFuncFinSequence of A;

75 attr IT is homogeneous means

76 :: UNIALG_1:def 4

77 for n,h st n ∈ dom IT & h = IT.n holds h is homogeneous;

78 end;

80 definition let A;

81 let IT be PFuncFinSequence of A;

82 attr IT is quasi_total means

83 :: UNIALG_1:def 5

84 for n,h st n ∈ dom IT & h = IT.n holds h is quasi_total;

85 end;

87 definition let F be Function;

88 redefine attr F is non-empty means

89 :: UNIALG_1:def 6

90 for n being set st n ∈ dom F holds F.n is non empty;

91 end;

The attr ‘non-empty’ was defined in article ‘ZF_REFLE’ as:

definition let F be Function;

attr F is non-empty means not ∅ ∈ rng F;

end;

The redefinition that’s given here has to be equivalent to this (it is allowed to
have a more specific parameter type though, although here that’s not the case).

Both the original definition and the redefinition are used in exactly the same
way. This new definition is used in lines 242–250 of the full article (because the
proof there is of the ‘expanded’ form of the definition: Mizar expands definitions
from the article itself, and from articles in the ‘definitions’ environ directive).
Also its ‘definitional theorem’ (‘Def6’) is referred to in lines 301, 413 and 452 of the
full article.

93 definition let A be non empty set; let x be Element of PFuncs(A*,A);

94 redefine

95 func <*x*> -> PFuncFinSequence of A;

96 end;

This redefines the ‘<* . . . *>’ operator from article ‘FINSEQ_1’:

definition let x;

func <*x*> -> set equals { [1,x] };

end;

This operator is used to write sequences of length one. The redefinition doesn’t
give a new characterization of this func (so it ‘inherits’ the original one), but it
does change its type. Without it, adjectives like ‘homogeneous’ and ‘quasi_total’
wouldn’t be applicable to expressions of the form ‘<*x*>’, like for instance in line
123 of the abstract.

98 definition let A be non empty set;

99 cluster homogeneous quasi_total non-empty PFuncFinSequence of A;

100 end;

This cluster is not used in this article.

102 reserve U for UAStr;

104 definition let IT be UAStr;

105 attr IT is partial means

106 :: UNIALG_1:def 7

25

107 the charact of IT is homogeneous;

108 attr IT is quasi_total means

109 :: UNIALG_1:def 8

110 the charact of IT is quasi_total;

111 attr IT is non-empty means

112 :: UNIALG_1:def 9

113 the charact of IT <> <∅> & the charact of IT is non-empty;

114 end;

116 reserve A for non empty set,

117 h for PartFunc of A*,A ,

118 x,y for FinSequence of A,

119 a for Element of A;

These reservations are identical to those from lines 20–23, apart that after this,
‘A’ has the adjective ‘non empty’.

121 theorem :: UNIALG_1:4

122 for x be Element of PFuncs(A*,A) st x = {<∅>A} --> a holds

123 <*x*> is homogeneous quasi_total non-empty;

125 definition

126 cluster quasi_total partial non-empty strict non empty UAStr;

127 end;

This cluster is used five times in this article to establish the correctness of a
type. For example it’s used in the definition of the mode ‘Universal_Algebra’ in
line 142 of this abstract.

129 definition let U be partial UAStr;

130 cluster the charact of U -> homogeneous;

131 end;

133 definition let U be quasi_total UAStr;

134 cluster the charact of U -> quasi_total;

135 end;

137 definition let U be non-empty UAStr;

138 cluster the charact of U -> non-empty non empty;

139 end;

The ‘non empty’ means that there is at least one function in an algebra, the
‘non-empty’ means that these functions all are not empty.

141 definition

142 mode Universal_Algebra is quasi_total partial non-empty non empty UAStr;

143 end;

145 reserve U for partial non-empty non empty UAStr;

147 definition

148 let A;

149 let f be homogeneous non empty PartFunc of A*,A;

150 func arity(f) -> Nat means

151 :: UNIALG_1:def 10

152 x ∈ dom f implies it = len x;

153 end;

Note that the argument ‘A’ of this func is an implicit argument: it’s not present
in the notation ‘arity f’.

155 theorem :: UNIALG_1:5

156 for U holds for n st n∈dom the charact of(U) holds

157 (the charact of(U)).n is

158 PartFunc of (the carrier of U)*,the carrier of U;

26

160 definition let U;

161 func signature(U) ->FinSequence of NAT means

162 :: UNIALG_1:def 11

163 len it = len the charact of(U) &

164 for n st n ∈ dom it holds

165 for h be homogeneous non empty

166 PartFunc of (the carrier of U)*,the carrier of U

167 st h = (the charact of(U)).n

168 holds it.n = arity(h);

169 end;

D.2 Article

1 :: Basic Notation of Universal Algebra

2 :: by Jaros{\l}aw Kotowicz, Beata Madras and Ma{\l}gorzata Korolkiewicz

3 ::

4 :: Received December 29, 1992

5 :: Copyright (c) 1992 Association of Mizar Users

7 environ

9 vocabulary UNIALG, PFUNC1, FINSEQ, FUNC_REL, FUNC, FINITER2, PBOOLE, UNIALG_D;

10 constructors FINSEQ_4, STRUCT_0, ZF_REFLE, FUNCOP_1, PARTFUN1;

11 requirements ARYTM;

12 notation ARYTM, NAT_1, STRUCT_0, TARSKI, RELAT_1, FUNCT_1, FINSEQ_1, FUNCOP_1,

13 PARTFUN1, ZF_REFLE;

14 clusters TARSKI, FINSEQ_1, RELSET_1, STRUCT_0, ARYTM, PARTFUN1, FUNCOP_1;

15 definitions TARSKI, STRUCT_0, ZF_REFLE;

16 theorems TARSKI, FUNCT_1, PARTFUN1, FINSEQ_1, FUNCOP_1, RELAT_1, RELSET_1,

17 FINSEQ_3, ZF_REFLE;

18 schemes MATRIX_2;

The ‘definitions’, ‘theorems’ and ‘schemes’ directives were not in the abstract
because they are only relevant to the proofs. They also contain names of articles
from the library. The last two list articles from which theorems and schemes are
used.

The ‘definitions’ directive from line 15 applies to 9 places in the article:

• The proofs in lines 50–54, 56–60, 93–97, 99–103, 131–135 and 137–141. These
proofs are of statements involving the inclusion operator ‘c=’, but the proofs
prove a universally quantified formula. The ‘c=’ operator is defined in article
‘TARSKI’ (redefined really, because the ‘c=’ operator is originally introduced
without definition in article ‘HIDDEN’) as:

definition let X,Y;

redefine pred X c= Y means x ∈ X implies x ∈ Y;

end;

and so with a ‘definitions TARSKI;’ directive the ‘c=’ statement will be
expanded to a suitable universal formula.

• The ‘thus the carrier of UAStr〈〈D,c〉〉 is non empty;’ in lines 161 and
170. Here the statement to be proved is about a struct, but the statement
that is supplied is about the carrier of that struct. In order for this to
be correct a ‘definitions STRUCT_0;’ has to make the definition of ‘empty’
on structs transparent:

definition let S be 1-sorted;

attr S is empty means the carrier of S is empty;

end;

27

• The proof ‘assume ∅ ∈ rng F; . . . hence contradiction by A2;’ in lines
199–201. It proves ‘not ∅ ∈ rng F’, but the statement it is supposed to
prove really is ‘F is non-empty’. So the directive ‘definitions ZF_REFLE;’
is needed to make the definition:

definition let F be Function;

attr F is non-empty means not ∅ ∈ rng F;

end;

transparent.

It is ‘Analyzer’ (the type checking phase of the Mizar checker) that needs these
definitional expansions, instead of ‘Checker’ (which checks the logical correctness
of the inferences).

20 begin

23 reserve A for set,

24 a for Element of A,

25 x,y for FinSequence of A,

26 h for PartFunc of A*,A ,

27 n,m for Nat,

28 z for set;

30 definition let A;

31 let IT be PartFunc of A*,A;

32 attr IT is homogeneous means :Def1:

33 for x,y st x ∈ dom IT & y ∈ dom IT holds len x = len y;

34 end;

Note that this definition is referred to (because of the label on line 32) as
‘Def1’ in this article (on line 364), but (the label on line 30 of the abstract) as
‘UNIALG_1:def 1’ in the other articles (specifically: articles ‘ALG_1’, ‘FREEALG’ and
‘PRALG_1’). Similarly the theorem from lines 83–84 is referred to as ‘Th1’ in this
article (lines 121, 357 and 372), but as ‘UNIALG_1:1’ (line 45 of the abstract) in the
others (‘ALG_1’, ‘MSSUBLAT’, ‘PRALG_1’ and ‘UNIALG_2’).

36 definition let A;

37 let IT be PartFunc of A*,A;

38 attr IT is quasi_total means

39 for x,y st len x = len y & x ∈ dom IT holds y ∈ dom IT;

40 end;

The following definition and its proof will be annotated in more detail than
the remainder of the Mizar text. The proof (lines 45–80) is the really same as the
proof of theorem ‘Th2’ (lines 89–122 on page 35), so it can be read there without
interruptions.

42 definition let A be non empty set;

43 cluster homogeneous quasi_total non empty PartFunc of A*,A;

This cluster states that the type:

homogeneous quasi_total non empty PartFunc of A*,A

is inhabited. It should be present if one wants to use the adjectives ‘homogeneous’,
‘quasi_total’ or ‘non empty’ with types of the form ‘PartFunc of A*,A’.

44 existence

Because a ‘cluster’ of this kind states the non-emptyness of a type, its correct-
ness condition is an ‘existence’ statement. This statement is:

28

ex f being PartFunc of A*,A st

f is homogeneous & f is quasi_total & f is non empty

45 proof

46 consider a be Element of A;

A ‘consider’ step needs an existential statement as a justification. In this case
it is:

ex a be Element of A

(this isn’t a full Mizar formula: append ‘st not contradiction’ to complete it).
Because Mizar types all are non-empty an existential statement of this kind is
evident: so the ‘consider’ needs no justification.

The property of ‘A’ that (from line 42):

A is non empty

isn’t used here: the ‘consider’ step also would have been valid if ‘A’ had just been
a ‘set’. However, in that case:

a ∈ A

would not have been true (it is built into the Mizar system that when ‘A is non

empty’ it follows from ‘a is Element of A’ that ‘a ∈ A’), and then the ‘hence’
step in line 59 would have failed.

47 set f = {<∅>A} -->a;

This is a local definition of a constant ‘f’: all occurrences of ‘f’ after this will
be expanded to ‘{<∅>A}-->a’.

The ‘f’ that’s defined here is a function that has as domain the set ‘{<∅>A}’
which it maps to the constant ‘a’. This domain consist of just the sequence of zero
length: it is the set A0. So we have that:

f : A0 → A, 〈〉 7→ a

and so this f is the ‘nullary’ function on A which represents the constant a.

48 A1: dom f = {<∅>A} & rng f = {a} by FUNCOP_1:14;

This statement expands to:

A1: dom ({<∅>A}-->a) = {<∅>A} & rng ({<∅>A}-->a) = {a}

which follows from the type of ‘A’ from line 42:

A is non empty set

the type of ‘∅’ from article ‘HIDDEN’:

definition

func ∅ -> empty set;

end;

and:

theorem :: FUNCOP_1:14

A <> ∅ implies dom (A --> x) = A & rng (A --> x) = {x};

49 A2: dom f c= A*

29

Because of the ‘definitions TARSKI;’ directive from line 15, this expands ac-
cording to:

definition let X,Y; redefine pred X c= Y means

:: TARSKI:def 3

x ∈ X implies x ∈ Y;

end;

to:

A2: for z being set st z ∈ dom f holds z ∈ A*

50 proof

Here starts a ‘local’ subproof of the statement ‘A2’.

51 let z; assume z ∈ dom f; then

The ‘let’ and ‘assume’ skeleton steps correspond to the ‘for . . . ’ and ‘st . . .
holds’ parts of the statement. After these steps:

z ∈ A*

is left to be proved.

52 z = <∅>A by TARSKI:def 1,A1;

The statement:

z = <∅>A

follows from (because of the ‘then’ at the end of line 51):

z ∈ dom f

and:

A1: dom f = {<∅>A} & rng f = {a}

and:

definition let y; func {y} -> set means

:: TARSKI:def 1

x ∈ it iff x = y;

end

53 hence thesis by FINSEQ_1:65;

The statement that is left to be proved:

z ∈ A*

now follows from (the ‘hence’ includes a ‘then’):

z = <∅>A

and the type of <∅>A given by:

definition let D be set;

func <∅>(D) -> empty FinSequence of D equals

:: FINSEQ_1:def 6

<∅>;
end;

and:

30

theorem :: FINSEQ_1:65

x ∈ D* iff x is FinSequence of D;

54 end;

. . . and that completes the subproof.

55 rng f c= A

56 proof

57 let z; assume z ∈ rng f; then

58 z = a by A1,TARSKI:def 1;

59 hence thesis;

60 end; then

This subproof is similar to the previous one. The step in line 59 uses that:

a ∈ A

This was explained in the text following the ‘consider’ in line 46.

61 reconsider f as PartFunc of A*,A by RELSET_1:11,A2;

After this reconsider ‘f’ will keep the same meaning (it will still expand to
‘{<∅>A}-->a’), but its type will have become ‘PartFunc of A*,A’.

In order to justify this, one has to prove:

f is PartFunc of A*,A

which because of the definition of ‘f’ and the definition of mode ‘PartFunc’:

definition let X,Y;

mode PartFunc of X,Y is Function-like Relation of X,Y;

end;

‘expands’ to:

{<∅>A}-->a is Function-like Relation of A*,A

This follows from:

A2: dom f c= A*

and (‘then’ on line 60):

rng f c= A

and (from article ‘FUNCOP_1’):

definition let A, z be set;

cluster A --> z -> Function-like Relation-like;

end;

and (from article ‘RELAT_1’):

definition

mode Relation is Relation-like set;

end;

and:

theorem :: RELSET_1:11

for R being Relation st dom R c= X & rng R c= Y holds

R is Relation of X,Y;

62 A3: f is homogeneous

31

This statement expands, because of the definition in lines 30–34, to:

A3: for x,y being FinSequence of A st x ∈ dom f & y ∈ dom f holds

len x = len y

63 proof

64 let x,y be FinSequence of A; assume

65 x ∈ dom f & y ∈ dom f; then

After this, the statement left to be proved is:

len x = len y

66 x = <∅>A & y = <∅>A by TARSKI:def 1,A1;

The statement:

x = <∅>A & y = <∅>A

follows from (‘then’ in line 65):

x ∈ dom f & y ∈ dom f

and:

A1: dom f = {<∅>A} & rng f = {a}

and:

definition let y; func {y} -> set means

:: TARSKI:def 1

x ∈ it iff x = y;

end

67 hence thesis;

Because (‘hence’ refers to the previous statement):

x = <∅>A & y = <∅>A

the thesis left to be proved:

len x = len y

is equivalent to:

len <∅>A = len <∅>A

which is true by reflexivity (equational reasoning is built into the Mizar system).

68 end;

69 A4: f is quasi_total

This statement expands, because of the definition in lines 36–40, to:

for x,y being FinSequence of A st len x = len y & x ∈ dom f holds

y ∈ dom f

70 proof

71 let x,y be FinSequence of A; assume

72 A5: len x = len y & x ∈ dom f; then

After this, the statement left to be proved is:

y ∈ dom f

32

73 x = <∅>A by TARSKI:def 1,A1; then

The statement:

x = <∅>A

follows from:

A1: dom f = {<∅>A} & rng f = {a}

and (‘then’ in line 72):

len x = len y & x ∈ dom f

and:

definition let y; func {y} -> set means

:: TARSKI:def 1

x ∈ it iff x = y;

end

74 len x = 0 by FINSEQ_1:32; then

The statement:

len x = 0

follows from (‘then’ in line 73):

x = <∅>A

and:

theorem :: FINSEQ_1:32

p=<∅>(D) iff len p = 0;

75 y = <∅>A by FINSEQ_1:32,A5;

The statement:

y = <∅>A

follows from:

A5: len x = len y & x ∈ dom f

and (‘then’ in line 74):

len x = 0

and:

theorem :: FINSEQ_1:32

p=<∅>(D) iff len p = 0;

76 hence thesis by A1,TARSKI:def 1;

The thesis left to be proved:

y ∈ dom f

follows from (‘hence’):

y = <∅>A

33

and:

A1: dom f = {<∅>A} & rng f = {a}

and:

definition let y; func {y} -> set means

:: TARSKI:def 1

x ∈ it iff x = y;

end

77 end;

78 f is non empty by RELAT_1:60,FUNCOP_1:14;

The statement:

f is non empty

expands to:

{<∅>A}-->a is non empty

which follows from:

theorem :: RELAT_1:60

dom ∅ = ∅ & rng ∅ = ∅;

and:

theorem :: FUNCOP_1:14

A <> ∅ implies dom (A --> x) = A & rng (A --> x) = {x};

and the cluster (from article ‘TARSKI’):

definition let y;

cluster {y} -> non empty;

end;

The knowledge that:

A is empty implies A = ∅

is built into the Mizar reasoner.

79 hence thesis by A3,A4;

The thesis to be proved is:

ex f being PartFunc of A*,A st

f is homogeneous & f is quasi_total & f is non empty

This follows from the fact that for the specific ‘defined’ f from lines 47 and 61
we know that:

f is homogeneous & f is quasi_total & f is non empty

which follows from:

A3: f is homogeneous

and:

A4: f is quasi_total

and (‘hence’):

34

f is non empty

Note that Mizar is able to figure out the introduction of the existential quantifier
ex by itself, without having to be told that ‘f’ is the witnessing object.

80 end;

This finishes the annotated proof.

81 end;

83 theorem Th1:

84 h is non empty iff dom h <> ∅ by RELAT_1:64,RELAT_1:60;

86 theorem Th2:

87 for A being non empty set, a being Element of A

88 holds {<∅>A} -->a is homogeneous quasi_total non empty PartFunc of A*,A

Note that this theorem already has been proved inside the proof of the cluster

(lines 47, 61, 62, 69 and 78), but that the cluster has to be present in order to
state the theorem.

89 proof let A be non empty set, a be Element of A;

90 set f = {<∅>A} -->a;

91 A1: dom f = {<∅>A} & rng f = {a} by FUNCOP_1:14;

92 A2: dom f c= A*

93 proof

94 let z; assume z ∈ dom f; then

95 z = <∅>A by TARSKI:def 1,A1;

96 hence thesis by FINSEQ_1:65;

97 end;

98 rng f c= A

99 proof

100 let z; assume z ∈ rng f; then

101 z = a by A1,TARSKI:def 1;

102 hence thesis;

103 end; then

104 reconsider f as PartFunc of A*,A by RELSET_1:11,A2;

105 A3: f is homogeneous

106 proof

107 let x,y be FinSequence of A; assume

108 x ∈ dom f & y ∈ dom f; then

109 x = <∅>A & y = <∅>A by TARSKI:def 1,A1;

110 hence thesis;

111 end;

112 A4: f is quasi_total

113 proof

114 let x,y be FinSequence of A; assume

115 A5: len x = len y & x ∈ dom f; then

116 x = <∅>A by TARSKI:def 1,A1; then

117 len x = 0 by FINSEQ_1:32; then

118 y = <∅>A by FINSEQ_1:32,A5;

119 hence thesis by A1,TARSKI:def 1;

120 end;

121 thus thesis by A3,A4,A1,Th1;

122 end;

124 theorem Th3:

125 for A being non empty set, a being Element of A

126 holds {<∅>A} -->a is Element of PFuncs(A*,A)

127 proof let A be non empty set, a be Element of A;

128 set f = {<∅>A} -->a;

129 A1: dom f = {<∅>A} & rng f = {a} by FUNCOP_1:14;

130 A2: dom f c= A*

131 proof

132 let z; assume z ∈ dom f; then

133 z = <∅>A by TARSKI:def 1,A1;

35

134 hence thesis by FINSEQ_1:65;

135 end;

136 rng f c= A

137 proof

138 let z; assume z ∈ rng f; then

139 z = a by A1,TARSKI:def 1;

140 hence thesis;

141 end; then

142 reconsider f as PartFunc of A*,A by RELSET_1:11,A2;

143 f ∈ PFuncs(A*,A) by PARTFUN1:119;

144 hence {<∅>A} -->a is Element of PFuncs(A*,A);

145 end;

147 definition let A;

148 mode PFuncFinSequence of A -> FinSequence of PFuncs(A*,A) means

149 :Def3: not contradiction;

150 existence;

The correctness condition of a mode definition is the non-emptiness of the defined
type, which is an ‘existence’ statement. In this case this statement becomes:

ex c being FinSequence of PFuncs(A*,A) st not contradiction

Because Mizar types all are non-empty, the existence of a ‘c’ of the appropriate
type is obvious, and of course it satisfies ‘not contradiction’. So this statement
needs no justification.

151 end;

153 struct (1-sorted) UAStr 〈〈 carrier -> set,

154 charact -> PFuncFinSequence of the carrier〉〉;

156 definition

157 cluster non empty strict UAStr;

158 existence

159 proof consider D being non empty set, c being PFuncFinSequence of D;

160 take UAStr 〈〈D,c 〉〉;
161 thus the carrier of UAStr 〈〈D,c 〉〉 is non empty;

162 thus thesis;

163 end;

164 end;

166 definition let D be non empty set, c be PFuncFinSequence of D;

167 cluster UAStr 〈〈D,c 〉〉 -> non empty;

168 coherence

The correctness condition of a cluster of this kind is called ‘coherence’.
Here, of course, it is:

UAStr〈〈D,c〉〉 is non empty

Because of the ‘definitions STRUCT_0;’ directive in line 15 this expands to:

the carrier of UAStr〈〈D,c〉〉 is non empty

which reduces to:

D is non empty

which follows from the type of ‘D’ in line 166.

169 proof

170 thus the carrier of UAStr 〈〈D,c 〉〉 is non empty;

171 end;

172 end;

174 definition let A;

36

175 let IT be PFuncFinSequence of A;

176 attr IT is homogeneous means :Def4:

177 for n,h st n ∈ dom IT & h = IT.n holds h is homogeneous;

178 end;

180 definition let A;

181 let IT be PFuncFinSequence of A;

182 attr IT is quasi_total means :Def5:

183 for n,h st n ∈ dom IT & h = IT.n holds h is quasi_total;

184 end;

186 definition let F be Function;

187 redefine attr F is non-empty means :Def6:

188 for n being set st n ∈ dom F holds F.n is non empty;

189 compatibility

The correctness condition for the redefinition of a ‘pred’ or ‘attr’ is called
‘compatibility’. In this case, it is:

F is non empty iff

for n being set st n ∈ dom F holds F.n is non empty

In this statement and its proof ‘non empty’ still has the ‘old’ definition, which
is:

definition let F be Function;

attr F is non-empty means

:: ZF_REFLE:def 4

not ∅ ∈ rng F;

end;

190 proof

191 hereby assume F is non-empty; then

The ‘hereby’ keyword behaves like the combination of ‘thus’ and ‘now’ (this
construction is not in the official Mizar grammar from appendix B on page 16).

192 A1: not ∅ ∈ rng F by ZF_REFLE:def 4;

193 let i be set;

194 assume i ∈ dom F;

195 hence F.i is non empty by A1,FUNCT_1:11;

196 end;

197 assume

198 A2: for n being set st n ∈ dom F holds F.n is non empty;

199 assume ∅ ∈ rng F;

200 then ex i being set st i ∈ dom F & F.i = ∅ by FUNCT_1:11;

201 hence contradiction by A2;

202 end;

203 end;

205 definition let A be non empty set; let x be Element of PFuncs(A*,A);

206 redefine

207 func <*x*> -> PFuncFinSequence of A;

208 coherence

The correctness conditions for the redefinition of a ‘func’, are ‘coherence’ in
case the type changes, and ‘compatibility’ in case the ‘definition’ changes. In this
case only the first applies and the condition of course is:

<*x*> is PFuncFinSequence

209 proof

210 <*x*> is FinSequence of PFuncs(A*,A);

211 hence thesis by Def3;

212 end;

213 end;

37

215 definition let A be non empty set;

216 cluster homogeneous quasi_total non-empty PFuncFinSequence of A;

217 existence

218 proof

219 consider a being Element of A;

220 reconsider f = {<∅>A} -->a as PartFunc of A*,A by Th2;

221 reconsider f as Element of PFuncs(A*,A) by PARTFUN1:119;

222 take <*f*>;

223 thus <*f*> is homogeneous

224 proof

225 let n; let h be PartFunc of A*,A; assume

226 A1: n ∈ dom <*f*> & h =<*f*>.n;

227 then n ∈ {1} by FINSEQ_1:4,FINSEQ_1:def 8; then

228 h = <*f*>.1 by A1,TARSKI:def 1;

229 then h = f & f is homogeneous PartFunc of A*,A by Th2,FINSEQ_1:def 8;

230 hence thesis;

231 end;

232 thus <*f*> is quasi_total

233 proof

234 let n; let h be PartFunc of A*,A; assume

235 A2: n ∈ dom <*f*> & h =<*f*>.n;

236 then n ∈ {1} by FINSEQ_1:4,FINSEQ_1:def 8; then

237 h = <*f*>.1 by A2,TARSKI:def 1;

238 then h = f & f is quasi_total PartFunc of A*,A by Th2,FINSEQ_1:def 8;

239 hence thesis;

240 end;

241 thus <*f*> is non-empty

242 proof

243 let n be set; assume

244 A3: n ∈ dom <*f*>;

245 then reconsider n as Nat;

246 n ∈ {1} by FINSEQ_1:4,A3,FINSEQ_1:def 8; then

247 n = 1 by TARSKI:def 1; then

248 <*f*>.n=f by FINSEQ_1:def 8;

249 hence thesis by Th2;

250 end;

251 end;

252 end;

254 reserve U for UAStr;

256 definition let IT be UAStr;

257 attr IT is partial means :Def7:

258 the charact of IT is homogeneous;

259 attr IT is quasi_total means :Def8:

260 the charact of IT is quasi_total;

261 attr IT is non-empty means :Def9:

262 the charact of IT <> <∅> & the charact of IT is non-empty;

263 end;

265 reserve A for non empty set,

266 h for PartFunc of A*,A ,

267 x,y for FinSequence of A,

268 a for Element of A;

270 theorem Th4:

271 for x be Element of PFuncs(A*,A) st x = {<∅>A} --> a holds

272 <*x*> is homogeneous quasi_total non-empty

273 proof let x be Element of PFuncs(A*,A) such that

274 A1: x = {<∅>A} --> a;

The ‘let . . . such that’ construction corresponds to a ‘for . . . st’ in the
statement, so it is equivalent to a ‘let’ followed by an ‘assume’.

275 reconsider f=x as PartFunc of A*,A by PARTFUN1:121;

276 A2: for n,h st n ∈ dom <*x*> & h = <*x*>.n holds h is homogeneous

277 proof let n,h; assume

278 A3: n ∈ dom <*x*> & h =<*x*>.n;

279 then n ∈ {1} by FINSEQ_1:4,FINSEQ_1:def 8; then

38

280 h = <*x*>.1 by A3,TARSKI:def 1;

281 then h = x & f is homogeneous PartFunc of A*,A by Th2,A1,FINSEQ_1:def 8;

282 hence thesis;

283 end;

284 A4: for n,h st n ∈ dom <*x*> & h = <*x*>.n holds h is quasi_total

285 proof let n,h; assume

286 A5: n ∈ dom <*x*> & h =<*x*>.n;

287 then n ∈ {1} by FINSEQ_1:4,FINSEQ_1:def 8; then

288 h = <*x*>.1 by A5,TARSKI:def 1;

289 then h = x & f is quasi_total PartFunc of A*,A by Th2,A1,FINSEQ_1:def 8;

290 hence thesis;

291 end;

292 for n being set st n ∈ dom <*x*> holds <*x*>.n is non empty

293 proof let n be set; assume

294 n ∈ dom <*x*>;

295 then n ∈ {1} by FINSEQ_1:4,FINSEQ_1:def 8; then

296 <*x*>.n = <*x*>.1 by TARSKI:def 1;

297 then <*x*>.n = x & f is non empty PartFunc of A*,A by Th2,A1

298 ,FINSEQ_1:def 8;

299 hence thesis;

300 end;

301 hence thesis by A2,A4,Def6,Def5,Def4;

302 end;

304 definition

305 cluster quasi_total partial non-empty strict non empty UAStr;

306 existence

307 proof

308 consider A be non empty set;

309 consider a be Element of A;

310 set f = {<∅>A} --> a;

311 reconsider w = f as Element of PFuncs(A*,A) by Th3;

312 set U = UAStr 〈〈 A, <*w*> 〉〉;
313 take U;

314 A1: the charact of(U) is quasi_total &

315 the charact of(U) is homogeneous & the charact of(U) is non-empty

316 by Th4;

317 the charact of(U) <> <∅>
318 proof assume A2: the charact of(U) = <∅>;
319 A3: len(the charact of(U)) = 1 by FINSEQ_1:56;

320 len (<∅>) = 0 by FINSEQ_1:25;

321 hence contradiction by A3,A2;

322 end;

323 hence thesis by A1,Def9,Def8,Def7;

324 end;

325 end;

327 definition let U be partial UAStr;

328 cluster the charact of U -> homogeneous;

329 coherence by Def7;

330 end;

332 definition let U be quasi_total UAStr;

333 cluster the charact of U -> quasi_total;

334 coherence by Def8;

335 end;

337 definition let U be non-empty UAStr;

338 cluster the charact of U -> non-empty non empty;

339 coherence by Def9;

340 end;

342 definition

343 mode Universal_Algebra is quasi_total partial non-empty non empty UAStr;

344 end;

346 reserve U for partial non-empty non empty UAStr;

348 definition

349 let A;

39

350 let f be homogeneous non empty PartFunc of A*,A;

351 func arity(f) -> Nat means

352 x ∈ dom f implies it = len x;

353 existence

The correctness conditions of the definition of a func consists of an ‘exis-
tence’ and a ‘uniqueness’ part. In this case the ‘existence’ condition is:

ex n st

for x st x ∈ dom f holds n = len x

354 proof

355 ex n st for x st x ∈ dom f holds n = len x

356 proof

357 A1: dom f <> ∅ by Th1;

358 consider x being Element of dom f;

359 dom f c= A* by RELSET_1:12; then

360 x ∈ A* by A1,TARSKI:def 3; then

361 reconsider x as FinSequence of A by FINSEQ_1:65;

362 take n = len x;

363 let y; assume y ∈ dom f;

364 hence n = len y by Def1;

365 end;

366 hence thesis;

367 end;

368 uniqueness

The ‘uniqueness’ condition is:

for n,m st

(for x st x ∈ dom f holds n = len x) &

(for x st x ∈ dom f holds m = len x) holds

n = m

369 proof

370 let n,m such that A2: (for x st x ∈ dom f holds n = len x) &

371 for x st x ∈ dom f holds m = len x;

372 A3: dom f <> ∅ by Th1;

373 consider x being Element of dom f;

374 dom f c= A* by RELSET_1:12; then

375 x ∈ A* by A3,TARSKI:def 3; then

376 reconsider x as FinSequence of A by FINSEQ_1:65;

377 n = len x & m = len x by A3,A2;

378 hence thesis;

379 end;

380 end;

382 theorem Th5:

383 for U holds for n st n∈dom the charact of(U) holds

384 (the charact of(U)).n is

385 PartFunc of (the carrier of U)*,the carrier of U

386 proof let U,n;

387 set pu = PFuncs((the carrier of U)*, the carrier of U),

388 o = the charact of(U); assume

389 n∈dom o; then

390 o.n ∈ rng o & rng o c= pu by FUNCT_1:12,FINSEQ_1:def 4;

391 hence thesis by PARTFUN1:121;

392 end;

394 definition let U;

395 func signature(U) ->FinSequence of NAT means

396 len it = len the charact of(U) &

397 for n st n ∈ dom it holds

398 for h be homogeneous non empty

399 PartFunc of (the carrier of U)*,the carrier of U

400 st h = (the charact of(U)).n

401 holds it.n = arity(h);

402 existence

40

403 proof

404 defpred P[Nat,set] means

405 for h be homogeneous non empty

406 PartFunc of (the carrier of U)*,the carrier of U

407 st h = (the charact of(U)).$1

408 holds $2 = arity(h);

A ‘defpred’ defines a ‘local’ predicate: it’s like ‘set’, but for predicates instead
of expressions. It’s expanded everywhere (this one is used in lines 415 and 419).
The arguments are in the ‘body’ referred to as ‘$1’, ‘$2’, . . . Because the highest
index allowed is ‘$8’, a ‘deffunc’ or ‘defpred’ takes at most eight arguments.

409 A1: now let m; assume

410 m∈ Seg len the charact of(U); then

411 m∈ dom the charact of(U) by FINSEQ_1:def 3; then

412 reconsider H=(the charact of(U)).m as homogeneous non empty

413 PartFunc of (the carrier of U)*,the carrier of U by Th5,Def4,Def6;

414 take n=arity(H);

415 thus P[m,n];

416 end;

417 consider p be FinSequence of NAT such that

418 A2: dom p = Seg(len the charact of(U)) and

419 A3: for m st m ∈ Seg(len the charact of(U)) holds P[m,p.m] from SeqDEx(A1);

The ‘SeqDEx’ scheme from article ‘MATRIX_2’ is defined as:

scheme SeqDEx{D()->non empty set,A()->Nat,P[set,set]}:

ex p being FinSequence of D() st dom p = Seg A() &

for k st k ∈ Seg A() holds P[k,p.k]

provided

for k st k ∈ Seg A() ex x being Element of D() st P[k,x];

(Note that references to schemes are by name instead of by number: the Mizar
library contains 546 schemes, less than the number of articles.) It is used here to
derive:

ex p be FinSequence of NAT st

dom p = Seg(len the charact of(U)) &

for m st m ∈ Seg(len the charact of(U)) holds P[m,p.m]

(which is needed for the ‘consider’ statement), from:

A1: for m st m∈ Seg len the charact of(U) holds ex n st P[m,n]

So in this case the instantiation of the scheme is:

D() → NAT

A() → len the charact of U

P[k,x] → P[k,x]

This substitution is not given explicitely, but is found by matching the ‘argument’
‘A1’ with the ‘condition’ after the ‘provided’ in the scheme, and the statement to
be proved with the ‘conclusion’ of the scheme.

420 take p;

421 Seg len the charact of(U) = dom the charact of(U) by FINSEQ_1: def 3;

422 hence A4: len p = len the charact of(U) by A2,FINSEQ_3:31;

423 let n; assume

424 n ∈ dom p; then

425 A5: n ∈ Seg(len the charact of(U)) by FINSEQ_1:def 3,A4;

426 let h be homogeneous non empty

427 PartFunc of (the carrier of U)*,the carrier of U; assume

428 h = (the charact of U).n;

41

429 hence p.n = arity(h) by A5,A3;

430 end;

431 uniqueness

432 proof

433 let x,y be FinSequence of NAT; assume that

434 A6: len x = len the charact of(U) and

435 A7: for n st n ∈ dom x holds for h be homogeneous non empty

436 PartFunc of (the carrier of U)*,the carrier of U

437 st h = (the charact of(U)).n

438 holds x.n = arity(h) and

439 A8: len y = len the charact of(U) and

440 A9: for n st n ∈ dom y holds for h be homogeneous non empty

441 PartFunc of (the carrier of U)*,the carrier of U

442 st h = (the charact of(U)).n

443 holds y.n = arity(h);

444 now let m; assume

445 1≤m & m≤len x; then

446 m ∈ Seg len x by FINSEQ_1:3; then

447 m ∈ dom x by FINSEQ_1:def 3;

448 then A10: m ∈ dom the charact of(U) & m∈dom x & m∈dom y

449 by A6,A8,FINSEQ_3:31;

450 then reconsider h=(the charact of(U)).m

451 as homogeneous non empty

452 PartFunc of (the carrier of U)*,the carrier of U by Th5,Def4,Def6;

453 x.m=arity(h) & y.m=arity(h) by A7,A9,A10;

454 hence x.m=y.m;

455 end;

456 hence thesis by A6,A8,FINSEQ_1:18;

457 end;

458 end;

42

