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2a) Summary. Two classes of systems exist for working with mathematical formulas on a
computer: ‘computer algebra’ programs (of which Mathematica is the best known) and
‘proof assistants’ (programs for the verification of mathematical proofs). The first kind of
system (computer algebra) manipulates formulas that do not necessarily have a precise
mathematical meaning (those formulas do not have a ‘semantics’). The second kind of
system (proof assistants) manipulates formulas that do have a precise meaning, but those
often do not much resemble the formulas that one encounters in mathematical textbooks.
The F.E.A.R. project will design a language of formulas that have a precise semantics,
but still resemble the traditional formulas found in textbooks. We will do this by translating
a section from a classic handbook of mathematical formulas (the Handbook of Mathematical
Functions by Abramowitz & Stegun) into a proof assistant. Since the formulas will be
entered in a proof assistant, a sound semantics is guaranteed. Also it will be easy to judge
whether the translation sufficiently resembles the original formulas from the handbook.

2b) Abstract for laymen (in Dutch). Er zijn twee soorten systemen om met wiskundige
formules op de computer te werken: de ‘computer algebra’ programma’s (waarvan Math-
ematica de bekendste is) en de ‘bewijsassistenten’ (programma’s om wiskundige bewij-
zen mee te verifiéren). Het eerste soort systeem (computer algebra) manipuleert formules
die niet altijd een precieze wiskundige betekenis hebben (die formules hebben geen ‘se-
mantiek’). Het tweede soort systeem (bewijsassistenten) manipuleert formules die wel een
precieze betekenis hebben, maar vaak niet lijken op wat je in wiskundeboeken tegenkomt.
Het F.E.A.R. project zal een vorm ontwerpen voor formules in de computer zo dat die
wel een precieze betekenis hebben, maar toch lijken op de traditionele formules uit de
wiskundeboeken. We zullen dit doen door één van de secties uit een klassiek tabellenboek
met wiskundige formules (het telefoonboek-dikke Handbook of Mathematical Functions van
Abramowitz & Stegun) voor een bewijsassistent te vertalen. Omdat die formules in de be-
wijsassistent worden ingevoerd is dan een goede semantiek gegarandeerd. Maar ook zal het
duidelijk zijn of de vertaling voldoende lijkt op de originele formules uit het tabellenboek.
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6) Description of the Proposed Research. We will first present the background of this

research. For a presentation of the specifics of the project, skip to Core of the Project on
page 5. When in the text below we refer to Abramouwitz € Stegun, we mean the well-known
Handbook of Mathematical Functions [1] by Milton Abramowitz and Irene Stegun.

The research of the F.E.A.R. project is related to two kinds of system: proof assistants
(theorem proving systems) and computer algebra systems.

Proof assistants are systems for the verification of mathematical proofs with the com-
puter. Major proof assistants are PVS, ACL2, Theorema, Qmega, IMPS, HOL, Isabelle,
Coq, NuPRL and Mizar [26]. Proof assistants have two main application areas:

e The main application is ‘formal methods’: checking proofs that occur in the verifica-
tion of the correctness of computer systems. This kind of verification is done when
correctness is of the utmost importance, like in medical systems, systems embedded
in spacecraft, systems for public transport (e.g., software controlling driverless trains),
and systems that will be used in huge numbers (e.g., subsystems of commercial micro-
processor chips, or programs running on smart cards).

e A secondary, more distant, application of these systems is to support mathematics.
Currently proof assistants are not powerful enough to be useful in mathematical re-
search, but in the future these systems might change the way we do mathematical
proofs. Mathematics might then be routinely proof checked. In that case when a math-
ematical paper is submitted to a journal, referees will not need to be concerned with
its correctness (because the computer will already have checked this), but just with
the question of whether it is new and interesting. This — potentially very important,
but currently rather utopian — application of proof assistants is nicely described in the
so-called QED manifesto [7].

The main weakness of current proof assistants is that mathematically they are not powerful
enough. They are very good at keeping track of all of the details of a mathematical proof:
one routinely checks proofs using these systems that have hundreds, or even thousands,
of cases. However, they are currently not very good at taking by themselves steps that a
human mathematician considers to be trivial. One of the most important class of steps
that are not supported well are problems that a high school student can solve without
difficulty. We call these high school problems. Examples of this kind of problem (where
denotes logical consequence) are:

1 N T
n+1 11—z
z=i/n, n=m+1 F nl-z=1i-m!

k n—k

—>0 F
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When one encounters problems like this in a proof assistant, one would like not to spend
any time on it, but just to say to the system ‘you know how to do this’. Currently this is
not possible. We consider this to be the main weakness of current proof assistants.

Computer algebra systems are systems for the calculation of answers to algebraic
problems with the computer. Major computer algebra systems are Matlab, Mathematica,
Maple, Magma, GAP, Axiom and MathXpert. Computer algebra systems have two main
application areas:

e Solving algebraic problems, like the calculation of the size of an algebraic structure,
or an explicit enumeration of instances of such a structure. The algebraic objects that
these calculations deal with are generally finite and explicitly given.

e Solving problems in elementary analysis (‘calculus’). These include simplification of
expressions, calculation of differentials and integrals, and solution of ordinary and
differential equations. The name ‘computer algebra’ is misleading for this application,
as these problems are not of an algebraic nature. However, these problems are often
solved via a translation into an algebraic problem.
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The main weakness of current computer algebra systems is that for these ‘calculus’ prob-
lems they often give incorrect answers. For instance the latest version of Maple evaluates
the following expressions (due to Jacques Carette of McMaster University):

> value(eval(Sum(z"n/n!,n=0..infinity),z=0));

0 should be 1 (Maple simplified 0™ to 0)
> residue(1/(csgn(z)*z),z=0);
1
—_— should not have z free (z was bound)
csgn(z)
> eval(int(1/(x-a),x=0..1),a=1/2);
i should not be complex (real integral)
> Int(sin(x),x=0..Pi);
/ sin(z) dz
0 these two integrals should be equal
> student [changevar] (sin(x)=t,%,t); (change of variables) but they are not;
0 " the first is 2 but the second is 0
- dt
/0 (1—12)2

The reason for this behavior is, that it is much more difficult to always give a fully mathe-
matically correct answer than a somewhat plausible one. In the tension between the ability
to transform expressions for the user as much as possible, and the correctness of what the
computer algebra system is doing, the makers of these systems take an intermediate po-
sition. The most blatant errors that users complain about are removed, but more subtle
‘errors’ are ignored. The idea is that the user should pay attention and judge for himself
whether the program behaves reasonably.

Related to this problem of incorrect answers from computer algebra system is the lack
of a formal semantics for the expressions of those systems. For instance in formulas like:

In(co0) = 0o

/ % dz =In(z)

(both Mathematica and Maple calculate like this) it is not fully clear what the semantics
of the symbols oo and [ are (in the second case the question is: where is the constant of
integration?) In particular those symbols are not defined in terms of some foundational
system. For this reason it is sometimes not even possible to say that the answer of a
computer algebra system is incorrect, because that might depend on the intended semantics
of the symbols. As an example, it is not a priori clear whether

T+ x
T

=2

is correct — because one is calculating in a field K(z) — or incorrect — because for z = 0
the left hand side is 0/0, which probably is not 2 in any way of dealing with 0/0, and so
the (partial) function Az.2tZ differs from the (total) function Az.2.

Summarizing: computer algebra systems structurally give incorrect answers, and the
users of these programs do not even have the possibility to criticize these ‘errors’ because
the expressions manipulated by these programs do not have an explicit semantics. We
consider this to be the main weakness of current computer algebra systems.

Related to the lack of semantics for ‘analysis’ expressions in a computer algebra system
is the meaning of expressions in languages that have been designed for the interchange
of mathematical expressions between different systems. The two major languages of this
kind are MathML [11] and OpenMath [9].

In practice these languages do not always conserve the meaning of expressions. For
example, imagine encoding a formula in MathML to be able to move it between various
proof assistants (like Coq, HOL or PVS). Then the following table shows that in that case
the same MathML expression might get completely different meanings [28]:
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1/0=0
PVS not a correct formula
IMPS negation provable
Coq not provable, negation not provable

HOL/Mizar  provable

Apparently if one uses MathML or OpenMath to communicate even a simple equation like
‘1/x = o’ between systems, the meaning changes!

The aim of the F.E.A.R. project is to design a small expression language like MathML
or OpenMath, but one that has a very explicit and well-defined semantics.

This project simultaneously addresses the two problems that we noted:

e Proof assistants are not powerful enough, as they cannot do ‘high school problems’ by
themselves.

e Computer algebra systems are not fully correct; worse, they even lack a semantics that
makes discussion of correctness meaningful.

Our approach to solve these problems will be to design an expression language for the
kind of expressions that one encounters in a computer algebra system, but with an explicit
semantics. This semantics will not just be given in a traditional mathematical style. To
make sure that it is solid we will define it inside one of the major proof assistants. Proof
assistants are built on a small logical foundation, which has a simple notion of ‘model’. So
formalizing in a proof assistant leads directly to a ‘semantics’ inside that same model.

This way we make the style of doing calculus in a computer algebra system — which can
do ‘high school mathematics’ by itself — available to proof assistants. And, by providing a
proper semantics, we get the possibility of having a computer algebra system that is fully
correct. (Our project will lead to more complicated terms than one finds in Maple, with
more subtle distinctions and embeddings and liftings and so on. Therefore, it will not give
a semantics for Maple expressions the way they are today. But the idea is that one could,
in the future, implement a correct Maple-like program based on this research. The project
is necessary for that, but not sufficient. Without a proper focus on semantics we will never
get correct computer algebra.)

It is relatively easy to render the meaning of formulas from elementary analysis in a proof
assistant. However, to design an expression language in such a way that it also is close to
the formulas that one encounters in normal mathematics textbooks is more difficult.

If one looks at the statements from elementary analysis that are present in the libraries
of the current proof assistants, then they are sometimes remarkably different in style from
the way that one would write them in normal mathematical texts. The reason for this is
two-fold:

e The proof assistants do not have the features that one needs to render mathematics
reasonably. For instance, in the HOL system all functions are total. Therefore, the
limit operation when modeled as a function would always have a value, even if the
limit does not exists. For this reason, the limit operator in the standard HOL library
is modeled as a relation, instead of as a function. But that is not the way that limits
are written customarily, and not as practical at that.

e In mathematics one often uses imprecise notations. Examples of this are calculations
with ‘infinity’, indefinite integration where one omits ‘constants of integration’, ‘multi-
valued functions’ in the complex plane where one leaves unspecified what branch one
is on, etc. In informal practice this works perfectly, but in a situation where precision
counts this is problematical.
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Core of the Project. We will formalize a section from Abramowitz & Stegun in a
modern proof assistant. The expressions in the formalization will be made to resemble
the original expressions as found in Abramowitz & Stegun as closely as possible. The
formalization will be complete, except for the proofs. In particular, all the symbols that are
used will be fully defined in terms of the foundations of the proof assistant. Although we
will not encode all necessary proofs in the formalization, we will show in the traditional
mathematical style that the formalization might be completed that way.

Two choices will be made during the first phase of the project:

o Which proof assistant? The most natural choice is to take Coq [25]. In Nijmegen a

large Coq library has been created [13] and there is a large amount of Coq expertise
available there. Coq is also one of the most expressive systems for formalization of
mathematics in the world today.
Other possible choices would be HOL [15, 16, 23], Mizar [22] or PVS [24]. The HOL
and Mizar systems have impressive libraries of mathematics that we could base our
work on. PVS is the most popular proof assistant in computer science, and it supports
partial functions in a way that the other three systems cannot.

o Which section of Abramowitz & Steqgun ? The most natural choice is to take the first
relevant section: Section 4.1, which gives a list of formulas about the natural logarithm.
It is reproduced as an appendix to this proposal on pages 11-13. It contains 57 formula
entries which correspond to 74 inferences.

Section 4.1 contains interesting challenges for a semantical treatment of the formulas. It
distinguishes between ‘In(z)’ (the main branch of the complex natural logarithm) and
‘Ln(z)’ (the ‘multi-valued function’). It also contains ‘fuzzy’ mathematical statements
like In(0) = —oo (equation 4.1.13). An important kind of expression that Section 4.1
does not contain is order symbols (‘big-O notation’).

The semantics for formulas like those in Section 4.1 ideally will give a meaning to
a formula that contains infinity, constants of integration, multi-valued functions and
order symbols, all at the same time.

In [4] we defined a rigorous semantics for formulas in elementary analysis that contain the
symbol co. We did this by interpreting expressions that contain this symbol as filters over
the underlying set of numbers. Part of the current project can be seen as an extension of
this work.

If one follows the approach from [4] then one gets a proliferation of types, with coercion
functions between them. For instance, the number 0 can then both be interpreted as a
number, or as the filter corresponding to that number. When one extends this approach
to cover multi-valued functions, it also can be interpreted as a set of numbers (a singleton
set). The challenge of the F.E.A.R. project is how to define all these types — numbers,
filters, sets — such that they fit together in a way that leads to practical formulas.

Writing the formulas from Abramowitz € Stequn using a signature similar to that of
MathML is straight-forward. However, it is then clearly impossible to give a semantics
to the symbols from that signature in such a way that the formulas become meancilngful.

For instance formulas 4.1.1 and 4.1.4 from Abramowitz & Stegun are Inz = flz Tt and

Lnz = flz %. Clearly the symbol [ means something different in those two formulas.

The approach that we will follow in the project is to take a MathML-like encoding of
the formulas, and then systematically disambiguate the symbols. For every symbol we will
have various versions with various types (on numbers, filters, sets, etc.) Also we will have
to insert coercion functions in the expressions to have them well-typed.

Finally, to get from a ‘naive’ MathML-like encoding of the formulas to a semantically
meaningful disambiguation will be non-trivial. Therefore we will build automated sup-
port for this task. In this implementation the formulas will be encoded using the Open-

Math/OMDoc standard [9,17,18].

This project will involve work on three different levels:
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e First of all it will give a mathematical definition of a signature for the formulas of
elementary analysis, and a formal definition of an expression language using that
signature. This will then be written in the form of a normal mathematical article.

e After that it will create a formalization of these definitions. This will be work with a
proof assistant. As working in a proof assistant tends to be time consuming, we expect
this to be the main part of the project.

e Finally there will be an implementation component. A converter will be written be-
tween formulas in the proof assistant and a — system independent — OpenMath/OMDoc
encoding of the same expressions. Also software will be written to help transform a
naive rendering of the formulas into a semantically meaningful encoding.

Related Work.

Relating proof assistants to computer algebra systems is the subject of various projects,
like the CALCULEMUS project [10], the FoC project [6], and the MathScheme project
[14]. (The Foundations group in Nijmegen is a participant of the CALCULEMUS network.)
These projects focus on implementation of frameworks that combine those two kinds of
system. They do not primarily focus on the semantical questions that are the subject of
the F.E.A.R. project.

There are projects that aim to create databases that are electronic versions of Abramo-
witz € Stegun, like the NIST’s Digital Library of Mathematical Functions project [19, 21]
and INRIA’s Encyclopedia of Special Functions project [20] (which is part of its Algorithms
Project). We could have based our project on formulas from those databases instead of on
Abramowitz € Stegun. However, the formulas from those sources do not relate as much to
semantics of computer algebra as the ‘informal’ formulas from Abramowitz & Stegun.

Prof. Davenport has written papers [8,12] that are closely related to the topic of this
proposal. At various CALCULEMUS meetings he has given talks in which he stated that
the notion of branch cut from complex function theory has never been given a formal
definition. He claimed to have searched many textbooks, and that the notion of branch
cut is always just presented by example instead of being formally defined. It will be part
of our project to provide Prof. Davenport with the formal definition he is looking for.

In the Foundations group in Nijmegen we have much expertise with formalization of math-
ematics. We have built a large library — called the C-CoRN library [13] — of digital mathe-
matics in the proof assistant Coq. The Foundations group participates in various European
projects like the CALCULEMUS project, the TYPES working group, the MoWGLI project
and the MKM network. The project proposed here will fit seamlessly into the research of
the Foundations group.

Some Questions & Answers.

Is this project about mathematics or about computer science?

About both!

From the point of view of mathematics, the project is conceptual: it focuses on def-
initions. However, it will need a deep understanding of what mathematical meaning is.
Also the project will generate mathematical problems that, even if not ‘deep’; still will
need mathematical proof. (It should be pointed out that Prof. Davenport has repeatedly
claimed at the CALCULEMUS meetings that the mathematical problems inherent in the
subject of this proposal are not trivial.)

In computer science, proof assistants are an important tool in the field of formal methods.
A main goal of the project is to improve proof assistants. The project will heavily use
proof assistants, and define a formal language to be used in proof assistants. For this
formal language a translation system will be implemented to convert this language between
encodings inside proof assistants and a system independent OpenMath encoding.

Is the formalization of a few pages of mathematics — and without full proofs at that — not
too small an endeavor for a PhD project that will take four years?

Formalizing the content of those pages — without proofs — is not too hard. The difficulty is
finding a form for those formulas that combines a solid semantics with a similarity to the
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informal formulas of Abramowitz & Stegun (which are similar to the one that one finds in
computer algebra systems). From preliminary experiments with development of such an
encoding, this appears to be far from trivial.

Aiming for large-scale formalization of mathematics is rather utopian: why should we sup-
port a project that reaches for such a far-away goal?

The goal of the project is to improve proof assistants and computer algebra systems. Using
proof assistants for checking mathematics is only one of its applications. The use of proof
assistants for the verification of critical computer systems is an important field of research,
and not utopian at all.

Abramowitz € Stegun is not real mathematics, but ‘mathematics for engineers’: surely it
s mot important to mimic this style of doing calculus?
The way Abramowitz € Stequn write their formulas is close to the way that computer
algebra systems represent those same formulas. The basic techniques of computer algebra
systems work best when the formulas are closed algebraic equations or inequalities, instead
of more complex logical formulas. If one would represent the mathematics in the traditional
way to make it rigorous, then the formulas would not have this simple shape anymore.
Another reason for following the ‘informal’ way of doing calculus from Abramowitz &
Stegun is that it is closer to the way a mathematician will reason on a piece of paper.
When presenting his mathematics formally he might not use this style, but when doing
the calculations himself he certainly will. This is an important reason for following the
style of Abramowitz € Stequn: we want to improve the proof assistants in such a way that
they become more attractive to mathematicians [27].

Elementary analysis is basic mathematics: surely for a competent mathematician it is a
triviality to represent this kind of formulas?

The goal of having formal formulas that are close to the informal style of doing calculus is
more a conceptual problem than a mathematical problem. To be able to do this project one
not only needs mathematical competence, but also an understanding of formalization. Of
course if a competent mathematician has this understanding he can work on this project.
But we do not expect it to be trivial: if it was trivial, the computer algebra systems would
already use an expression language like the one that this project is aiming for.

Why won’t the project aim at formalizing the proofs too?

Although the formulas from Abramowitz € Stequn are elementary mathematics, formal-
izing their proofs would take a large amount of work. For the main goals of the project
that work is irrelevant. It will just take effort away from the more important parts of the
project. (And note that we will formalize some of the proofs, we just do not want to take
the time to formalize all proofs.)

NIST is currently creating a database called the Digital Library of Mathematical Functions.
That is a formal version of Abramowitz & Stegun, isn’t it? So hasn’t your project already
been done by them?

The database that is being created by NIST will serve a similar purpose as Abramowitz &
Stegun, but it is not a direct translation. Therefore it will not need to have counterparts
to the informal formulas that one finds in Abramowitz € Stegun and in computer algebra
(like In(o0) = 00). Also, the people that create this database do not worry about formal
semantics — it is on the level of computer algebra in this respect — and so will put formulas
like [ % dz = In(z) in it without seeing a problem. For these reasons, NIST’s project does
not face the problems of proof assistants and computer algebra systems like we will do.

You claim that the current formulas in proof assistants often look different from their
informal counterparts: but why do you think you can do better as you will be using those
same proof assistants as well?

The reason that those formulas look different from the formulas of informal calculus is
that it is hard to make them look similar. The people who did those formalizations were
only interested in the content of the mathematics, and not in the shape of the formulas.
We will spend a whole PhD project on this problem. That has not been done before.
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7) Work Programme.

year 1 year 2 year 3 year 4

getting acquainted
mathematical description
formalization
OpenMath conversion

investigating extensions

conference papers

writing thesis

year 1 Getting acquainted with the relevant proof assistants. Getting
acquainted with the relevant mathematics.

year 1-2  Abstract mathematical description of signature & semantics.

year 2-3  Formalization of signature/definitions in the primary proof as-
sistant.

year 3 Definition of OpenMath CD for the signature. Implementation
of conversion from OMDoc to input format of the primary proof
assistant.

year 3—4  Investigation of the effort needed to complete the formalization
with proofs. Investigation of the effort needed to treat other
sections in Abramowitz & Stegun similarly. Investigation of the
effort needed for formalization in other proof assistants.

year 1-3  Papers in conferences or workshops.
year 3—4  Writing the thesis.

The PhD student in this project will be part of the Institute for Programming research and
Algorithmics (IPA). In addition to educational activities organized by IPA, the student
will follow local courses at the University of Nijmegen, and participate in one or two
summer schools. The primary supervisor will be Wiedijk, with Barendregt as the second
supervisor and promotor. The research group has a good track record in supervising PhD
students and hosts a good mix of PhD students and more experienced postdoc researchers
and staff.

Expected Use of Instrumentation. Symbolic manipulation programs like proof assis-
tants and computer algebra systems are notoriously resource hungry. For this reason we
will dedicate a special computer to the project. On this system the major proof assistants
and computer algebra systems will be installed.

hardware  dual processor system € 5,000
maintenance contract € 360
software license, Magma version 2.11 € 950
license, Maple version 9.5 € 400
license, Mathematica version 5.1 € 1,460
license, MathXpert version 3 € 80

total € 8,250
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The pages from Abramowitz & Stegun containing Section 4.1

4. Hiementary ‘lranscendental Functions

Logarithmic, Exponential, Circular and Hyperbolic Functions

Mathematical Properties

4.1. Logarithmic Function

Integral Representation

z
4,1.1 In z:f at
1t
iy
| 4 0 L3
TTX4TY
Fiaune 4.1. Branch cut for In z and 2.

(@ not an integer ar zero.)

where the path of integration does not pass
through the origin or cross the negative real
axis. In z is & single-valued function, regular in
the z-plane cut along the negative real axis, real
when z is positive.

g=rtiy=re .

4.1.2 In z=Inr4+40 (—w<8<%).

413 r=(+y0}, r—rcoss, y=rsing,
Y

#=sarctan =
T

The general logarithmic function is the many-
valued function Ln z defined by

_rde
Ln z—J: 5

where the path does not pass through the origin.

4.1.4

4.1.5

L (re®)y=In (re*) -+ Zkxi=1In r+i(8+2kx),
k being an arbitrary integer. In zis szid to be the
prancipal branch of Lin 2,

Logarithmic Identities

4.1.6 Iin {z;23)=Ln z,+Ln 2.

(.e., every value of Ln (z2) is one of the values
of Ln z,+Ln 2.)

4.1.7 In (z,z:)=In z,+1n 2,
(—n<larg z,+arg z,<r)
4.1.8 Ln %an 2;—Lmn 2,
4.1.9 In 2_In z;—Inz,
23
{—r<larg 2,—arg z;<x)
4.1.10 Lnz*=nlnz {(n integer)
4.1.11 Inz"=ninz
(ninteger, —w<(narg z<x)
Specizl Values {see chapter 1)
4,1.12 In 1=0
4.1.13 In=—w
4.1.14 In{(—1)=w1
4,1.15 In (£i)=44m
4.1.16 In e==1, ¢ is the real number such that
e
1 ¢
4127 e lim (147) ~271528 18284
kot A,
(see 4.2.21)
Logarithms te General Base
4.1.18 log, z=In z/ln a
_logy 2
4.1.19 log, “~hga
4.1.20 log, b=10gp 2
4.1.21 log,z=In =
4.1.22 log, z=In zfln 10=logyeln 2

=(.43429 44819...)1n 2
a7
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4.1.23 In e=In 10 log,, 2={2.30258 50929 ...) log,e

(log, z=In z, called natural, Napierian, or hyper-
bolic logarithms; log,, z, called common or Briggs
fogerithms.)

Series Expansions

4.1.24 In (14+2)=2—32+320— . ..
{|z]<1and 25 —1)

4.1.25

=1 1 /2—1Y 1 7z—1Y
l“*:( z )+§( p )-i-g Z >+

(F=21)

4.1.26

In s=(e—D—§{e— 1 H3E—1)"— . ..

(le—1]£1, =2520)

4.1.27

o eea [ AED )

(Re>0,  z=0)

1\l L 1
41.28 In (271)_2 (€+333+525+4 )
(el 21,

25 +1)

4.1.29
1/ =
In (z4a)=Ina+2 [(5{%2)"‘5 (2a+z>

+5(aa) + ]

{@>0, Hz>—a#z)

Limiting Values

4.1.30 lim 272 ln 2=0
=@
(e constant, Ha>0)
4.1.31 limy z= ln =0
-0
{a constant, Ra>0)
4.1.32

lim i %—In m)='y (Euler’s constant)
more =1

=.5772] 56649 . ..
(see chapters 1, 6 and 23)

Inequalities
4.1.33 ﬁ% <In (1+z)<z
(z>>—t, a=0)
4.1.34 2 —1In (1—2) < 131
(z<1, z0)

4.1.35 I (1—z)j<C %ﬁ {0 r < .5828)
4,1.36 Inz<s—1 (x>>0)
4.1.37 In 2<n(x"*—1) for any positive n
(=>0)
4,1.38 |In (142} < —In (1—]z]} (Jz]<C1)
Continued Fractions
4.1.39
2 & & 4z 4z 9z
Ot =Trsrsrarsror

(z in the plane cut from —1 to — =)

4.1,

Ltz)_ 2z 22 428 922
l—z) 1—3—5—7—
(z in the cut plane of Figure 4.7.)

40
hl(

Polynomial Approximations ?

4.1.41 L ca<yio
J1o

logyy z=aut +asts+e(x), t=(z—1}/(z-1)
le(z) i< B3 107*

a;=.86304 a;—.36415

£.1.42 Tll_a-szsm

v
logi x=af+a,8° +agt® ol +agt® e(2)
t=(z—1)/(z+1)
le(2)| <1077
a,=.56859 1718
a;—.28933 5524
a;=.17752 2071

a;=.00437 6476
a,=.191337714

4.1.43 0<zL1
In (1 +z) =anz gt tasrt Fa.rtasrt e(r)
le(z)]| <1108

a,=— . 13606275
as=.03215 845

1= 99949 556
a,=—.43190 896
az=.28047 478

* The approvimations 4,1.41 to 4,1.44 are from C. Hast-
ings, Jr., Approximations for digital cornputers. Princeton
Univ. Press, Princeton, N.J., 1955 (with permission).
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4.1.44 0<z<1

In (1+z)=az+a7* +as® + ag ' +aa’
+ 727+ g52® ()
le(2)| <3310

= . 99999 64239
;= —. 40087 41238
a= . 33179 90258
a,=—, 24073 38084

a;= . 16765 40711
ag—=—. 00532 63897
a;= . 03608 84937
as= —. 00645 35442

Approximation in Terms of Chebyshev Polynomials ¢
41,45 0<z<1
T.*{z)=cos nf, cos §=2z—1 (sec chapter 22)

In (1+2)=>" A,T,*z)

n=0

n Al n A,

0 .37645 2813 6 —. 00000 8503
I . 34314 5750 7 . 00000 1250
2 —. 02943 7252 8 —. 00000 0188
3 . 00336 7089 9 . 00000 0029
4 — . 00043 3276 13 —. 00000 0004
5 . 00005 9471 11 . 00000 0001

Differentiation Formulas

4.1.46 @ lo zzl
dz z
4.1.47 @ In z=(—1}Yn—1)lz"
dz"
Integration Formulas
4,1.48 f(—jf=ln Z
2
4.1.49 f]n zdz=zlnz—=z
4.1.50
zn+l 2n+1
n bcd —— B
fz In zdz - 1111 S
{n¥—1, n integer)
4.1.51
i e dem @™ Mo me
fz (In gy dz= ] ] fz (In )" dz

(n#—1)

% The approzimation 4.1.45 is from C. W. Clenshaw,
Polynomial spproximations to elementary funetions,
Math. Tables Aids Comp. 8, 143-147 (1954) (with per-
mission).

4.1.52 fﬁ =In In 2
zlnz

4,1.53
fln [e4- {22+ de=z In [z +(22+ )} —(z2£ 1)}

4.1.54

fz" In [z+(3u1)i]dz=§% In [24 (224 1)Y]

1 path

—m -(Z—zi_ﬁ; dz (11.95—*1)

Definite Integrals

1
4155 Int s
s 1—12
't .
4.1.56 . mdt— /12
Y .
4.1.57 J. I t—l%(:ﬂ) {see 5.1.3)
4.2, Exponential Function
Series Expansion
4.2.1
z 2t 2 o
e*=gexp z:1+ﬁ+m+§—!+ v (g=xtiy)

where ¢ is the real number defined in 4.1.16
Fundamental Properties

4.2.2 Ln(exp 2)=z+2kx7 (k any integer)

4.2.3 In (exp 2)=2 (—a{Sfz<7}
4.2.4 exp (In 2)=exp (Ln 2)==z
4.2.5 4 exp g=exp 2
dz

Definition of General Powers
4.2.6 If N=q¢? then z=Log, N
4.2.7 a*=exp (zln a)
4.2.8 Ifa=|e|exp (iarga) (—r<arga<m)
4.2.9 ja?|=lalPe¥ ¢
4210 arg (ef)=y In ja|+zarg e
4.2.11

Lna*=zlna for one of the values of Ln ¢*

4,212 Ina*=zIne (e real and positive)

4.2.13 le*| =e*
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(Page 86, as Formula 4.1.40 refers to Figure 4.7)

L6 ELEMENTARY TRANSCENDENTAL FUNCTIONS
4.5.75 L2 sech z=—sech ¢ tanh z 4.5.87
dz t,s.nh"“ z
ftanh" zdz= -{—fta.nh“‘ zdz
4.5.76 g; coth 2=—csch® z (n3£1)
Integration Formulas 4.5.88
coth
4577 fsin.h s dz—cosh 2 fcoth" zdz=~— +feoth"‘2z dz
n=1)
4.5.78 fcosh z dz=sinh 2 (See chapters 5 and 7 for other integrals in-
volving hyperbolie funetions.)
4.5.79 J‘ tanh zdz=1n cosh = 4.6, Inverse Hyperbolic Funections
Definitions
4.5.80 J.::sch #dz=In tanh = . _j‘" dt .
2 4.6.1 arcsinh z= . —_(1-1-132)’ (z=z4y)
4.5.81 f sech zdz=arctan (sinh 2} 4.6.2 arceosh 2= f : gt
(=14
4.5.82 fcoth zdz=Insinh =z 163 arctanh s— : : dttz
. 1—
4.5.83

j‘z sinh zdz=2z" cosh ’—nf"” ' cosh zdz

4.5.84
fz” cosh z de=2" sinh z_nfz““ sinh zdz

4.5.85
fsinh"’ z cosh® zdz= 1
mTn

sinh™*! z cosh™ ! z

n—1 —— a2,
-i-m—+nfsmh 2 cosh® 2zdz

1 .
= sinh™=! z cosh™*! z

m-n
=1{ . .
———— |sinh™ 2z cosh” zdz
m4n
(m+n=0)
—1 1

4.5.86 fsmh"‘ z cosh™ z

m+n—2 J‘ dz
m—1 sinh™~ 2z cosh” ¢

1 1
n—1 sinh™ ! z cosh"“ z

m+u_2 dz
+ famh"‘ z cosh™t z (n=1)

Tm—1anh™ 'z cosh™ ' 2

(m 1)

The paths of integration must not cross the fol-
lowing cuts.

4.6.1 imaginary axis from —iw~ to —i apd ¢
to fw
4.6.2 real axis from — = to 41

4.6.3 resl axis from — @ to —1 and +1 to
+ o

Inverse hyperbolic funclions are slse written
sinh=! z, arsinh z, &r sinh 2z, etc.

4.6.4 arecsch z=aresinh 1/2
4.6.5 arcseeh z=arccosh 1/z
4.6.6 arccoth z=arctanh 1/z
iy iy iy
+
X - +1 X X
Gy 0 -1 |0 4l
=1
arcsinh z arccosh 7 arctanh z
iy Y iy
+ x e 4+ o 114 x
of _. 5 F )
-1
orceseh 2 orcsech 7 arccoth z
FIGUrRE 4.7. Branch culs for inverse hyperbolic

Junctions.




