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Abstract

We present an alternative definition of the multiplicative inverse for the

real numbers as formalized in John Harrison’s HOL Light system.

1 Defining the real numbers

The two common ways to define the real numbers from the rational numbers are
by means of Cauchy sequences or by means of Dedekind cuts. Both methods
for defining the real numbers have many variations. (For instance, lazy streams
of digits are a way to code Cauchy sequences, and Conway’s way to represent
numbers [1] are a variation on the theme of Dedekind cuts.)

2 Nearly-multiplicative functions

In [2] John Harrison defined the non-negative real numbers R≥0 as equivalence
classes of certain sequences (an) called nearly-multiplicative functions. These
sequences are sequences of natural numbers,1 such that the sequence of rationals

(an

n

)

is a Cauchy sequence with a convergence rate proportional to 1/n. Specifically it
satisfies, for some a ∈ R≥0 and B ∈ R>0 (which both depend on the sequence):

∣

∣

∣

an

n
− a

∣

∣

∣
≤
B

n

or, equivalently:
|an − an| ≤ B

So (an) is a nearly-multiplicative function corresponding to the real number a
if an is, up to a bounded ‘error’, equal to an. If one draws the graph of such a
sequence, it stays within a straight ‘band’ of finite width.
There are two different ways to characterize these sequences without men-

tioning rational or real numbers, so just in terms of natural number arithmetic.
Those are the requirements of near-multiplicativity :

∃B ∈ N.∀m,n ∈ N. |nam −man| ≤ B (m+ n)
1So the reals are defined without first defining the rational numbers or even the integers.
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(which is the Cauchy-sequence property

∃B ∈ N.∀m,n ∈ N.
∣

∣

∣

am

m
−
an

n

∣
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∣
≤ B

( 1

m
+
1

n

)

if one divides both sides by mn), and of near-additivity :

∃B′ ∈ N.∀m,n ∈ N. |am+n − (am + an)| ≤ B′

These two requirements are the same, as is shown in [2].

3 Equivalence and embedding of the naturals

The equivalence of two nearly-multiplicative sequences is defined by:

(an) ∼ (bn) ⇔ ∃C. |an − bn| ≤ C

Two nearly-multiplicative sequences represent the same non-negative real num-
ber in R≥0 if and only if they are equivalent.
For each natural number k ∈ N there exists a nearly-multiplicative sequence

k∗ representing it in R≥0, which is defined by

(k∗)n = kn

In particular:
(0∗)n = 0

and:
(1∗)n = n

4 Arithmethical operations

The addition on the non-negative real numbers in terms of nearly-multiplicative
sequences is defined by:

(a+ b)n = an + bn

For multiplication there are two choices for a ‘natural’ definition:

• Either one defines it by:

(ab)n = anbn DIV n

(where DIV is division in the natural numbers.)

• Alternatively, one can define it by:

(ab)n = abn

This works, because abn
is close to a(bn) which is close to a(bn) which

is (ab)n. With this definition proving that multiplication is commutative
(which is done in [2]) becomes non-trivial.
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Analogously there are two ways to define multiplicative inverse for nearly-
multiplicative functions.

• Either one defines:
(a−1)n = n2 DIV an

• Alternatively, one can define:

(a−1)n = µm. am ≥ n

(The notation µm.P (m) means ‘the least m ∈ N for which P (m) holds.’)
So (a−1)n is the first position where the graph of am ‘crosses’ the line of
constant height n. This definition has the property that:

(1∗)
−1
= 1∗

(which is a reason to have in this definition ≥ instead of >.)

Both these definitions need to specify what happens when the sequence repre-
sents the real number 0.

• If the inverse is defined in the first way, the inverse of a sequence (an) ∼ 0
∗

won’t be a nearly-multiplicative sequence (it will grow at least quadrati-
cally.) In [2] the result of the division for that case is defined to be the
nearly-multiplicative sequence 0∗ representing 0 in R≥0.

• If the inverse is defined in the second way, we will get the expression
µm.⊥ (because for sufficiently large n, no am will be greater than n.) If
we define:

µm.⊥ = 0

to make the µ operator total, then this will lead to a total multiplicative
inverse, and we will automatically (so not by definition) get:

(0∗)
−1
= 0∗

5 The properties of the inverse

In [2] the inverse is defined according to the first approach (although multipli-
cation is defined according to the second!), and the second way to define the
multiplicative inverse is not even mentioned. We will now show how to prove the
basic properties of the inverse if it is defined according to the second approach.
This theory has been formalized using the HOL Light system.2

We first present the HOL Light definitions of the µ operator and of the
µ-inverse:

2This formalization is on the Web at <http://www.cs.kun.nl/~freek/notes/muinv.ml>
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parse_as_binder "mu";;

let mu = new_definition

‘(mu) P = (@n. P n /\ (!m. m < n ==> ~P m) \/

(n = 0) /\ (!m. ~P m))‘;;

let muinv = new_definition

‘muinv(x) = afn(\n. mu m. fn x m >= n)‘;;

When in the rest of this note we write −1 we refer to this muinv function. The
propositions that follow show that it is well defined and that it behaves like
a multiplicative inverse. The propositions are labelled with their name in the
HOL Light formalization.
In the following, a = (an) is a nearly-multiplicative function.

Proposition 1 (= MUINV TO 0) If a ∼ 0∗, then there exists some N such that

(a−1)n = 0 for all n ≥ N .

Proof Because a ∼ 0∗, there is a B with an ≤ B for all n ∈ N. Take N = B+1,
then for n ≥ N clearly am ≥ n can’t happen and so is equivalent to ⊥ and so
(a−1)n = µm. am ≥ n = µm.⊥ = 0. ut

Proposition 2 (= MUINV EQ 0) If a ∼ 0∗, then a−1 ∼ 0∗.

Proof Take N as in the previous proposition. (a−1)n is bounded on n < N
(because it only takes finitely many values there) and is zero for n ≥ N , so it is
bounded everywhere, and so a−1 ∼ 0∗. ut

This is about all there is to say about the case that a ∼ 0∗. So in the rest of
this note, suppose that a 6∼ 0∗. This means that an can get arbitrarily big, so
the µ in the definition of −1 will never be degenerated.

Proposition 3 (= NADD CLOSE) For some B we have that:

a0 ≤ B
an ≤ an−1 +B

So this says that the an can’t jump up too far.

Proof Directly from the property of near additivity. ut

Proposition 4 (= MUINV CLOSE’) For some B:

n ≤ a(a−1)n
≤ n+B

Proof Take B as in the previous proposition. Let m = (a−1)n, and suppose
that m > 0. Then because m is the smallest number with n ≥ am, we have:

am−1 < n ≤ am

From this and the inequalities of the previous proposition the required inequal-
ities follow.
The case m = 0 is similar. ut
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Proposition 5 (= MUINV LINV) The function a−1 is the multiplicative inverse

of a, i.e.:
a−1 · a ∼ a · a−1 ∼ 1∗

Proof Directly from the previous proposition (because multiplication is func-
tion composition and ∼ is bounded difference.) ut

Proposition 6 (= MUINV UBOUND ALL) The function (a−1)n is bounded by a

linear function, so there exists a B such that:

(a−1)n ≤ Bn

Proof It is enough to show that (a−1)n will be bounded for sufficiently large
n. This follows using proposition 3 and the fact that an is bounded from below,
which means that there is an A such that:

n ≤ Aan

(It can be shown that B = 2A is a sufficient estimate.) ut

Proposition 7 (= MUINV NADD) The function (a−1)n is a nearly-multiplicative

function.

Proof From proposition 4 follows that the difference between |n(a−1)m −
m(a−1)n| and |a(a−1)n

(a−1)m − a(a−1)m
(a−1)n| is bounded by a multiple of

|(a−1)m + (a
−1)n|. Furthermore because a is a nearly-multiplicative function,

|a(a−1)n
(a−1)m − a(a−1)m

(a−1)n| is also bounded by a multiple of |(a
−1)m +

(a−1)n|. Together this gives that |n(a
−1)m−m(a

−1)n| is bounded by a multiple
of |(a−1)m + (a

−1)n|. But then by the previous proposition it is bounded by a
multiple of |m+ n|. ut

6 Relevance

We presented an alternative way to define the multiplicative inverse for the
real numbers in John Harrison’s HOL Light system. Although this alternative
definition is elegant and corresponds more closely to the multiplication of the
system than the current definition of inverse, its theory is not substantially
simpler. Also because once the key properties of inverse have been proved no
use is made of its definition, it really doesn’t matter which definition one uses.
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