
MMode

A Mizar Mode for the proof assistant Coq

Mariusz Giero2,1 and Freek Wiedijk1

1 Department of Computer Science, University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

2 Department of Logic, Informatics and Philosophy of Science,
University of BiaÃlystok, Plac Uniwersytecki 1, 15-420 BiaÃlystok, Poland

Abstract. We present a set of tactics for version 7.4 of the Coq proof
assistant which makes it possible to write proofs for Coq in a language
similar to the proof language of the Mizar system. These tactics can be
used with any interface of Coq, and they can be freely mixed with the
normal Coq tactics.
The system described in this report can be downloaded on the web at
<http://www.cs.kun.nl/~freek/mmode/mmode.tar.gz>.

1 Introduction

1.1 The goal: a declarative proof language for Coq

Computers have made it practical to encode non-trivial mathematics in such a
way that the correctness of the proofs can be automatically verified. However,
this kind of encoded proof – the way the encoder works with it – currently
does not resemble the mathematics that we know from journals and textbooks.
Instead it looks like source code in a programming language.

The proof languages of the proof assistants (programs to verify the correct-
ness of encoded mathematics) come in two flavors. On the one hand there are
the procedural proof languages. These are the languages of the systems based
on the architecture of the LCF system [7]. Examples of procedural provers are
Coq [15], NuPRL [3], HOL [6, 8], Isabelle [12] and PVS [13]. In such a system a
proof generally works its way backward, from the end of the proof to the begin-
ning, and consists of a sequence of tactics, which are commands that transform
a proof state. On the other hand there are the declarative proof languages. In a
declarative system a proof is a sequence of statements, and proceeds from the
beginning of the proof to the end. The steps in such a proof generally are bridged
by some kind of automation built into the system.

The declarative provers differ according to how much automation the sys-
tem offers. On the one hand there are the fully automated theorem provers like
ACL2 [9] and Theorema [2]. Here a mathematical development is a linear list of
lemmas, and the system tries to prove each lemma from the previous ones. On
the other hand there are systems like Automath [11] and Agda [4]. These have
no automation at all, but support natural deduction style declarative proof with

2 Mariusz Giero and Freek Wiedijk

a hierarchical block structure. In the middle of this spectrum there is Mizar [10,
18]. Here a proof has a natural deduction style block structure, but the steps in
the proof are also inferred from earlier ones using automation.

The notions of procedural and declarative prover are not very sharp.3 Maybe
the terms do not mean much more than ‘the proofs look similar to Coq and HOL
proof scripts’ and ‘the proofs look like Mizar proofs’. If one thinks in terms of
natural deduction proofs, the difference is largely the amount of ‘cuts’ in proofs
for the system: in a procedural prover a proof generally contains at most a few
cuts, while in a declarative prover proofs contain a cut for almost every proof
step. Also, the adjectives ‘procedural’ and ‘declarative’ really apply to the proof
language used to write proofs for the system. Maybe we should not speak about
procedural/declarative provers, but just of procedural/declarative proofs.

It is generally agreed that a declarative proof is more similar to the infor-
mal mathematical proofs from journals and textbooks than a tactics proof for
a procedural system. For this reason some systems have put a declarative proof
language on top of their procedural base. Generally this declarative proof lan-
guage resembles the language of the Mizar system. The first to experiment with
such a Mizar mode was John Harrison, who built one on top of his HOL Light
system [8]. The main procedural system for which a Mizar-like proof language
has become the accepted way of writing proofs is Isabelle, for which Markus
Wenzel developed the Isar proof language [17].

We think that the Coq system should follow the example of Isabelle. This
report describes a prototype declarative proof language for the Coq system. One
goal for this language is that it should be closely integrated with the ‘old style’
Coq proof language. In particular all the automation of the Coq system should
be available in the language in a natural way. Another goal is that it should be
easy for people to experiment with our language.

Originally we called our prototype language ‘Mizar mode’, but then Henk
Barendregt proposed the name ‘mathematical mode’, to stress the fact that the
language should resemble the look of informal mathematics. Eventually both
names were abbreviated to ‘MMode’ which is the current name of our system.
(A third reading of MMode is ‘Mariusz’ mode’.)

Note that our system can not be used to automatically import Mizar proofs
into Coq. We only imitated the proof language of Mizar for Coq, the logical
foundations beneath the two systems still are completely different.

1.2 Approach

We decided to implement the MMode language in the spirit of Mizar Light [20].
This is another experimental Mizar mode for the HOL Light system. The main

3 Once again, the differences are: (a) in a procedural prover proofs generally run
backward from the goal to the assumptions, while in a declarative prover they run
mostly forward from the assumptions to the goal, and (b) in a procedural prover the
proof scripts generally do not contain the statements that occur in the proof states,
while in a declarative prover they do.

A Mizar Mode for the proof assistant Coq 3

difference with the Mizar mode by John Harrison is that there is no separate
parser. Instead the system just consists of a collection of ‘Mizar tactics’. These
tactics can be freely interleaved with the already existing tactics of the system.
If one just uses these Mizar tactics, the proof closely resembles a declarative
proof in the Mizar language.

We had two models for the MMode language. On the one hand there was
the Mizar language. The Mizar language has a large grammar, but the proof

fragment (the part of the grammar that is directly related to proof steps, so
what one gets if one leaves out the grammar rules that are related to other
things like term/formula syntax or the type system) actually is rather small.
On the other hand there were Henk Barendregt’s ideas about what a declarative
language should look like [1]. Since the Mizar language is much further developed
than Henk’s ideas, we decided to start by implementing the proof fragment of
the Mizar language. Later we extended this to get closer to Henk’s ideas as well
(this will be described in Section 7).

The part of Mizar that we took as a model for the MMode language is given
by the following context free grammar4:

typing := var { ‘,’ var } [(‘be’ | ‘being’) type]
typings := typing { ‘,’ typing }

proposition := [label ‘:’] (formula | ‘thesis’)
propositions := proposition { ‘and’ proposition }

simple-justification := [‘by’ label { ‘,’ label }]
proof := ‘proof ’ { step } [cases] ‘end’
justification := simple-justification | proof

statement :=
propositions justification

| [label ‘:’] term ‘=’ term justification { ‘.=’ term justification }

step :=
‘let’ typings ‘;’

| ‘assume’ propositions ‘;’
| [‘then’] statement ‘;’
| (‘thus’ | ‘hence’) statement ‘;’
| [‘then’] ‘consider’ typings ‘such’ ‘that’

propositions justification ‘;’
| ‘take’ term (‘,’ term) ‘;’
| ‘set’ var ‘=’ term ‘;’

cases :=
‘per’ ‘cases’ justification ‘;’
{ ‘suppose’ propositions ‘;’ { step } }

4 In this grammar we have used the following customary abbreviations: [notion] means
zero or one occurrences of notion, {notion} means zero or more repetitions of notion,
and (notion1 | notion2) means a choice between notion1 and notion2.

4 Mariusz Giero and Freek Wiedijk

For an explanation of the meanings of the various constructions in this grammar,
see [18].

This grammar is almost the full proof fragment of Mizar. However, there are
a few differences;

– This grammar is more orthogonal than the real Mizar syntax. For instance
in this grammar a proof can be used everywhere where a by can be used.
In the real Mizar various steps (like consider and per cases) can only be
proved with a by justification. Also in this grammar a then can be used at
any point, while in the real Mizar a then is forbidden after a consider step.

– In this grammar some abbreviated steps from the real Mizar have been
omitted. For instance there is no given (a combination of assume and
consider) and there is no let . . . such that (a combination of let and
assume). These abbreviations can be trivially expanded, so their omission
does not restrict the expressivity of the language.

– The Mizar steps related to the Mizar type system like reconsider have been
omitted. They make no sense in a system like Coq in which types are unique.

– A few other Mizar constructions have not been included either. For instance
deffunc and defpred are not in this grammar. (In a higher order system
like Coq these are special cases of set.) The case variation of the suppose
step in a per cases construction has also been omitted for simplicity.

All these differences are minor and therefore this language fragment should not

be interpreted as being less powerful than the full proof language of the Mizar
system.

We wanted the threshold for experimenting with the MMode to be as low as
possible. For this reason we took the following design decisions:

1. We did not want a separate parser for our language. All syntax was imple-

mented through Coq’s Grammar rules.

This choice makes it possible to use the MMode system in any Coq interface
that accepts user-defined tactics with a syntax given by Grammar rules. By
this choice we hoped to minimize the need for users to switch to a different
interface to be able to use our system. In particular the MMode language
works fine with the Proof General interface of Coq.
This choice caused some complications. One was that the keywords Let and
Show already were used by the original Coq language, and could not be used
by MMode. Therefore MMode uses the keywords Let and Show , with an
underscore at the end.
Another problem was that we wanted the justification of a step to be an
arbitrary Coq tactic. However in Coq 7.4 tactics cannot have tactics as an
argument. Hugo Herbelin kindly showed us how to patch Coq 7.4 to allow
this. However, this means that one needs to patch Coq to be able to try our
system. We discuss this in more detail in Section 2.

2. We did not want tactics implemented on the ML level. All tactics in the

MMode language were implemented using David Delahaye’s Ltac language.

A Mizar Mode for the proof assistant Coq 5

In the C-CoRN project [5] we had one tactic (called Rational) that was
implemented in ML. For this reason to be able to use the C-CoRN library
with the native version of Coq, people had to build a C-CoRN specific Coq
image. This should be trivial, but in practice this often was causing problems.
For the MMode language we wanted to avoid this complication.
This choice slowed us down quite a bit. Often Ltac behaved erratically and
even if it behaved properly the error messages were not very informative.

These two design choices might be changed for a later version of the system. For
the moment we consider MMode to be a prototype that shows what is possible.
For this reason we wanted it to be as easy as possible for people to try our
system. If people happen to like it, a later version might depart more from the
standard Coq environment.

We did not develop the MMode system systematically. Instead we took some
existing Coq and Mizar proofs, and tried to fit them into a Coq version of the
Mizar fragment that we showed earlier. We just implemented the MMode tactics
that were needed to make these example proofs work. The example proofs are
shown in Section 6 and fall into three categories:

Translations of Coq proofs that just use the basic Coq tactics, for ex-
amples that are easy to understand. Among these were proofs by Henk
Barendregt from his development of the Fundamental Theorem of Arith-
metic;

Translations of Coq proofs that use a complicated library. In our case
this was the C-CoRN library. We included this kind of proof to show that
our approach also works with non-trivial tactics;

Translations of Mizar proofs, to show the similarity of the MMode version
to the original Mizar version.

1.3 Related Work

Our goal is to extend Coq to a system that can be used in a declarative way.
Most proof assistants are procedural: only a few systems are declarative. The
main declarative system is Mizar. Other declarative systems in the style of Mizar
are Don Syme’s DECLARE [14] and Vincent Zammit’s SPL [21].

Mizar modes for procedural systems are not common either. The Mizar modes
for HOL are currently just experiments. However, the Isar language for Isabelle
[17] has become a success. It is now the official input language for the Isabelle
system.

Our MMode language differs in an important respect from Isar (for a com-
parison of Mizar and Isar, see [16]). In Isar the declarative and procedural parts
of the system both have a proof state of their own, called the static and dynamic
proof states. However, in MMode we follow the approach from the Mizar modes
for HOL, where the proof state that is used by the normal tactics of the system
is also used for the declarative proofs. We think that this is more elegant and
simple.

6 Mariusz Giero and Freek Wiedijk

1.4 Contribution

We have created a system for writing declarative proofs with Coq. We have
reimplemented most features of the proof language of the Mizar system.

The system is not a separate layer on top of Coq, but is written in such a
way that proofs can freely mix old style Coq tactics and declarative proof steps.
Also, the system can be used in any reasonable Coq interface.

1.5 Outline

This report is organized as follows. In Section 2 we describe the organization and
installation of our system. In Section 3 we present the MMode proof language. In
Section 4 we describe the inference automation (the by tactic) that we developed
for the MMode system. In Section 5 we give a detailed account of each of the
MMode tactics. In Section 6 we discuss the example proofs that we used to
develop the MMode system. Finally, in Section 7 we describe the extension to
the MMode syntax for Henk Barendregt’s proofs.

In this report we assume familiarity with the Coq system. Basic knowledge
of the Mizar proof language also helps. For an introduction to Mizar-style proof
read the introduction to the MMode language in Section 3.2 on page 11.

2 The MMode system

We now describe the organization of the MMode distribution. If you do not want
to experiment with MMode but just want to read about it, you can skip this
section.

The MMode system has four variants:

MMode. This is the basic version of the system, which does not need anything
besides the standard Coq library. To use it one needs to add one line:

Require MMode.

at the beginning of the Coq file.
CMode. This is the version of the system to be used with the C-CoRN library

from Nijmegen [5]. It knows about the C-CoRN equality [=] and about
the C-CoRN equational reasoning tactics Algebra and Rational. Also, it
knows about the C-CoRN type for computational propositions which is called
CProp.
To use the CMode variant of MMode, one adds the line:

Require CMode.

at the beginning of one’s Coq file.
HMode. This is a version of the system to be used with Henk Barendregt’s files

in which he proved the Fundamental Theorem of Arithmetic. The reason that
this needs a special version of MMode, is that Henk does not use the normal
Leibniz equality of Coq, but defines his own equality. Also he has his own
types for propositions called prop and cprop.
To use the HMode variant of MMode, one adds the line:

A Mizar Mode for the proof assistant Coq 7

Require HMode.

at the beginning of one’s Coq file.
HMode with synonyms. The HMode version of MMode has a variant where

many synonyms have been added for the MMode steps, to make proofs look
more like normal mathematical text. See Section 7 for a description of these
synonyms.
To use the HMode variant of MMode with the synonyms, one adds the line:

Require HMode_synon.

at the beginning of one’s Coq file.

Normally MMode will stop processing a proof at the first error. This is the
normal behavior of Coq, but it differs from the behavior of Mizar which uses
error recovery to continue checking after errors. If one uses the Sketch option of
MMode, it will behave like Mizar in this respect: in that case justification errors
will not be fatal. See Section 5.12 for a description of this feature. To use the
Sketch option of MMode, one adds the line:

Require Sketch.

at the beginning of one’s Coq file.
One does not need to have the MMode files next to the Coq files that make

use of them. If the MMode files have been properly installed Coq will be able
to find the relevant .vo files automatically in the Coq library directory. If the
MMode files have not been installed, but are used from their source directory,
one needs to add the flag

-R 〈directory that holds the MMode .vo files〉 Coq.mmode

to the Coq commands.
To install the MMode system, one needs to perform the following six steps:

1. Get the MMode distribution file from

http://www.cs.kun.nl/~freek/mmode/mmode.tar.gz

2. Unpack the mmode.tar.gz file to a directory mmode:

zcat mmode.tar.gz | tar xf -

cd mmode

3. Patch the Coq source and recompile Coq (see below for an explanation of
why this is necessary):

patch -d 〈your Coq source directory〉/tactics < mmode.patch

cd 〈your Coq source directory〉
make world

make install

cd -

8 Mariusz Giero and Freek Wiedijk

4. The next steps has three variants. Choose one of them:
(a) Edit the Makefile according to whether or not you have C-CoRN (follow

the instructions at the start of the file).
(b) If you have C-CoRN but do not want to edit the Makefile, create a

link called algebra in the mmode directory that points to your C-CoRN
directory:

ln -s 〈your C-CoRN directory〉 algebra

(c) If you do not have C-CoRN, but want to try it, unpack the file algebra.
tar.gz and compile it:

zcat algebra.tar.gz | tar xf -

cd algebra

make

cd ..

The file algebra.tar.gz contains the part of C-CoRN that is used by
the C-CoRN examples.

In case you choose 4(a) or 4(b), be aware that you need to have a version
of C-CoRN that works with Coq 7.4. (The most recent version of C-CoRN
does not work with Coq 7.4 anymore.)

5. Type:

make

This will compile the MMode files and the examples.
6. Type:

make install

This will copy the MMode .vo files to the library directory of Coq. (It will
use the command coqc -where to find out where this is.) It also will copy
Henk’s files that are needed for the HMode.

As step 3 of the installation, Coq 7.4 needs to be ‘patched’. This is needed to
be able to process the Grammar rules in the MMode files. Two lines in the Coq
source file tacinterp.ml will be changed. This will allow the Grammar rules to
define syntax for tactics that take tactics as arguments.5 The only change will be

5 To understand why MMode has tactics that take tactics as arguments, consider the
MMode step:

Have (3)=(plus (3) (0)) [by plus_n_O].

The subgoal (3)=(plus (3) (0)) will be solved by the tactic ‘by plus_n_O’. Both
the full ‘Have ...’ step itself, as well as the ‘by plus_n_O’ argument to the Have

tactic are Coq tactics.
This also means that the same step could have used a different Coq tactic for its

justification. For instance it could have been:

Have (3)=(plus (3) (0)) [Omega].

A Mizar Mode for the proof assistant Coq 9

that slightly more Grammar rules will be accepted by Coq: anything that worked

with Coq 7.4 will keep working in exactly the same way as it worked before. So
one can patch Coq without any fear for compatibility problems.

The MMode distribution contains the following files:

mmode.patch patch to allow Coq 7.4 to process the MMode files

src/ source files of the MMode tactics
other/henk/ Coq files needed for the HMode
algebra.tar.gz relevant part of the C-CoRN files for the CMode

examples/ examples of MMode proofs

other/originals/ the original versions from which the examples have
been derived

other/expanded_by/ the examples where the by justifications have been
expanded to more common Coq tactics

README an ASCII file similar to this section
paper/ LATEX source of this report

Apart from files for the four variants of MMode, the src directory also contains
a file called ‘BMode.v’ (the ‘basic’ part of MMode). This is the common part of
MMode, CMode and HMode. It is not meant to be used by itself.

3 The MMode proof language

3.1 MMode syntax

In this section we will describe the proof language of the MMode system. The
description will be from the point of view of a MMode user. For a more detailed
description, which also discusses the implementation of the MMode tactics, see
the next sections.

The MMode proof language is given by the following grammar. The MMode
tactics do not implement this language completely. For a list of the actual steps
that one can use in the current MMode system, see the Appendix on page 53.
However, in this section we will describe the MMode language as if it were fully
implemented:

typing := var { ‘,’ var } ‘be’ type
typings := typing { (‘,’ | ‘and’) typing }

bound-formula :=
‘[’ var ‘:’ type ‘]’ formula

| ‘(’ bound-formula ‘)’

proposition := formula [‘(’ label ‘)’]
propositions := proposition { ‘and’ proposition }

10 Mariusz Giero and Freek Wiedijk

bound-proposition := bound-formula [‘(’ label ‘)’]
bound-propositions := bound-proposition { ‘and’ bound-proposition }

justification :=
[‘[’ ‘by’ ref { ‘,’ ref } [‘with’ Coq-tactic] ‘]’]

| ‘[’ Coq-tactic ‘]’

step :=
‘Let ’ typings ‘.’

| ‘Assume’ propositions ‘.’
| (‘Have’ | ‘Then’) proposition justification ‘.’
{ [‘Thus’] (‘_=’ | ‘_[=]’ | ‘=_’ | ‘[=]_’) term justification ‘.’ }

| ‘Claim’ proposition ‘.’
proof

‘End claim’ ‘.’
| (‘Thus’ | ‘Hence’) (formula | ‘thesis’) justification ‘.’
| (‘Consider’ | ‘Then’ ‘consider’) var ‘such’ ‘that’ bound-propositions

justification ‘.’
| ‘Take’ term ‘and’ ‘prove’ formula { ‘and’ formula } ‘.’
| ‘Show ’ formula ‘.’
| Coq-tactic ‘.’

cases :=
‘First’ ‘case’ proposition ‘.’ proof { ‘Next’ ‘case’ proposition ‘.’ proof }
‘End cases’ justification ‘.’

proof := { step } [cases]

In this grammar the notions var, term, type, formula, label, ref and Coq-tactic

are taken to be primitive. These notions are inherited from Coq. The notions
var and label are Coq identifiers, the notions term, type, formula and ref are
Coq terms, and the notion Coq-tactic is for Coq tactics.

In comparison to the Mizar proof grammar on page 3, the most important
differences in this grammar are:

– The MMode grammar has a special step called Show , to state the current
goal. This does not do anything (maybe this is the reason that Mizar does
not have an equivalent step), it just documents the proof obligation in the
proof.

– In the MMode grammar, justifications are only ‘by’ justifications and not
multi-step subproofs. To have subproofs one uses a special tactic called
Claim. In contrast to this, in the grammar on page 3 a subproof can be
used in exactly the same places as where a by justification can be used.
(The real Mizar is in between these two extremes: in Mizar subproofs are
not allowed in all justifications, but there is not a special keyword for them
either.)

– In MMode one can have arbitrary Coq proof terms after the by. In Mizar
one can only put labels there.

A Mizar Mode for the proof assistant Coq 11

– There is no step in MMode that corresponds to Mizar’s abbreviation step
called ‘set’. In Coq there already exists the tactic LetTac for this.

– There are some other small differences between Mizar and MMode. In Mizar
the keyword thesis can be used anywhere to represent the current goal,
while in MMode it only can be used after Thus or Hence. In Mizar the
formula after a Thus or Hence can have a label, in MMode it can not. In
Mizar after a take step there is no statement of what the thesis/goal has
become, in MMode there is (so the MMode ‘Take’ is a combination of the
Mizar take and the MMode Show). In Mizar the justification in a proof
by cases (‘per cases’) is at the start of the cases, in MMode it is at end (for
only then it is known what the cases are).

All these differences are minor. The MMode grammar is very close to the Mizar
proof grammar from page 3, and it therefore is justified to call MMode a ‘Mizar
mode’.

Both MMode steps and MMode justifications can be arbitrary Coq tactics.
Therefore it is possible to freely mix ‘traditional style’ Coq tactics and MMode
steps. For instance one might decide to do a proof by induction by just running
Coq’s Induction tactic, and then handle the cases that this tactic generates
using MMode.

3.2 A brief introduction to MMode proofs

We now will go through a Coq session, to explain the basics of MMode proofs.
We start by typing:

Require Le.

Check le_trans_S.

Coq will answer:

le_trans_S

: (n,m:nat)(le (S n) m)->(le n m)

Apparently the Coq lemma le_trans_S states that for all natural numbers n
and m holds that if n+ 1 ≤ m then also n ≤ m.

We now will prove the equivalent statement for lt in various ways. This is
of course completely trivial, but it will show the relation between the Coq way
of doing proofs and MMode style proofs.

First, here is a low level Coq proof:

Lemma lt_trans_S_coq_simple : (n,m:nat)(lt (S n) m)->(lt n m).

Proof.

Intros n m A1.

Change (le (S n) m).

Apply le_trans_S.

Exact A1.

Qed.

12 Mariusz Giero and Freek Wiedijk

Of course the proof can be done automatically as well:

Lemma lt_trans_S_coq_auto : (n,m:nat)(lt (S n) m)->(lt n m).

Proof.

Auto with arith.

Qed.

(In the Arith library of Coq all lemmas like this are proved in this style.)
We will now prove the same statement using MMode. Again we start in a

very basic way:

Lemma lt_trans_S_mmode_simple : (n,m:nat)(lt (S n) m)->(lt n m).

Proof.

Let_ n,m be nat.

Assume (lt (S n) m) (A1).

Have (le (S (S n)) m) (A2) [by A1].

Have (le (S n) m) (A3) [by A2,le_trans_S].

Thus (lt n m) [by A3].

Qed.

Before we go through this line by line, note that this proof uses four kinds of
steps: Let , Assume, Have and Thus. These steps correspond in Coq to the
tactics Intro, Intro,Cut/Assert and Exact. (Of course there are more MMode
tactics than just these.6 Below we will list them, and relate them to Coq tactics,
and also to the natural deduction rules of first order logic.)

Note that there is no step that corresponds to Apply. The role of Apply is
taken by the by justification.

Now let us look at this example proof in detail. Each line contains a formula
that it will introduce to the context, it also contains a label between round
brackets, and most of the lines contain a justification between square brackets.

We can execute the proof step by step. After all, each step is just a completely
ordinary Coq tactic:

============================

(n,m:nat)(lt (S n) m)->(lt n m)

lt_trans_S_mmode_simple < Let_ n,m be nat.

1 subgoal

n : nat

m : nat

============================

(lt (S n) m)->(lt n m)

lt_trans_S_mmode_simple < Assume (lt (S n) m) (A1).

1 subgoal

6 Also Thus does more than Exact, because it can split conjunctions: it corresponds
to the natural deduction rule of ∧-introduction.

A Mizar Mode for the proof assistant Coq 13

n : nat

m : nat

A1 : (lt (S n) m)

============================

(lt n m)

lt_trans_S_mmode_simple < Have (le (S (S n)) m) (A2) [by A1].

1 subgoal

n : nat

m : nat

A1 : (lt (S n) m)

A2 : (le (S (S n)) m)

============================

(lt n m)

lt_trans_S_mmode_simple < Have (le (S n) m) (A3) [by A2,le_trans_S].

1 subgoal

n : nat

m : nat

A1 : (lt (S n) m)

A2 : (le (S (S n)) m)

A3 : (le (S n) m)

============================

(lt n m)

lt_trans_S_mmode_simple < Thus (lt n m) [by A3].

Subtree proved!

This example session shows the relation between the formulas and labels in the
MMode steps, and how these steps affect Coq’s proof state.

Most of the references in this proof are to the label of the previous proof
step. This is so common in Mizar-like proofs, that there is a special abbreviation
for this. If one writes Then instead of Have or Hence instead of Thus, there
is an implicit reference to the previous proof step. Another abbreviation is that
the statement in the final step can be abbreviated as thesis. Together this leads
to a low level MMode proof of our example in a for Mizar more customary style:

Lemma lt_trans_S_mmode_abbrev : (n,m:nat)(lt (S n) m)->(lt n m).

Proof.

Let_ n,m be nat.

Assume (lt (S n) m).

Then (le (S (S n)) m).

Then (le (S n) m) [by le_trans_S].

Hence thesis.

Qed.

14 Mariusz Giero and Freek Wiedijk

So in MMode labels are only necessary when the reference is to a step that is
not the previous one.

In MMode the by tactic has a similar power to the Auto tactic of Coq.
Therefore, we do not need to prove this statement in this low level manner, but
instead can just write:

Lemma lt_trans_S_mmode_by : (n,m:nat)(lt (S n) m)->(lt n m).

Proof.

Thus thesis [by le_trans_S].

Qed.

This completes our brief introduction to MMode proofs.

For less trivial MMode proofs see the examples in Sections 6 and 7. Realize
that even in the example with synonyms starting on page 46 (which looks like a
‘presentation’ of a proof) the text still can be executed one tactic at a time. For
instance after the line:

Also ((x[x]pp)=n) [by A8 , times_com].

the goal state of Coq will look like:

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

n : nat

IH : (before n P)

A4 : O<n

pp : nat

A5 : (primediv pp n)

x : nat

A7 : O<pp/\x[x]pp=n

A8 : pp[x]x=n

A9 : n=pp[x]x

A10 : x=O

A11 : x[x]pp=O

_ : x[x]pp=n

============================

O=n

subgoal 2 is:

FF

subgoal 3 is:

O<x

subgoal 4 is:

(EX L:ListN|(allprimes L)/\n=(Prod L))

subgoal 5 is:

((prime n)\/~(prime n))\/(P n)

Although these proofs do not look like Coq tactic scripts, they are.

A Mizar Mode for the proof assistant Coq 15

3.3 Coq equivalents of MMode tactics

There are various ways to explain the meaning of the MMode steps. In Section 5
we will discuss them in detail, but first for brevity we will just list the MMode
steps and list how the same effect is obtained using traditional Coq tactics:

by tactics like Auto/EAuto, Prolog and Intuition
Let Intro
Assume Intro
Have/Then Cut/Assert
Claim Cut/Assert
Thus/Hence Exact, possibly preceded by a Split of a conjunction

in the goal
Consider Elim, of an existential statement
Take Exists
cases Elim, of a disjunction
Show this does nothing (it just uses Change to verify the

current goal)

This table is not exact,7 it just is meant to give a rough idea of what the various
MMode constructions are for.

Note that this table is very similar to the list of Mizar Light tactics in [20].
The differences are that here there is a distinction between Have and Claim
(both are equivalent to the tactic ‘A’ in [20]), and that in [20] there is no equiv-
alent of Show .

3.4 MMode steps and natural deduction

In this report, the MMode language will only be described in terms of the Coq
system. However it is possible to give a more system independent account of the
MMode language. Most of the semantics of this language is system (and even
logic) independent.

The only feature of MMode that does not have a ‘natural’ meaning is the by
tactic. Apart from that the language is just natural deduction and makes sense
for any logic that has the connectives ¬, →, ∧, ∨, ∀ and ∃.

In this report we will not describe the meaning of the MMode language in a
system independent way (for such an account of a language similar to MMode,
see [19]). We will just list the correspondence between the natural deduction
rules for the logical connectives and the corresponding MMode constructions:

7 In particular by is more general than the tactics mentioned here; see Section 4 below
for a precise description.

16 Mariusz Giero and Freek Wiedijk

⊥ elimination (by)
¬ introduction Assume
¬ elimination (by)
→ introduction Assume
→ elimination (by)
∧ introduction Thus/Hence
∧ elimination (by)
∨ introduction (by)
∨ elimination cases

∀ introduction Let
∀ elimination (by)
∃ introduction Take
∃ elimination Consider

An entry of ‘(by)‘ in this table means that the by justification is used to reason
using this rule. For instance application of the rule of →-elimination would be
written like:

..............

Have P->Q (A1) [by ...].

Have P (A2) [by ...].

..............

Have Q [by A1,A2].

..............

The six entries in this table marked ‘(by)’ are a lower bound on the power of
the by tactic. The by of the Mizar system and the by of MMode satisfy this
bound. Both of these by tactics have the property that they include these six
natural deduction rules.

4 By

The MMode language (and other declarative proof languages like Mizar and
Isar) combines two aspects:

– natural deduction proofs in a block structured language;
– automation of inferences for forward reasoning.

The set of tactics that are used for the first will be explained in detail in Section 5.
In this section we will discuss the by tactic, which in the MMode system is the
implementation of automated forward reasoning.

Most steps in both the Mizar and the MMode systems generate a proof

obligation that has to be proved by a justification. For instance the MMode step

Consider m such that [m:nat] n=(plus m (1)) [tactic].

has as proof obligation

A Mizar Mode for the proof assistant Coq 17

(EX m:nat | n=(plus m (1)))

This is the statement that tactic should completely prove.
In the Mizar system there is only one ‘tactic’ that is used to prove justifica-

tions like this, which is called by.8 This prover has the following three properties:

1. It is very fast. Either it almost immediately succeeds in proving the proof
obligation or it almost immediately fails. So in both cases it returns the
answer in a very short time. On modern hardware Mizar can prove thousands
of by justifications in seconds.

2. It is complete, in the sense that anything that can be proved in the logic
of the underlying system can be proved using the combination of natural
deduction steps and by. For Mizar this is easy to establish, cf. the discussion
in Section 3.4. The MMode by preferably also should be complete for the
Coq logic. We conjecture that for the current implementation this is the
case, but we do not have a proof of this yet.

3. It is sufficiently powerful, in the sense that the by prover can establish infer-
ences that a human user considers to be trivial. The justifications that the
Mizar by proves are in the Mizar literature called obvious inferences.

Note that there is a tension between property 1 and property 3.
As MMode is a Mizar mode, we have been looking for a ‘natural’ implementa-

tion of a by prover for the Coq system. We have gone through three approaches:

– Coq already has automated proof search tactics: Auto, EAuto, Prolog,
Intuition and Jp (‘JProver’). As a first approximation, it seems natural to
just use one of those tactics as the Coq version of by. In particular Intuition
seems the natural choice for a Coq version of ‘obviousness’.
However, in practice this does not come close enough to the ‘completeness’
and ‘powerful’ requirements of by. Often a Coq proof will need tactics like
Induction or Inversion to proceed naturally. This kind of reasoning will
not be captured by one of the already automated search tactics of Coq.

– For a second attempt at a Coq by we reasoned as follows: Most Coq tactics
can be run either with no arguments, or with a Coq term for an argument.
Coq proofs mostly are a linear list of such zero- or one-argument tactic
invocations. We want by to search for short proofs of this shape.
This method generalizes the Auto tactic, which searches for short proofs
that only use the Intro and Apply tactics. Therefore we called our attempt
GAuto (‘Generalized Auto’).
The Auto tactic tries to prove the goal by applying the Apply tactic to:
1. items from hints databases;
2. items from the context.

8 This is not completely true. Mizar proof steps sometimes use the from justification
as well, which is a very weak second order prover. Here we will ignore this, and just
talk about ‘by’.

18 Mariusz Giero and Freek Wiedijk

The idea of GAuto was to modify this, by dropping the hints sets (so
this makes the tactic weaker), but to use other tactics apart from Apply
(this makes the tactic stronger). So apart from Apply, the GAuto tactic
will recursively try to apply tactics like Absurd, Rewrite ->, Rewrite <-,
Elim, Induction and Inversion to variables from the context. AlsoGAuto
will try tactics without arguments other than Intro, like Split, Simpl and
Red.
One often observes that when people start learning Coq they manage to do
proofs without any real understanding, by just trying tactics until the goal
is solved. This approach to Coq proof finding is what GAuto is automating.

As an experiment we also put ‘normal’ Coq tactic scripts as justifications
in the MMode examples. These variant proofs can be found in the directory
other/expanded_by/ of the MMode distribution. For instance, the proof of
nat_factorizes will work with the following justifications:

Simpl; Apply conj; [Apply A1 | Apply trivial]

Simpl; Rewrite -> times_com; Apply refl_equal

Apply conj; [Apply A2 | Apply A3]

Apply nat_HPD

Red in A5; Elim A5; Intro; Intro B1; Exact B1

Exact _

Elim A4; Intro; Intro B2; Rewrite <- B2; Apply times_com

Rewrite A9; Apply refl_equal

Red in A5; Elim A5; Intro B3; Intro; Exact B3

Red in _; Elim _; Intro B4; Intro; Exact B4

EApply propprod_propfact; [Apply A7 | Apply A6 | Exact _]

Rewrite A8; Simpl; Apply refl_equal

Rewrite <- A9; Apply times_com

Rewrite <- _ in A6; Exact A6

Elim not_lt_zero with O; Exact _

Apply neq_zero_imp_gt_zero; Exact _

Apply A10; Elim A11; Intro B5; Intro; Exact B5

Elim A11; Intro; Intro B6; Exact B6

Apply A12; Exact _

Elim A5; Intro B7; Intro; Exact B7

Split; [Exact _ | Elim A13; Intro B8; Intro; Exact B8]

Elim A4; Intro; Intro B9; Apply eq_sym; Exact B9

Elim A13; Intro; Intro B10; Rewrite B10; Simpl; Apply times_com

Split; [Exact A14 | Exact A15]

Apply prime_dec

Apply cv_ind; Exact A16

(In these proof scripts ‘_’ is the label used by MMode for an unlabeled
formula that was put in the context by the previous proof step.)
The same justifications using the by tactic are:

by A1

by refl_equal, times_com

by A2, A3

A Mizar Mode for the proof assistant Coq 19

by nat_HPD

by A5

by _

by times_com, A4

by A9

by A5

by _

by _, A7, A6, propprod_propfact

by A8

by A9, times_com

by _, A6

by _, not_lt_zero

by _, neq_zero_imp_gt_zero

by A11, A10

by A11

by _, A12

by A5

by _, A13

by A4, eq_sym

by A13, times_com

by A14, A15

by prime_dec

by A16, cv_ind

(Of course in MMode proofs the label ‘_’ is not actually written. Instead the
Then keyword is used for this.)

Coq’s Auto tactic tries to use everything that is in the context. However,
the by tactic only uses its arguments.9 To accomplish this, by first replaces
the context with a context that just contains variables corresponding to
the arguments. It does this by calling Generalize for all its arguments,
then clearing the context, and finally putting them in the context again by
calling Try Intros. For instance, in the example proof from Section 3.2,
when justifying the step:

Have (le (S n) m) (A3) [by A2,le_trans_S].

at the start of the justification the context looks like

n : nat

m : nat

A1 : (lt (S n) m)

A2 : (le (S (S n)) m)

============================

(le (S n) m)

9 There are two reasons for this: (1) efficiency and (2) to make the ‘flow of reason-
ing’ in the proof apparent. It might be interesting to experiment with a version of
MMode where by is allowed to use everything from the context (instead of just its
arguments). That way the proofs will probably check much slower, but also much
less references to ‘local’ labels will be needed.

20 Mariusz Giero and Freek Wiedijk

After

Generalize A2; Generalize le_trans_S

the goal becomes

n : nat

m : nat

A1 : (lt (S n) m)

A2 : (le (S (S n)) m)

============================

((n,m:nat)(le (S n) m)->(le n m))->(le (S (S n)) m)->(le (S n) m)

Then the context is cleared, so the goal becomes

n : nat

m : nat

============================

((n,m:nat)(le (S n) m)->(le n m))->(le (S (S n)) m)->(le (S n) m)

and then after

Try Intros.

the goal becomes

n : nat

m : nat

H : (n,m:nat)(le (S n) m)->(le n m)

A2 : (le (S (S n)) m)

============================

(le (S n) m)

Only then GAuto is run.

– The actual implementation of by that is currently in MMode is in between

the two previous approaches. Basically it implements the previous method,
but it does not recursively look for arbitrary proof scripts up to a certain
length. Instead it only tries all the relevant Coq tactics for one step. Before
and after this one step it uses the automation of Coq. The two automated
tactics that it uses there are

Intuition EAuto

Prolog [] 9

The tactics that it tries between these calls to Intuition or Prolog are

Elim term

Rewrite -> term

Rewrite <- term

Absurd term

Red in term

Rewrite term in term

Rewrite <- term in term

A Mizar Mode for the proof assistant Coq 21

(This list works for the example proofs. Possibly it needs to be extended
when more experience with MMode is gained.) Apart from the tactics in
this list, the by tactic can be given an extra tactic after the keyword with.
It will then try this tactic as well.

5 Implementation of the tactics

We will now describe the ‘natural deduction’ MMode tactics. For each tactic we
will describe its effect on the proof state, when it is appropriate to use it, and
how it has been implemented.

5.1 Let /Assume

‘Let ’ var { ‘,’ var } ‘be’ type { (‘,’ | ‘and’) var { ‘,’ var } ‘be’ type } ‘.’
‘Assume’ formula [‘(’ label ‘)’] ‘.’

The Let tactic applies to a goal which is a dependent product ‘(x:U)T’.

Let_ x be U

puts ‘x:U’ in the local context and the new subgoal becomes ‘T’.
The Assume tactic applies to a goal which is a non-dependent product
‘T1 -> T2’.

Assume T1 (H1)

puts ‘H1:T1’ in the local context. If instead of ‘Assume T1 (H1)’ we apply

Assume T1

then ‘_:T1’ is put in the local context. In both cases the new subgoal
becomes ‘T2’.
We can use both tactics with a list of arguments. For example, if a goal is of the
shape

(x,y:U1;z:U2)T1 -> T2 -> T3

we can then apply

Let_ x,y be U1 and z be U2.

Assume T1 (H1) and T2.

to add x,y,z,T1,T2 to the local context and we get T3 as the new subgoal.
Let and Assume are also applicable to goals of which the head is a defined
constant.
For example:

22 Mariusz Giero and Freek Wiedijk

Coq < Lemma example: (Included U A B).

1 subgoal

U : Type

A : (Ensemble U)

B : (Ensemble U)

============================

(Included U A B)

example < Let_ x be U.

1 subgoal

U : Type

A : (Ensemble U)

B : (Ensemble U)

x : U

============================

(In U A x)->(In U B x)

where the definition of Included is

Definition Included : Ensemble -> Ensemble -> Prop :=

[B, C: Ensemble] (x: U) (In B x) -> (In C x).

The implementation:

The tactics Let and Assume are defined with 3 tactics:

– Match Context With which enables the user apply Let only to dependent
products and Assume only to non-dependent products;

– Intro which adds a variable or an assumption to the local context;
– Change which checks the correctness of arguments, i.e., whether what the

user typed corresponds to the goal. In the case of Let , this is the type of a
variable, in the case of Assume, this is the assumption.

5.2 Have

‘Have’ formula [‘(’ label ‘)’] [‘[’ tactic ‘]’] ‘.’

The tactic is applicable to any goal. It adds the hypothesis formula to the local
context with a name label. The tactic tactic is to prove this hypothesis. For
example:

1 subgoal

...................

A Mizar Mode for the proof assistant Coq 23

H : (In U A x)

H0 : (Included U A B)

...................

============================

True

example < Have (In U B x) (H2) [by H, H0].

1 subgoal

................

H : (In U A x)

H0 : (Included U A B)

................

H2 : (In U B x)

============================

True

The implementation:

Have applies Cut formula. Then it applies Intro to the first subgoal and tactic

to the second one.

5.3 Iterated equality

[‘Thus’] (‘_=’ | ‘_[=]’ | ‘=_’ | ‘[=]_’) term [‘[’ tactic ‘]’] ‘.’

In mathematics one often writes chains of equalities, like for example:10

n = (n− d) + d = dq + r + d = d(q + 1) + r

MMode (like Mizar) has the possibility to write this kind of ‘iterated equalities’.
In MMode this example becomes (the lines are taken from the HMode example
called euclid.v):

Have n = ((n-,d)[+]d) [by ge_imp_mon_plus_eq, A5].

_= (d[x]q[+]r[+]d) [by A8].

_= (d[x](S q)[+]r) [by compute].

Note that this one iterated equality turns into three MMode tactics, of which
the first is Have and the other two are ‘_=’.

In order to do an iterated equality first we apply the Have tactic to add an
initial equality to the local context. Then the tactic _= or =_ replaces the right

10 In the second step this uses that n− d = dq + r.

24 Mariusz Giero and Freek Wiedijk

hand side or left hand side of the equality, respectively with term. The tactic is
to prove the equality of the term and the expression we want to replace.
We apply ‘Thus _=’ or ‘Thus =_’ if a goal and the last hypothesis in the local
context are equalities. Suppose that a goal is the equality ‘a = c’, and ‘a = b’
is the last hypothesis in the local context. Then to prove the goal we apply
‘Thus _= c [tactic]’ , where as the argument tactic we need to put a tactic
that solves ‘b = c’.
The tactics ‘_[=]’, ‘[=]_’ were defined to do iterative equalities in C-CoRN.
They work in an analogous way to ‘_=’ and ‘=_’, respectively.

The implementation:

We explain how the tactic ‘_=’ works. The tactic ‘=_’ is defined in an analogous
way.
Suppose that the last hypothesis in the local context is the equality a = b and
we apply _= c [tactic]. Then, the following steps are performed:

– Cut (a = c)

– The equality a = c is added to the local context of the first subgoal by
Intro. The equality a = b is removed from that context.

– The theorem about transitivity of equality is applied to the second goal.
This generates two subgoals: a = b and b = c. As the last hypothesis in the
context is a = b, the first subgoal is solved by Exact. The second one is
solved by the argument tactic.

5.4 Claim

‘Claim’ formula [‘(’ label ‘)’] ‘.’
proof

‘End claim’ ‘.’

It adds, like Have, the hypothesis formula with the name label to the local
context. The proof is a proof of this hypothesis.
Suppose that the goal is the formula G and we need the formula A to prove it.
Then we can apply Claim A (H1).

1 subgoal

...

=============

G

Claim A (H1).

3 subgoals

...

A Mizar Mode for the proof assistant Coq 25

=============

A

A

G

It will generate A as a subgoal twice. After having proved the first subgoal, the
formula A will be added to the local context. Then we need to apply End claim
tactic that will prove the second one11

2 subgoals

...

H1:A

=============

A

G

End_claim.

1 subgoal

...

H1:A

=============

G

Therefore we have A in the local context and we continue the proof of G.
The reason why the formula is generated as a subgoal twice is to improve the
readability of a proof script. End claim indicates the end of the proof of the
formula in the proof script.

5.5 Thus thesis

‘Thus’ ‘thesis’ ‘[’ tactic ‘]’ ‘.’

The tactic is applicable to any goal. We use this tactic to finish a proof, i.e., to
do the last step. As the argument tactic we put a tactic that proves the goal.
Example:

...............

A8 : x0 E X

A10 : ~x0 E X

11 After having proved A, it will be added to the local context with a label generated
by Coq. After applying End claim the right label (the label we put as an argument
of Claim) will be assigned to A.

26 Mariusz Giero and Freek Wiedijk

...............

============================

x0 E A

Included_Add < Thus thesis [by A8,A10].

Subtree proved!

‘Thus’ formula ‘[’ tactic ‘]’ ‘.’

The tactic is applicable to a goal that is a conjunction. As the argument formula
we put a formula that is a part of the conjunction and as the argument tactic a
tactic to prove this formula. Then the goal is reduced to a conjunction without
this formula.
Example:

............

d : nat

n : nat

A2 : n<d

............

============================

n<d/\n=d[x]zero[+]n

subgoal 2 is:

n<d\/(P n)

Euclid < Thus (n<d) [by A2].

2 subgoals

.............

d : nat

n : nat

A2 : n<d

.............

============================

n=d[x]zero[+]n

subgoal 2 is:

n<d\/(P n)

Euclid < Thus (n=d[x]zero[+]n) [by times_com].

1 subgoal

...........

d : nat

n : nat

...........

A Mizar Mode for the proof assistant Coq 27

============================

n<d\/(P n)

We can only prove one formula at a time. The formulas have to proved in the
same order as they are in a conjunction statement.

5.6 Consider

‘Consider’ var ‘such’ ‘that’ bound-formula [‘(’ label ‘)’]
{ ‘and’ bound-formula [‘(’ label ‘)’] } [‘[’ tactic ‘]’] ‘.’

This tactic eliminates the existential quantifier. There are four kinds of existen-
tial statements with one predicate in Coq:

{x:A | (P x)}

{x:A & (P x)}

(EX x | (P x))

(EXT x | (P x))

depending on the types of A and P. As the argument var we put a witness, as
the argument bound-propositions the lambda term [x:A](P x), as the argument
label the name we want to give for the hypothesis (P x), and as the argument
justification a tactic that proves the existential statement we want to eliminate.
The tactic adds ‘var:A’ and ‘label: (P var)’ to the local context.
For example,

............

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

A10: O<x

A12 : (P x)

............

============================

(EX L:ListN|(allprimes L)/\n=(Prod L))

Coq < Consider LL such that

[LL:ListN] (allprimes LL)/\x=(Prod LL) (A13) [by A12,A10].

............

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

A10: O<x

A12 : (P x)

............

LL : ListN

A13 : (allprimes LL)/\x=(Prod LL)

============================

28 Mariusz Giero and Freek Wiedijk

(EX L:ListN|(allprimes L)/\n=(Prod L))

We use Consider in an analogous way in order to eliminate the existential
statements with two predicates. There are four kinds of these statements in
Coq:

(EX x | P(x) & Q(x))

(EXT x | P(x) & Q(x))

{x:A | (P x) & (Q x)}

{x:A & (P x) & (Q x)}

To eliminate it, we apply:

Consider x such that [x:A](P x) (H1) and [x:A](Q x) (H2) [tactic]

It adds ‘x:A’, ‘H1 : (P x)’, ‘H2 : (Q x)’ to the local context. The tactic

justifies the existential statement we want to eliminate.
There are two more kinds existential statements in the C-CoRN library. We
apply Consider to eliminate them in the same way.

The implementation:

First the right existential statement is formed from the argument bound-proposi-
tions. ThenCut is called with this statement as an argument. To the first subgoal
the following tactics are applied:

– Intro in order to add an existential statement to the local context
– Elim in order to eliminate this existential statement
– Intro in order to add the variable var and a predicate to the local context.

To the second one, the tactic tactic is applied.
We tried to implement Consider as a tactic of grammar:

‘Consider’ var ‘being’ type ‘such’ ‘that’ formula label [‘[’ tactic ‘]’] ‘.’

where as the formula we would put the application of the var to a predicate.
For example, instead of typing:

Consider x such that [x:A](P x) [tactic].

we would type

Consider x being A such that (P x) [tactic].

This solution is more elegant. But we did not manage to implement it because
we cannot use ‘(P x)’ as an argument. The variable x is not yet in the context
when we call Consider and Coq does not accept the formula (P x) (does not
know what to apply to the predicate P).

A Mizar Mode for the proof assistant Coq 29

5.7 Take

‘Take’ term ‘and’ ‘prove’ formula { ‘and’ formula } ‘.’

This tactic is applicable to a goal that is an existential statement or a disjunc-
tion statement that includes an existential statement. As the argument term we
put an object that satisfies the predicate of the existential statement. As the
argument formula we put the application of the object to that predicate. The
goal is reduced to the formula.
Example 1

1 subgoal

.........

n : nat

.........

============================

(EX r:nat|r<d/\n=d[x]zero[+]r)

Euclid < Take n and prove (n<d/\n=d[x]zero[+]n).

1 subgoal

...........

n : nat

...........

============================

n<d/\n=d[x]zero[+]n

Example 2

1 subgoal

..................

============================

X =c A\/(EXT A’|X==A’ u {x}/\A’ =c A)

Included_Add < Take (X-{x})

and prove (X==(X-{x}) u {x}/\(X-{x}) =c A).

1 subgoal

..................

============================

X==(X-{x}) u {x}/\(X-{x}) =c A

The order that we put two formula-arguments, must be the same as the order
of the corresponding predicates in the existential statement.

30 Mariusz Giero and Freek Wiedijk

The implementation:

Take performs 3 steps.

– First it tries to apply Red. Therefore the user can also apply Take to a goal
which is not an explicit existential statement.

– Then the tactic ‘Apply term1 with term2 ’ is applied. As the term1 the
constructors of the existential statements are used. The tactic is applied
repeatedly until it succeeds. Every time another constructor is put. As term2
the formula is put.

– At the end ‘Change formula’ is applied. It is to check whether the user put
the right argument for formula

It is possible to apply Take to a disjunction statement that includes an existen-
tial statement. In that case Take is applied one after another to every formula
in this disjunction until it comes to this existential formula. If there is more than
one existential statement in a goal then it depends on the parameter formula to
which existential statement Take will be applied successfully.
For example, the goal is a disjunction of the form:

A1 \/ A2 \/ ... \/ (EX x:T | (P x)) \/ (EX x:T | (Q x)) \/ ... \/ An

Then ‘Take var and prove (P var)’ will succeed on applying to
(EX x:T | (P x)) and ‘Take var and prove (Q var)’ will succeed on applying
to (EX x:T | (Q x))

5.8 proving by cases

‘First’ ‘case’ formula [‘(’ label ‘)’] ‘.’
proof

{ ‘Next’ ‘case’ formula [‘(’ label ‘)’] ‘.’ proof }
‘End cases’ [‘[’ tactic ‘]’] ‘.’

We start to prove by cases with the tactic First case. This tactic adds formula
to the local context with the label label. It also generates another subgoal that
is a disjunction statement of the formula and the first subgoal. For example:

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

n : nat

============================

(P n)

nat_factorizes < First case (prime n) (A1).

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

n : nat

A Mizar Mode for the proof assistant Coq 31

A1 : (prime n)

============================

(P n)

subgoal 2 is:

(prime n)\/(P n)

What kind of disjunction is generated depends on the types of the first subgoal
and the formula.
After having proved the first case, we have as a goal the disjunction statement
of the first case formula and the goal formula. In our example it will be:

(prime n)\/(P n)

We consider the next case with the tactic Next case. It adds the argument
formula to the local context. The first goal is again the goal which we prove by
cases and the second one the disjunction statement formed with the first case
formula, the next case formula and the goal formula. For example:

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

n : nat

..............

============================

(prime n)\/(P n)

nat_factorizes < Next case ~(prime n) (A1).

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

n : nat

..............

A1 : ~(prime n)

============================

(P n)

subgoal 2 is:

((prime n)\/~(prime n))\/(P n)

To consider next cases, we apply Next case. Every time it adds formula. The
first subgoal becomes the goal that we prove by cases. The second one is a
disjunction that is enlarged by formula. For example, if we considered four cases
A, B, C, D then the second subgoal would be ‘(A \/ B \/ C \/ D) \/ goal’.
Note that the outermost disjunction is associated to the left.
After all the cases are done, the goal is a disjunction statement generated by
the tactics First case and Next case. We apply End cases to prove it. First
End cases applies Left. Since the disjunction is associated to the left, the cur-
rent goal becomes a disjunction of all cases that we considered. Then the tactic

32 Mariusz Giero and Freek Wiedijk

tactic is applied. In other words the tactic is to justify that we could split the
proof into cases.
In our example there are two cases. After the second one is done, we have:

P := [n:nat]O<n->(EX L:ListN|(allprimes L)/\n=(Prod L)) : nat->Set

n : nat

..............

============================

((prime n)\/~(prime n))\/(P n)

We finish the proof by applying End_cases [by prime_dec]. First, the goal is
reduced to

((prime n)\/~(prime n))

by the Left tactic and then it is proved by the tactic by prime_dec, where
prime_dec states:

prime_dec

: (n:nat)(prime n)\/~(prime n)

The implementation:

The solution that we justify the proof ‘by cases’ after considering all cases was
implemented in order to be able to use the by tactic for it. One cannot use by
at the beginning because there is nothing to be justified then, because the cases
we want to consider are not listed yet.
Another solution can be to define a tactic that does not use by. For example:

Tactic Definition per_cases_by argument_lemma arg1 arg2 ... :=

Elim argument_lemma with arg1 arg2

where as the argument argument_lemmma we would put the identifier of the
theorem that justifies the proof by cases and as arg1, arg2, etc. the values
for dependent premises of this theorem. But then there is a problem with the
number of these premises which varies and the order we should put them in. One
more solution might be that instead of Elim with we use Elim and then as an
argument for Elim we would put the application of the theorem to these values.
We think that the implemented solution is more elegant and is also closer to the
Mizar solution.
There are a few kinds of the disjunction statements in Coq depending what the
types of the formulas in the given statement are. In order to form the right kind
of disjunction the type of the argument formula in the tactics First case and
Next case and the type of a goal is checked. We had to define separate tactics in
CMode and HMode because in C-CoRN and Henk Barendregt’s files new types
are introduced: CProp and cprop.

A Mizar Mode for the proof assistant Coq 33

5.9 Show

‘Show ’ formula ‘.’

The tactic is a synonym of the tactic Change. It was defined to improve the
readability of a proof script. We use it if we want to indicate in the proof script
what the current goal is. As the argument formula we put the current goal.
Example:

1 subgoal

============================

(n:nat)~n=(S n)

n_Sn < Proof.

n_Sn < Induction n.

2 subgoals

n : nat

============================

~(0)=(1)

subgoal 2 is:

(n0:nat)~n0=(S n0)->~(S n0)=(S (S n0))

n_Sn < Show_ (~(0)=(1)).

2 subgoals

n : nat

============================

~(0)=(1)

subgoal 2 is:

(n0:nat)~n0=(S n0)->~(S n0)=(S (S n0))

The proof script looks like:

..............

Induction n.

Show_ ~(0)=(1).

..............

Therefore, we have information that after the application of Induction the goal
is ‘~(0)=(1)’.

34 Mariusz Giero and Freek Wiedijk

5.10 Then

The tactics: Then, Then consider, Hence thesis are variants of the tactics
Have, Consider, Thus thesis, respectively. The difference is that if we put as
the argument tactic the by tactic then the by takes as an argument also the
last hypothesis in the local context. For details about by see section 4.
Example:

2 subgoals

...............

A8 : x0 E X

A11 : x0 E (A u {x})

_ : ~x0 E X

============================

x0 E A

subgoal 2 is:

(x0 E A\/x==x0)\/x0 E A

Included_Add < Hence thesis [by A8].

1 subgoal

................

A8 : x0 E X

A11 : x0 E (A u {x})

============================

(x0 E A\/x==x0)\/x0 E A

The by tactic took as the arguments the hypotheses ‘A8’ and ‘_’.

The implementation:

The tactics with variant ‘Then’ apply their mother tactics with the tactic LINK
as an argument. The tactic LINK calls Generalize for the last hypothesis in
the local context.
Suppose that we have the following context with G as a goal:

H1: P

...

_: P -> Q

============

G

When we apply ‘Then Q [by H1]’, the formula Q will be generated as the second
goal. Then LINK will be applied to this subgoal. It will call Generalize _. Next
by will call Generalize H1, clear context and call Try Intros. Therefore in the
context we will have the formula P -> Q (the last hypothesis in the context when
we called Then) and the formula P (put as an argument for by).

A Mizar Mode for the proof assistant Coq 35

5.11 Dealing with labels

The tactics: Assume, Have, Claim, Consider, First case and Next case
have an optional argument called label. This is to give a name for the hypotheses
which we can add to the context with these tactics.
Example:

..................

============================

X =c (A u {x})->X =c A\/(EXT A’|X==A’ u {x}/\A’ =c A)

Included_Add < Assume (X =c (A u {x})) (A1).

1 subgoal

...................

A1 : X =c (A u {x})

============================

X =c A\/(EXT A’|X==A’ u {x}/\A’ =c A)

All the hypotheses in the context must have names. So if one does not specify
what name we want to assign to a hypothesis, Coq generates it automatically.
Then in the context we have a hypothesis that has a name that is not present
in the proof script. While proving the user rather looks at the context and the
goals generated by Coq than at the proof script. So it may happen that the user
uses such a name as a reference for the by tactic and that makes the proof script
unreadable.
To avoid this, the hypothesis is added to the local context with the name ‘_’ if
the user does not put the argument label.
Example:

..................

============================

X =c (A u {x})->X =c A\/(EXT A’|X==A’ u {x}/\A’ =c A)

Included_Add < Assume (X =c (A u {x})).

1 subgoal

...................

_ : X =c (A u {x})

============================

X =c A\/(EXT A’|X==A’ u {x}/\A’ =c A)

and the user is aware that such a hypothesis is not labeled in their proof script.
Coq does not allow to have the hypotheses with the same names. If the user does
not give a name for another hypothesis, the previous one is removed and the new
one gets a name ‘_’. If we want to check whether such and such hypothesis was
introduced we can look into the proof script.

36 Mariusz Giero and Freek Wiedijk

5.12 Sketch mode

When we formalize mathematics we often want to prove some facts later, in order
to be able to first work on the main proof. In Coq we can use the Cut tactic or
declare these facts as axioms. In Mizar mode we implemented another solution.
It requires to declare Require Sketch. Then we can add to the local context
a hypothesis without justification. Above this hypothesis an error message is
generated.
Example:

1 subgoal

H : P->Q

============================

Q

example < Have P (H1).

1 subgoal

H : P->Q

error : inference_not_accepted

H1 : P

============================

Q

So we have P in the local context and we can continue our proof.
The error message is also generated when we do not put enough justification.
This feature we can use with the tactics: Have, Consider, ‘=_’, ‘_=’, Then,
Then consider.
We can only have one error message in the local context. If another unjustified
hypothesis is added to the local context then the error message, referring to the
previous one, will be removed and the error message will be generated above
this hypothesis.
The continuation of the previous example:

1 subgoal

H : P->Q

error : inference_not_accepted

H1 : P

============================

Q

example < Have R (H2).

1 subgoal

H : P->Q

A Mizar Mode for the proof assistant Coq 37

H1: P

error : inference_not_accepted

H2 : R

============================

Q

The error message for the hypothesis H1 has been removed and the new error
message refers to the hypothesis H2.
To find the unjustified hypotheses in the local context we need to comment
‘Require Sketch’ then Coq will stop checking at the first error.
One can also check whether a proof consists of the unjustified hypotheses by
searching the proof term for missing_proof_of.
For example, in the proof below we added the formula (In U X x) without
justification.

x : U

H : (In U (Intersection U X Y) x)

============================

(In U (Union U X Y) x)

example < Have (In U X x).

1 subgoal

x : U

H : (In U (Intersection U X Y) x)

error : inference_not_accepted

_ : (In U X x)

============================

(In U (Union U X Y) x)

example < Hence thesis [by Union_introl].

Subtree proved!

In the proof term, we can see that the ‘axiom’ missing_proof_of was applied
to add the formula (In U X x) to the local context:

example =

[x:U; _:(In U (Intersection U X Y) x)]

[H0:=(missing_proof_of (In U X x))]

[H1:=[_:(In U X x)](Union_introl U X Y x _)](H1 H0)

: (Included U (Intersection U X Y) (Union U X Y))

A little different situation is when we use tactics: Thus thesis, Thus thesis,
Hence thesis, ‘Thus _=’, ‘Thus =_’. If our justification is not enough or we
do not put any justification, then the error message replaces the current goal. In
order to continue the proof we need to apply the tactic cp.

38 Mariusz Giero and Freek Wiedijk

H : P

H0 : P->Q

============================

Q

subgoal 2 is:

True

test < Thus thesis [by H].

2 subgoals

H : P

H0 : P->Q

============================

inference_not_accepted

subgoal 2 is:

True

test < cp.

1 subgoal

H : P

H0 : P->Q

============================

True

The implementation:

To ‘solve’ a goal the following axiom is applied:

Axiom missing_proof_of : incomplete.

Definition incomplete := (A:Type)A.

Before ‘solving’ the goal the tactic Intro adds to the local context the ‘hypoth-
esis’ inference_not_accepted with the label error. The type
inference_not_accepted is defined as follows:

Definition inference_not_accepted := True.

6 Examples

We present four proofs in Mizar Mode language.

A Mizar Mode for the proof assistant Coq 39

6.1 Example from the Coq library

The first one is on a fact from the set theory. Standard Coq symbols were replaced
by other ones to make the proof closer to mathematical text.

– ‘E’ denotes a predicate of being an element (In) of a set (Ensemble)
– ‘=c’ denotes inclusion relation between two sets (Included)
– ‘{ }’ denotes a set containing only one element (Singleton)
– ‘u’ denotes union of two sets (Add)
– ‘-’ denotes subtraction of two sets (Subtract)

Lemma Included_Add:

(X, A: (Ensemble U))(x:U) (X =c (A u {x})) ->

(X =c A) \/ (EXT A’ | X == A’ u {x} /\ (A’ =c A)).

Proof.

Let_ X,A be (Ensemble U) and x be U.

Assume (X =c (A u {x})) (A1).

First case (x E X) (A3).

Take (X-{x}) and prove (X==(X-{x}) u {x}/\(X-{x}) =c A).

Have (X =c (X - {x} u {x})) (A4) [by add_soustr_2,A3].

Have ((X - {x}) u {x} =c X) [by add_soustr_1, A3].

Hence (X == ((X - {x}) u {x})) [by Dbl_Inc_Eq, A4].

Let_ x0 be U.

Assume (x0 E (X - {x})).

Then ((x0 E X) /\ (~x == x0)) (A6) [by Subtract_inv].

Then (x0 E (A u {x})) (A10) [by A1].

First case (x0 E A).

Hence thesis.

Next case (x == x0).

Hence thesis [by A6].

End_cases [by Add_inv, A10].

Next case (~(x E X)) (A7).

Claim (X =c A).

Let_ x0 be U.

Assume (x0 E X) (A8).

Then (x0 E (A u {x})) (A11) [by A1].

First case (x0 E A).

Hence thesis.

Next case (x == x0).

Then (~(x0 E X)) [by A7].

Hence thesis [by A8].

End_cases [by Add_inv,A11].

End_claim.

Hence thesis.

End_cases [by classic].

Qed.

The original proof comes from the Coq standard library:

Lemma Included_Add:

40 Mariusz Giero and Freek Wiedijk

(X, A: (Ensemble U)) (x: U) (Included U X (Add U A x)) ->

(Included U X A) \/

(EXT A’ | X == (Add U A’ x) /\ (Included U A’ A)).

Proof.

Intros X A x H’0; Try Assumption.

Elim (classic (In U X x)).

Intro H’1; Right; Try Assumption.

Exists (Subtract U X x).

Split; Auto with sets.

Red in H’0.

Red.

Intros x0 H’2; Try Assumption.

LApply (Subtract_inv U X x x0); Auto with sets.

Intro H’3; Elim H’3; Intros K K’; Clear H’3.

LApply (H’0 x0); Auto with sets.

Intro H’3; Try Assumption.

LApply (Add_inv U A x x0); Auto with sets.

Intro H’4; Elim H’4;

[Intro H’5; Try Exact H’5; Clear H’4 | Intro H’5; Clear H’4].

Elim K’; Auto with sets.

Intro H’1; Left; Try Assumption.

Red in H’0.

Red.

Intros x0 H’2; Try Assumption.

LApply (H’0 x0); Auto with sets.

Intro H’3; Try Assumption.

LApply (Add_inv U A x x0); Auto with sets.

Intro H’4; Elim H’4;

[Intro H’5; Try Exact H’5; Clear H’4 | Intro H’5; Clear H’4].

Absurd (In U X x0); Auto with sets.

Rewrite <- H’5; Auto with sets.

Qed.

6.2 Example of a HMode proof

The second one is on the fact from the number theory that every natural number
can be factorized into a product of primes. The original proof was taken from
Henk Barendregt’s files.

Lemma nat_factorizes :

(n:nat)(O<n)->(EX L:ListN |((allprimes L)/\(n=(Prod L)))).

Proof.

LetTac P :=[n:nat](O<n)->(EX L:ListN |((allprimes L)/\(n=(Prod L)))).

Claim ((n:nat)(before n P) -> (P n)) (A16).

Let_ n be nat.

Assume (before n P) (A10).

First case (prime n) (A1).

Assume ((O) < n).

Have (allprimes (cons n nil)) (A2) [by A1].

A Mizar Mode for the proof assistant Coq 41

Have n=(Prod (cons n nil)) (A3) [by refl_equal, times_com].

Take (cons n nil) and prove

((allprimes (cons n nil))/\n=(Prod (cons n nil))).

Thus thesis [by A2, A3].

Next case ~(prime n).

Assume ((O) < n) (A6).

Consider pp such that

([pp:nat](primediv pp n)) (A5) [by nat_HPD].

Then (pp [|] n).

Then consider x such that ([s:nat] (((O)<pp)/\(s[x]pp)=n)) (A4).

Claim (x<n)/\((O)<x) (A11).

Have (pp[x]x)=n (A9) [by times_com, A4].

Then n=(pp[x]x) (A7).

Have (prime pp) [by A5].

Then one<pp.

Hence (x<n) [by A7, A6, propprod_propfact].

Claim (~x=O).

Assume (x = O) (A8).

Have (O = (x [x] pp)) [by A8].

_= n [by A9, times_com].

Then (O < O) [by A6].

Hence thesis [by not_lt_zero].

End_claim.

Hence ((O) < x) [by neq_zero_imp_gt_zero].

End_claim.

Then (P x) (A12) [by A10].

Have ((O)<x) [by A11].

Then consider LL such that

[LL:ListN] (allprimes LL)/\x=(Prod LL) (A13) [by A12].

Have (prime pp) [by A5].

Then (allprimes (cons pp LL)) (A14) [by A13].

Have (n = (x [x] pp)) (A15) [by A4, eq_sym].

_= (Prod (cons pp LL)) [by A13, times_com].

Take (cons pp LL) and prove

((allprimes (cons pp LL))/\n=(Prod (cons pp LL))).

Thus thesis [by A14, A15].

End_cases [by prime_dec].

End_claim.

Show_ (n:nat)(P n).

Thus thesis [by A16,cv_ind].

Qed.

6.3 Example of a CMode proof

The third one is a proof of the Fundamental Theorem of Algebra. The original
proof comes from the C-CoRN library. In two places there is Let_ f be (cs_crr

(cpoly_cring CC)) instead of Let_ f be (cpoly_cring CC). The reason was
that Change (cpoly_cring CC) in f, which is called by Let after Intro f

(see 5.1), fails because it does not insert the relevant coercion.

42 Mariusz Giero and Freek Wiedijk

Another thing is that in one of the last steps of the proof the label Hrecn, that
is not present in the proof script, is used as a reference. This label refers to the
induction hypothesis:

Hrecn : (f:(cpoly_cring CC))

(degree_le n f)->(nonConst CC f)->{z:CC | f!z[=]Zero}

The problem is that Induction n adds this hypothesis to the context automat-
ically and we can not make any indication of it in the proof script.

Lemma fta’ :

(n:nat)(f:(cpoly_cring CC))

(degree_le n f) -> (nonConst ? f) -> z:CC | f!z [=] Zero.

Proof.

Let_ n be nat.

Induction n.

Show_ (f:(cpoly_cring CC))

(degree_le (O) f)->(nonConst CC f)->z:CC | f!z[=]Zero.

Let_ f be (cs_crr (cpoly_cring CC)).

Assume (degree_le O f) (A0) and (nonConst CC f).

Then consider n such that

([n:nat](lt (O) n)) (A2) and

([n:nat]((nth_coeff n f)[#]Zero)) (A3).

Have ((nth_coeff n f) [=] Zero) [by A2, A0].

Then (Not (nth_coeff n f)[#]Zero) [by eq_imp_not_ap].

Hence thesis [by A3].

Show_ ((f:(cpoly_cring CC))

(degree_le (S n) f)->(nonConst CC f)->z:CC | f!z[=]Zero).

Let_ f be (cs_crr (cpoly_cring CC)).

Assume (degree_le (S n) f) (A1) and (nonConst CC f).

Then consider m’ such that

([m’:nat] (lt (0) m’)) (A4) and

([m’:nat]((nth_coeff m’ f)[#]Zero)) (A5).

Then f[#]Zero [by nth_coeff_ap_zero_imp].

Then consider c such that

([c:CC](f!c[#]Zero)) [by poly_apzero_CC].

Then consider a such that

([a:CC](b:CC & g:cpoly_cring CC | (degree_le n g) | (f[=]

((_C_ a)[*]_X_[+] (_C_ b))[*]g))) [by FTA_1’, A1].

Then consider b such that

([b:CC](g:cpoly_cring CC | (degree_le n g) | (f[=]

((_C_ a)[*]_X_[+](_C_ b))[*] g))).

Then consider g such that

([g:(cpoly_cring CC)](degree_le n g)) (A6) and

([g:(cpoly_cring CC)](f[=]((_C_ a)[*]_X_[+](_C_ b))[*]g)) (A7).

First case (m:nat | (S m)=m’).

Then consider m such that

([m:nat](S m)=m’) (A8).

Have (nth_coeff (S m) f)

[=] (nth_coeff (S m) ((_C_ a)[*]_X_[+](_C_ b))[*]g) (A9).

A Mizar Mode for the proof assistant Coq 43

_[=] a[*](nth_coeff m g)[+]b[*](nth_coeff (S m) g).

Have ((nth_coeff (S m) f)[#] Zero) [by A8,A5].

Then (a[*](nth_coeff m g)[+]b[*](nth_coeff (S m) g) [#] Zero)

(A10) [by A9,ap_well_def_lft_unfolded].

First case (a[*](nth_coeff m g)[#]Zero).

Then (a [#] Zero) (H6’) [by cring_mult_ap_zero].

Have f!([--]b[/]a[//]H6’)

[=] (((_C_ a)[*]_X_[+](_C_ b))[*]g)!([--]b[/]a[//]H6’) (A11).

_[=] ((_C_ a)[*]_X_[+](_C_ b))!([--]b[/]a[//]H6’)[*]g!([--]b[/]a[//]H6’).

_[=] (((_C_ a)[*]_X_)!([--]b[/]a[//]H6’)[+]

(_C_ b)!([--]b[/]a[//]H6’))[*] g!([--]b[/]a[//]H6’).

_[=] ((_C_ a)!([--]b[/]a[//]H6’)[*]_X_!([--]b[/]a[//]H6’)[+]b)[*]

g!([--]b[/]a[//]H6’).

_[=] (a[*]([--]b[/]a[//]H6’)[+]b)[*]g!([--]b[/]a[//]H6’)

_[=] (Zero::CC).

Take ([--]b[/]a[//]H6’) and prove (f!([--]b[/]a[//]H6’)[=]Zero).

Thus thesis [by A11].

Next case (b[*](nth_coeff (S m) g)[#]Zero) (A12).

Claim (nonConst CC g).

Have (lt (0) (S m)) (A13) [by A4 , A8].

Have (nth_coeff (S m) g)[#]Zero (A14)

[by cring_mult_ap_zero_op, A12].

Take (S m) and prove (lt (O) (S m)) and ((nth_coeff (S m) g)[#]Zero).

Thus thesis [by A13].

Thus thesis [by A14].

End_claim.

Then consider z such that

([z:CC](g!z[=]Zero)) [by Hrecn, A6].

Have f!z [=] (((_C_ a)[*]_X_[+](_C_ b))[*]g)!z (A15).

_[=] ((_C_ a)[*]_X_[+](_C_ b))!z[*]g!z.

_[=] (((_C_ a)[*]_X_[+](_C_ b))!z)[*]Zero.

_[=] (Zero::CC) .

Take z and prove (f!z[=]Zero).

Thus thesis [by A15].

End_cases [by cg_add_ap_zero, A10].

Next case (O) = m’.

Then (lt (O) (O)) [by A4].

Hence thesis [by lt_n_n].

End_cases [by O_or_S].

Qed.

6.4 Example from the Mizar library

The fourth one is a proof on the equality of the minimum of two real numbers
and the absolute value of the subtraction of these numbers. Likewise in the
above proof of FTA theorem the tactic Let_ x,y be IR cannot be used because
of coercion. The original proof was taken from Mizar library and is presented
below MMode proof.

Lemma min_abs:

44 Mariusz Giero and Freek Wiedijk

(x,y:IR) (Min x y) [=] (x [+] y [-] (AbsIR (x [-] y))) [/] Two

[//] (two_ap_zero IR).

Proof.

Let_ x,y be (cs_crr IR).

First case (x [<=] y) (H).

Have (Min x y) [=] x

[by eq_symmetric_unfolded, leEq_imp_Min_is_lft,H].

_[=] ((x [+] x)[/](Two::IR)[//](two_ap_zero IR)).

_[=] ((x[+]y)[-](y[-]x))[/](Two::IR)[//](two_ap_zero IR).

_[=] ((x[+]y)[-]((Max x y)[-]x))[/](Two::IR)[//](two_ap_zero IR)

[by H,leEq_imp_Max_is_rht;

Auto 6 with algebra_r algebra algebra_c algebra_s].

_[=] ((x[+]y)[-]((Max x y)[-](Min x y)))[/](Two::IR)[//]

(two_ap_zero IR)

[by H,leEq_imp_Min_is_lft;

Auto 6 with algebra_r algebra algebra_c algebra_s].

Thus _[=] ((x[+]y)[-](AbsIR (x[-]y)))[/](Two::IR)[//](two_ap_zero IR)

[by eq_symmetric_unfolded, Abs_Max;Algebra].

Next case y[<=]x (H1).

Have (Min x y) [=] (Min y x) [by Min_comm].

_[=] y [by eq_symmetric_unfolded, leEq_imp_Min_is_lft, H1;

Algebra].

_[=] ((Two [*] y))[/](Two::IR)[//](two_ap_zero IR) .

_[=] ((x[+]y)[-](x[-]y))[/](Two::IR)[//](two_ap_zero IR).

_[=] ((x[+]y)[-](x[-](Min y x)))[/](Two::IR)[//](two_ap_zero IR)

[by eq_symmetric_unfolded, leEq_imp_Min_is_lft, H1;

Auto 6 with algebra_r algebra algebra_c algebra_s].

_[=] ((x[+]y)[-]((Max y x)[-](Min y x)))[/](Two::IR)[//]

(two_ap_zero IR)

[by eq_symmetric_unfolded, leEq_imp_Max_is_rht, H1;

Auto 6 with algebra_r algebra algebra_c algebra_s].

_[=] ((x[+]y)[-]((Max x y)[-](Min y x)))[/](Two::IR)[//]

(two_ap_zero IR) [by Max_comm;Algebra].

_[=] ((x[+]y)[-]((Max x y)[-](Min x y)))[/](Two::IR)[//]

(two_ap_zero IR) [by Min_comm;Algebra].

Thus _[=] ((x[+]y)[-](AbsIR (x[-]y)))[/](Two::IR)[//](two_ap_zero IR)

[by eq_symmetric_unfolded, Abs_Max;Algebra].

End_cases [by LeEq_dec].

Qed.

The Mizar proof:

theorem Th34:

min(x,y) = (x + y - abs(x - y)) / 2

proof

now per cases;

suppose

A1: x <= y; then 0 <= y - x by Th12;

then A2: 0 <= -(x-y) by XCMPLX_1:143;

thus min(x,y) = x by A1,Def1

A Mizar Mode for the proof assistant Coq 45

.= (x+x)/2 by XCMPLX_1:65

.= (((x+y)-y)+x)/2 by XCMPLX_1:26

.= ((x+y)- (y - x))/2 by XCMPLX_1:37

.= ((x+y)- -(x - y))/2 by XCMPLX_1:143

.= ((x+y)-abs(-(x - y)))/2 by A2,ABSVALUE:def 1

.= ((x+y)-abs(x - y))/2 by ABSVALUE:17;

suppose

A3: y <= x;

then A4: 0 <= x - y by Th12;

thus min(x,y) = y by A3,Def1

.= (y+y)/2 by XCMPLX_1:65

.= (x+y-x+y)/2 by XCMPLX_1:26

.= ((x+y)- (x - y))/2 by XCMPLX_1:37

.= ((x+y)-abs(x-y))/2 by A4,ABSVALUE:def 1;

end;

hence thesis;

end;

7 Synonyms

One of the main aims of our Mizar mode is to improve readability of Coq proofs.
To make them look closer to mathematical text MMode was equipped with some
synonyms of the basic tactics described in Section 5. They are available if we
put the declaration Require HMode_synon. Here is the list of all synonyms. The
tactic argument is either by or a Coq tactic and has to be put in square brackets,
the label argument has to be put in round brackets. The only exception is the
synonym The ... is ... for the Assume tactic, where label has to be put in
square brackets. In this list square brackets mean an optional argument.

– Assume formula [label] tactic.
Synonyms:

• Now assume formula.
• The label is formula.
• Indeed assume formula label.

– Have formula [label] tactic.

• We have formula tactic.
• Secondly we have formula tactic .
• We have tactic formula label.
• First we have formula label tactic.
• Now formula label tactic.
• Now tactic we have formula label.

– Then formula [label] [tactic].

• Also formula [label] tactic.
• So formula label [tactic].
• Then tactic formula label.
• Hence tactic again formula label.

46 Mariusz Giero and Freek Wiedijk

• Therefore tactic formula label.
– Thus thesis tactic.

• Done tactic.
• Then we are done tactic.

– Thus formula tactic.
• Done formula tactic.
• Firstly formula tactic.

– Hence thesis tactic.
• Hence done tactic.
• Hence we have our claim tactic.
• Hence claim done tactic.
• So we are done tactic.

– Show formula.
• We need to prove formula.
• Finally we need to prove formula.

– Claim formula.
• Secondly claim formula.

– Take variable and prove formula.
• Finally take variable and prove formula.

– Then consider variable such that formula label.
• Now choose variable such that formula label.

– First case formula [label].
• Case 1 formula [label].

– Next case formula [label].
• Case 2 formula [label].

– Apply term.
• We apply term.

– Idtac.
• So we have proved label.
• Secondly.

The definition of the tactic Claim in the HMode_synon is different from the
definition of the Claim in the MMode. In the MMode the Claim requires to apply
the tactic End claim after we have finished the proof (see 5.4) while in the
HMode_synon it does not. The End claim is to indicate in the proof script the
end of the ‘claim’ proof. In the HMode_synon we do not need such a tactic. We
have tactics like Hence claim done which realize two things. We can do the
last step in the ‘claim’ proof (in the MMode we use the Thus thesis) and the
tactic indicates in the proof script the end of the ‘claim’ proof (the Thus thesis
is not so meaningful).

The version of Mizar mode with synonyms is so far only an experiment. The
above list was prepared to play with two proofs. The one is presented below, it
is again the proof that every natural number can be factorized into a product
of primes, and the second one, the proof of the Quotient-Remainder theorem, is
available in the directory examples (euclid_synon.v). We are aware that the
list should be enlarged and to the existing synonyms options like label should
be added to make the version fully functional.

A Mizar Mode for the proof assistant Coq 47

Lemma nat_factorizes :

(n:nat)(O<n)->(EX L:ListN |((allprimes L)/\(n=(Prod L)))).

Proof.

LetTac P :=[n:nat](O<n)->(EX L:ListN |((allprimes L)/\(n=(Prod L)))).

We apply (cv_ind P).

We need to prove ((n:nat)(before n P) -> (P n)).

Let_ n be nat.

The [IH] is

(before n P).

Case 1 (prime n) (A1).

Now assume ((O)<n).

We have [by A1]

(allprimes (cons n nil)) (A2).

Also n=(Prod (cons n nil)) (A3) [by refl_equal , times_com].

Take (cons n nil) and prove

((allprimes (cons n nil))/\n=(Prod (cons n nil))).

Then we are done [by A2 , A3].

Case 2 ~(prime n).

Assume ((O) < n) (A4).

Have (HPD n) [by nat_HPD].

Now choose pp such that

([pp:nat] (primediv pp n)) (A5).

Then (pp [|] n).

Now choose x such that

([s:nat](((O)<pp)/\(s[x]pp)=n)) (A7).

Claim (x<n)/\((O)<x) (A8).

First we have (pp[x]x)=n (A8) [by times_com , A7].

So n=(pp[x]x) (A9).

We have (prime pp) [by A5].

Then one<pp.

Hence (x<n) [by A9 , A4 , propprod_propfact].

Secondly claim (~x=O).

Indeed assume (x = O) (A10).

Claim O=n.

So ((x [x] pp)=O) (A11) [by A10].

Also ((x[x]pp)=n) [by A8 , times_com].

Hence we have our claim [by A11].

Then (O < O) [by A4].

Hence claim done [by not_lt_zero].

48 Mariusz Giero and Freek Wiedijk

Hence ((O) < x) [by neq_zero_imp_gt_zero].

Now [by A8, IH] we have

(P x) (A12).

Then [by A8]

(EX L:ListN |((allprimes L)/\(x=(Prod L)))) (A13).

Now choose LL such that

[LL:ListN] (allprimes LL)/\x=(Prod LL) (A14).

We have (prime pp) [by A5].

Also (allprimes (cons pp LL)) (A15) [by A14].

We have

((Prod LL)[x]pp)=(pp[x](Prod LL)) [by times_com].

Hence [by A14] again (x[x]pp) = (pp[x](Prod LL)) (A17).

We have (n = (x [x] pp)) [by A7 , eq_sym].

Therefore [by A17] (n=(Prod (cons pp LL))) (A16).

Finally take (cons pp LL)

and prove (allprimes (cons pp LL))/\n=(Prod (cons pp LL)).

So we are done [by A15, A16].

End_cases [by prime_dec].

Qed.

8 Conclusion

8.1 Discussion

The MMode system is a rather complete Mizar mode for Coq: it emulates all
Mizar proof steps. However, currently it is just a prototype. It has just been
developed enough to process the five example proofs. We would expect that for
the next few proofs it will still need to be extended significantly. For instance,
the by tactic only has been implemented for at most three references (in the real
Mizar system there are by justifications with tens of references). This shows that
at the moment the system is just a proof of concept.

We will now compare the efficiency of MMode proofs as compared to ‘old
style’ Coq proofs:

– Our MMode proofs are approximately twice as long as the corresponding
Coq proofs. There are two reasons for this. The Coq proof does not contain
the statements of the proof states, while the MMode proof does. Also, the
MMode proof text is indented so it contains much more whitespace.

A Mizar Mode for the proof assistant Coq 49

Surprisingly, the MMode version of a Mizar proof is longer too. The MMode
version of min_abs is about three times as long as the Mizar original. The
main reason for this is that the C-CoRN notation used in the Coq version
of the Mizar statements is much clumsier than the original Mizar notation.

– Our MMode proofs take approximately three times as much time to check as
the corresponding Coq proofs. This is all caused by the fact that we generate
the justifications with the by tactic. The proofs where the justifications have
been ‘expanded’ (in other/expanded_by/) are only slightly slower than the
originals.
The use of by slows checking for two reasons. First, it takes time for it to
find the proof. Second, the proof it finds generally is less efficient than a
proof found manually.
Bold claim: We expect that there is room for improvement in the perfor-
mance of by. The current version in MMode is really just a first experimental
version.

– The MMode proof terms are less than twice as large as the corresponding
Coq proof terms. (We looked at the size of the .vo files to judge the size of
the proof terms.)
This difference is even less when considering the β-normal forms of the proof
terms. MMode proofs contain many more cuts than traditional Coq proofs.
This is one of the main reasons for the increase in the size of the proof terms.
Another reason, again, is that by will not always find as efficient a proof as
a human will.

All in all we can summarize that using MMode probably imposes a performance
penalty – both in space and time – of about a factor of two. We expect that
when we develop MMode, there will be some space for improvement, mainly in
the time dimension. However we do not expect that MMode proofs will ever be
as small and fast as old style Coq proofs.

This can be compared to writing programs in assembly versus using a high
level language like C. In assembly a program will be faster and will use less
resources. However, this is not always a good reason to program in assembly.

8.2 Future work

Most importantly, the MMode system needs to be turned into more than a
prototype. For this, two things are essential:

– MMode needs to be ported to the latest versions of Coq and C-CoRN (at
the time of writing this report, the latest version of Coq is still version 7.4
but C-CoRN already has been modified to work with a more recent ‘CVS
version’ of Coq).

– MMode needs to be used for a significant ‘proof development’, a formaliza-
tion of a non-trivial piece of mathematics.

Then, there are some issues of a more theoretical character:

50 Mariusz Giero and Freek Wiedijk

– The current version of MMode is very Coq specific. It would be nice to give
a more system independent and more theoretically oriented description of
the meaning of the MMode steps.

– It is an interesting question whether the given implementation of by in
MMode is complete. The question then, is whether it is possible to prove
any Coq theorem when only using the MMode tactics (where only variables
are used for the references after the by tactic).

The syntax of MMode is currently rather restricted, mainly due to our decision
only to use Coq’s Grammar rules to implement it. There is room for improvement
here:

– The tactics in the Appendix on page 53 only give a small sub-language of
the syntax from Section 3.1 on page 9. Many more instances of the steps in
this grammar should be implemented as tactics. For instance there should
be by tactics with more than three arguments, Let tactics that bind more
than two variables, and so on.
Alternatively we might look into having a MMode parser that is not just
built using Grammar rules. If we do this, the MMode system will be harder
to install and it will not work in all Coq environments anymore. But on the
other hand, the full grammar from Section 3.1 might be available then. Also
the keywords Let and Show would not need an underscore anymore, but
could just be Let and Show.

– There should be more serious investigation of synonyms for MMode steps,
as described in Section 7. It might be interesting to take an existing math-
ematical text (Henk Barendregt calls this ‘best mathematical style’), and
collect statistics on what wordings are actually used for the various kinds of
MMode steps.

– Combinations of MMode tactics could be given syntax of their own. For
instance Mizar’s Given (= Assume + Consider) or Let . . . such that
(= Let + Assume) could be implemented. Another possibility might be to
implement an Otherwise tactic: the step Otherwise P then would be an
abbreviation of Assume ~thesis; Then P .

The tactics of MMode also can use improvements:

– When using the Sketch variant of MMode, the error messages for steps that
have not been sufficiently justified just appear in the contexts. This means
that when compiling a file with coqc there will be no feedback about those
errors. Currently it is not possible to produce appropriate error messages
without going to the ML level in the implementation of the tactics (we
decided we did not want to do this). In the next version of Coq having
proper error messages in the Sketch mode probably will be possible without
programming on the ML level.

– The by tactic in its current form probably is (a) too weak and (b) too
inefficient. It should be refined to find a proof faster, find more efficient
proofs and find proofs in more cases. (It is not clear to us whether going to
the ML level for the implementation of the by tactic would help with this.)

A Mizar Mode for the proof assistant Coq 51

– It would be useful if by could print the proof it finds. (This is similar to the
Info tactical of Coq.)

– The by tactic currently does two things. It builds a restricted context that
just contains the arguments of the tactic. Then it searches for a proof in this
context with GAuto. Separating these two parts might make it possible to
substitute other automated proof tactics for GAuto but keep the property
that only the arguments of the tactic can be used by it.

– The by tactic currently only takes references and tactics. It would be useful
to extend this with Hints classes.

– The ‘trick’ of End claim to have the same subgoal twice (to ‘remember’
what subproof one is working on) might be modified. For instance the sec-
ond subgoal could be different, to make it more obvious that this is just a
reminder of a subproof that needs to be closed, instead of a statement that
really needs a proof of itself.

Finally an interesting topic is to investigate whether it is possible to automat-
ically convert an existing ‘old style’ Coq proof script into an MMode proof. Of
course we do not think that this would be a better way of getting MMode proofs
than writing them directly. However, it might be interesting to see whether one
could use MMode as a ‘proof presentation language’ for existing ‘legacy’ Coq
proofs. This would be closely related to the work on generating proof presenta-
tions from Coq tactic proof scripts by Frédérique Guilhot, Hanane Naciri and
Löıc Pottier (they do not have a publication about it yet).

Related to this is the question whether it is possible to support the writing of
MMode proofs with some automation. For instance, most MMode proofs start
with a couple of Let and Assume steps that really are determined by the
statement that one is proving. In traditional Coq proofs one only needs to write
Intros for this. It should be possible to have a command that inserts these Let
and Assume steps automatically into the proof text. Henk Barendregt calls this
kind of automatic support for the writing of MMode proofs luxury MMode.

A naive way to translate a traditional proof script into an MMode proof is to
convert the Coq proof term that is constructed by the proof script to an MMode
proof, but we do not think this is the best way. A better approach probably
is to ‘merge’ all subgoals that the tactic script goes through into an MMode
proof skeleton. Probably that would give an MMode proof of which not all the
justifications can be done by by, but it would be a good starting point for a
human to produce a working MMode proof.

Acknowledgments. We especially would like to thank Henk Barendregt for his
enthusiasm for what he calls ‘mathmode’. Thanks also to Dan Synek and Iris
Loeb for their comments on draft versions of this document. Further thanks for
all the help we got from Lúıs Cruz-Filipe, Herman Geuvers, Milad Niqui, Bas
Spitters and Jasper Stein. Finally many thanks to Hugo Herbelin who showed
us how to get Coq to do what we wanted it to do.

The first author of this report was financed as a young researcher under Eu-
ropean Community contract nr. HPRN-CT-2000-00102, in the thematic network
CALCULEMUS, Systems for Integrated Computation and Deduction.

52 Mariusz Giero and Freek Wiedijk

References

1. Henk Barendregt. Towards an interactive mathematical proof language. Unpub-
lished, <ftp://ftp.cs.kun.nl/pub/CompMath.Found/mathmode.pdf>.

2. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, and D. Vasaru. An Overview
on the Theorema project. In W. Kuechlin, editor, Proceedings of ISSAC’97 (In-
ternational Symposium on Symbolic and Algebraic Computation), Maui, Hawaii,
1997. ACM Press.

3. Robert L. Constable, Stuart F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cre-
mer, R.W. Harper, Douglas J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl
Development System. Prentice-Hall, NJ, 1986.

4. C. Coquand. Agda home page, 2000. <http://www.cs.chalmers.se/~catarina/

agda/>.
5. Lúıs Cruz-Filipe. A Constructive Formalization of the Fundamental Theorem of

Calculus. In H. Geuvers and F. Wiedijk, editors, Types for Proofs and Programs,
volume 2646 of LNCS, pages 108–126. Springer-Verlag, 2003.

6. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cambridge Uni-
versity Press, Cambridge, 1993.

7. M.J.C. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of LNCS. Springer Verlag, Berlin, Heidelberg,
New York, 1979.

8. John Harrison. The HOL Light manual (1.1), 2000. <http://www.cl.cam.ac.uk/
users/jrh/hol-light/manual-1.1.ps.gz>.

9. Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Boston, 2000.

10. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,
1993. <http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>.

11. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Automath,
volume 133 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science, Amsterdam, 1994.

12. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

13. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, Berlin, Heidelberg, New York, 1992. Springer-
Verlag.

14. Don Syme. Three Tactic Theorem Proving. In Theorem Proving in Higher Order
Logics, TPHOLs ’99, Nice, France, volume 1690 of LNCS, pages 203–220. Springer,
1999.

15. The Coq Development Team. The Coq Proof Assistant Reference Manual,
2002. <ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.

ps.gz>.
16. M. Wenzel and F. Wiedijk. A comparison of the mathematical proof languages

Mizar and Isar. Journal of Automated Reasoning, 29:389–411, 2002.
17. Markus Wenzel. Isar — a generic interpretative approach to readable formal proof

documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery,
editors, Theorem Proving in Higher Order Logics: TPHOLs ’99, volume 1690 of
LNCS, 1999.

A Mizar Mode for the proof assistant Coq 53

18. F. Wiedijk. Mizar: An Impression. Unpublished, <http://www.cs.kun.nl/

~freek/mizar/mizarintro.ps.gz>, 1999.
19. F. Wiedijk. The Mathematical Vernacular. Unpublished, <http://www.cs.kun.

nl/~freek/notes/mv.ps.gz>, 2000.
20. F. Wiedijk. Mizar light for HOL light. In R. J. Boulton and P. B. Jackson, editors,

Theorem Proving in Higher Order Logics: TPHOLs 2001, volume 2152 of LNCS,
2001.

21. Vincent Zammit. On the Implementation of an Extensible Declarative Proof Lan-
guage. In Theorem Proving in Higher Order Logics, TPHOLs ’99, Nice, France,
volume 1690 of LNCS, pages 185–202. Springer, 1999.

A The implemented MMode tactics

We now list all MMode tactics that have been implemented thus far. These
tactics give a sub-language of the proof language of the grammar on page 9 in
Section 3.1.

A.1 by

‘by’ ref
‘by’ ref ‘,’ ref
‘by’ ref ‘,’ ref ‘,’ ref

‘by’ ref ‘with’ tactic
‘by’ ref ‘,’ ref ‘with’ tactic
‘by’ ref ‘,’ ref ‘,’ ref ‘with’ tactic

A.2 Let /Assume

‘Let ’ var ‘be’ type
‘Let ’ var ‘,’ var ‘be’ type
‘Let ’ var ‘,’ var ‘be’ type ‘and’ var ‘be’ type
‘Let ’ var ‘be’ type ‘,’ var ‘be’ type

‘Assume’ formula
‘Assume’ formula ‘and’ formula
‘Assume’ formula ‘(’ label ‘)’
‘Assume’ formula ‘(’ label ‘)’ ‘and’ formula

A.3 Have/Then

‘Have’ formula ‘[’ tactic ‘]’
‘Have’ formula ‘(’ label ‘)’ ‘[’ tactic ‘]’
‘Have’ formula
‘Have’ formula ‘(’ label ‘)’

‘Then’ formula ‘[’ tactic ‘]’
‘Then’ formula ‘(’ label ‘)’ ‘[’ tactic ‘]’
‘Then’ formula
‘Then’ formula ‘(’ label ‘)’

54 Mariusz Giero and Freek Wiedijk

A.4 Iteration

‘_=’ term ‘[’ tactic ‘]’
‘=_’ term ‘[’ tactic ‘]’
‘_[=]’ term ‘[’ tactic ‘]’
‘[=]_’ term ‘[’ tactic ‘]’
‘_[=]’ term
‘[=]_’ term

‘Thus’ ‘_=’ term ‘[’ tactic ‘]’
‘Thus’ ‘=_’ term ‘[’ tactic ‘]’
‘Thus’ ‘_[=]’ term ‘[’ tactic ‘]’
‘Thus’ ‘[=]_’ term ‘[’ tactic ‘]’
‘Thus’ ‘_[=]’ term
‘Thus’ ‘[=]_’ term

A.5 Claim/Thus

‘Claim’ formula
‘Claim’ formula ‘(’ label ‘)’
‘End claim’

‘Thus’ ‘thesis’ ‘[’ tactic ‘]’
‘Hence’ ‘thesis’ ‘[’ tactic ‘]’
‘Hence’ ‘thesis’

‘Thus’ formula ‘[’ tactic ‘]’
‘Hence’ formula ‘[’ tactic ‘]’

A.6 Consider

‘Consider’ var ‘such’ ‘that’ bound-formula ‘[’ tactic ‘]’
‘Consider’ var ‘such’ ‘that’ bound-formula ‘(’ label ‘)’ ‘[’ tactic ‘]’

‘Then’ ‘consider’ var ‘such’ ‘that’ bound-formula
‘Then’ ‘consider’ var ‘such’ ‘that’ bound-formula ‘(’ label ‘)’
‘Then’ ‘consider’ var ‘such’ ‘that’ bound-formula ‘[’ tactic ‘]’
‘Then’ ‘consider’ var ‘such’ ‘that’ bound-formula ‘(’ label ‘)’ ‘[’ tactic ‘]’

‘Consider’ var ‘such’ ‘that’ bound-formula
‘and’ bound-formula ‘[’ tactic ‘]’

‘Consider’ var ‘such’ ‘that’ bound-formula ‘(’ label ‘)’
‘and’ bound-formula ‘(’ label ‘)’ ‘[’ tactic ‘]’

‘Then’ ‘consider’ var ‘such’ ‘that’ bound-formula ‘(’ label ‘)’
‘and’ bound-formula ‘(’ label ‘)’

‘Then’ ‘consider’ var ‘such’ ‘that’ bound-formula ‘(’ label ‘)’
‘and’ bound-formula ‘(’ label ‘)’ ‘[’ tactic ‘]’

A Mizar Mode for the proof assistant Coq 55

A.7 Take

‘Take’ term ‘and’ ‘prove’ formula
‘Take’ term ‘and’ ‘prove’ formula ‘and’ formula

A.8 Per cases

‘First’ ‘case’ formula ‘(’ label ‘)’
‘First’ ‘case’ formula
‘Next’ ‘case’ formula ‘(’ label ‘)’
‘Next’ ‘case’ formula
‘End cases’ ‘[’ tactic ‘]’

A.9 Show

‘Show ’ formula

