
Encoding the HOL Light logic in Coq

Freek Wiedijk

freek@cs.kun.nl

University of Nijmegen

Abstract. We show how to encode the HOL Light logic in Coq. This
makes an automatic translation of HOL proofs to Coq possible. The
translated HOL proofs refer to translated HOL data types but those
data types can be related to the standard Coq data types, making the
HOL results useful for Coq. The translated proofs have a size linear in
the time HOL takes to process the original proofs. However the constant
of linearity is large. The approach described in this paper is similar to
the method of Pavel Naumov, Mark-Oliver Stehr and José Mesequer for
translating HOL98 proofs to Nuprl [10].

1 Introduction

1.1 Problem

There are many systems for proof formalization. Currently popular systems are
HOL [5], Coq [2], Nuprl [3], Isabelle [12], ACL2 [9] and PVS [11]. There are two
views on this multitude of systems. The one view is to expect the best system
to take the lead over the other ones. The other view is to expect the systems
to coexists and to be able to exchange mathematical results between them.
Often this second view is utopian and presents a future in which ‘mathematical
services’ will be available through the world wide web. These services will then
solve almost all mathematical problems at the click of a mouse. Of course for
this to become a reality the various system need to be able to understand each
other’s mathematics.

There are two reasons why exchanging mathematics between systems is dif-
ficult: a theoretical and a practical reason. The theoretical reason is that the
notions of the various systems are generally not compatible. For instance Randy
Pollack writes [14]:

An advantage [. . . ] is that proofs in the same logic can be shared by
different proof checkers for that logic if a standard syntax can be found (or
mechanical translations believed), because the official proofs don’t depend
on the tactics that are particular to individual proof tools. In current
practice this idea is a can of worms, and the phrase ‘in the same logic’
causes experts in the field to roll on the floor with laughter.

The practical reason why exchanging mathematics between systems is difficult
is that translation makes things bigger and slower. The translated mathematics



2 Freek Wiedijk

is an order of magnitude worse than the mathematics done within the system
itself (like for instance 100M instead of 1M). Also mathematics imported from
a foreign system will be less readable and often will not follow the conventions
of the system. So people will not be inclined to use translation.

This paper looks at a specific case of the translation problem. We investigate
a method to move mathematics from the HOL system to Coq.

The incentive to look at this was that in Nijmegen we were interested in
formalizing a proof of the fundamental theorem of calculus in Coq. The fun-
damental theorem of calculus is the theorem that states that integration and
differentiation are inverse to each other. But then it turned out that this theo-
rem had already been proved by John Harrison in HOL, called theorem FTC1.
So we wanted to know whether it would be possible to import this result from
HOL in Coq.

1.2 Approach

This paper will model the HOL logic in Coq. So for every HOL notion we will
have a Coq definition. This means that we build a model of HOL inside the
Coq universe. Therefore when we translate a HOL statement it will become a
statement about this model. However we have chosen a natural representation
for the various HOL constructions. This makes it possible to relate the HOL
objects to their Coq counterparts. For instance the HOL type of natural numbers
is called num. To this corresponds a Coq type (hol elts hol ’num) in the Coq
model of HOL which is different from the Coq type of the natural numbers nat.
However (hol elts hol ’num) turns out to be isomorphic to nat, so statements
about the first type do apply to the second type.

Coq is a constructive system while HOL is classical. In order to be able to
do the HOL constructions we will need to add two axioms to the Coq logic: a
version of the axiom of choice and an extensionality axiom.

The formalization of the HOL logic in Coq will allow us to translate HOL
proofs to Coq. This will not be done on the level of the tactics but on the level
of the basic inferences. So the HOL tactics will not become available to Coq,
nor will the Coq translation resemble the HOL original.

The translation scheme that we present in this paper can be automatized but
we have not implemented this. Instead we have only translated a sample proof
manually. This showed that the translation of a realistic HOL theorem would
become big, after which we decided not to proceed with an implementation.

1.3 Related work

When this paper was almost finished my attention was drawn to the work of
Ewen Denney for translating HOL98 proofs to Coq [4] and to the work of Pavel
Naumov, Mark-Oliver Stehr and José Mesequer for translating HOL98 proofs
to Nuprl [10]. The work in this paper is analogous to this but for HOL Light
instead of HOL98.



Encoding the HOL Light logic in Coq 3

1.4 Contribution

This paper presents three results:

– It shows how to model the HOL Light logic in the Coq system.
– It presents a way to translate HOL Light mathematics to Coq.
– It shows a way to move mathematics between systems without the translated

mathematics becoming ‘foreign’ to the importing system.

This paper is the explanation of a Coq file holl2coq.v that contains the for-
malization of HOL Light in Coq. It is available on the web as:

http://www.cs.kun.nl/~freek/notes/holl2coq.v

1.5 Outline

This paper has the following structure. First we present the HOL and Coq
systems. Then we show how to model the HOL logic with Coq. Applying this we
translate a small HOL proof to Coq. Finally we show that the translated HOL
natural numbers are isomorphic to the Coq natural numbers.

2 HOL

The HOL system that we use in this paper is HOL Light by John Harrison [7].
This is one of the cleanest implementations of HOL [6]. We will now outline the
logic of this system.

2.1 The HOL logic

The HOL system has three kinds of notions called types, terms and theorems.
The terms of HOL are the terms of simply typed lambda calculus. A HOL

term either is a variable, a constant, a function application

(t u)

or a lambda abstraction

λx.t

For instance a HOL term might look like (f λa.(e λx.((i x) a))) where f , e and i

are constants and a and x are variables. The difference between HOL terms and
those of simply typed lambda calculus is that HOL terms can be polymorphic
(in the style of ML). For instance the constant = has type α → (α → bool)
where α is a type variable. This means that = corresponds to a collection of
constants =A, one for every type A.

The types of HOL are the types of simply typed lambda calculus. There are
two primitive types:



4 Freek Wiedijk

bool

ind

The first is the type of the two truth values T and F. The second is the type of
individuals (the only thing that is given about this type is that it is infinite).
One can define new types by taking an existing type A and a predicate P on
it. The new type corresponds to the elements x of A that satisfy Px, so it will
behave like:

{x : A | Px}

Apart from these scalar types (the two basic types and the defined types) the
HOL logic has function types:

A→ B

for all types A and B.

The two basic constants of HOL are the equality predicate and the choice
operator:

= : α→ (α→ bool)
@ : (α→ bool)→ α

The choice operator selects an object satisfying a predicate. So @x : A.Px is
some x of type A that satisfies Px (in the case that one or more such x exist;
if none exist it is some arbitrary x of type A). For every defined type there are
two constants that map the defined type and the type it’s carved out of to each
other. Every other constant in the system (not one of the two basic constants
nor one of a pair of mappings associated to a type definition) is defined as an
abbreviation of a HOL term.

The theorems of HOL are certain sequents of the shape:

t1, t2, . . . , tn ` t

where t1, . . . , tn and t are terms of type bool. A theorem is either one of three
axioms, a theorem corresponding to a defined constant (stating its definition),
one of two theorems corresponding to a defined type (stating that the mappings
are inverse to each other) or it is derived from other theorems by one of ten
inference rules. The three axioms are called:

ETA_AX

SELECT_AX

INFINITY_AX

These respectively are an extensionality axiom in the form of the η conver-
sion rule, the axiom of choice in terms of the @ operator and an infinity ax-
iom for the ind type. The ten inference rules are called ABS, ASSUME, BETA,
DEDUCT_ANTISYM_RULE, EQ_MP, INST, INST_TYPE, MK_COMB, REFL and TRANS. For
the details of the axioms and the inference rules we refer to the HOL Light doc-
umentation [7].



Encoding the HOL Light logic in Coq 5

2.2 The theorems of HOL Light

The HOL Light system has been implemented in the functional language CAML
Light which is a dialect of ML. When the HOL Light system starts it processes
its basic library. This takes about ten minutes.1 During this time HOL Light
generates about 1.5 million objects of the ML data type thm. This data type
corresponds to the theorems of the HOL Light logic as outlined in the previous
subsection. Many of these thms get garbage collected after a while. So the mem-
ory used by the HOL Light system does not need to have room for all 1.5 million
thms.

In order to get to an advanced theorem more thms have to be generated.
When processing the files analysis.ml and transc.ml the system generates
another million thms. The fundamental theorem of calculus is one of the last
theorems in the transc.ml. The thm that is the theorem FTC1 is the 2535069th
thm that is generated by HOL Light.

3 Coq

The Coq system [2] from France is similar to HOL. Both are implemented in
ML and are tactic based proof assistants in LCF-style. We will not discuss the
Coq logic in detail. We will only focus on the difference in the way that HOL
and Coq treat proofs.

3.1 Coq proofs

HOL and Coq both generate proof objects for proved statements. Proof objects
are compound objects built from a small number of primitives. In the case of
HOL those primitives are the ten inference rules. In the case of Coq those are
eighteen term building primitives called Rel, Var, Meta, Evar, Sort/Prop/Pos,
Sort/Prop/Null, Sort/Type, Cast, Prod, Lambda, LetIn, App, Const, Ind, Con-
struct, Case, Fix and CoFix.

There are two differences in the way HOL and Coq treat proofs:

– HOL’s proofs are checkable in linear time. This means that the time needed
to check the proof is linear in the size of the proof object. Every primitive
in the proof object only takes a small amount of time to process.
In contrast with this Coq proof objects can be much smaller than the time
needed to check them. That is because the system has to verify convertibility
of terms (to be specific: βδι-convertibility) without there being anything in
the proof object corresponding to that. In other words, in the Coq logic
‘calculation needs no proof’.2

1 On a system with a performance of about 10 SPECint95. The fastest current com-
puters are about 50 SPECint95.

2 This is what Henk Barendregt calls the ‘Poincaré principle’ [1] because Henri
Poincaré wrote in [13] about showing the correctness of the calculation 2 + 2 = 4:



6 Freek Wiedijk

This means that there is no recursive function that gives a bound on the
‘checking time’ of a Coq proof object as function of its size. Some people
think that this is an undesirable property for a notion of ‘proof’. Other
people think that it is desirable because it keeps the size of the proof object
down.

– In HOL the parts of a proof object are processed ‘on the fly’ and are not
stored in memory, while in Coq proof objects are stored. In HOL a theorem
is just a statement of which it is known that it has been proved. In Coq a
theorem is a statement together with a proof term, a term that represents
the proof object. This is essential to the Coq logic. Checking Coq proofs
without keeping those proof terms is not possible.

3.2 The features of Coq’s logic

HOL is classical and Coq is constructive, so one might expect that HOL’s logic
is more complex than Coq’s. In fact it is the other way around. If one ignores
the classical parts then HOL’s logic is a subset of Coq’s. Both logics are typed
lambda calculi but Coq’s logic has many features that HOL’s has not. The Coq
logic contains:

– full polymorphism (not just ML-style polymorphism)
– dependent types
– the distinction between computational and non-computational propositions
– an infinite hierarchy of type universes
– inductive and co-inductive types built into the logic

Since Coq’s logic is more complicated than HOL’s it’s not surprising that in this
paper we embed HOL in Coq. The other way around would be much harder.

3.3 Using Coq as a proof checker

In this paper we make some claims about Coq’s logic that have only be estab-
lished by experimenting with the Coq system. So if there is a bug in Coq then
there might be incorrect claims here.

4 Encoding the HOL logic in Coq

We will now explain how we encoded the HOL logic in Coq. We will first present
the axioms that we added to Coq to get classical reasoning. Then we will show
how we encoded HOL’s types, terms and theorems in Coq.

‘Ce n’est pas une démonstration proprement dite, [. . . ] c’est une vérification’.
[. . . ] La vérification diffère précisément de la véritable démonstration, parce
qu’elle est purement analytique et parce qu’elle est stérile.



Encoding the HOL Light logic in Coq 7

4.1 The axioms

HOL is a classical system and Coq is not. So we need to add classical axioms
to Coq to be able to translate HOL proofs. We expected to have to add three
axioms to Coq but it turned out that the first followed from the second. So we
only have to add two axioms. However we will show all three statements here:

Classical logic. The difference between constructive and classical predicate
logic is the double negation law. This becomes in Coq:

Lemma double_negation :

(A:Prop)~(A->False)->A.

We wrote ~(A->False) instead of ~~A to make this an analogue of the next
axiom.

The axiom of choice. The HOL logic has a choice operator @. To model this
we want to have an operator in Coq that selects an element from any non-empty
Set. This operator is given by:

Axiom choice :

(A:Set)~(A->False)->A.

The type A->False is inhabited if and only if A is empty so one can read

A->False

as:

the set A is empty

So this axiom is an operator that takes a proof that a set is not empty and
returns an element of that set. Which is a choice operator.

This axiom is not what constructivists call the axiom of choice. For construc-
tivists the axiom of choice is an operator associating a function to a relation.
Constructivists probably see the condition of our axiom as the double negation
of the real way to say that the set is non-empty which is by giving an element.

However the resemblance to a choice operator is striking which is why we
didn’t call this the double negation law for Set but the axiom of choice.

Extensionality. The HOL logic is extensional. If two functions have equal
values everywhere then they are equal. In Coq this becomes:

Axiom extensionality :

(A,B:Set; f,g:A->B)((x:A)(f x)=(g x))->f=g.

The equality = in this axiom is Coq’s standard Leibniz equality.



8 Freek Wiedijk

4.2 Encoding the types

A HOL type almost corresponds to a Coq Set. However a HOL type always has
to be non-empty while a Coq Set can be empty. Therefore we can’t represent a
HOL type by a Coq Set. Instead we define:

Record hol_type : Type :=

{ hol_elts :> Set;

hol_inhab : hol_elts

}.

and let a HOL type be represented by an object of type hol_type. The function
hol_elts is defined to be a coercion so it can be omitted and we can write x:A
instead of x:(hol_elts A).

There are three kinds of HOL type that we need to define: basic types,
function types and defined types.

Basic types. The two basic HOL types bool and ind correspond naturally to
the Coq Sets bool and nat:

Definition hol_’bool : hol_type :=

(Build_hol_type bool false).

Definition hol_’ind : hol_type :=

(Build_hol_type nat O).

The HOL type bool is for HOL what Prop is for Coq. Hence we need to connect
these to each other. We define:

Definition hol_thm : hol_’bool->Prop :=

[p:hol_’bool](if p then True else False).

So if A is a translation in hol_’bool of some HOL formula then:

(hol_thm A)

is the Coq way of saying that this formula holds.

Function types. The HOL function types are just the Coq function types:

Definition hol_’fun : hol_type->hol_type->hol_type :=

[A,B:hol_type](Build_hol_type A->B [x:A](hol_inhab B)).

Note that in this definition A->B really means (hol elts A)->(hol elts B).
So we have that:

(hol_elts (hol_’fun A B)) = (hol_elts A)->(hol_elts B)

Although we use an abstract representation hol_type for the HOL types, if we
apply hol_elts we get the Sets that naturally corresponds to them.



Encoding the HOL Light logic in Coq 9

Type definitions. Finally there are the defined HOL types, which are carved
out of an already existing type by a predicate on that type. Modeling these in
Coq turned out to be more difficult than expected.

Naively one would expect that we could represent the defined types by a Σ
type. If A is some HOL type and P:A->Prop is some HOL predicate on it then:

Σx :A.Px

which in Coq syntax is:
(sig A P)

seems to represent the set of elements in A that satisfy P. However this approach
doesn’t work because the proposition type (P x) can have many different inhab-
itants. This means that for each x:A there will be many elements in (sig A P).
Which is wrong.

The way to solve this is to use the Set variant of the Σ type construction
(which in Coq is called sigS). If a proposition is true (we can decide that because
we have the classical axioms) we associate a Set with one element with it. That
way we can define a ‘clone’ of sig called sig’ that behaves classically:

Definition irrelevant : Prop->Set :=

[A:Prop]

Cases (excluded_middle A) of

(left _) => unit

| (right _) => Empty_set

end.

Definition sig’ : (A:Set)(A->Prop)->Set :=

[A:Set; P:A->Prop](sigS A [x:A](irrelevant (P x))).

Using this we can now give the Coq version of the HOL type definitions:

Definition hol_typedef :=

[A:hol_type; P:(hol_’fun A hol_’bool);

i:A; H:(hol_thm (P i))]

(Build_hol_type (sig’ A (Hol_thm’ P)) (exist’ ?? i H)).

Here Hol_thm’ maps HOL predicates of type (hol ’fun A hol ’bool) to Coq
predicates of type A->Prop. It is defined such that (Hol thm’ P x) is the same
as (hol thm (P x)). The element i:A is needed to show that the defined type
is non-empty. It is needed in the HOL version of a HOL type definition as well.

4.3 Encoding the terms

HOL terms straightforwardly translate to Coq terms. For an example, the HOL
term corresponding to:

(f λa.(e λx.((i x) a)))

which in HOL syntax is:
f \a. e \x. i x a



10 Freek Wiedijk

becomes:

(hol’f (Hol_Abs [a:A](hol’e (Hol_Abs [x:A](hol’i x a)))))

Here A is the hol_type of the variables a and x. We prefix the HOL names with
‘hol’’ to indicate that they are translations of HOL constants.

There are two elements in this translation that needs to be explained: how
abstraction is handled and how constants are modeled.

Abstraction. As will be clear from the example, function application in HOL
translates to function application in Coq. However for abstraction we have a
typing problem. The HOL functions have to have type (hol_’fun A B) but
Coq abstraction has type A->B. To solve this we have the Hol_Abs function:

Definition hol_Abs :

(A,B:hol_type)(A->B)->(hol_’fun A B) :=

[A,B:hol_type; f:A->B]f.

Syntactic Definition Hol_Abs := (hol_Abs ??).

This Hol_Abs doesn’t do anything apart from changing the type from:

A->B

to the equivalent:
(hol_elts (hol_’fun A B))

Although these are βδι-convertible, Coq isn’t smart enough to figure this type
conversion out by itself. If we remove the Hol_Abs functions we get typing errors.

Equality. The first basic HOL constant is equality. We model it by making it
correspond to the usual equality in Coq which is the Leibniz equality =.

However the Coq equality is in Prop while HOL predicates need to be in
hol_’bool. Therefore we need to map Prop to hol_’bool (an inverse to the
hol_thm function):

Definition hol_value : Prop->hol_’bool :=

[A:Prop]

Cases (excluded_middle A) of

(left _) => true

| (right _) => false

end.

Using this the definition of the HOL equality hol’’eq becomes straightforward:

Definition hol’’eq :

(A:hol_type)(hol_’fun A (hol_’fun A hol_’bool)) :=

[A:hol_type](Hol_Abs [x:A](Hol_Abs [y:A]

(hol_value x=y))).

Syntactic Definition Hol’’eq := (hol’’eq ?).



Encoding the HOL Light logic in Coq 11

The HOL type of the HOL constant (=) is the polymorphic:

A->(A->bool)

As can be seen from the definition this corresponds in Coq to:

(A:hol_type)(hol_’fun A (hol_’fun A hol_’bool))

The choice operator. The other basic HOL constant is the choice operator.
Its definition is straightforward too:

Definition hol’’select :

(A:hol_type)(hol_’fun (hol_’fun A hol_’bool) A) :=

[A:hol_type](Hol_Abs [P:(hol_’fun A hol_’bool)]

Cases (inhabited {x:A | (hol_thm (P x))}) of

(inl x) => (proj1_sig ?? x)

| (inr _) => (hol_inhab A)

end).

Syntactic Definition Hol’’select := (hol’’select ?).

The inhabited function is defined using the choice axiom and decides whether
a Set is inhabited or not. It is the Set equivalent of the law of the excluded
middle.

Mapping defined types. Every HOL type definition produces two constants
that map the defined type (the abstract type) to the type it is carved out of (the
representing type) and back. The Coq equivalents of these constants are given
by functions:

hol_typedef_abs :

(A:hol_type; P:(hol_’fun A hol_’bool);

i:A; H:(hol_thm (P i)))

A->(hol_typedef A P i H)

and

hol_typedef_rep :

(A:hol_type; P:(hol_’fun A hol_’bool);

i:A; H:(hol_thm (P i)))

(hol_typedef A P i H)->A

Their definition is straightforward. The only subtlety is that hol_typedef_abs
returns the constant i in the case that the element doesn’t satisfy P.



12 Freek Wiedijk

Defined constants. All other HOL constants are just abbreviations of HOL
terms. These straightforwardly translate to Coq Definitions. The only subtlety
is that type variables need to be given explicitly as arguments.

As an example consider the HOL universal quantifier (!). It is defined by:

(!) = \P:A->bool. P = \x. T

This becomes in Coq:

Definition hol’’forall :

(A:hol_type)

(hol_’fun (hol_’fun A hol_’bool) hol_’bool) :=

[A:hol_type](Hol_Abs [P:(hol_’fun A hol_’bool)]

(Hol’’eq P (Hol_Abs [x:A]hol’T))).

Syntactic Definition Hol’’forall := (hol’’forall ?).

In this kind of translated definitions we use the Syntactic Definitions to estab-
lish the type variables. So we write (Hol’’eq . . . ) instead of (hol’’eq A . . . ).
This is similar to doing ML style type inference. Sometimes it does not work. In
that case the type variable arguments need to be given explicitly.

4.4 Encoding the theorems

To conclude our description of the Coq implementation of the HOL logic we
show how HOL theorems are modeled in Coq. A HOL theorem:

t1, t2, . . . , tn ` t

becomes a Coq Prop:

Q (hol_thm t1)->(hol_thm t2)-> . . . (hol_thm tn)->(hol_thm t)

where Q quantifies over the type variables and term variables in the theorem.
For instance the HOL theorem:

x = y |- y = x

(where x and y have type A) becomes the Coq Prop:

(A:hol_type; x,y:A)

(hol_thm (Hol’’eq x y))->(hol_thm (Hol’’eq y x))

Inference rules. We now show how the ten HOL basic inference rules are
implemented. Those rules operate on HOL theorems with a list of assumptions
before the `. But the Coq representation of theorems is implicit in the sense
that there is not a Coq data type representing the HOL theorems. Therefore the
assumptions are not present in the Coq representations of the HOL inference
rules and have to be manipulated outside those rules.



Encoding the HOL Light logic in Coq 13

For instance the DEDUCT_ANTISYM_RULE rule is:

Γ ` p ∆ ` q

(Γ − {q}) ∪ (∆− {p}) ` p = q
DEDUCT ANTISYM RULE

The Coq implementation ignores the (Γ − {q}) ∪ (∆− {p}) assumptions. It is:

hol_DEDUCT_ANTISYM_RULE : (p,q:hol_’bool)

((hol_thm q)->(hol_thm p))->

((hol_thm p)->(hol_thm q))->

(hol_thm (Hol’’eq p q))

This says that logical equivalence implies equality of the truth values.
The ASSUME rule which deals with assumptions and the INST and INST_TYPE

rules which are about substitution don’t have a Coq counterpart. The other rules
become:

hol_REFL : (A:hol_type; x:A)(hol_thm (Hol’’eq x x))

hol_TRANS : (A:hol_type; x,y,z:A)

(hol_thm (Hol’’eq x y))->

(hol_thm (Hol’’eq y z))->

(hol_thm (Hol’’eq x z))

hol_MK_COMB : (A,B:hol_type; f,g:(hol_’fun A B); x,y:A)

(hol_thm (Hol’’eq f g))->(hol_thm (Hol’’eq x y))->

(hol_thm (Hol’’eq (f x) (g y)))

hol_ABS : (A,B:hol_type; f,g:A->B)

((x:A)(hol_thm (Hol’’eq (f x) (g x))))->

(hol_thm (Hol’’eq (Hol_Abs f) (Hol_Abs g)))

hol_BETA : (A,B:hol_type; f:A->B; x:A)

(hol_thm (Hol’’eq (Hol_Abs f x) (f x)))

hol_EQ_MP : (p,q:hol_’bool)

(hol_thm (Hol’’eq p q))->(hol_thm p)->(hol_thm q)

(The hol_BETA rule is almost the same as the hol_REFL rule because Coq does
the β-reduction.)

Note that all these rules are about HOL equality.

The axioms and the theorems for type and constant definitions. The
theorems that are not derived using one of the inference rules all translate in a
straightforward way to Coq and can be proved easily. The Coq functions are for
the axioms:

hol_ETA_AX : (A,B:hol_type)(hol_thm

(Hol’’forall (Hol_Abs [t:(hol_’fun A B)]

(Hol’’eq (Hol_Abs [x:A](t x)) t))))



14 Freek Wiedijk

hol_SELECT_AX : (A:hol_type)(hol_thm

(Hol’’forall (Hol_Abs [P:(hol_’fun A hol_’bool)]

(Hol’’forall (Hol_Abs [x:A]

(hol’’imp (P x) (P (Hol’’select P))))))))

hol_INFINITY_AX : (hol_thm

(Hol’’exists (Hol_Abs [f:(hol_’fun hol_’ind hol_’ind)]

(hol’’and (Hol’ONE_ONE f) (hol’’not (Hol’ONTO f))))))

and for the theorems about the mappings from and to defined types:

hol_typedef_absrep :

(A:hol_type; P:(hol_’fun A hol_’bool);

i:A; H:(hol_thm (P i)); a:(hol_typedef A P i H))

(hol_thm (Hol’’eq (Hol_typedef_abs

(Hol_typedef_rep a)) a))

hol_typedef_repabs :

(A:hol_type; P:(hol_’fun A hol_’bool);

i:A; H:(hol_thm (P i)); r:A)

(hol_thm (Hol’’eq

(P r)

(Hol’’eq (Hol_typedef_rep

(hol_typedef_abs A P i H r)) r)))

The theorem for the constant definitions is hol_REFL applying the δ-reduction
of Coq.

5 Translating a HOL proof to Coq

We manually translated a small HOL proof to Coq to see whether the formal-
ization of the HOL logic in Coq was adequate. For this we looked in the basic
HOL Light library for a proof that was shorter than 40 basic inference steps and
that contained all inference step types. We could not find such a proof but we
found a proof of 32 steps that contained all step types but ASSUME.

This is that proof:

let EXISTS_REFL = PROVE

(‘!a:A. ?x. x = a‘,

GEN_TAC THEN EXISTS_TAC ‘a:A‘ THEN REFL_TAC);;

It is the HOL equivalent of the Coq proof:

Lemma EXISTS_REFL : (A:Set; a:A)(Ex [x:A]x=a).

Proof.

Intros. Exists a. Reflexivity.

Qed.



Encoding the HOL Light logic in Coq 15

So it is a proof of:
∀a.∃x. x = a

The 4 thms that are referred to from this proof are:

17 |- t = t = T

171 p ==> q, p |- q

248 |- (P = (\x. T)) ==> (!) P

313 |- P x ==> (?) P

In this we numbered the thms that HOL Light generates. The HOL Light kernel
doesn’t have names for thms. Only outside the HOL Light kernel ML names are
given to thms.

The proof of EXISTS_REFL consists of thms numbered 18749 until 18780:

18749 |- a = a REFL

18750 |- (\x. x = a) x = x = a BETA

18751 |- (\x. x = a) a = a = a INST 18750
18752 |- P x ==> (?) P INST_TYPE 313
18753 |- (\x. x = a) a ==> (?x. x = a) INST 18752
18754 |- (\x. x = a) a = (\x. x = a) a REFL

18755 |- (=) = (=) REFL

18756 |- (=) ((\x. x = a) a) = (=) (a = a) MK_COMB 18755 18751
18757 |- ((\x. x = a) a = (\x. x = a) a) = MK_COMB 18756 18754

(a = a) = (\x. x = a) a

18758 |- (a = a) = (\x. x = a) a EQ_MP 18757 18754
18759 |- (\x. x = a) a EQ_MP 18758 18749
18760 (\x. x = a) a ==> (?x. x = a), INST 171

(\x. x = a) a

|- ?x. x = a

18761 (\x. x = a) a DEDUCT . . . 18753 18760
|- (\x. x = a) a ==> (?x. x = a) =

(?x. x = a)

18762 (\x. x = a) a EQ_MP 18761 18753
|- ?x. x = a

18763 |- (\x. x = a) a = (?x. x = a) DEDUCT . . . 18759 18762
18764 |- ?x. x = a EQ_MP 18763 18759
18765 |- (?x. x = a) = (?x. x = a) = T INST 17
18766 |- (?x. x = a) = T EQ_MP 18765 18764
18767 |- (\a. ?x. x = a) = (\a. T) ABS 18766
18768 |- (P = (\x. T)) ==> (!) P INST_TYPE 248
18769 |- ((\a. ?x. x = a) = (\x. T)) ==> INST 18768

(!a. ?x. x = a)

18770 ((\a. ?x. x = a) = (\x. T)) ==> INST 171
(!a. ?x. x = a),

(\a. ?x. x = a) = (\x. T)

|- !a. ?x. x = a

18771 (\a. ?x. x = a) = (\x. T) DEDUCT . . . 18769 18770
|- ((\a. ?x. x = a) = (\x. T)) ==>

(!a. ?x. x = a) = (!a. ?x. x = a)



16 Freek Wiedijk

18772 (\a. ?x. x = a) = (\x. T) EQ_MP 18771 18769
|- !a. ?x. x = a

18773 |- ((\a. ?x. x = a) = (\a. T)) = DEDUCT . . . 18767 18772
(!a. ?x. x = a)

18774 |- !a. ?x. x = a EQ_MP 18773 18767
18775 |- (\a. ?x. x = a) = (\a. ?x. x = a) REFL

18776 |- (\a. ?x. x = a) = (\a. ?x. x = a) REFL

18777 |- (\a. ?x. x = a) = (\a. ?x. x = a) TRANS 18776 18775
18778 |- (!) = (!) REFL

18779 |- (!a. ?x. x = a) = (!a. ?x. x = a) MK_COMB 18778 18777
18780 |- !a. ?x. x = a EQ_MP 18779 18774

This derivation is not optimal. For instance it contains the final thm already as
thm number 18774. Also thms 18775 until 18777 are all the same.

The Coq translation of these steps is simple. It is for each step an application
of the appropriate function:

Definition hol__18749 := [A:hol_type; a:A]

(Hol_REFL a).

Definition hol__18750 := [A:hol_type; x,a:A]

(Hol_BETA [x:A](Hol’’eq x a) x).

Definition hol__18751 := [A:hol_type; a:A]

(hol__18750 ? a a).

Definition hol__18752 :=

[A:hol_type; x:A; P:(hol_’fun A hol_’bool)]

(hol__313 ? x P).

Definition hol__18753 := [A:hol_type; a:A]

(hol__18752 ? a (Hol_Abs [x:A](Hol’’eq x a))).

Definition hol__18754 := [A:hol_type; a:A]

(Hol_REFL (Hol_Abs [x:A](Hol’’eq x a) a)).

Definition hol__18755 := [A:hol_type]

(Hol_REFL (hol’’eq A)).

Definition hol__18756 := [A:hol_type; a:A]

(Hol_MK_COMB (hol__18755 ?) (hol__18751 ? a)).

Definition hol__18757 := [A:hol_type; a:A]

(Hol_MK_COMB (hol__18756 ? a) (hol__18754 ? a)).

Definition hol__18758 := [A:hol_type; a:A]

(Hol_EQ_MP (hol__18757 ? a) (hol__18754 ? a)).

Definition hol__18759 := [A:hol_type; a:A]

(Hol_EQ_MP (hol__18758 ? a) (hol__18749 ? a)).

Definition hol__18760 := [A:hol_type; a:A]

(hol__171 (Hol_Abs [x:A](Hol’’eq x a) a)

(Hol’’exists (Hol_Abs [x:A](Hol’’eq x a)))).

Definition hol__18761 := [A:hol_type; a:A; H0:?]



Encoding the HOL Light logic in Coq 17

(Hol_DEDUCT_ANTISYM_RULE [H:?](hol__18753 ? a)

[H:?](hol__18760 ? a H0 H)).

Definition hol__18762 := [A:hol_type; a:A; H0:?]

(Hol_EQ_MP (hol__18761 ? a H0) (hol__18753 ? a)).

Definition hol__18763 := [A:hol_type; a:A]

(Hol_DEDUCT_ANTISYM_RULE [H:?](hol__18759 ? a)

[H:?](hol__18762 ? a H)).

Definition hol__18764 := [A:hol_type; a:A]

(Hol_EQ_MP (hol__18763 ? a) (hol__18759 ? a)).

Definition hol__18765 := [A:hol_type; a:A]

(hol__17 (Hol’’exists (Hol_Abs [x:A](Hol’’eq x a)))).

Definition hol__18766 := [A:hol_type; a:A]

(Hol_EQ_MP (hol__18765 ? a) (hol__18764 ? a)).

Definition hol__18767 := [A:hol_type]

(Hol_ABS [x:A](hol__18766 ? x)).

Definition hol__18768 := [A:hol_type; P:(hol_’fun A hol_’bool)]

(hol__248 ? P).

Definition hol__18769 := [A:hol_type]

(hol__18768 ? (Hol_Abs [a:A](Hol’’exists (Hol_Abs [x:A]

(Hol’’eq x a))))).

Definition hol__18770 := [A:hol_type]

(hol__171 (Hol’’eq (Hol_Abs [a:A](Hol’’exists (Hol_Abs [x:A]

(Hol’’eq x a)))) (Hol_Abs [x:A]hol’T))

(Hol’’forall (Hol_Abs [a:A](Hol’’exists (Hol_Abs [x:A]

(Hol’’eq x a)))))).

Definition hol__18771 := [A:hol_type; H0:?]

(Hol_DEDUCT_ANTISYM_RULE [H:?](hol__18769 A)

[H:?](hol__18770 ? H0 H)).

Definition hol__18772 := [A:hol_type; H0:?]

(Hol_EQ_MP (hol__18771 ? H0) (hol__18769 A)).

Definition hol__18773 := [A:hol_type]

(Hol_DEDUCT_ANTISYM_RULE [H:?](hol__18767 A)

[H:?](hol__18772 ? H)).

Definition hol__18774 := [A:hol_type]

(Hol_EQ_MP (hol__18773 A) (hol__18767 ?)).

Definition hol__18775 := [A:hol_type]

(Hol_REFL (Hol_Abs [a:A](Hol’’exists (Hol_Abs [x:A]

(Hol’’eq x a))))).

Definition hol__18776 := [A:hol_type]

(Hol_REFL (Hol_Abs [a:A](Hol’’exists (Hol_Abs [x:A]

(Hol’’eq x a))))).

Definition hol__18777 := [A:hol_type]



18 Freek Wiedijk

(Hol_TRANS (hol__18776 A) (hol__18775 ?)).

Definition hol__18778 := [A:hol_type]

(Hol_REFL (hol’’forall A)).

Definition hol__18779 := [A:hol_type]

(Hol_MK_COMB (hol__18778 A) (hol__18777 ?)).

Definition hol__18780 := [A:hol_type]

(Hol_EQ_MP (hol__18779 A) (hol__18774 ?)).

These Coq statements take approximately 100 bytes Coq source code per HOL
step. So to represent the 1.5 million steps from the basic HOL Light library in
this way would take a Coq file of about 150M.

If we check the type of hol__18780 it indeed is the Prop that corresponds
to EXISTS_REFL:

Coq < Check hol__18780.

hol__18780

: (A:hol_type)

(hol_thm

(hol’’forall A

(hol_Abs A hol_’bool

[a:(A)]

(hol’’exists A

(hol_Abs A hol_’bool [x:(A)](hol’’eq A x a))))))

6 Encoded HOL data types versus Coq data types

We can translate HOL theorems about the HOL type num to Coq. These trans-
lations will be about the Coq type (hol elts (hol ’num)). However the Coq
type for the natural numbers is the Coq type nat. We will now show that how
to define an isomorphism between (hol elts (hol ’num)) and nat.

It is straightforward to define a function num_of_nat:

Fixpoint num_of_nat [n:nat] : hol_’num :=

Cases n of

O => hol’_0

| (S m) => (hol’SUC (num_of_nat m))

end.

We show that this function is a surjection by proving:

nat_of_num_exists :

(n:hol_’num)(Ex [m:nat](num_of_nat m)=n)

with induction on the Coq version of num using the translation of the HOL
induction principle num_INDUCTION:

|- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)



Encoding the HOL Light logic in Coq 19

We use nat_num_exists to define an inverse

nat_of_num : hol_’num->nat

satisfying:

num_of_nat_of_num :

(n:hol_’num)(num_of_nat (nat_of_num n))=n

Then using the translations of HOL’s theorems NOT_SUC and SUC_INJ:

|- !n. ~(SUC n = 0)

|- !m n. (SUC m = SUC n) = (m = n)

it follows that this function is injective:

num_of_nat_injective :

(m,n:nat)(num_of_nat m)=(num_of_nat n)->m=n

From that we derive that nat_of_num is the inverse to num_of_nat.

These bijections commute with the corresponding versions of the various
functions on the natural numbers. For instance it commutes with the addition
functions hol’’add and plus. We prove:

plus_add : (m,n:nat)

(num_of_nat (plus m n))=

(hol’’add (num_of_nat m) (num_of_nat n))

add_plus : (m,n:hol_’num)

(nat_of_num (hol’’add m n))=

(plus (nat_of_num m) (nat_of_num n))

7 Conclusion

7.1 Discussion

This paper shows:

– It is straightforward to formalize the HOL Light semantics in Coq. This
can be used as the basis of a proof converter that has the property that the
converted HOL data types are isomorphic to their natural Coq counterparts.

– The conversion of the basic HOL Light library will take about 150M of Coq
source code. This means that the approach from this paper will not give an
efficient way to move mathematics from HOL to Coq.

The first is surprisingly nice but the second is discouraging.



20 Freek Wiedijk

7.2 Future work

There are several things that can be done to continue the work in this paper:

– The classical axioms from section 4.1:

Axiom choice : (A:Set)~(A->False)->A.

Axiom extensionality :

(A,B:Set; f,g:A->B)((x:A)(f x)=(g x))->f=g.

are not consistent with the Coq logic (the ‘Calculus of Inductive Construc-
tions’). It might be interesting to see whether the Coq people can be con-
vinced to make their logic consistent with these axioms by removing the
impredicativity of Set.

– We didn’t automate the translation from HOL to Coq as outlined in sec-
tion 5. It might be interesting to do this and investigate the performance
difference between checking the basic HOL Light library in HOL Light and
checking its translation in Coq.

– It might be interesting to restrict the translation to just translating the state-
ments and omitting the proofs. That would be analogous to the approach of
[8]. In such a way importing HOL Light mathematics in Coq might become
realistic.

– We related the natural numbers of the two systems. It might be interesting
to relate the counterparts of other data types.

– It might be interesting to work out a systematic way to prove the Coq
analogue of a HOL Light statement from its direct translation. For instance
the direct translation of HOL’s theorem ADD_SYM:

|- !m n. m + n = n + m

is:

(hol_thm (Hol’’forall (Hol_Abs [m:hol_’num]

(Hol’’forall (Hol_Abs [n:hol_’num]

(Hol’’eq (hol’’add m n) (hol’’add n m)))))))

However this is not meaningful to a Coq user. A Coq user wants to see:

(m,n:nat)(plus m n)=(plus n m)

This paper shows that it is possible to derive this from the previous state-
ment. But it does not give a systematic description of what the structure of
this kind of transformation is.

7.3 Acknowledgments

Thanks to Herman Geuvers and John Harrison for helpful discussions. Thanks
to John Harrison for drawing my attention to [4] and [10].



Encoding the HOL Light logic in Coq 21

References

1. Henk Barendregt. The impact of the lambda calculus. Bulletin of Symbolic Logic,
3(2), 1997.

2. Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy,
David Delahaye, Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Gi-
ménez, Hugo Herbelin, Gérard Huet, Henri Laulhère, César Muñoz, Chetan
Murthy, Catherine Parent-Virouroux, Patrick Loiseleur, Christine Paulin-Mohring,
Amokrane Säıbi, and Benjamin Werner. The Coq Proof Assistant Reference Man-
ual, 2000.
URL: <ftp://ftp.inria.fr/

INRIA/coq/V6.3.1/doc/Reference-Manual-all.ps.gz>.
3. Robert L. Constable, Stuart F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cre-

mer, R.W. Harper, Douglas J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl
Development System. Prentice-Hall, NJ, 1986.

4. Ewen Denney. A Prototype Proof Translator from HOl to Coq. In Mark Aagaard
and John Harrison, editors, Theorem Proving in Higher Order Logics, TPHOLs
2000, Portland, pages 108–125, Berlin, 2000. Springer-Verlag.

5. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cambridge Uni-
versity Press, Cambridge, 1993.

6. John Harrison. HOL Done Right.
URL: <http://www.cl.cam.ac.uk/users/jrh/papers/holright.ps.gz>, 1995.

7. John Harrison. The HOL Light manual (1.1), 2000.
URL: <http://www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz>.

8. D. Howe. Importing mathematics from HOL into Nuprl. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics,
volume 1125 of LNCS, pages 267–282, Berlin, 1996. Springer-Verlag.

9. Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Boston, 2000.

10. Pavel Naumov, Mark-Oliver Stehr, and José Mesequer. A Proof-Theoretic Ap-
proach to the HOL-Nuprl Connection with Applications to Proof Translation.
URL: <http://www.csl.sri.com/users/stehr/holnuprl-ext.ps.gz>, 2001.

11. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, Berlin, Heidelberg, New York, 1992. Springer-
Verlag.

12. Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS.
Springer-Verlag, New York, 1994.

13. Henri Poincaré. La Science et l’Hypothèse. Flammarion, Paris, 1902.
14. Robert Pollack. How to Believe a Machine-Checked Proof. In G. Sambin and

J. Smith, editors, Twenty-Five Years of Constructive Type Theory. Oxford Univer-
sity Press, Oxford, 1998.


