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Summary. It is considered a fact of life that all serious computer programs
contain errors, so-called ‘bugs’. Empirical data indicates that production
software has around two bugs per thousand lines of source code, and even
programs used on space missions by NASA are believed to have around 0.1
bugs per thousand lines of code [26].

Interactive theorem proving is a technology for building programs that almost
certainly have zero bugs per thousand lines of code. Already some significant
programs have been shown to be fully correct. For instance both the certified
C compiler of Xavier Leroy [25, 8] and the programs from the proof of the
Four Color Theorem by Georges Gonthier [13] have been formally shown —
with a fully computer-checked proof — to do precisely what they should do,
and therefore are guaranteed to be bug-free.

This technology of interactive theorem proving for software correctness is on
the verge of becoming widely applicable. A sign that this moment has not
yet arrived is that currently it is not even used by the very people who build
tools for it. Thus far, no system for interactive theorem proving has been
formally proved bug-free.

The Proof Checking the Proof Checker project will change this situation. At
the end of this project one of the best systems for interactive theorem proving
will have used its own technology to establish that it is completely sound.
Furthermore not just a model, but the actual source code of the program
will have been proved correct.

Abstract for laymen (in Dutch). Het wordt als onontkoombaar gezien
dat ieder serieus computerprogramma fouten bevat, ‘bugs’ genaamd. In de
praktijk bevat productiesoftware rond de twee bugs per duizend regels bron-
code, en zelfs van programma’s voor ruimtemissies door NASA wordt geschat
dat ze rond de 0,1 bugs per duizend regels bevatten.

Interactief stellingenbewijzen is een technologie om programma’s te maken
die met grote zekerheid nul bugs per duizend regels programmatekst hebben.
Momenteel zijn al enkele bijzonder ingewikkelde programma’s op deze manier
volledig correct bewezen. Zo zijn er de gevalideerde C compiler van Xavier
Leroy en de programma’s voor het bewijs van de vierkleurenstelling door
Georges Gonthier, waarvan formeel is aangetoond — en met een volledig
door de computer gecontroleerd bewijs — dat ze exact doen wat ze moeten
doen, dus dat ze gegarandeerd bugvrij zijn.

De technologie van het interactief stellingenbewijzen voor programmacor-
rectheid staat op het punt om algemeen toepasbaar te worden. Een teken
dat dit punt nog niet is bereikt is dat deze technlogie momenteel niet eens
wordt gebruikt door de mensen die de software hiervoor ontwikkelen. Tot nog
toe is geen enkel systeem voor interactief stellingenbewijzen formeel bugvrij
bewezen.
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Het Proof Checking the Proof Checker project zal hier verandering in bren-
gen. Aan het eind van het project zal van één van de beste systemen voor in-
teractief stellingenbewijzen door middel van zijn eigen technologie betrouw-
baar bewezen zijn. Bovendien zal niet slechts van een model, maar van de
volledige broncode van het programma de correctheid zijn aangetoond.

Keywords. Theorem proving, proof assistants, formal methods, program
correctness, software reliability, HOL.

Classification. Informatica, NOAG-ict 2005-2010 theme 3.6: Intelligente
systemen (Computationele logica, Redeneersystemen, Semantiek).
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Prof. dr. H.P. Barendregt mathematical logic RU
Prof. dr. J.H. Geuvers (promotor) theorem proving RU
Dr. F. Wiedijk theorem proving RU
Dr. J.H. McKinna functional programming RU
Drs. R.S.S. O’Connor theorem proving RU
Drs. D.G. Synek functional programming RU
Dr. J.R. Harrison theorem proving Intel
PhD student RU

RU = Institute for Computing and Information Sciences
Radboud University Nijmegen
Nijmegen, The Netherlands

Intel = Intel Corporation
Hillsboro, Oregon, USA

Research School. IPA, Institute for Programming research and Algorith-
mics.

Description of the Proposed Research
Scientific Problem and Research Goals.

Here is the motivation for the project summarized in four short sentences:
Compilers compile themselves. Proof assistants do not yet prove themselves
correct. This shows that compiler technology is more mature than proof as-
sistant technology. The goal of the project is to remove this distinction.

Software is notorious for being unreliable. Everyone has experience with
software misbehaving, and occasionally software errors have very costly con-
sequences [31]. The fact that software errors are generally affectionally called
‘bugs’ does not make this less significant.

There are various approaches to improve this situation, of which one class is
called formal methods. The formal methods consist of applying techniques
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Fig. 1. The main formal methods.

from mathematics and specifically from mathematical logic to establish prop-
erties of computer programs. There are various formal methods that differ
in the amount of information that they provide about software and in the
amount of work that it costs to establish that information. Jean-Raymond
Abrial has the suggestive diagram shown in Fig. 1 [2], which summarizes the
main formal methods that are currently popular. The axes of this diagram
are merely suggestive, but it should be clear that strongly typed program-
ming is cheap but not does give much reliability, while theorem proving is
very expensive but potentially gives the highest reliability possible. Because
of the high cost of theorem proving, in practice it currently is mostly used
for correctness of software for human transportation (with spacecraft an ex-
treme case) and for medical applications.

There actually is a spectrum of theorem proving going from fully automated
theorem proving (ATP) to interactive theorem proving. A system for in-
teractive theorem proving is called a proof assistant or proof checker, and
a proof developed inside such a system is called a formalization. The most
important current proof assistants are (see also [41]):
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HOL proof assistants [14]

HOL4 [33] Norrish & Slind UK, USA & Australia
HOL Light [16]  Harrison UK & USA
ProofPower [27]  Arthan UK

Isabelle [32] Nipkow, Paulson & Wenzel UK & Germany

non-HOL proof assistants

Coq [9] Barras & Herbelin France

B Method [1] Abrial France

PVS [37] Owre, Rushby & Shankar USA

ACL2 [23] Moore USA

Mizar [30] Trybulec Poland & Japan

Currently interactive theorem proving for software correctness is mostly used
with mathematical models of software or for relatively simple programs. It
is not yet applied much to the actual source code of existing software. In
particular the proof assistants themselves are still considered to be out of
reach of current interactive theorem proving technology. This is a noticeable
difference with compilers. Proof assistants and compilers are very similar
systems, but a compiler is used for itself. Compilers routinely compile their
own source code, as shown in Fig" 2.

The analogous situation for a proof assistant is slightly more complex be-
cause there both a compiler and a proof assistant are involved. Both systems
process the same source code, but the compiler produces an executable pro-
gram while the proof assistant just produces a Boolean value stating that
the code is correct. This situation is shown in Fig. 3.

Actual proof assistants, like compilers, have thousands of lines of source code,
and are in practice too big for the kind of scrutiny that interactive theorem
proving requires. However, here is where the de Bruijn criterion [3] comes
in. Proof assistants often have an architecture where only a small part of
the program needs to be trusted for the whole system to be mathematically
sound. (Le., if that part of the program is correct, it will be impossible

compiler

compiler
source

Fig. 2. A compiler compiling itself.
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Fig. 3. A proof checker checking itself.

to prove false, even if the rest of the program has bugs.) This part of the
program is called the kernel or core of the program, and it is not too big to
be proved correct within a reasonable time. The de Bruijn criterion leads to
a modified version of Fig. 3, shown in Fig. 4. This diagram presents what
we will realize in the Proof Checking the Proof Checker project.

Relation to Ezisting Research.

A self-correctness proof of a proof assistant has not been done yet, but
significant work in that direction already exists. (What has not been done
yet is prove correct the actual production source code of a proof assistant
which is used on a large scale for serious work.) For example there are the
verification of the Ivy proof checker in ACL2 by Olga Shumsky [28], the
formalization of HOL in HOL from the nineties by Joakim von Wright [40],
the formalization of nqthm (the precursor of ACL2) in Coq and vice versa by
Gilles Dowek and Bob Boyer [11], and the work on formalizing type theory
in Lego by Randy Pollack and James McKinna [38,29]. However, there are
two projects that stand out and surpass earlier efforts:

e Coq in Cogq. In the late nineties Bruno Barras, together with his advisor
Benjamin Werner, formalized the theory behind the Coq proof assistant,
and extracted from it a program that was functionally equivalent to
the Coq kernel [4-7]. This program can be used to recheck many Coq
formalizations and is guaranteed to be correct. However, in practice no
one uses it, and the difference in size and sophistication between this
program and the actual Coq kernel that everyone uses is huge. The
extracted Coq in Coq program is a few hundreds lines of code, while the
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Fig. 4. The Proof Checking the Proof Checker project.

actual Coq kernel is more than ten thousand lines of code. Also the real
Coq kernel uses programming language features that are not available
when one extracts a program from a formalization.

The methodology of the Coq in Coq project is shown in Fig. 5. First a
beautiful piece of mathematics is coded in the computer, which then is
refined into an executable program. This is also the approach used with
the B Method [1].

formal
specification

1
1
1
]

executable B formal
program program

Fig. 5. Developing software as mathematics.
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e HOL in HOL. In 2006 John Harrison proved the correctness of a simpli-
fied version of the kernel of his HOL Light proof assistant [18]. Here the
distance between the actual code of the system and the version proved
correct is much smaller. Mostly some features were removed to make
the effort simpler, but the code that was proved correct was essentially
code from the real system. For example, the function definition from the
actual HOL Light kernel source code:

let vsubst =
let rec vsubst ilist tm =
match tm with
Var(_,_) -> rev_assocd tm ilist tm
| Const(_,_) -> tm
| Comb(s,t) -> let s’ = vsubst ilist s and t’ = vsubst ilist t in

if s’ == s & t’ == t then tm else Comb(s’,t’)
| Abs(v,s) -> let ilist’ = filter (fun (t,x) -> x <> v) ilist in
if ilist’ = [] then tm else
let s’ = vsubst ilist’ s in
if s’ == s then tm else
if exists (fun (t,x) -> vfree_in v t & vfree_in x s) ilist’
then let v’ = variant [s’] v in

Abs (v’ ,vsubst ((v’,v)::ilist’) s)
else Abs(v,s’) in
fun theta ->
if theta = [] then (fun tm -> tm) else
if forall (fun (t,x) -> type_of t = snd(dest_var x)) theta
then vsubst theta else failwith "vsubst: Bad substitution list"

is represented in the HOL in HOL formalization as:

let VSUBST = define
¢ (VSUBST ilist (Var x ty) = REV_ASSOCD (Var x ty) ilist (Var x ty)) /\
(VSUBST ilist (Equal ty) = Equal ty) /\
(VSUBST ilist (Select ty) = Select ty) /\
(VSUBST ilist (Comb s t) = Comb (VSUBST ilist s) (VSUBST ilist t)) /\
(VSUBST ilist (Abs x ty t) =
let ilist’ = FILTER (\(s’,s). (s = Var x ty)) ilist in
let t’ = VSUBST ilist’ t in
if EX (\(s’,s). VFREE_IN (Var x ty) s’ /\ VFREE_IN s t) ilist’
then let z = VARIANT t’ x ty in
let ilist’’ = CONS (Var z ty,Var x ty) ilist’ in
Abs z ty (VSUBST ilist’’ t)
else Abs x ty t’)‘;;

The remainder of the HOL Light kernel after the features were removed
was more than half of the code. However, the feature removal meant that
the version of the system that was proved correct could not actually check
existing HOL proofs. Also, for the correctness proof the OCaml source
code was translated into HOL definitions by hand. Although it is easy
to see by comparing source files that this translation is correct, it still
leaves a gap.

In HOL in HOL an opposite direction was followed from the Coq in Coq
project. While in Coq in Coq the software was the result of the work,
in HOL in HOL it was the starting point. HOL in HOL is not about
creating software, but about taking existing software — real production
code — and proving it correct. This is sketched in Fig. 6. From the point
of view of software verification this seems to be the more interesting and
challenging direction.
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Fig. 6. Proving existing software correct.

Of course in practice the best approach is a middle ground between Fig-
ures 5 and 6. Still, starting from experimentation with a functional program
and only when the program turns out to be reasonable begin work on a cor-
rectness proof seems a good approach. This was the methodology followed
both by Georges Gonthier in his Four Color Theorem verification [13] and
by Russell O’Connor in his work on provably correct exact real arithmetic
[35].

Research Approach.

The project that we propose here is to finish what John Harrison started
with his HOL in HOL formalization. One PhD student should be able to
reach the point where the whole of the HOL Light kernel is proved correct.
The system then will be running a kernel that has been proved correct by
itself.

In the HOL in HOL project the HOL code that was proved correct was
syntactically closely related to the OCaml source code of the HOL Light
kernel, but there was no formal relation between the two. For this reason we
propose to add automatic translation from HOL code to OCaml (Step 1.1
in Section 7), even if it essentially will produce code that already is there.
Conversely, OCaml code will be automatically converted to HOL definitions
(Step 3). These translations will be formally proved correct with respect to a
formal OCaml semantics (Step 2.2). This means that we will not just prove
a model of the HOL Light kernel correct, but that the correctness proof will
apply to the actual source code.

A more detailed description of the project will be given in Section 7 below.

There are a couple of possible objections to this project that need to be
addressed. First, there is a chicken and egg problem here. The program that
checks the correctness might be wrong, and for this reason accept a fallacious
proof, and therefore in fact might not be correct. Of course this possibility
exists. However, as a human will be paying attention as well, it is so small
that it is only of philosophical importance [39].



Proof Checking the Proof Checker 9

More serious is Godel’s second incompleteness theorem [24, 12]. It says that
a system cannot prove its own consistency, which applies to a proof assistant
too. A proof assistant cannot support a proof that it will never prove false.
However this is not a serious problem either. What will be proved is not that
the system is consistent but that the system implements its logic correctly.
Equivalently, the correctness proof will show that the consistency of the logic
implies that the system will never accept a proof of false.
This consistency can be stated in only a few lines and is very simple, while
the real world program being proved correct is hundreds of lines long and
very complex.
In fact this approach was used in the HOL in HOL project. There the con-
sistency of the HOL logic is phrased as an ‘inaccessible cardinal axiom for
the HOL logic’:
new_type("I",0);;
let I_AXIOM = new_axiom
‘UNIV:ind->bool <_c UNIV:I->bool /\
(!s:A->bool. s <_c UNIV:I->bool ==>
{t | t SUBSET s} <_c UNIV:I->bool)‘;;
This then is shown to imply that the HOL Light implementation will never
accept a proof of false.
Finally there is the question: “‘Why HOL Light?” There are impressive pro-
grams that have been validated in other systems. Maybe one of these other
systems would be a better choice? The reason for our choice for HOL Light
is that it has by far the smallest kernels of the major proof assistants that
satisfy the de Bruijn criterion:

system kernel size (in 103 lines)
HOL4 6
HOL Light 0.7
ProofPower 7
Isabelle 5
Coq 14

Note that although HOL Light is a relatively light-weight system, it is one of
the best proof assistants available. It has been extensively used for hardware
verification at Intel [15,17], and is among the best systems for formalization
of mathematics [42, 43].

Scientific Importance and Urgency of the Proposed Research.

It is very important to use interactive theorem proving on real world pro-
grams, programs that are actually used. Only then the technology has to
face real problems, and only then will it be developed in the right direction.
Having a system verify itself (not just a model or a simplified version, but
the actual code with all the dirty tricks to make it run fast) is a good choice
for such a verification, and the technology is at a point that this can be done.
Clearly now is the time to do this.
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— Relation to the Research Group.

6b)

The Foundations Group in Nijmegen is internationally renowned for its re-
search into the technology and use of proof assistants, both for mathematics
and computer science. There is strong expertise in mathematical logic, func-
tional programming and the use of interactive theorem provers, which makes
it the best place in the Netherlands for this project.

Application Perspective. This project will prove a program correct that
has been used for many years both in academia (with impressive results
like [19]) as well as in industry [10,17]. This is not about experimentation
or a prototype: it is about ‘the real thing’. The project proposed here will
really mean pushing the boundary of interactive theorem proving for software
correctness.

Part of the project — Phase 3 in Section 7 below — will be to investigate how
program development can be integrated with validation of the developed
code. The project will not just be about proving a single program correct,
but also about creating a methodology that is generally applicable. This
will then allow many functional programs to be proved correct, including
programs that use state, exceptions and non-structural recursion.

Project planning. Fig. 7 presents an overview of the project schedule. It
consists of three phases, with each phases divided in steps as follows:

Phase 1: Create a fully self-verified HOL Light.
1.1. Compile the existing HOL in HOL code to OCaml.
1.2. Extend the HOL in HOL code to match the actual kernel.
1.3. Run HOL Light on top of the extended HOL in HOL code.
1.4. Extend the correctness proof to the extended HOL in HOL code.
Phase 2: Obtain further correctness evidence.
2.1. HOL in HOL outside OCaml.
2.1a. Run the verified kernel inside HOL Light by rewriting.
2.1b. Check the correctness proof in other HOL provers.
2.2. Prove the OCaml translation correct inside HOL Light.
Phase 3: Integrate OCaml and HOL development.

We will now detail each of these steps:

Phase 1: Create a fully self-verified HOL Light.
1.1. Compile the existing HOL in HOL code to OCaml.
The HOL in HOL formalization represents the verified code as recur-
sive HOL definitions. The first part of the project is to translate these
‘executable’ HOL definitions back into OCaml syntax. This way an
executable HOL Light-like kernel for a simplified logic is obtained.
The HOL in HOL code will have to be modified and extended many
times during the project. For this reason the translation into OCaml
will be automated. This is done by writing a printer for HOL terms
in OCaml syntax, that then is used to print the function definitions
from the HOL in HOL kernel. The result of this step is what amounts
to a version of program extraction for HOL Light.
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Fig. 7. Project schedule.

1.2. Eztend the HOL in HOL code to match the actual kernel.

The current HOL in HOL formalization leaves out some important
features from the HOL Light kernel. The HOL in HOL code now is
extended to exactly match the actual HOL Light kernel.

1.3. Run HOL Light on top of the extended HOL in HOL code.

The translation from 1.1 now is applied to the code from 1.2, and
a version of HOL Light is created in which the result of this has
replaced the current HOL Light kernel. Because the HOL in HOL
definitions closely mimic code from the HOL Light kernel, this is not
a large change.

1.4. Extend the correctness proof to the extended HOL in HOL code.
Finally the correctness proof from the HOL in HOL project is ex-
tended to cover the extended HOL in HOL code.

Phase 2: Obtain further correctness evidence.

2.1. HOL in HOL outside OCaml.
2.1a. Run the verified kernel inside HOL Light by rewriting.
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The code from 1.1 that translates HOL definitions into OCaml has
not been verified, and might contain bugs that taint the correctness
result about the HOL in HOL code. For this reason the HOL in
HOL program also is executed inside the HOL system, by using the
definitions as rewrite rules. This is much slower, but is certain to be
correct.

2.1b. Check the correctness proof in other HOL provers.

The formalization is imported in other theorem provers to check the
correctness by different code written for different compilers. Transla-
tors of HOL Light code to Isabelle/HOL [34], and HOL4 and Proof-
Power [20,21] are applied, and the results checked in these other
systems.

2.2. Prove the OCaml translation correct inside HOL Light.

It also is possible to check the correctness of the OCaml translation
inside HOL. The HOL semantics of OCaml Light by Scott Owens
[36] can be combined with a proof producing version of the HOL to
OCaml translator from 1.1 to get a validated version of the OCaml
code.

Phase 3: Integrate OCaml and HOL development.

We manually translated OCaml code to HOL definitions (Step 1.2),
and then had the computer translate the result back to OCaml (Step
1.3). For this project that is the practical way to go about it, but
for development of validated software in general it is a convoluted
way of working. A more integrated style of software development is
now developed, with in particular compilation from OCaml to HOL.
Programs then can be written in OCaml, while the corresponding
HOL definitions are created automatically.

This project is a direct continuation of existing work by John Harrison,
and therefore two visits are planned for intensive contact between the PhD
student and John Harrison. Both visits are marked in Fig. 7, and are planned
for the first and third year of the project. These visits will either consist of
the PhD student visiting Intel in the United States, or of John Harrison
visiting the Radboud University Nijmegen in the Netherlands. (Ideally there
will be one visit in each direction.) These visits will be around one month
long. In the project budget below a special travel budget for these visits is
included.

Educational Aspects. The PhD student has to be an expert on functional pro-
gramming (OCaml), theorem proving (HOL) and mathematical logic (HOL
semantics). In the first years of the project he or she will interact with ex-
perts in these fields, and attend relevant courses at the Radboud University
Nijmegen. The PhD student also will attend a summer school related to the
field of interactive theorem proving.
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8) Expected Use of Instrumentation. The only part of the project that
involves heavy computation is 2.1a, which is not a bottleneck. Therefore
there is no need for instrumentation beyond a regular workstation.
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10) Requested Budget.

PhD student for 4 years

a) appointment (incl. benchfee) standard amount = € 195,424
b) additional travel budget (detailed below) = € 7,600
Total =k€ 203

Budget for visiting Harrison

return ticket Netherlands/USA € 800

living costs abroad for one month € 3,000
1 x visiting Harrison € 3,800 "
2 x visiting Harrison 2 x € 3,800 = € 7,600
Total = € 7,600 N

(The motivation for two visits that will allow the PhD student to work with
John Harrison is given in Section 7 on page 12.)



