The formal proof sketch challenge

Freek Wiedijk

University of Nijmegen

Abstract. A formal proof sketch is a way to present a formal proof in
a style that is close to an informal proof, but which also is a skeleton of
the full formal proof (this makes it easy to relate the presentation to the
detailed formalization.) Recently to us every informal proof has started to
feel like a challenge, to write down the corresponding formal proof sketch.
We take on this challenge for the informal proof of Newman’s lemma
from Henk Barendregt’s book about A-calculus. The specific difficulty of
that proof is its main part, which just is a pair of diagrams without any
explanation.

1 Introduction

1.1 Problem

Often when encountering a nice piece of mathematics, we feel a strong desire to
formalize it. This feeling probably is similar to the desire of an artist to create
a beautiful painting when he sees a beautiful woman.

Recently we introduced the notion of a formal proof sketch [7]. For us the
urge to find the formal proof sketch corresponding to a specific informal proof
turns out to be even stronger than the desire to create a formalization in some
less direct way. In [7] we presented formal proof sketches for two small proofs
only (a proof of the irrationality of v/2 from Hardy & Wright [5] and a proof
of a small lemma from linear algebra), but now every informal proof that we
encounter seems to demand that it wants a formal proof sketch of its own. We
call this urge that makes us want to find out what formal proof sketches shaped
after informal proofs look like, the formal proof sketch challenge. The challenge
then, is to get as close as possible to the original.

Henk Barendregt told us that he thought that a good example for experi-
menting with formal proof sketches would be the proof of Newman’s lemma (a
simple lemma about confluence from the theory of abstract rewriting). In our
turn we thought that it would be interesting to investigate the specific proof of
Newman’s lemma that Henk gave in his classic textbook about A-calculus [1].
The result of this investigation is this note.

A further reason to be interested in this particular proof is that Henk told us
that he thought he remembered that at some point he was not able to explain it
to N.G. de Bruijn. If this indeed has happened, then apparently the proof from
[1] is not completely trivial. Maybe the formal proof sketch from this paper can
help making that specific version of the proof more understandable to people
who have a formalist bend.

2 Freek Wiedijk

1.2 Approach

We made a formal proof sketch of Henk’s version of Newman’s lemma following
the same approach that we used in [7]. That is, we made a formal proof sketch
using the exact syntax of the current version of the Mizar system, and we even
tried to be ‘compatible’ with the big Mizar library that accompanies the Mizar
system (the ‘Mizar mathematical library’ or MML).

1.3 Related Work

The proof of Newman’s lemma is very simple. This makes it one of the basic
examples for all of the major proof checking systems, like for instance ACL2,
Coq and Isabelle. In the Mizar mathematical library Newman’s lemma is proved
in article REWRITE1 by Grzegorz Bancerek.

Diagrammatic reasoning is an active field of research. An interesting system
that implements proofs both involving logical steps and diagrams, is the Hyper-
proof system [2] by Jon Barwise and John Etchemendy. In [3] they explain the
philosophy behind this system.

1.4 Contribution

We give a formal proof sketch for an informal proof that is not primarily textual.
We also present the full formalization that one gets by ‘completing’ the formal
proof sketch.

Despite the non-textual nature of the original, we show that the formal proof
sketch manages to closely follow the informal proof. This shows that Mizar formal
proof sketches are a versatile way to present formal mathematics in an informally
acceptable way.

When discussing the relation between the diagram and the corresponding
part of the formal proof sketch, we show that a diagram is a dynamic entity that
actually consists of a series of growing diagrams. We explain a mechanism that
a proof assistant can use to automatically generate diagrams from a proof.

We discuss the relation between the presentation of our formal proof sketch
and the treatment of rewriting that is in the Mizar mathematical library, both
conceptually and notationally. We compare Henk’s version of the proof to the
proof of Newman’s lemma that is in the Mizar mathematical library.

1.5 Outline

In Section 2 we present both the informal proof from [1] and the corresponding
formal proof sketch. In Section 3 we discuss the relation between the diagram
from the original and the steps in the formal proof sketch. In Section 4 we present
the full formalization of the proof, together with the statements of the lemmas
that it uses. In Section 5 we discuss the relation between the notation that is
used in the Mizar mathematical library and our notation. In Section 6 we present
the proof of Newman’s lemma from the Mizar mathematical library by way of
another — this time extracted — formal proof sketch.

The formal proof sketch challenge 3

2 A formal proof sketch of Newman’s lemma

Here is a copy of part of page 58 from [1]:

informal proof

3.1.25. PROPOSITION. For notions of reduction one has
SN A WCR = CR

PrOOF. By SN each term R-reduces to an R-nf. It suffices to show that
this R-nf is unique. Call M ambiguous if M R-reduces to two distinct
R-nf’s. For such M one has M — g M’ with M’ ambiguous (use WCR,
see figure 3.3). Hence by SN ambiguous terms do not exist.

SN L
/ S \ |
M]\i M M /\M

a

This is a proof of the statement known as Newman’s lemma [6]. It relates some
properties of abstract ‘notions of reduction’ (a binary relation looked at as the ab-
straction of a rewrite system). In this, the abbreviation ‘SN’ stands for ‘strongly
normalizing’ (which means that there is no infinite reduction sequence), ‘CR’
stands for the ‘Church-Rosser’ property (which means that reducts of a com-
mon original always can be reduced in a converging way, i.e., to a common
reduct), and ‘WCR’ stands for ‘weakly Church-Rosser’ (which means that this
Church-Rosser property only has to hold when the diverging reductions are only
one step long).

And here is the corresponding ‘formal proof sketch’ (a notion which we in-
troduced in [7]):

4 Freek Wiedijk

formal proof sketch

reserve R for nf_inhabited notion_of_reduction;
reserve M,M’ ,M’’ M’’’ for Term of R;
reserve M1,M2,M3 for Nf of R;

theorem 3_1_25:
R is SN & R is WCR implies R is CR
proof
assume that R is SN and R is WCR;
for M ex M1 st M reduces_to Mi;
(for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2)
implies R is CR;
defpred ambiguous[Term of R] means
ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;
now
now
let M such that ambiguous[M];
thus ex M’ st M ---> M’ & ambiguous[M’]

proof
consider M1,M2 such that M -->> M1 & M -->> M2 & M1 <> M2;
per cases;
suppose not ex M’ st M ---> M’ & M’ -->> M1 & M’ -->> M2;
consider M’ such that M ---> M’ & M’ -->> Mi1;

consider M’’ such that M —---> M’’ & M’’ -->> M2;
consider M’’’ such that M’ -->> M’’’ & M’’ -->> M’’7;
consider M3 such that M’’’ -->> M3;

take M’;

thus thesis;

suppose ex M’ st M ——-> M’ & M’ -->> M1 & M’ -->> M2;
consider M’ such that M -—-> M’ & M’ -->> M1 & M’ -->> M2;
take M’;
thus thesis;

end; 1 fig. 3.3

end;

thus not ex M st ambiguous([M];
end;

thus thesis;
end;

Note that we have used the wvariable convention here that the variables called
My, Ms, M3, ... are referring to normal forms. Mizar has the reserve statement
to introduce such variable conventions. Alternatively we could have put ‘being
Nf of R’ at each place where such a variable was introduced. That would have
made the formal proof sketch more explicit (and therefore maybe a bit easier to
follow), but also more cluttered.

The ‘notion of reduction’ that this formal proof sketch talks about has the
attribute nf _inhabited. Mizar only allows non-empty types and we wanted to

The formal proof sketch challenge 5

use a type Nf of R for the normal forms of R. Therefore we only prove the
theorem for notions of reduction that have one or more normal forms. (In a
sense that does not restrict the theorem, because all SN notions of reduction are
nf_inhabited.) One could get rid of the nf_inhabited by not using the Nf of
R type, but replacing all quantifiers like:

for M1 being Nf of R holds ...
by corresponding quantifiers like:
for M1 being Term of R st M1 is_nf holds ...

The part of the proof in the box corresponds to the diagram from the original.
One gets a second, smaller, formal proof sketch of the same original by replacing
the text in the box by a single semi-colon. To show that this shortened formal
proof sketch corresponds very closely to the original text, we repeat the two
versions here, interleaved with each other:

PROOF.

proof
assume that Al: R is SN and R is WCR;

By SN each term R-reduces to an R-nf.
for M ex M1 st M reduces_to M1 by Al;
It suffices to show that this R-nf is unique.

(for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds
M1 = M2) implies R is CR;

Call M ambiguous if M R-reduces to two distinct R-nf’s.

defpred ambiguous[Term of R] means
ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;

For such M one has M —pr M’ with M’ ambiguous.

now
now

let M such that ambiguous[M];

thus ex M’ st M ---> M’ & ambiguous[M’];
end;

Hence by SN ambiguous terms do not exist.

thus not ex M st ambiguous([M] by A1l;
end;

O

6 Freek Wiedijk

thus thesis;
end;

It should be noted that we did not create this formal proof sketch by first doing a
full formalization, and then cutting out the sketch afterward. Instead we wrote
the formal proof sketch directly, and only after-wards completed it to a full
formalization (see Section 4). It is one of the strengths of the Mizar language
that this is possible, and in fact even easy (the difficult part of doing a Mizar
formalization is finding the proper references to the Mizar mathematical library.)

3 Proofs and diagrams

The part of the formal proof sketch that corresponds to the diagram from the
original, in fact corresponds to a sequence of growing diagrams. This means that
the diagram in ‘fig. 3.3’ is not one diagram but a whole series. A paper book
can not show this series (at least not without using more paper than is worth
it), but an interactive proof in a computer can. To be able to see these ‘living
diagrams’ might be a good reason for wanting to formalize mathematics.

Between each subsequent pair of steps in the proof there is a ‘natural’ diagram
that shows the situation between the steps:

M

consider M1,M2 such that M -->> M1 & M -->> M2 & M1 <> M2;
M
My Mo

consider M’ such that M --—-> M’ & M’ -->> Mi;

M
e
M’
e
My My
consider M’’ such that M ——-> M’’ & M’’ -->> M2;
M
N
M’ M"

e N

Ml M2

The formal proof sketch challenge 7

consider M’’’ such that M’ -->> M’’’ & M’’’ -->> M’?’;

M

N
NS

M!
/ M
M,

M//

Mo
consider M3 such that M’’’ -->> M3;
M
/ \
M/ M//
M///
$
My M M,

These diagrams can be generated automatically by a proof assistant in the fol-
lowing way:

At every point in the proof there is a proof context (or proof goal) consisting
of the statement that needs to be proved (what Mizar calls the ‘thesis’), the
variables that have been introduced by let and consider statements, and the
statements in the proof that can be referred to.

Now one can select from those variables the ones that have a certain type
(in the case of the example: Term of ...) and the from those statements the
statement that involve those variables and that have a certain shape (in the
case of the example: ... -==> ... and ... -->> ...). Both sets are steadily
growing through a proof. A diagram is a graphical representation of both sets.
In the example it consists of a graph with the variables at the vertices and the
two kinds of predicates represented by two kind of edges. Of course this graph
needs to be laid out in the plane, but there exist algorithms that can do that
automatically (a nice example of an implementation of such an algorithm [4] is
the dot program from AT&T’s graphviz system).

Note that in a proof by contradiction the set of relevant statements might
become inconsistent. It needs investigation how to pleasantly represent such a
situation in a diagram. Note that the diagrams might be interactive: instead
of having the proof assistant determining the layout of the diagram, the user
might interactively drag elements of the diagram around. Note that the diagrams
can be graphically consistent along the series (so later diagrams are obtained
by adding elements to earlier diagrams, without moving the elements that are
already present), but they do not need to be. Finally note that for big proofs it

8 Freek Wiedijk

might be advantageous to leave out part of the proof context from the diagram,
either under control of the algorithms generating the diagram from the proof
context or under control of the user.

In this example the diagrams represent reductions in an abstract reduction
system but the basic principles are the same for other kinds of diagrams like
geometrical diagrams, diagrams from graph theory or commuting diagrams from
category theory.

4 The full formalization

Here is the full formalization that one gets by ‘completing’ the formal proof
sketch from Section 2. The parts that already were present in the formal proof
sketch have been underlined:

full formalization

reserve R for nf_inhabited notion_of _reduction;
reserve M,M’,M’’ M’’’ for Term of R;
reserve M1,M2,M3 for Nf of R;

theorem 3.1.25:

R is SN & R is WCR implies R is CR
proof

assume that

Al: R is SN and

A2: R is WCR;

A3: R is WN by A1,Th9;

then for M ex M1 st M reduces._to M1 by Defl0;

A4: (for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2)

implies R is CR

proof
assume

A5: for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2;
let M,M’ ,M’’;
assume

AG: M -=>> M’ & M -->> M’’;
consider M1 such that

A7: M’ -->> M1 by A3,Defl10;
consider M2 such that

A8: M’’ -->> M2 by A3,Def10;
M -->> M1l & M -->> M2 by A6,A7,A8,Th6;
then M’ -->> M1 & M’’ -->> M1 by A5,A7,A8;
hence thesis;
end;

defpred ambiguous[Term of R] means
ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;
A9: now
A10: now
let M such that

A11: ambiguous[M];

The formal proof sketch challenge

thus ex M’ st M -—-> M’ & ambiguous[M’]
proof
consider M1,M2 such that
A12: M -->> M1 & M -->> M2 & M1 <> M2 by All;

per cases;

suppose
A13: not ex M’ st M -—=> M’ & M’ -->> M1 & M’ -->> M2;

M1 is_nf & M2 is_nf by Def9;
then
A14: M <> M1 & M <> M2 by A12,ThS8;
then consider M’ such that
A15: M ---> M’ & M’ -->> M1 by A12,Th7;
consider M’’ such that
Al16: M ---> M’’ & M’’ -->> M2 by A12,A14,Th7;
consider M’’’ such that
A17: M2 -=>> M’’’ & M’’ -->> M’’’ by A2,A15,A16,Defll;
consider M3 such that
A18: M’’’ -->> M3 by A3,Defl0;
take M’;
M’> -->> M3 & M’’ -->> M3 by A17,A18,Th6;
then M’ -->> M1 & M’ -->> M3 & M1 <> M3 by A13,A15,A16;
hence thesis by A15;
suppose ex M’ st M ——-> M’ & M’ -->> M1 & M’ -->> M2;
then consider M’ such that
A19: M ---> M’ & M’ -->> M1 & M’ -->> M2;
take M’;
thus thesis by A12,A19;
end;
end;
thus not ex M st ambiguous[M] from SN_inductioni1(A1,A10);
end;
thus thesis by A4,A9;
end;

Note that the statement from the original:
It suffices to show that this R-nf is unique.

needs a multi-line sub-proof here. That proof corresponds to the diagram:

SN
| ¢

M1:M2

The formalization uses the following basic lemmas:

10 Freek Wiedijk

theorem Th6: M -->> M’ & M’ -->> M’’ implies M -->> M’’;

theorem Th7: M -->> M’’ implies
M=M’orexM stM-—-—>M &M -->> M7,

theorem Th8: M is_nf & M -->> M’ implies M = M’;
theorem Th9: R is SN implies R is WN;

scheme SN_inductionl {R()->notion_of_reduction, X[setl}:
for M being Term of R() holds not X[M]

provided

R() is SN and

for M being Term of R() st X[M]
ex M’ being Term of R() st M —---> M’ & X[M’];

We considered these statements general enough that their proofs should not be
part of the proof of Newman’s lemma.
The last statement SN_inductionl, is equivalent to Noetherian induction:

scheme SN_induction {R()->notion_of_reduction, X[set]}:
for M being Term of R() holds X[M]
provided
R() is SN and
for M being Term of R() st
for M’ being Term of R() st M ---> M’ holds X[M’]
holds X[M];

Although this looks different from SN_inductioni, it is exactly the same when
one replaces X[M] by not X[M]. Both are higher order statements. Mizar is a first
order language, but it knows this kind of higher order statements as schemes.
Mizar has the language of set theory, so it can state the same thing in a first
order way as well:

attr R is SN means

for X being Subset of field R st
(for M st for M’ st M ——-=> M’ holds M’ in X holds M in X) holds
for M holds M in X;

However, because Mizar has no good A-abstraction, the schematic form is easier
to apply and therefore it is the one that we used in the formalization. Note
that this lack of proper A-abstraction is not a problem for making formal proof
sketches look like informal mathematics, because in informal mathematics A-
notation is almost never used.

5 Notation and the Mizar mathematical library

The big Mizar library called MML — Mizar mathematical library — already con-
tains a treatment of rewriting in article REWRITE1l. However the notation used

The formal proof sketch challenge 11

there is not exactly the same as the one used in the proof from Henk’s book.
Mizar has the possibility to define synonyms, so we were able to make the nota-
tion closer to the one in the original than if we had just used the notation that
was already present in the MML. In this table we show in the first column the
notation used in Henk’s proof, in the second column the notation for this from
the MML, and in the third column the notation that we used:

Henk’s book MML formal proof sketch
notion of reduction Relation notion_of_reduction
term set Term of R

R is SN R is strongly-normalizing R is SN

R is WCR R is locally-confluent R is WCR

R is CR R is confluent R is CR

M —p M [M,M’] in R M ---> M’

M R-reduces to M’ R reduces M,M’ M reduces_to M’

M is a R-nf M is_a_normal_form_wrt R M is_nf

M is ambiguous ambiguous [M]

There were two design choices for modeling notion_of_reduction in our for-
malization:

— In the MML there are two types that can be used to model an abstract
reduction system. In article RELAT_1 the type Relation is defined to be an
arbitrary set of pairs. This is the concept that is used in article REWRITE1.
In article ORDERS_1 the type RelStr (‘relational structure’) is defined by:

definition
struct (1-sorted) RelStr (#
carrier -> set,
InternalRel -> Relation of the carrier
#);
end;

Here one separates the carrier of the reduction structure from the reduction
relation itself. This is more accurate when one wants to model notions of
reduction, but we wanted to reuse as much from REWRITE1 as possible, so
we chose to define notion_of_reduction as:

definition
mode notion_of_reduction is non empty Relation
end;

— In Mizar a predicate takes two comma-separated lists of arguments (possibly
single or maybe even empty) on the left and the right of the relation symbol.
Using that format it is hard to imitate the M —pr M’ notation (it would
become M ---> R,M’, which is ugly). We chose to omit the R from this

12 Freek Wiedijk

notation, and have the current reduction relation inferred from the type of
the terms. In order to make this work, the type needs to be a dependent
type Term of R:

definition let R be notion_of_reduction;
mode Term of R is Element of field R;
end;

Using this type, one defines the reduction arrow by:

definition let R be notion_of_reduction;
let M,M’ be Term of R;

pred M ---> M’ means [M,M’] in R;

end;

The R can be reconstructed from the types of the M and M’ so it does not
need to be part of the notation.

The choice to use dependent types (to be able to omit the reduction relation
from the notation) causes the attributes like SN and so on to become ‘non
clusterable’. This means that Mizar is not able to infer attributes by itself
using so-called ’cluster rules’. For instance, we needed to state the fact that
R is WN explicitly in our proof (statement A3). If the attributes had been
clusterable, we also could have phrased the statement of the theorem as a
‘cluster’:

cluster SN WCR -> CR notion_of_reduction

which looks more like the statement of the original informal proof:
SN A WCR = CR

than what is now in the formal proof sketch.

Our decision to be compatible with the MML blocked some notational possibil-
ities. The symbol term is already used in the MML for a function, so it can not
be used for a type as well, and so we can not write term of R. Instead we used
Term of R. (Generally types are written with capital letters in Mizar anyway.)
The symbol nf is also a used for a function, so we can not use it for an attribute
M is nf. Instead we used M is_nf as a predicate synonym for this attribute. Also
we can not use it for a type nf of R. Instead this became Nf of R.

6 A formal proof sketch from the Mizar mathematical
library

In Section 4 we developed a Mizar formalization from a formal proof sketch. In
this section we do the reverse. Here we extract a formal proof sketch from the
proof of Newman’s lemma that is in the MML:

The formal proof sketch challenge 13

reserve R for Relation;
reserve M,M’ ,M’’ /M’’’ M’’’ N,N’ for set;

reserve p,q for RedSequence of R;

definition
cluster strongly-normalizing locally-confluent -> confluent Relation;
coherence
proof
let R;
assume R is strongly-normalizing;
assume for M,M’,M’’ st [M,M’] in R & [M,M’’] in R
holds M’ ,M’’ are_convergent_wrt R;
given N,N’ such that
N,N’ are_divergent_wrt R & not N,N’ are_convergent_wrt R;
defpred is_confluent[set] means
for M’,M’’ st R reduces $1,M’ & R reduces $1,M’°
holds M’,M’’ are_convergent_wrt R;
for M st for M’ st [M,M’] in R & M <> M’ holds is_confluent[M’]
holds is_confluent [M]
proof
let M;
assume for M’ st [M,M’] in R & M <> M’ holds is_confluent[M’];
let M’ ,M’7;
assume R reduces M,M’ & R reduces M,M’’;
consider p such that M = p.1 & M’ = p.len p;
consider q such that M = q.1 & M’’ = g.len q;
per cases;
suppose len p = 1;
thus M’ ,M’’ are_convergent_wrt R;
suppose len q = 1;
thus M’,M’’ are_convergent_wrt R;
suppose len p <> 1 & len q <> 1;
consider M’’’ such that R reduces p.2,M’’’ & R reduces q.2,M’’’;
R reduces p.2,M’;
consider M’’’’ such that R reduces M’,M’’’’ & R reduces M’’’ /M’’’7;
R reduces q.2,M’’’’ & R reduces q.2,M’’;
thus M’,M’’ are_convergent_wrt R;
end;
for M st M in field R holds is_confluent[M];
thus thesis;
end;
end;

The formalization from which this has been extracted occurs in article REWRITE1.
It was written by Grzegorz Bancerek. We have renamed some variables (a, b, c
— M, M’ M’’, P — is_confluent) to make this resemble the other formal proof
sketch more.

14

Freek Wiedijk

The diagram that corresponds to the third ‘suppose’ in this formal proof

sketch is:

m/\
\/\

M/ n

N /
.

This version of the proof of Newman’s lemma also uses Noetherian induction.
It proves that all terms are ‘confluent’ under the assumption that all one-step
reducts are confluent already.

7

Conclusion

7.1 Discussion

The formal proof sketch from Section 2 is quite similar to the original informal
proof. Here are some deviations:

The proof step which introduces the assumptions to the proof (assume that
R is SN and R is WCR) and the step that states at the end that the conclusion
holds (thus thesis) have to be present in the formal proof sketch but are
left implicit in the informal proof.

The original proof uses textual references like this R-nf and such M. In first
order logic one has to quantify explicitly with the property of the referred
object to get the same effect.

The attribute nf_inhabited that is not present in the informal original is
necessary to have a Mizar type (which has to be non-empty) corresponding
to the notion R-nf.

Some notation deviates from the original to avoid conflicts with the conven-
tions of the Mizar mathematical library: Term of R instead of term of R, Nf
of R instead of nf of R, is_nf instead of is nf.

Mizar definitions can not be local to a proof. Only the set, deffunc and
defpred constructions are local. These have a restricted syntax. Therefore
we had to write ambiguous [M], and could not write M is ambiguous.

We do not claim here that Mizar should be changed to accommodate these
differences. We merely note them. We do not think that the differences are that
important. (The exception might be the lack of empty types.)

The formal proof sketch challenge 15

7.2 Future work

As we stated in the introduction of this note, every informal proof is a challenge
to write the corresponding formal proof sketch. We would like to take on more
of these challenges.

It would be nice to have an experimental proof assistant that implements an
automatic diagramming feature as outlined in Section 3.

Acknowledgments. Thanks to Dan Synek for coining the term ‘formal proof
sketch challenge’.

References

1. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland,
1984.

2. J. Barwise and J. Etchemendy. Hyperproof. Number 42 in CSLI Lecture Notes.
CSLI Publications, Stanford, 1995.

3. Jon Barwise and John Etchemendy. Computers, visualization, and the nature of
reasoning. In T.W. Bynum and James H. Moor, editors, The Digital Phoeniz: How
Computers are Changing Philosophy, pages 93—-116. Blackwell, London, 1998.

4. Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo.
A Technique for Drawing Directed Graphs. Software Engineering, 19(3):214-230,
1993.

5. G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Clarendon
Press, Oxford, fourth edition, 1960.

6. M.H.A. Newman. On theories with a combinatorial definiton of “equivalence.”.
Ann. of Math., (2):223-243, 1942.

7. F. Wiedijk. Formal proof sketches.

URL: <http://www.cs.kun.nl/~freek/notes/sketches.ps.gz>, 2002.

