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Chapter 1

 

Introduction

 

If it’s not correct, it’s worthless.

 

I would even agree that if it does not have rigorous definitions, it’s worthless.

 

This thesis investigates some aspects of the notion of persistence in the context of

 

modular initial algebra specifications. A specification is called persistent when the sets

 

of elements of the specified datatypes do not depend on the module in which they

 

are referred to (for the precise definition of persistence, refer to section 2.5.1.2).

 

The three main goals of this study are:

 

•

 

To argue that verification of the persistence of an algebraic specification can en-

 

hance our confidence in the correctness of that specification, and to give an ap-

 

proach for verifying a form of persistence automatically.

 

•

 

To show that a specification can be implemented using logic programming in such

 

a way that the implementation consists of the natural definition of the semantics of

 

that specification.

 

•

 

To show that a persistent specification can be implemented in a modular pro-

 

cedural programming language in such a way that the modularity of the implemen-

 

tation corresponds to the modularity of the specification.

 

This thesis, then, consists of four parts.

 

•

 

Chapter 1 contains an introduction that motivates the use of modular initial algebra

 

specifications and the study of persistence.

 

•

 

Chapter 2 gives a formal treatment of the theory of initial algebra specifications and

 

techniques that can be used to verify the persistence of those specifications.

 

•

 

Chapter 3 gives a concrete framework for checking persistence in the form of the

 

specification language Perspect. A number of examples in this language are pre-

 

sented.

 

•

 

Chapter 4 shows that persistent specifications can be cleanly integrated with both a

 

logic programming language and a modular procedural programming language.

 

Algorithms for compiling Perspect specifications to both Prolog and Modula-2

 

programs are described.

 

Two specification languages will be used for the expression of algebraic specifications.

 

The first one is 

 

ASF

 

, which is an acronym for ‘Algebraic Specification Formalism’. It

 

was developed in Amsterdam as part of the specification language for the GIPE pro-

 

ject. For the definition of ASF, see chapter 1 of [Bergstra, Heering, Klint, 1989]. The



 

2

 

Introduction

 

second specification language that is used is 

 

Perspect

 

, a dialect of ASF, which is the

 

specification language introduced in this thesis. It will be the subject of chapter 3.

 

1.1. Motivation and general overview

 

In this thesis we study the theory of initial algebra specifications. Specification lan-

 

guages that use initial algebra semantics have both the characteristics of a formal spec-

 

ification language as well as those of a programming language. This dualistic nature of a

 

language that uses initial algebra semantics is both its weakness and its strength.

 

1.1.1. Simplicity of semantics.

 

 The main advantage of a language that uses initial algebra

 

semantics, an advantage it shares with most other formal specification languages, is its

 

clean semantics. Programming languages on the contrary, are almost always ridden

 

with special cases in the definition of their semantics, and often contain aspects that

 

are left unspecified or refer to system dependent parameters. Unfortunately this

 

departure from an abstract model behind the semantics of the language is necessary

 

when one defines a programming language: even the most formal of programming

 

languages has to give some description of what should happen when there is, for

 

instance, not enough storage in the computer to run the program. A specification

 

language, of course, need not bother with such problems.

 

For a rather extreme example of the undefinedness and system dependency of

 

texts in conventional programming languages, consider the following program in the

 

C programming language [Kernighan, Ritchie, 1988].

 

#

 

include

 

 <stdio.h>

 

int

 

main()

 

{

 

  

 

long

 

 l;

 

  

 

int

 

 i;

 

  

 

short

 

 s;

 

  

 

char

 

 c;

 

  i = 65537;

 

  l = i * i;

 

  

 

for

 

 (s = 0; s < l; s++)

 

    ;

 

  c = 255;

 

  

 

if

 

 (c == -1)

 

    (

 

void

 

) puts("0");

 

  

 

else

 

    (

 

void

 

) puts("1");

 

  

 

return

 

 0;

 

}
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This text is a valid C program. However, when someone tries to compile this program

 

and subsequently tries to run it, there are (at least) five possibilities:

 

(i)

 

The compiler refuses to compile the program.

 

(ii)

 

The program compiles, but crashes when it is run.

 

(iii)

 

The program compiles and does not crash, but will not terminate.

 

(iv)

 

The program compiles, does not crash, and terminates after printing ‘

 

0

 

’.

 

(v)

 

The program compiles, does not crash, and terminates after printing ‘

 

1

 

’.

 

Furthermore, for all five cases, the compiler and runtime system can justify why they

 

behave like they do. It all depends on how many bits there are in the various kinds of

 

integer (which is a system dependency of the compiler), and what happens on integer

 

overflow (which is an undefined aspect in the C programming language). The most

 

natural outcome of this program, in the sense that overflow is something we do not

 

want to happen, is that this program prints ‘

 

1

 

’ (this is case (v)). However, when we

 

compile this program using a contemporary compiler, it probably will not terminate

 

when we run it (which is case (iii)).
Admittedly, a language like C is a bit extreme in its system dependencies and un-

definednesses, but even a clean functional language like Scheme has many special cases
in its definition, and leaves a large part of its semantics undefined.

In contrast with this, the semantics of an initial algebra specification is extremely
elegant and simple. It has no special cases, and needs no primitive datatypes. Even a
simple datatype like the Boolean truth values can be constructed within the formal-
ism, and is not needed as a primitive in the definition of the semantics. Because of this
simplicity of semantics, initial algebra specifications avoid a lot of the problems that
are usually encountered when writing programs in conventional programming lan-
guages.

1.1.2. Executability. Another advantage of a language with initial algebra semantics, one
that it shares with programming languages, is the possibility of executability. It turns
out that it is easy to write initial algebra specifications in such a way that they can be
executed as a term rewriting system. This makes it possible to use the specifications as
a, albeit not very efficient, prototype of the system it specifies.

However, one should realize that it is not always the case that an initial algebra spec-
ification can be executed as a term rewriting system. (If one does not mind ineffi-
ciency, an algebraic specification can always be executed in some sense by per-
forming an exhaustive breadth first search, but this is generally considered not to be a
viable alternative.) This means that only a subclass of the initial algebra specifications
can be executed as a term rewriting system. One can argue that specifications that are
written to be executable as a term rewriting system, are often not the most simple or
natural way to describe something.

As an example, suppose that we try to specify the sorting of a list of elements from
some datatype, using the specification language ASF.

Suppose that there are given two auxiliary modules called Booleans and Lists,
which specify the Booleans and the lists over some datatype ITEM that has some
inherent total order given by the operator .less-or-equal.. These modules are
omitted here for brevity, except the export section of module Lists which is:
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exports

 begin

  sorts LIST

  functions

   empty-list:             → LIST

   ++ _      : ITEM        → LIST

   _ ++ _    : ITEM × LIST → LIST

   _ ++ _    : LIST × ITEM → LIST

   _ ++ _    : LIST × LIST → LIST

 end

Clearly lists are constructed using the (overloaded) operator ++. This operator is used
to construct a one-item list from some item, and to concatenate lists and items to
longer lists.

Now, a natural specification of sorting, one that is unfortunately not executable as a
term rewriting system, is given by the following module:

module Sorting

 begin

  exports

   begin

    functions

     sort: LIST → LIST

   end

  imports Booleans, Lists

  sorts BAG

  functions

   bag:    LIST → BAG

   sorted: LIST → BOOL

  variables

   i, j: → ITEM

   l, m: → LIST

  equations

   [1] bag(l ++ i ++ j ++ m)    = bag(l ++ j ++ i ++ m)

   [2] sorted(empty-list)       = true

   [3] sorted(++ i)             = true

   [4] sorted(l ++ i ++ j ++ m) = sorted(l ++ i) .and.

(i .less-or-equal. j) .and.

sorted(j ++ m)

   [5] sort(l) = m when bag(l) = bag(m), sorted(m) = true

 end Sorting

Module Sorting defines sorting in three steps:
• First a datatype called BAG is specified. This datatype is defined by equation 1 to be

a copy of the datatype called LIST, in which lists that only differ in the order of
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their elements are identified.
• Second, a predicate called sorted is defined that tells whether a list is already

sorted.
• Finally, for some list l, the sorted list sort(l) is defined to be the unique list m that

is sorted, and that consists of the same elements as l, i.e., that has the same associ-
ated bag as l.

There exists another specification of sorting that, in contrast to the previous specifica-
tion, has the advantage that it can be executed as a term rewriting system. The reason
for the fact that this specification is executable is that it does not give the abstract
notion of sorting, but instead gives some specific sorting algorithm:

module Sorting′
 begin

  exports

   begin

    functions

     sort: LIST → LIST

   end

  imports Booleans, Lists

  functions

   _ .select-small. _: LIST × ITEM → LIST

   _ .select-large. _: LIST × ITEM → LIST

   sort-and-append:    LIST × LIST → LIST

  variables

   i, j: → ITEM

   l, m: → LIST

  equations

   [1] empty-list .select-small. j = empty-list

   [2] (i ++ l)   .select-small. j =

if(i .less-than. j, (i ++ m), m)

when l .select-small. j = m

   [3] empty-list .select-large. j = empty-list

   [4] (i ++ l)   .select-large. j =

if(i .less-than. j, m, (i ++ m))

when l .select-large. j = m

   [5] sort-and-append(empty-list,m) = m

   [6] sort-and-append((i ++ l),m) =

sort-and-append(l .select-small. i,

i ++ sort-and-append(l .select-large. i, m))

   [7] sort(l) = sort-and-append(l,empty-list)

 end Sorting′

The intended meaning of the expression ‘sort-and-append(l,m)’ is ‘first sort list l,
and then append list m after it’.

The algorithm that is used in this specification is a simple version of the quicksort
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algorithm (which [Knuth, 1973] calls ‘partition-exchange sort’. Note though, that due to
the functional nature of the specification, no ‘exchanges’ take place in this version of
quicksort.) To enhance the efficiency of the algorithm, it is expressed in a tail-recursive
way.

It can be argued that one should not give a specification of an algorithm for sorting,
when a specification of the concept of sorting is required. One argument for this point
of view is the observation that an algorithm is in general not as readable as a con-
ceptual exposition. Note however, that the algebra that is specified by module
Sorting′ does not differ from the algebra that is specified by module Sorting. So,
although the specification uses a specific algorithm to specify what should be done, it
is not specified that this algorithm should be used when implementing the specifica-
tion!

1.1.3. Problems. There are two – clearly related – classes of problems with the usage of
initial algebra specifications:
• It is too difficult to write an initial algebra specification.
• Most of the initial algebra specifications that can be found in the literature are

incorrect: the meaning of those specifications differs from the meaning that was
intended by the author of the specification.

Note that the two problems are not the same. For example, in the empty language it is
even more difficult to write down something. However, for the empty language it is
obvious when a text is not correct. On the other hand, as is well known today, almost
all texts in a conventional programming language are somewhat incorrect (‘contain
bugs’). Still, when writing a program in a conventional programming language, one
generally feels less restricted than when writing an initial algebra specification.

In this thesis, we only work on the solution of the second problem, and, after this
section, we will not be concerned with the first problem. However, our ‘solution’
makes the first problem worse. While the use of the techniques that are proposed
here reduces the chance that an error in a specification will go undetected, it will make
it much harder to write a specification at all.

While it is not the goal of this thesis to offer ideas for making it easier to write alge-
braic specifications, this is of course a fascinating topic. One can conceive two ap-
proaches for solving this problem: both lead to giving up the middle position be-
tween specification language and programming language, and move to one end of the
spectrum between formal specification and program.

The first approach consists of adding more expressive power to the language. For
example, one can replace the conventional conditional equational logic of initial alge-
bra semantics by first order predicate logic. When one takes this step, it clearly be-
comes easier to write specifications because one has now more tools at one’s disposal.
Also, due to this greater expressive power, the specification can be more intuitive,
and because of that, we can hope that the chance that one makes an error is reduced.
However, the disadvantage of this approach is that a specification that uses the addi-
tional expressive power probably will not be executable.

The second approach consists of replacing the simple initial algebra semantics by a
more operational semantics that is closer to the semantics of a programming language.
Examples of this are the addition of priorities to term rewriting systems, or the auto-
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matic handling of ‘error’ elements. The disadvantage of this approach is that one gets
less nice semantics. For example, one tends to loose the property that every syntacti-
cally valid text in the language has a meaning. Or, even worse, one can loose the prop-
erty that it is decidable whether a specification has a meaning at all.

1.1.4. Erroneous specifications. We will now look at the problem that most specifi-
cations from the literature are incorrect. A number of examples to demonstrate this
point will be presented in section 1.2.

It is interesting to note that the notion of incorrectness has no formal significance.
When a specification does not specify the intended algebra, it is not objectively
incorrect but only in relation to the – informal – intention. If one would try to remedy
this informality by giving a ‘meta’ specification, it is not clear what the use of the
‘normal’ specification is. And even if one gives a meta specification, then that meta
specification can again be in error.

The problem that it is not clear what the term ‘correct’ exactly means – namely
either: valid according to the formal definition of the system, or: correct according to
the intention of the author of the specification – has confused some people who were
using the interim ASF type checker. This type checker checked whether a specifica-
tion was valid according to the definition of ASF, i.e., it checked whether a specifi-
cation did specify an algebra at all. If this turned out to be the case, the type checker
printed:

--- specification correct

Some people interpreted this output to mean that the specification reflected correct-
ly their intentions, which was generally not the case.

It is not the case that incorrectness of a specification can always be easily dis-
covered by executing the specification as a term rewriting system. For example, con-
sider the following specification of stacks, in which the problem of what happens
when one pops from an empty stack is solved by having ‘error elements’ in the alge-
bra (a supposedly correct specification that uses this idea can be found as the first
specification in section 3.3.4).

module error-Stacks

 begin

  parameters Items

   begin

    sorts ITEM

    functions

     error-item: → ITEM

   end Items

  exports

   begin

    sorts STACK

    functions
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     empty-stack:               → STACK

     error-stack:               → STACK

     push:         ITEM × STACK → STACK

     top:          STACK        → ITEM

     pop:          STACK        → STACK

   end

  variables

   i, j: → ITEM

   s, t: → STACK

  equations

   [1] push(top(s),pop(s)) = s

   [2] top(push(i,s))      = i

   [3] pop(push(i,s))      = s

   [4] top(empty-stack)    = error-item

   [5] pop(empty-stack)    = error-stack

   [6] push(error-item,s)  = error-stack

   [7] push(i,error-stack) = error-stack

   [8] top(error-stack)    = error-item

   [9] pop(error-stack)    = error-stack

 end error-Stacks

This specification is incorrect. One can prove that all elements of ITEM are equal to
each other by:

i                        = [2]

top(push(i,error-stack)) = [7]

top(error-stack)         = [7]

top(push(j,error-stack)) = [2]

j

In the same fashion, equality of all elements of STACK can be proved:

s                        = [3]

pop(push(error-item,s))  = [6]

pop(error-stack)         = [6]

pop(push(error-item,t))  = [3]

t

However, this specification will always behave acceptably when executed as a term
rewriting system. The incorrectness of the specification is reflected by the fact that
the corresponding term rewriting system is not confluent, which means that a num-
ber of terms has more than one normal form. However, each of those normal forms
is a plausible reduct.

For example, one can reduce:
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push(top(empty-stack),pop(empty-stack))

to empty-stack but also to error-stack. Both results are plausible. Note that it is
on the other hand not possible to reduce:

push(error-item,error-stack)

to empty-stack, which would be strange.
As this example shows, ‘debugging’ an executable specification by executing it as a

term rewriting system will not always be sufficient to find all specification errors in the
specification. It will be necessary to look for other ways to uncover errors in a specifi-
cation.

1.1.5. Checking persistence. As will be shown by the examples in section 1.2 spec-
ification errors often lead to impersistent specifications (for the definition of persist-
ence, see section 2.5.1.2). For example, in most incorrect specifications, the sort of
the Booleans, that should contain only the two elements ‘true’ and ‘false’, will
somehow be damaged. This may either mean that ‘true’ has become equal to ‘false’, or
that there exists some element different from both ‘true’ and ‘false’, or even both
anomalies can occur at the same time. In a sense, one can call a specification in which
the sort of the Booleans turns out to contain only one element because all Booleans
are identified, inconsistent. However, the Booleans have no special status within the
framework of initial algebra semantics, so one can often better use a more intrinsic
concept, and call instead such a specification impersistent.

It might be argued that impersistent specifications have some applications (for a
rather extreme form of this point of view, see the last chapter of [Mulder, 1990]).
There are situations in which the most elegant specification of some algebra is not
persistent. For example, consider the following Perspect specification of the integers
modulo 7.

external N

 sort N

 function 0, S(N): N

internal N

 [empty]

external 7a

 import N

internal 7a

 variable n: N

 equation

  S(S(S(S(S(S(S(n))))))): n

In module N one first specifies the natural numbers. After that, the equation (in mod-
ule 7a):
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S(S(S(S(S(S(S(n))))))): n

which should be read as:

n + 7 = n

is sufficient to convert this specification to a specification of the integers modulo 7.
There is however a simple way to obtain the same effect, without sacrificing per-

sistence, if we replace module 7a by:

external 7b

 import N

 sort 7

 function i(N): 7

internal 7b

 variable n: N

 equation

  i(S(S(S(S(S(S(S(n)))))))): i(n)

Instead of changing the sort of the natural numbers we now first make a copy called 7
of this sort (with the ‘identification’ function i), and make the changes local to that
copy. Module 7b is almost equal to module 7a, and has the advantage that it satisfies
persistence. Furthermore, module 7b can be considered to be clearer, because it has
been made explicit that a sort is being modified here.

This example is simple, but the same approach can be applied in general to
eliminate impersistencies that were made intentionally in algebraic specifications. If
some module modifies a sort in some way, one can generally avoid the impersistence
that is introduced in this way by creating a new sort in which the modifications are
made. This shows that even though there may be cases in which an impersistence in a
specification may seem to be advantageous, in practice that kind of impersistencies
can be eliminated in a simple way, and without much disadvantage.

So, assuming that persistence of specifications is a desirable property, it would be
nice to have some automated support for the creation of persistent specifications.

One kind of ‘support’ for persistence in algebraic specifications is to require in the
definition of a specification language that imports between modules should be persis-
tent. However, one could as well postulate that specifications should be correct (in the
sense that the specified algebra is equal to the algebra that was intended by the author
of the specification) and avoid the detour of the notion of persistence. Simply postu-
lating a requirement does not help much.

Instead, one wants not only to claim the persistence of the specification, but also to
have some way to verify this claim. As persistence is not a decidable property, this
cannot be done in general. One cannot have a system in which one can formulate
precisely the persistent algebraic specifications, and in which it is decidable whether a
specification is valid according to the definition of the system.

In this thesis we solve this dilemma by not opting for the full class of persistent
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algebraic specifications, but only for some decidable subclass. This is analogous to the
restriction in recursion theory of the class of all total recursive functions to the primi-
tive recursive functions, in order to get a decidable subclass.

It turns out that the way we restrict the class of persistent specifications leads to a
class of specifications that can be efficiently executed as a term rewriting system. That
persistence is related to executability is not really surprising. In fact, a persistent spec-
ification has a natural notion of execution. This means that persistence implies execu-
tability of the specification according to this notion.

Consider some module M1 which introduces some sort σ. Furthermore, consider
also some other module M2 that imports M1, and some term t of type σ, over the sig-
nature of M2. Now, a term t′ can be defined to be a result of an execution of t when
t′ is a term over the signature of M1, and when t′ can be proved to be equal to t. If the
import of module M1 by module M2 is persistent, such a term t′ can (by the definition
of persistence) always be found.

A nice property of the way we check persistence in this thesis is that in the sub-
class of specifications that comply with our constraints, the notion of executing a term
as defined in the previous paragraph coincides with the notion of executing it by re-
writing it in the specification considered as a term rewriting system.

So, we are looking for a specification system that satisfies the following three pro-
perties:
• It is decidable whether a specification is valid according to the definition of the for-

malism.
• All specifications that are valid according to the formalism are persistent.
• All specifications that are valid according to the formalism are executable as a term

rewriting system.
We will satisfy this set of requirements as follows. We start with the class of uncondi-
tional specifications, considered as a term rewriting system. We restrict this class by
only admitting specifications that satisfy a strong form of termination, a strong form
of confluence, and a strong form of persistence. In order to prove decidability, we
also need the requirement of left linearity (which will be needed in the theory devel-
oped in section 2.5).

The relation between the requirements of termination, confluence and persistence
on the one hand and decidability and executability on the other hand is shown in the
following figure:
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This figure means that:
• The strong form of termination that we require is a decidable property of the spec-

ification.
• Given that the specification satisfies this strong form of termination, the strong

form of confluence that we require is also decidable.
• Given that the specification satisfies both the strong forms of termination and con-

fluence, the strong form of persistence that we require is again decidable.
• Given that a specification is terminating and confluent, i.e., given that it is a com-

plete term rewriting system, that specification is executable as a term rewriting
system.

We will define in chapter 3 a language called Perspect. It will be a concrete represen-
tation for the decidable class of specifications that we sketched in the previous para-
graphs. Some arguments for the introduction of a special language for this specific
purpose can be found in the next section.

One must realize that the price that we pay for decidability is high. Because of the
way we verify the persistence of a specification, it is hard to write a specification that
satisfies all restrictions. In this way, Perspect resembles the empty language, and in
fact the empty language also satisfies the three requirements that Perspect was meant
to satisfy. The empty language is clearly decidable, and if no text is valid, all texts are
persistent and executable.

However, the restrictiveness of Perspect is partly illusory. Often the checks of Per-
spect fail, not because they are so heavy, but because it is simply hard to find an initial
algebra specification of the desired algebra at all.

1.1.6. Yet another specification language. One can ask whether the proposed ap-
proach to checking persistence should be accompanied by a new language. Was it not
possible to reuse an old language, and add the persistence check to it? Surely the
world does not need yet another specification language!

The requirement of persistence is not unique for Perspect. Other languages also
have modularisation constructions that are defined to imply persistence of the corre-
sponding imports. This means that the fact that Perspect specifications are by defini-
tion persistent is not reason enough to introduce a new formalism.

One good reason for not using an existing formalism is a practical one. Most for-
malisms have a lot of constructions that were considered useful at the time the formal-
ism was introduced. However, with Perspect we want to focus on the persistence
check without being distracted by irrelevant details (at least, irrelevant to the issue of
persistence). This means that Perspect is, in contrast to most other formalisms, a
minimal formalism. The only features of Perspect that depart from the real minimal
specification formalism, namely the echo and rec declarations, concern specifically
the persistence check. Another way the minimality of Perspect expresses itself is in
the minimality of Perspects modularisation constructions and lexical syntax. Both
aspects of Perspect were specifically designed to make Perspect easily translatable to
Modula-2.

Because Perspect is a dialect of ASF, we will now compare Perspect with ASF in
some detail. As we said, Perspect is a minimal language as compared to ASF. Features
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of ASF that are not present in Perspect are:
• conditional equations
• parametrised modules
• a built-in if function
• tuples
• renaming of imported objects
• overloading of function names
• operators
• non-alphanumerical characters in identifiers
In the design of Perspect some of the experience gained from working with ASF has
been applied. This means that Perspect has a number of improvements over ASF.
Some of these improvements are:
• Perspect has a less restricted form of hiding. It is possible to import a module

without automatically exporting the signature of that module.
• Perspect has a free order between the various components of a module. It is not

necessary to write down sorts, functions, variables and equations in that order, but
these objects may be mixed freely. This makes it possible to group the declaration
of a function with the equations describing it without having to introduce a separate
module. The illogical order of imports and exports in ASF has been eliminated.

• Perspect is more orthogonal in its relations between the different parts of a mod-
ule. For example, in Perspect variables can be exported.

• Perspect has unnamed variables, like the variables called ‘_’ in Prolog.
• Perspect is more compact than ASF (often a Perspect specification is only half as

long as the corresponding ASF specification). Perspect has a couple of abbrevia-
tions, which make it possible to reduce the number of declarations and equations
drastically.

• Perspect has a simpler comment convention than ASF. In Perspect it is possible to
remove a part of a specification temporarily by putting it between comment
brackets.

The most striking difference between Perspect and the various other specification
formalisms is that Perspect has the syntactic means to indicate a specific termination
ordering in conjunction with the specification. This termination ordering is given by
the order of the function declarations in the specification by using the echo and rec
declarations and by marking some of the function argument positions as ‘inductive’
(or, in path ordering terminology, ‘lexical’) by prefixing them with an asterisk in the
function declaration. The semantics of a Perspect specification does not depend on
these syntactic elements; they are only used to verify the persistence of the specifica-
tion.

1.2. Examples of erroneous specifications

In this section we will look at four examples of errors that occurred in real specifica-
tions. The errors were taken from the original version of the PICO specification (as it
appeared in [Bergstra, Heering, Klint, 1985]), and from the ADT part of the examples
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in [Bergstra, 1988]. Both specifications were written in the ASF formalism, although
the version of the PICO specification studied here is written in an old dialect of ASF
and although the ADT specifications in [Bergstra, 1988] have a somewhat deviant syn-
tax.

We try to show that most of the errors that we will study in this section destroyed
the persistence of the specification they occurred in. This implies that an attempt to
prove the persistence of these specifications would have pointed out the majority of
these errors. In other words, the application of a persistence check to these specifica-
tions would have been a valuable heuristic for finding some of these errors.

1.2.1. Converting strings to integers. The first error that we will look at, occurs in the
PICO specification when one tries to convert a string (e.g. the string ‘12345’) to an
integer (which should in this case be the integer 12345).

In order to understand the context of the error, we first have to look at the aim of
the PICO specification in some detail. The PICO specification intends to specify the
semantics of a small programming language called PICO. This goal is attained by
specifying a function called run. This function has the sort STRING as its domain, and
the sort PICO-VALUE as its range. A PICO-VALUE is either an INTEGER, a STRING or an
error-value.

As an example, consider the string s that is defined as:

‘begin declare output: integer; output := 12345 end’

The term run(s) should then be equal to the term pico-value(i) where i is the in-
teger 12345.

Clearly, at some point in the specification the transition of the substring ‘12345’ of
s to the integer 12345 that occurs in the value of run(s) has to be made. In order to
do this, the PICO specification contains the module Strings, which exports the
function str-to-int by means of the following export section:

exports

   begin

     functions

        str-to-int : STRING → INTEGER

   end

The meaning of the function str-to-int is then specified using the following two
equations:

variables

     c       :→ CHAR

     str     :→ STRING

equations

[120] str-to-int(seq(c, str)) =
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                      if(eq(str, null-string),

                        ord(c),

                        add(mul(ord(c), 10), str-to-int(str)))

[121] str-to-int(null-string) = 0

However, elaboration of an example will show that these equations are incorrect. This
can be seen when we use this definition to convert the string ‘12345’ to an integer,
because the value that we get will be:

1 ⋅ 10 + 2 ⋅ 10 + 3 ⋅ 10 + 4 ⋅ 10 + 5 = 105

instead of:

(((1 ⋅ 10 + 2) ⋅ 10 + 3) ⋅ 10 + 4) ⋅ 10 + 5 = 12345

Now, what are precisely the consequences of this error for the PICO specification?
And specifically, can the PICO specification still be persistent when it contains this
error? If the error would make the persistence of the specification impossible, a per-
sistence check on the specification should make the error visible.

Unfortunately, this error cannot be detected by verifying the persistence of the
specification, because it does not disturb the persistence at all. Although the function
str-to-int has a somewhat misleading name, it is a perfectly acceptable function as
it is defined here. Also, there are no serious consequences for the rest of the specifica-
tion caused by the use of this function, because the only equation in which the func-
tion is used is equation 338 in module PICO-concrete-syntax:

[338] build(integer-constant, env)

      = pico-atree(op-integer-constant,

                   integer-pico-atree(str-to-int(str)))

      when lexical-pico-atree(token("integer-constant", str))

                      = "i" ^ env

This is the point where the substring ‘12345’ is evaluated as having the (erroneous)
value 105. It will be clear that the error in the specification of str-to-int has no dis-
astrous consequences in this equation.

This first example of an error in a specification shows that there exists a class of
errors that will not be caught by checking the persistence of a specification. This class
of errors strongly resembles the errors in conventional computer programs that are
traditionally denoted by the word ‘bugs’. This is not remarkable, because a conven-
tional computer program is always persistent (in the algebraic sense), so all errors in a
conventional program have to be of this type.

One can hope that the nature of algebraic specifications leads to a style of writing
specifications that is less prone to ‘bugs’ than conventional programming languages.
However, there is no real support for this hope.
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1.2.2. Calculating the answer of a nonterminating program. The second error that we
will look at, is also an error from the PICO specification. It occurs for example when
one tries to evaluate the value of the term run(s), where s is the string:

‘begin
  declare true: integer;

  true := 1;

  while true do od

end’

The function run is specified in the final module of the specification: module PICO-
system. The export section of this module looks like:

exports

     begin

        functions

             run:    STRING  → PICO-VALUE

     end

The function run is specified using two auxiliary functions run1 and run2. The relevant
part of module PICO-system is:

functions

     run1: PICO-ATREE        → PICO-VALUE

     run2: PICO-PROGRAM      → PICO-VALUE

variables

     s       : → STRING

     p       : → PICO-ATREE

     abs-prog: → PICO-PROGRAM

     has-output: → BOOL

     v       : → PICO-VALUE

     env     : → VALUE-ENV

equations

[369] run(s)                 = run1(parse-and-construct(s))

[370] run1(error-pico-atree) = error-value

[371] run1(p)                = if(check(pico-program(p)),

                                  run2(pico-program(p)),

                                  error-value)

[372] run2(abs-prog)         = if(has-output, v, error-value)

                   when program-state(env) =

                                eval(program-state(abs-prog)),

                        <has-output, v> =

                                lookup("output", env)
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These equations create the impression that the following four cases are distinguished:
• If the string s is not a syntactically valid PICO program, the value of run(s) is

error-value.
• If the string s is syntactically valid, but is not correctly typed, again the value of

run(s) is error-value.
• If the string s is syntactically valid, and correctly typed, but execution of the pro-

gram does not have output (e.g. because the program does not have a variable
called output), again the value of run(s) is error-value.

• Finally, if s is correct, and terminates with output v, the value of run(s) is v.
In the case that the execution of the program corresponding to s does not terminate
at all, the preceding paragraph suggests that the value of run(s) is equal to error-
value. However, this turns out not to be the case. In this situation eval(program-
state(abs-prog)) is not equal to a term of the form program-state(env). This
implies that run(s) is not of the form pico-value(i), pico-value(s) or error-
value.

That eval(program-state(abs-prog)) is for no environment env equal to pro-
gram-state(env) can be seen by looking at module PICO-evaluator where the
function eval has been specified. The relevant part of the export signature of module
PICO-evaluator is:

exports

    begin

       sorts        PROGRAM-STATE

       functions

            program-state  : PICO-PROGRAM    → PROGRAM-STATE

            …
            program-state  : VALUE-ENV       → PROGRAM-STATE

            eval           : PROGRAM-STATE   → PROGRAM-STATE

            …
    end

Note that this export section contains more than one function called program-state.
Here the overloading mechanism of ASF has been used. The equation:

eval(program-state(abs-prog)) = program-state(env)

should be interpreted as meaning that evaluation of the PICO program corresponding
to the abstract syntax tree abs-prog terminates with the value environment env.

Now, the equation that is meant to give the semantics of the while statement in
PICO is equation 363 in module PICO-evaluator:

[363]  eval(program-state(abs-while(x, ser), env))

= if(eq(eval-exp(x,env), pico-value(0)),

   program-state(env),
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   eval(program-state(append-statement(ser, abs-while(x,ser)),

                      env)))

It will be clear that this equation cannot be used to eliminate the eval function, when
we are considering a program for which the condition in the while statement stays
true for ever.

What does this mean? Because of this problem with nonterminating programs,
there are unexpected elements in the sort PICO-VALUE. In module PICO-values, an
element of sort PICO-VALUE was either an INTEGER, a STRING or an error-value, as
is indicated by the export signature of module PICO-values:

exports

    begin

       sorts PICO-VALUE

       functions

          error-value :                         → PICO-VALUE

          pico-value  : INTEGER                 → PICO-VALUE

          pico-value  : STRING                  → PICO-VALUE

          eq          : PICO-VALUE × PICO-VALUE → BOOL

    end

However, in module PICO-system we also have elements of the form run(non-
terminating-PICO-program) in sort PICO-VALUE. This shows that the import of
module PICO-values in PICO-system is not persistent.

As is usual with this kind of problem, the impersistence is not restricted to sort
PICO-VALUE. For example, the Booleans (sort BOOL) are also affected. Namely,
suppose that the string strange-PICO-program is:

‘begin
  declare

    true:    integer,

    output:  integer;

  true := 1;

  output := 0;

  while true do

    if output then output := 0 else output := 1 fi

  od

end’

The value of the variable output flips in this program infinitely often between 0 and 1,
and the program does not terminate with either value. We have now two interesting
new Boolean values in sort BOOL:

eq(run(strange-PICO-program),pico-value(0))

and:
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eq(run(strange-PICO-program),pico-value(1))

The error that we studied in this section shows an interesting class of specification
errors: Nonterminating calculations that introduce unexpected elements in simple
datatypes. In contrast to the error from the previous section, we have here a class of
errors that can be detected by verifying the persistence of the specification.

A remedy for this kind of errors in general involves a major restructuring of the
specification.

1.2.3. Forgetting one case from a list of cases. The two errors that will be studied in the
next two sections both come from one module. This module is in fact a family of
modules, parametrised by a natural number K:

data module Nat(K)
begin

     sort

          N

          B

     functions

          0:           → N

          max:         → N

          succ:  N     → N

          true:        → B

          false:       → B

          eq:    N × N → B

     variables

          x, y: → N

     equations

          max                    = succK(0)

          succ(max)              = max

          eq(0, 0)               = true

          eq(0, succ(x))         = false

          eq(succ(x), 0)         = false

          eq(succ(x), succ(y))   = eq(x, y)

end Nat(K)

In the original version of this module (the one that was published in [Bergstra, 1988])
the two lines that are slanted:

eq: N × N → B

and:

eq(0, 0) = true
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were missing. In a revised edition ([Bergstra, 1989]), the second line was added, but the
first line was still missing. The omission of the declaration is characteristic of the fact
that specifications in these experimental formalisms are often not mechanically
checked, because of a lack of appropriate programs. The omission of the equation is
the topic of the current section.

Suppose that we want to specify equality on the natural numbers N inductively, but
forget to specify one of the cases in the induction: in this specification the case for
eq(0,0). There are then three Booleans in the sort B, the elements true, false and
eq(0,0). This is clearly not what was intended by the author of this specification.
Strange enough, there is no impersistence, because there is only one module. How-
ever, we can change the example slightly by splitting it in two modules, in which case
there will be an impersistence.

Therefore, consider the following (invalid) Perspect specification, that gives the
pure form of the ‘missing eq(0,0)-case problem’:

external Bool

 sort B

 function true, false: B

internal Bool

 [empty]

external Nat

 sort N

 function 0, succ(N): N

 import Bool

 function eq(N,N): B

internal Nat

 variable x, y: N

 equation

  eq(succ(N),0), eq(0,succ(N)): false

  eq(succ(x),succ(y)): eq(x,y)

In this specification there is an impersistence because there are three Booleans in
module Nat (namely true, false, and eq(0,0)), while there were only two in module
Bool. This impersistence is shown when we ask the opinion of the Perspect checker.
When confronted with this specification it says:

##  Module Nat is not strongly persistent.

#   There are new normal forms of sort B of the form

#     eq(0,0)

#   added in this module (junk). [5.4]

And the Perspect checker is right.
(The reference ‘[5.4]’ in this error message refers us to section 3.1.5.4 of this
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thesis, which says: ‘For each sort in the module, it is required that the set of closed
normal forms (i.e., normal forms without variables) of that sort should be equal to the
set of closed normal forms of the sort with respect to the total rewriting system of the
module in which the sort is declared.’)

This error is also of a general nature. Because in an initial algebra specification the
choice between different options is often formulated using pattern matching, which
often consists of a long list of ‘cases’, it is easy to forget one possibility. In this situation
persistence checking excels at finding the omissions.

1.2.4. Induction over finite sorts. The last real specification error that we will study is
another error from the module in the previous section. It shows that it is hard to
specify finite sorts with equality using initial algebra semantics. This topic is further
elaborated in [Bergstra, Mauw, Wiedijk, 1989].

If we take the complete form of module Nat(K) in which the equation:

eq(0, 0) = true

is present, and split it in a Bool-part and a Nat-part, the Perspect checker prints in re-
sponse to that specification three messages. The second of those messages is:

##  Module Nat(K) is not open confluent.
#     eq(succ(x),succ(max)):

#       eq(x,succK(0))

#       eq(x,succK-1(0))

#   Maybe the equations

#     eq(succ(x),succ(y)): eq(x,y)

#     succ(max): max

#   should be more specific. [5.3]

(This is, of course, not the literal output of the Perspect checker. We have abbreviated
terms like succ(succ(succ(succ(succ(succ(succ(0))))))) to succK(0) for
clarity)

Some reflection shows that the criticism implicit in this output is appropriate. The
message for example tells us that:

eq(x,succK(0)) = eq(succ(x),succ(max)) = eq(x,succK-1(0))

which indeed follows from the specification. Now, take x equal to:

succK-1(0)

The left hand side can then be evaluated to false, while the right hand side gives
true, so we have shown that the equation:

false = true
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follows from the specification. In the form of the specification in which the Booleans
have been introduced in a separate module, there is again an impersistence.

This specification error shows that it is hard to specify a finite sort by means of
initial algebra semantics, while also having the advantages of unary induction using the
succ function. It becomes even harder to specify a finite sort with a successor-like
function when one tries to find a specification that is executable as a term rewriting
system (this is necessary if one wants to express it in valid Perspect). The specification
error that was studied in this section is not so much an error from some general class
of specification errors, as well as an inherent weakness of initial algebra specifications.

The examples in the preceding sections show that a good heuristic for finding
specification errors is to try to prove the persistence of the specification. A persist-
ence check could have pointed out three out of the four realistic specification errors
that were studied here. This observation clearly motivates the study of persistence in
the remaining part of this thesis.

1.3. Background and related work

We will now briefly indicate the relation of our research with that of others. There
exists a vast literature about algebraic specifications, which we have not the ability nor
the desire to summarize here. An overview with an annotated bibliography can be
found in [Bidoit, Kreowski, Lescanne, Orejas, Sannella, 1991].

First of all, one may ask on which results from the literature our own work is built.
In fact, all we use is the theory of initial algebra semantics (as described in [Ehrich,
Mahr, 1985]), the theory of term rewriting systems (as described in [Dershowitz,
Jouannaud, 1991] and [Klop, 1991]) and the theory of path orderings ([Huet, Oppen,
1980]). This theory is well known and may be considered ‘background knowledge’ for
people working in the field of algebraic specifications. The notion of persistence is
also part of this ‘background knowledge’. It is treated extensively in classics like
[Goguen, Thatcher, Wagner, 1976], [Ehrich, Mahr, 1985], [Padawitz, 1983] and [Broy,
Wirsing, 1982].

Still, even though the part of the theory that we use is well known, in order to make
the presentation of our Perspect language self-contained we give an (almost) complete
account of it in chapter 2. For definitions and proofs that we copied from the lit-
erature, we give a reference to the original source. For the rest of this theory, the
originators can be found in [Dershowitz, Jouannaud, 1991] and [Klop, 1991].

Note that our terminology slightly differs from that found in the literature. For
instance, what we call a term algebra (in section 2.1.2.5) is only superficially related to
the notion of canonical term algebra (see [Ehrich, Mahr, 1985]). Similarly, what we call
weak persistence (in section 2.5.1.2) is called strong persistency in [Ehrich, Mahr,
1985]. This discrepancy in terminology was another reason to make our presentation
self-contained.

Second, one may ask in what way our research is related to the work done on alge-
braic specifications by the Programming Research Group at the University of Amster-
dam and by the Department of Software Technology at the Centrum voor Wiskunde
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en Informatica, also in Amsterdam. The answer is that this work formed the moti-
vation for our research, but is only remotely related to it. The work on Perspect has
been motivated by earlier work on ASF as reported in [Bergstra, Heering, Klint, 1989].
The experience that we got from working with the ASF system motivated our desire
for more reliable specification techniques by enforcing persistence. We tried to give
the definition of persistence within the framework of module algebra as introduced in
[Bergstra, Heering, Klint, 1989], but this did not lead to something satisfying, and we
left the attempts out of this thesis.

Finally, we should give a picture of related research that is concerned with the
topics that we treat here: checking the persistence of a modular specification and
compiling specifications to programs in traditional programming languages. Checking
persistence is closely related to checking sufficient completeness which was intro-
duced in [Guttag, Horning, 1978] and developed in [Huet, Hullot, 1980], [Bidoit, 1981],
[Dershowitz, 1982], [Padawitz, 1983], [Thiel, 1984], [Rémy, Uhrig, 1988].

In the ASF project two researchers, P.R.H. Hendriks and H.R. Walters, looked at the
problem of how to make algebraic specifications executable. Their work can be
found in [Hendriks, 1991] and [Walters, 1991]. In our chapter 4 we address the same
problem. While our scheme for translating term rewriting systems to Prolog was
motivated by an early overview of similar schemes in [Bouma, Walters, 1987], it seems
that the schemes presented in chapter 4 are on a different track compared to the
schemes presented in the Ph.D. theses of Hendriks and Walters. While we are mainly
concerned with conceptual simplicity and clarity, they are far more preoccupied with
creating a usable and efficient system.

Various other approaches to the compilation of algebraic specifications to pro-
grams have been developed. As target languages appear LISP [Kaplan, 1987], Pascal
[Geser, Hussmann, Mueck, 1987], Prolog [van Emden, Yukawa, 1986], [Ganzinger, Schä-
fers, 1990] and abstract machine code [Klaeren, Indermark, 1989], [Wolz, Boehm,
1989]. Of course the compilation schemes presented in these references are closely
related to ours; we try to stress here orthogonality for our Prolog scheme and modu-
larity for our Modula scheme.





 

Chapter 2

 

Theory

 

There is no difference between theory and practice in theory,

 

but there is a great deal of difference between theory and practice in practice.

 

In this chapter we will:

 

•

 

Define a decidable subclass of the class of persistent specifications

 

•

 

Prove that this subclass is not 

 

too

 

 small

 

•

 

Prove the undecidability of various alternatives to this subclass

 

•

 

Give a number of algorithms that together form a decision procedure for the ques-

 

tion whether a specification is in this subclass

 

Most of the theory in this chapter is well known (see for instance [Dershowitz, Jouan-

 

naud, 1991] or [Klop, 1991]). Possibly 

 

new

 

 is:

 

•

 

The specific combination of requirements that gives the decidable subclass of per-

 

sistent specifications

 

•

 

The part of the decision algorithm that checks the strong persistence requirement

 

in the definition of this subclass

 

In this thesis we study persistent specifications. These are modular specifications in

 

which the ‘meaning’ of the objects being specified does not change when importing

 

some module from the specification into another module. A problem with the notion

 

of persistence is that it is not decidable. Therefore, we want to define a 

 

decidable

 

subclass of the class of persistent specifications, and for practical purposes we want

 

this subclass to be not too small.

 

In order to obtain such a decidable class of persistent specifications, we follow the

 

following approach:

 

•

 

We will only look at 

 

semi-complete

 

 unconditional term rewriting systems (i.e. term

 

rewriting systems that are weakly terminating and closed confluent). In these spec-

 

ifications, the initial algebra of the specification corresponds to its term algebra,

 

which consists of the set of closed normal forms of the specification.

 

•

 

We will require the specifications to be 

 

strongly

 

 persistent. The notion of strong

 

persistence is the natural equivalent for term rewriting systems to the requirement

 

of (weak) persistence for equational specifications. It says that the set of normal

 

forms should not change on import (while the notion of persistence says that the
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Theory

 

initial algebra should not change).

 

A problem with this approach is that while it is simple, it is 

 

too

 

 simple: the set of

 

specifications defined by these two requirements is still not decidable. We will have to

 

modify this scheme by making its requirements even stronger.

 

If we look at the definition of semi-completeness, it consists of the requirement of

 

weak termination in conjunction with that of closed confluence. We will strengthen

 

these requirements to 

 

monotone

 

 termination with respect to a 

 

path ordering

 

 and to

 

open

 

 confluence. This gives a combination of requirements that 

 

is

 

 decidable.

 

It is not known (to me) whether the requirement of strong persistence is decidable

 

(although I think it is probable that it is). If we only look at term rewriting systems that

 

are left linear, a decision procedure for strong persistence is easy. Now, if in the

 

general case the notion of strong persistence is decidable, a decision procedure will

 

probably be not very efficient. For this reason we will restrict ourselves in this thesis

 

to the class of 

 

left linear

 

 term rewriting systems.

 

Put together, the set of requirements that defines the decidable class of persistent

 

specifications that we will study here is the following. A specification should be:

 

monotone terminating with respect to some given path ordering + open

 

confluent + left linear + strongly persistent

 

This set of requirements consists, apart from the requirement of left linearity, of three

 

parts. These three parts are termination, confluence and persistence and they corre-

 

spond to the three main parts of this chapter, which are sections 2.2, 2.3 and 2.5.

 

Each of these sections has the same structure. First, some basic ‘semantic’ notions

 

are given and their implications for the relation between a term algebra and the initial

 

algebra of a term rewriting system are studied. Second, a decision procedure for one

 

of these notions will be developed. Specifically, algorithms will be given for checking:

 

•

 

whether a given term rewriting system is monotone terminating with respect to

 

some given path ordering

 

•

 

whether a given term rewriting system that is known to be strongly terminating is

 

open confluent

 

•

 

whether a modular left linear term rewriting system is strongly persistent

 

Third, in each of these sections the undecidability of various alternative combinations

 

of requirements will be shown. Each of these combinations is obtained by replacing

 

one of the requirements in the list by some weaker variant. In particular we will show

 

the undecidability of the lists of requirements in which:

 

•

 

the term rewriting system only needs to be strongly terminating instead of mono-

 

tone terminating with respect to a path ordering

 

•

 

the term rewriting system only needs to be closed confluent instead of open con-

 

fluent

 

•

 

the term rewriting system only needs to be weakly persistent instead of strongly

 

persistent

 

Apart from the sections about termination, confluence and persistence, this chapter

 

contains three other sections. The first of these sections – section 2.1 – is introduc-

 

tory. It introduces the relation between the term algebras and the initial algebra of a
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term rewriting system. Furthermore, there are two excursions. The first of these ex-

 

cursions – section 2.4 – briefly recapitulates a number of reduction strategies which

 

will be referred to in the description of compilation to Prolog in chapter 4. The

 

second excursion – which is section 2.6 – defines the notion of a primitive recursive

 

algebra. This notion is used to show that the class of persistent specifications defined

 

here is not too small. In particular it will be shown that it is possible to specify all

 

primitive recursive algebras under the restrictions that we enumerated. So, we have

 

the inclusions (both proper):

 

primitive recursive algebras 

 

⊂

 

 algebras that can be specified by a specifica-

 

tion satisfying the requirements of the decidable class of persistent specifi-

 

cations that we study here 

 

⊂

 

 algebras that can be specified persistently

 

2.1. Basic notions

 

In this section we will:

 

•

 

Fix our basic definitions and terminology

 

•

 

Give the relation between the initial algebra of an equational specification and the

 

term algebras of a term rewriting system

 

•

 

Give the basis for the motivation behind the concepts of termination and con-

 

fluence

 

An algebraic specification can basically be looked at in two ways. On the one hand it

 

can be an 

 

equational specification

 

 E and on the other hand it can be a 

 

term rewriting

 

system

 

 T. With each term rewriting system T an equational specification E(T) is asso-

 

ciated, obtained by ‘forgetting’ the direction of the rewriting arrows in T.

 

The meaning of an equational specification E, its 

 

initial algebra

 

 I(E), is a formal,

 

rather abstract object. The meaning of a term rewriting system T, given a 

 

normaliz-

 

ation function

 

 N for T, is the 

 

term algebra

 

 I

 

N

 

(T). It consists of the normal forms of T

 

and is far more concrete. Here, we have the notion of ‘executing’ the specification in

 

order to obtain the normal form of some term.

 

The main object defined in this section is a homomorphism 

 

ι

 

 that maps the term

 

algebra I

 

N

 

(T) of a term rewriting system to the initial algebra I(E(T)) of its associated

 

equational specification:

 

ι

 

: I

 

N

 

(T) 

 

→

 

 I(E(T))

 

This mapping is the basis of the motivation for the notions of termination and con-

 

fluence. While this section only gives the various definitions involved, in later sections

 

we will prove that:

 

•

 

‘there is at least one normalization function N’ is equivalent to ‘T is weakly termin-

 

ating’

 

•

 

‘there is at most one normalization function N’ is implied by ‘T is strongly closed
confluent’
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• ‘the mapping ι is surjective’ is always true
• ‘the mapping ι is injective’ is equivalent to ‘T is strongly closed confluent’
These properties together motivate the definition of the notion of semi-completeness
as the combination of weak termination and strong closed confluence.

2.1.1. Equational specifications

2.1.1.1. Definition. A signature Σ consists of a finite set of sort names S(Σ), a finite set
of function names F(Σ), a function dom: F(Σ) → S(Σ)∗ that gives the names of the sorts
which form the domain of each function, and a function ran: F(Σ) → S(Σ) that gives the
name of the range for each function.

2.1.1.2. Definition. Let Σ be a signature. An algebra A with signature Σ consists of, for
each sort name σ in S(Σ), a set σA called the sort with name σ in A, and for each func-
tion name f in F(Σ), a function fA called the function with name f in A. Moreover, if for
a function name f we have dom(f) = 〈σ1, σ2, …, σn〉 and ran(f) = σ, then the function fA
should have domain and range as given by fA: (σ1)A × (σ2)A × … × (σn)A → σA.

2.1.1.3. Definition. Let Σ be a signature. A set of variables V for the signature Σ con-
sists of a disjoint union ∪σ∈S(Σ) Vσ, in which each Vσ is a countably infinite set of
variables of type σ.

Given a set of variables, we define the set of open terms or just terms T(Σ, V) and
the typing function τ: T(Σ, V) → S(Σ) simultaneously. This set T(Σ, V) is the minimal
set such that:

(i) if v is a variable of type σ, then v is an open term in T(Σ, V) and has type τ(v) = σ.
(ii) if f is a function symbol, and t1, t2, …, tn are open terms from T(Σ, V) of the

appropriate types (i.e., each ti has type σi and dom(f) = 〈σ1, σ2, …, σn〉), then t ≡
f(t1, t2, …, tn) is also an open term in T(Σ, V) and it has type τ(t) = ran(f). The
terms ti are called the arguments of t

An equation t = t′ is a pair of open terms t and t′ that have the same type.
An equational specification is a set of equations.

2.1.1.4. Definition. The subterm relation between terms is the reflexive and transitive
closure of the argument relation. A variable occurs in a term if it is a subterm of that
term. The number of occurrences of a variable in a term is defined recursively:

(i) if w is a variable, the number of occurrences of v in w is one if v is equal to w and
zero if v is not equal to w.

(ii) if t = f(t1, t2, …, tn), then the number of occurrences of v in t is the sum of the
number of occurrences of v in the arguments ti.

It will be clear that a variable occurs in a term if and only if its number of occurrences
in that term is strictly positive.

Now let Σ be a signature and let V be a set of variables for it. A substitution for the
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variables in V is a function σ: V → T(Σ, V) such that the term being substituted for a
variable has the appropriate type, i.e., τ(σ(v)) = τ(v) for all variables v. The operation of
applying a substitution σ to a term t will be written using square brackets as σ[t]. It is
defined recursively:

(i) if v is a variable, then σ[v] ≡ σ(v).
(ii) if t = f(t1, t2, …, tn), then σ[t] ≡ f(σ[t1], σ[t2], …, σ[tn]).

A context s[♦] is a term s together with a variable ♦ that occurs exactly once in s. The
result s[t] of placing a term t in the context s[♦] is defined as σ[s] where the substitution
σ is defined by σ(♦) ≡ t and σ(v) ≡ v for v ≠ ♦.

Now let be given an equational specification E. The relation of one-step provable
equality in E exists between all pairs s[σ[t]] and s[σ[t′]] for which t = t′ is an equation in
E, s[♦] an arbitrary context and σ an arbitrary substitution.

The relation of provable equality in E is the reflexive, symmetric and transitive
closure of the relation of one-step provable equality, i.e., it is the minimal equivalence
relation that contains the relation of one-step provable equality.

2.1.1.5. Definition. A term is called closed when no variables occur in it. The set of
closed terms is written as Tc(Σ). This notation reflects that the set of closed terms
does not depend on the set of variables V.

Let be given an equational specification E. In order to define the initial algebra I(E)
of this specification, we will have to define sorts σI(E) and functions fI(E). Let σ be a
sort name, then the set σI(E) consists of the equivalence classes of the set of closed
terms of type σ under the equivalence relation of provable equality with respect to E.
If f is a function name, then the function fI(E) is defined by:

fI(E)([t1], [t2], …, [tn]) ≡ [f(t1, t2, …, tn)]

In this definition [t] is the equivalence class of the closed term t under provable equal-
ity with respect to E. It is straightforward to verify that this definition does not depend
on the representations t1, t2, …, tn that are used.

2.1.2. Term rewriting systems

2.1.2.1. Definition. A rewriting rule t → t′ is a pair of open terms t and t′ of the same
type, such that all variables that occur in t′ also occur in t.

A term rewriting system T is a set of rewriting rules.

2.1.2.2. Definition. Let T be a term rewriting system. We obtain the equational spec-
ification E(T) that is associated with T by replacing each rewriting rule t → t′ in T by
the equation t = t′.

2.1.2.3. Definition. Let be given a term rewriting system T. The relation of one-step
reduction in T exists between all pairs s[σ[t]] and s[σ[t′]] for which t → t′ is a rewriting
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rule in T, s[♦] an arbitrary context and σ an arbitrary substitution.
The relation of reduction in T is the reflexive and transitive closure of the relation of

one-step reduction in T.
A term n is called a T-normal form, or just a normal form, if there does not exist a

term n′ such that n has a one-step reduction to n′.

2.1.2.4. Definition. Let T be a term rewriting system. A function N: Tc(Σ) → Tc(Σ) is
called a normalization function for T if for all closed terms t the closed term N(t) is a
normal form and t reduces to N(t) in T.

2.1.2.5. Definition. Let be given a term rewriting system T and some normalization
function N for T. We define the term algebra IN(T) associated with N as having sorts
σIN(T) that consist of all closed normal forms of type σ, and functions fIN(T) that are
defined by

fIN(T)(n1, n2, …, nn) ≡ N(f(n1, n2, …, nn))

2.1.2.6. Definition. Let A and B be algebras over the same signature. A homomorphism
h: A → B consists of a collection that for each sort σ contains a function hσ: σA → σB
such that:

hσ(fA(x1, x2, …, xn)) = fB(hσ1
(x1), hσ2

(x2), …, hσn
(xn))

where x1∈(σ1)A, x2∈(σ2)A, …, xn∈(σn)A, dom(f) = 〈σ1, σ2, …, σn〉 and ran(f) = σ.
A homomorphism is called an isomorphism if all functions hσ are bijective.
Let T be a term rewriting system, and N a normalization function for T. The homo-

morphism ι: IN(T) → I(E(T)) is defined by:

ισ(n) ≡ [n]

for all closed normal forms n of type σ. It is straightforward to verify that this defini-
tion in fact defines a homomorphism. In proposition 2.3.1.6 we will show under what
circumstances ι is an isomorphism.

2.2. Termination

In this section we will:
• Show how the notion of termination affects the relation between a term algebra of

a term rewriting system and the initial algebra of its associated equational specifica-
tion

• Give definitions and properties of various path orderings: the recursive path order-
ing, the lexicographic path ordering and the path ordering with argument status

• Give an algorithm for verifying whether two terms are related by such a path or-
dering
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• Show the undecidability of a number of notions of termination, even in the pres-
ence of some heavy restrictions

This section defines a number of variations on the theme of termination. There are
two, orthogonal, dimensions to this notion. On the one hand there is a dichotomy
between weak and strong termination. On the other hand there is a dichotomy be-
tween open and closed termination.

A more constructive notion of termination is that of monotone termination with
respect to a path ordering. This notion has various variants corresponding to various
types of path ordering. Here we will define three types of path ordering: the recursive
path ordering, the lexicographic path ordering and the path ordering with argument
status.

We will start the section by showing, as promised in section 2.1, that a term rewrit-
ing system has a normalization function if and only if it is weakly closed terminating.
This proposition is trivial, but essential because it shows the desirability of the notion
of termination.

Then, we will move on to the study of path orderings. A path ordering is not some
fixed ordering, but is parametrized by an ordering on the set of function symbols. So,
a path ordering associates an ‘ordering’ (actually a partial preordering) on the set of
terms over some signature with an ‘ordering’ on the function symbols from that sig-
nature. The definition of a path ordering is chosen such that it can be used to verify
the termination of a term rewriting system.

Now, how is a path ordering defined? Even the definition of the best known of
path orderings – the recursive path ordering – is not very easy due to some compli-
cating factors. These are:
• The ordering on the function symbols which forms the input of the path ordering

construction is a partial preordering. This means that two function symbols may
be unrelated (‘partial’) or may be equivalent but not equal (‘preordering’).

• The terms that are being compared by the path ordering are open: they may
contain variables. While this is essential for the application of the path ordering, it
distorts the elegant symmetry of its definition.

• When defining a path ordering, in fact two orderings are being defined simulta-
neously: an ordering on terms, and an ordering on tuples. The ordering on tuples is
related to the one on terms by being the multiset ordering corresponding to the
ordering on the terms. This multiset ordering causes the path ordering to be a
preordering – even when the ordering on function symbols it is derived from is
not. For instance the terms f(a, b) and f(b, a) are equivalent under the recursive path
ordering (because {a, b} and {b, a} are the same multiset) though they are not equal.

So, even when we remove two of these complicating factors by postulating that we
will start with a total ordering on the function symbols and that we will only compare
closed terms, we will first have to clarify the notion of a multiset ordering. Now, in the
case that the ordering on the terms is total, the multiset ordering on the tuples – seen
as multisets of terms – is relatively simple. One just compares the maximum of both
tuples. If they are different, the tuple with the largest maximum will be largest in the
multiset ordering. If the maxima are equal, one removes this common maximum once
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on both sides of the comparison and tries again.
Given that the ordering on function symbols is total, that the terms being com-

pared do not contain variables and that the multiset ordering on tuples is understood,
the definition of the recursive path ordering becomes simple. Suppose that there are
given two terms s ≡ f(s1, s2, …, sm) and t ≡ g(t1, t2, …, tn) and that we want to show
that s < t with respect to the recursive path ordering (note that either m or n may be
zero, in which case s or t will be a constant).

There are three cases:
• f < g: in this case s < t will hold if and only if for all i in {1…m} it is true that si < t
• f > g: in this case s < t will hold if and only if for some j in {1…n} it is true that s ≤ tj
• f = g: in this case s < t will hold if and only if {s1, s2, …, sm} < {t1, t2, …, tn} with

respect to the multiset ordering
That is all: a nice symmetrical definition by cases. Actually, we have not defined the
relation ‘≤’ which is used in the second clause; it may be replaced here by ‘not >’.

Note that the definition of the path ordering between two terms is recursive with
respect to the way smaller terms compare: in each of the cases in the definition, on at
least one side of the comparison one will select one of the arguments.

Now, apart from extending this definition to the case of a partial preordering on
the function symbols and to that of the comparison of open terms, one can change
the role of the multiset ordering in this definition. First of all, one can replace it by the
lexicographic ordering between the argument tuples. This leads to the lexicographic
path ordering. More general, one can make the choice between multiset and lexi-
cographic ordering dependent on the function symbol. Still even more general, one
can also allow a mixed ordering: some of the argument places may be compared by
the multiset ordering and some others lexicographically. This last generalization gives
the path ordering with argument status.

All these path orderings satisfy a number of properties that make them useful for
proving the termination of a term rewriting system. These properties are:
• the path ordering is stable under substitution
• the path ordering on two terms is not disturbed by placing these terms in some

common context
• the path ordering considers subterms of a term to be smaller than that term itself
An ordering that satisfies the last two properties is called a simplification ordering.
Such an ordering always has the property that it is well founded: there is no infinitely
decreasing sequence of terms. This surprising fact is called Kruskal’s theorem.

The relation between path orderings and term rewriting systems is simple. A term
rewriting system is called monotone terminating with respect to the path ordering
when all its rules are decreasing in the path ordering. In that case Kruskal’s theorem
implies that the term rewriting system is indeed (strongly) terminating.

As we remarked earlier, the definition of a path ordering is recursive in terms of
itself evaluated on smaller terms. This means that following the definition gives one an
algorithm for evaluating the path ordering. This implies that it is decidable whether a
term rewriting system is monotone terminating with respect to a given path ordering,
as we promised.

So, the notion of monotone termination with respect to a path ordering is decid-
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able. However, the notions of strong/weak open/closed termination are all undecid-
able, even when the following requirements are satisfied by the specification:

open confluent + left linear + strongly persistent

This will be shown by constructing, given some arbitrary recursive function F, a term
rewriting system that satisfies these requirements. This term rewriting system is con-
structed in such a way that it is (strongly/weakly open/closed) terminating if and only
if F is a total function (i.e., terminating for all natural numbers). Because this last prop-
erty is undecidable, the property of being (strongly/weakly open/closed) terminating
is also undecidable.

2.2.1. Weak and strong termination

2.2.1.1. Definition. A sequence of terms is called a reduction sequence when each el-
ement in the sequence is a one-step reduct of the previous one.

A term rewriting system is called strongly open terminating when for all open
terms t there are no infinite reduction sequences starting with t. It is called weakly
open terminating when for all open terms t there exist a reduction sequence starting
with t that cannot be extended to an infinite reduction sequence.

If one restricts oneself in the previous paragraph to the set of closed terms instead
of that of all open terms, one gets the definition of strong and weak closed termina-
tion.

In this definition ‘strong’ and ‘closed’ are the default, i.e., when we call a term re-
writing system terminating, we mean that it is strongly closed terminating.

2.2.1.2. Proposition. A term rewriting system T has a normalization function if and
only if it is weakly closed terminating.

Proof. ‘⇒’: Let N be a normalization function. For closed terms t the image N(t) is a
normal form of t. The reduction of t to N(t) gives us a reduction sequence that is not
infinitely extensible (in fact, it is not extensible at all). This implies that T is weakly
closed terminating.

‘⇐’: Let t be a closed term. Because T is weakly closed terminating, t has a reduction
sequence that is not infinitely extensible. Try to extend this sequence one term at the
time. After some finite number of steps this will become impossible, and then the
last element of the extension will be in normal form. So, it follows that each closed
term has a normal form. Now, one can choose some function that maps each closed
term to one of its normal forms, which is a normalization function.  
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2.2.2. Path orderings

2.2.2.1. Definition. A partial preordering ≤ is a relation that is reflexive and transitive.
Alternatively, a partial preordering can be given as two relations < and ≈ such that < is
a strict partial ordering – i.e., it is irreflexive and transitive – and ≈ is an equivalence
relation – i.e., it is reflexive, symmetric and transitive.

These two representations can be related to each other by defining:

x < y  ≡  x ≤ y ∧ ¬ y ≤ x
x ≈ y  ≡  x ≤ y ∧ y ≤ x

in order to obtain < and ≈ from ≤, and by defining:

x ≤ y  ≡  x < y ∨ x ≈ y

in order to obtain ≤ from < and ≈.
It is easy to verify that these definitions are inverse to each other, and that they

transform the two definitions of a partial preordering into each other.

2.2.2.2. Definition. Let be given some signature Σ with variables V, and let T be the set
of all open terms T(Σ, V). Furthermore, let be given some partial preordering ≤T on T
with associated partial ordering <T and equivalence ≈T.

For t ≡ 〈t1, t2, …, tn〉 a tuple from T∗, the characteristic function χt of t with
respect to the partial preordering ≤T is defined on the set T by  χt(t) ≡ # { i | ti ≈T t },
i.e., the value for t is the number of elements from t that are equivalent to t.

Now, the multiset ordering ≤mul associated with ≤T is the partial preordering on T∗

defined by:

s ≤mul t  ≡  ∀ s: (χs(s) > χt(s)  ⇒  ∃ t >T s: χs(t) < χt(t))

This definition clearly does not depend on the order of the components in the tuples
that are being compared (because χt does not), which motivates the name ‘multiset
ordering’. Note that the truth of s ≤mul t only depends on the truth-values of s <T t for
s a component of s and t a component of t.

The lexicographic ordering ≤lex associated with ≤T is also a partial preordering on
T∗. It is defined recursively by:

〈s1, s2, …, sm〉 ≤lex 〈t1, t2, …, tn〉  ≡
m = 0  ∨  s1 <T t1  ∨  (s1 ≈T t1  ∧  〈s2, …, sm〉 ≤lex 〈t2, …, tn〉)

A status marker is an element from the two element set {mul, lex}. An argument
status ζ for the signature Σ is a function that associates with each function symbol f
from F(Σ) a tuple of status markers, such that the tuple ζ(f) has the same number of
components as the domain dom(f). Now, given an argument status ζ, if t ≡ f(t1, t2, …,
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tn) is a term from T and t ≡ 〈t1, t2, …, tn〉 is the tuple of its arguments, then we can
define the tuples tmul and tlex as containing the components from t for which ζ(f) is
respectively mul and lex.

So, let be given an argument status ζ. The ordering with argument status ≤ζ that is
associated with ≤T and ζ is a partial preordering on T and is defined by:

s ≤ζ t  ≡  slex <lex tlex  ∨  (slex ≈lex tlex  ∧  smul ≤mul tmul)

2.2.2.3. Definition [Dershowitz, 1982]. We will now define an ordering that is para-
metrized by an argument status. It has two special cases: if we take the argument status
everywhere mul, then we obtain a partial preordering called the recursive path
ordering; if we take the one that is everywhere lex, we obtain the lexicographic
path ordering.

Let be given some partial preordering ≤F on the set of function symbols F(Σ).
Furthermore, let be given some argument status ζ. We will define the path ordering
with argument status ≤path which is a partial preordering on the set of open terms
and which is parametrized by ≤F and ζ. Its definition – which is highly recursive –
consists of three cases, depending on whether we compare variables x and y, or non-
variables f(s1, s2, …, sm) and g(t1, t2, …, tn).

s ≤path t = y ≡  s = t
s = x ≤path t = g(t1, t2, …, tn) ≡  ∃ j: s ≤path tj

s = f(s1, s2, …, sm) ≤path t = g(t1, t2, …, tn) ≡
(∀ i: si <path t  ∧  (f <F g  ∨  (f ≈F g  ∧  s (≤path)ζ t)))  ∨  ∃ j: s ≤path tj

2.2.2.4. Definition. Let be given some relation ◊ on the set of open terms T(Σ, V). This
relation is called stable under substitutions, when for all terms t and t′ and for all sub-
stitutions σ, the relation t ◊ t′ implies that the relation σ[t] ◊ σ[t′] also holds.

The relation is called stable in context, when for all terms t and t′ and for all con-
texts s[♦], the relation t ◊ t′ implies that the relation s[t] ◊ s[t′] also holds.

2.2.2.5. Definition. A partial preordering ≤ on the set of open terms T(Σ, V) is said to
have the subterm property when for all terms t and t′, with t a proper subterm of t′
(i.e., t is a subterm of, but not equal to, t′), we have that t < t′.

It is called a simplification ordering when it is stable in context and has the sub-
term property. (Note that this definition says that ≤ should be stable in context, while
we will need in the proof of proposition 2.2.2.9 that < is stable in context. A path or-
dering is stable in both senses, as the next proposition shows.)

2.2.2.6. Proposition. A path ordering is a partial preordering, has the subterm prop-
erty and is a simplification ordering. The associated partial ordering is stable un-
der substitutions and stable in context.

Proof. We have to prove a number of properties, which are somewhat interdepen-
dent, so we have to be careful with the order in which they are verified. In particular,
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the transitivity of ≤path will be proved after proving the subterm property.
We will start by verifying simultaneously two statements about two terms s and t,

using induction on the sum of the depths of s and t. These statements are:

s ≤path t, when s is a subterm of t
s <path t, when s is a proper subterm of t

Note that the reflexivity of ≤path is a special case of the first statement, and that the
second statement is just the subterm property.

Suppose that s is a subterm of t. There are three cases:
(i) The term s is equal to t, and it is a variable x. In this case, we have to show that x

≤path x, which follows trivially from the first case in the definition of ≤path in
2.2.2.3.

(ii) The term s is equal to t, and it is not a variable so it has the form f(t1, …, tn). We
have to show that t ≤path t. In order to do this we need that ti <path t for all i –
which follows by induction – and that t (≤path)ζ t. Using induction, we may as-
sume that for each i we already know that ti ≤path ti. Now (defining t to be 〈t1, …,
tn〉) the statements tmul (≤path)mul tmul and tlex (≤path)lex tlex can easily be seen to
follow from the definitions of ≤mul and ≤lex in 2.2.2.2, and together they give that
t (≤path)ζ t.

(iii) The term s is a proper subterm of t. This means that for some j the term s is a
subterm of the argument tj of t. Then by induction we know that we have that s
≤path tj, which – according to the ∃ clause in the second and third case of
definition 2.2.2.3 – gives us s ≤path t. In order to prove s <path t we have to show
that t ≤path s leads to a contradiction. So, suppose t ≤path s, then either for some
i we have t ≤path si which is impossible by induction because si is a subterm of t
that is even deeper than s – or for all j we have tj <path s. But, for the index j for
which s was a subterm of tj this is also impossible.

This shows that ≤path is reflexive and has the subterm property.
In order to prove transitivity of ≤path we will need the fact that (≤path)ζ is transitive

when ≤path is transitive on the set of arguments of the terms involved. For this, we will
have to verify (switching momentarily to the notation of 2.2.2.2 in order to avoid
having to write path all the time) that ≤mul, ≤lex and ≤ζ are transitive given that ≤ is a
preordering on the set of terms occurring in the tuples. The case of ≤mul is not trivial.
Suppose that s = 〈s1, s2, …, sm〉, t = 〈t1, t2, …, tn〉, u = 〈u1, u2, …, uk〉, s ≤mul t and t ≤mul
u, then we have to prove that s ≤mul u. Following the definition of ≤mul in 2.2.2.2,
suppose we have a term s with χs(s) > χu(s). Consider the set U defined by U ≡ { u >T s
| χs(u) ≠ χt(u) ∨ χt(u) ≠ χu(u) }. Because either χs(s) > χt(s) or χt(s) > χu(s) we know that
there either is an u >T s with χs(u) < χt(u) or one with χt(u) < χu(u); this means that the
set U is not empty. Also, because s, t and u all have finitely many elements, U is finite.
This implies that there is some u in U such that there is no u′ in U with u′ >T u – else
there has to be a <T ‘loop’, which is impossible. Now, χs(u) ≤ χt(u), because if this
were not the case we could use s ≤mul t to find an u′ with u′ >T u. Similarly, χt(u) ≤
χu(u). By definition of U, one of the inequalities has to be strict, so together: χs(u) <
χu(u). This proves s ≤mul u. The transitivity of ≤lex and ≤ζ are easy.
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Now (switching back to the notation of 2.2.2.3), we will prove transitivity of ≤path.
We will prove this using induction on the total depth of s, t and u. So, suppose that we
have s, t and u and we know that s ≤path t and t ≤path u. There are four cases:

(i) If u is a variable, it is easy to see that s, t and u must all be equal.
(ii) If u is not a variable then u has to have the form h(u1, u2, …, up). If for some

argument uk of u we have that t ≤path uk, induction gives s ≤path uk, which shows
that s ≤path u.

(iii) If this is not the case, we know that t is also not a variable, so has the form g(t1,
t2, …, tn), and we have that tj <path u for all j. Now, if there is some argument tj of
t such that s ≤path tj, induction gives s ≤path u.

(iv) The case that is left is the one in which for all i we have si <path t, for all j we have
tj <path u and furthermore we know that f <F g ∨ (f ≈F g ∧ s (≤path)ζ t) and g <F h ∨
(g ≈F h ∧ t (≤path)ζ u). By induction si <path t implies si <path u for all i, so in order
to prove that s ≤path u, all we have to show is that f <F h ∨ (f ≈F h ∧ s (≤path)ζ u).
Now, if either f <F g or g <F h holds we know that f <F h. If not, we may conclude
that f ≈F h and application of the result from the previous paragraph then gives
that s (≤path)ζ u.

This shows that ≤path is a preordering. We still have to show that <path is stable under
substitutions and that both ≈path and <path are stable in context.

First, however, we will show the following characterization of ≈path:

s ≈path t = y ≡  s = t
s = x ≈path t = g(t1, t2, …, tn) ≡  never

s = f(s1, s2, …, sm) ≈path t = g(t1, t2, …, tn) ≡  f ≈F g ∧ s (≈path)ζ t

(The relation (≈path)ζ that occurs in the last line can either be defined as the equival-
ence relation associated with the preordering (≤path)ζ, or as the ordering with argu-
ment status associated with the preordering ≈path. Both definitions give the same rela-
tion. One can verify that s (≈path)ζ t holds if and only if the components of s and t are
≈path-equivalent up to some permutation.)

Only the last case is not trivial. From right to left it follows from definition 2.2.2.3
and the observation that from s (≈path)ζ t it follows that for each argument si of s there
exists some argument tj of t such that si ≈path tj. In order to prove the last case from
left to right, suppose we know that s ≈path t. Then, we cannot have any argument tj of t
for which s ≤path tj, because this implies that s ≤path tj <path t, which gives a contra-
diction. This implies that f <F g ∨ (f ≈F g ∧ s (≤path)ζ t) and vice versa also g <F f ∨ (g ≈F f
∧ t (≤path)ζ s). Because f <F g is not compatible with g <F f ∨ g ≈F f we find that we are
in the case that f ≈F g ∧ s (≤path)ζ t. Together with the converse this gives the required
result.

From the characterization of ≈path it becomes straightforward to verify the follow-
ing characterization of <path:
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s <path t = y ≡  never
s = x <path t = g(t1, t2, …, tn) ≡  ∃ j: s ≤path tj

s = f(s1, s2, …, sm) <path t = g(t1, t2, …, tn) ≡
(∀ i: si <path t  ∧  (f <F g  ∨  (f ≈F g  ∧  s (<path)ζ t)))  ∨  ∃ j: s ≤path tj

(The relation (<path)ζ that occurs in the last line is defined to be the partial ordering
that is associated with the preordering (≤path)ζ.)

Stability of the relation <path under substitutions can now be proved by applying
the characterization that was just given. Let s <path t, and suppose we have a recursive
verification of this fact following the characterization that was just given. If we replace
all occurrences of some variable x in both s and t by some other term, it is easy to see
that this verification of s <path t remains valid.

We will finally indicate how to show stability in context of ≈path and <path.
Stability of ≈path in context. Let t be some tuple, and t′ a tuple obtained by replac-

ing one of its components by an ≈path-equivalent one. Then t (≈path)mul t′, t (≈path)lex
t′ and f(t) (≈path)ζ f(t′), because all definitions in 2.2.2.2 only refer to the partial pre-
ordering and not to real equality. From this, we can derive that when we replace one
argument of a term by an ≈path-equivalent one, we get an ≈path-equivalent term. From
this observation the stability in context of ≈path follows with induction.

Stability of <path in context. Again, first show what happens when we replace some
component in a tuple by some term that is larger with respect to <path, and then
apply this in the definition of the path ordering.  

2.2.2.7. Definition. A partial ordering < is called well founded if there does not exist an
infinite sequence that is decreasing in it.

2.2.2.8. Kruskal’s Theorem [Kruskal, 1960], [Dershowitz, 1982]. The partial ordering
associated with a simplification ordering is well founded on the set of closed
terms.

Proof. We are going to show a property of a simplification ordering that is stronger: if
t0, t1, t2, … is an infinite sequence of closed terms, then there are always indices i < j
such that ti ≤ tj.

An infinite sequence for which this property is not true we call a counter example
sequence. We are going to show that such a sequence does not exist. Suppose, to-
wards a contradiction, that such a counter example sequence does exist. Then we can
choose a ‘minimal’ counter example sequence t0, t1, t2, … in the following way. Take
for t0 some minimal term (i.e., of minimal term depth) that starts a counter example
sequence. Now, suppose we have already chosen t0, t1, …, ti-1. Then choose for ti a
minimal term such that t0, t1, …, ti still starts a counter example sequence. It will be
clear that the sequence that one gets in this way is itself a counter example sequence.

It has the property that if we take some subsequence, and in this subsequence
replace each element by one of its arguments, then we can prove that we get a
sequence – say s0, s1, s2, … – that has a subsequence that is increasing in ≤. We will
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show this in two steps. First, we prove that there are i < j such that si ≤ sj. To see this,
suppose that s0 was the argument of tk. Now, consider the sequence t0, t1, …, tk-1, s0,
s1, s2, …, then it cannot be a counter example sequence, because s0 is smaller than tk.
Therefore, either for i < j there are ti ≤ tj which is impossible; or for some i < k and
for some j we have ti ≤ sj, but this is also impossible because for some k′ ≥ k we have
that sj was the argument of tk′ and because ≤ is a simplification ordering, by the
subterm property, we find that sj ≤ tk′, which means that ti ≤ tk′ which is also im-
possible; or, for some i < j we have si ≤ sj, which is what we wanted to prove. For the
second step, we prove that there are only finitely many i such that there is no j, with i
< j and si ≤ sj (i.e., for which si has no ‘successor’). For, suppose that there are infinite-
ly many. The subsequence of the sequence s0, s1, s2, … given by these i itself also
consists of arguments of a subsequence of t0, t1, …, and this gives a contradiction with
the previous paragraph.

We now, return to the ‘minimal counter example sequence’ t0, t1, t2, …. Because
there are only finitely many function symbols, there has to be a function symbol f that
occurs infinitely often as outermost function symbol in this sequence. Select the terms
that have outermost function symbol f as a subsequence. We have shown that this se-
quence in its turn has a subsequence for which the first argument is increasing in ≤.
Repeating this sub-selection for the other argument positions of f gives a subsequence
that is increasing in all its argument positions. But ≤ is a simplification ordering and
therefore stable in context. This proves that this last subsequence is itself increasing in
≤, which contradicts the choice of t0, t1, t2, … as a counter example sequence.  

2.2.2.9. Proposition. If all rules of a term rewriting system are decreasing with
respect to the partial ordering associated with a path ordering, the term rewriting
system is strongly open terminating.

Proof. Suppose that the term rewriting system is not strongly open terminating, so
there exists an infinite reduction sequence. Extend (if necessary) the signature with suf-
ficiently many constants such that for each sort a closed term exists: this will give a
term rewriting system that is still decreasing with respect to the path ordering
(regardless the way one orders the extra constants) and that is still not strongly open
terminating by virtue of the same sequence. For each sort in the signature choose
some closed term. Replace each variable in the reduction sequence by the closed term
of the appropriate term: this gives an infinite reduction sequence of closed terms.

Because the rules of the term rewriting system are strictly decreasing with respect
to the path ordering, and because the path ordering is stable under substitutions and
in context, the reduction sequence of closed terms is also strictly decreasing. This
gives a contradiction with Kruskal’s theorem.  

2.2.2.10. Definition. A term rewriting system is called monotone terminating, when
there exists some path ordering with argument status (given by some partial pre-
ordering ≤F on the set of function symbols and with some argument status ζ) such that
all rules of the term rewriting system are monotone decreasing in it.
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2.2.3. Decidability

2.2.3.1. Algorithm. A procedure (for a given path ordering) for deciding whether a
term rewriting system is monotone terminating.

For all rules t → t′ in the term rewriting system check whether t >path t′ by recursively
evaluating the various definitions given in 2.2.2.2 and 2.2.2.3

2.2.3.2. Proposition. It is not decidable whether a term rewriting system is strong-
ly/weakly open/closed terminating, even when it is known that it is open confluent
and left linear.

Proof (see also [Klop, 1991]). Let F be some recursive function. We will construct an
open confluent and left linear term rewriting system that is strongly open terminating
when F is a total function and that is not even weakly closed terminating when F is not
a total function.

F is a recursive function, so there exist primitive recursive functions G and G′ such
that F(x) ≅ G(µy ⋅ G′(x, y) = 0). Because G and G′ are primitive recursive, there exists a
sequence of primitive functions G0, G1, G2, …, Gn such that Gn-1 = G′, Gn = G and
each Gi is zero, the successor, a projection function or is obtained from previous
elements from the list by composition or primitive recursion. This list of Gi functions
can easily be given by a term rewriting system in which the way each Gi is defined in
terms of earlier Gi’s is modelled in a straightforward way by means of rewriting rules.
For instance if Gi is defined with primitive recursion from Gi′ and Gi″ then we add the
following two ‘defining’ rules:

Gi(0, y1, y2, …, yn) → Gi′(y1, y2, …, yn)
Gi(S(x), y1, y2, …, yn) → Gi″(x, Gi(x, y1, y2, …, yn), y1, y2, …, yn)

This term rewriting system will be left linear and strongly open confluent (because
there will be no non-trivial overlaps).

Now, add the following rules to this ‘primitive recursive’ term rewriting system:

F(x) → F′(x, 0, 0)
F′(x, y1, y2) → F″(x, y1, y2, G′(x, y1))
F″(x, y1, y2, 0) → G(y1)
F″(x, y1, S(y2), S(z)) → F′(x, S(y1), y2)
F″(x, y1, 0, S(z)) → F′(x, 0, S(y1))

Clearly, everything stays left linear and non-overlapping.
Now, suppose that F is a total function. Then, every term can be reduced inside out,

and such a computation will always terminate. The only terms for which this is not
trivial have outermost functions F′ and F″. Because F is total, for each x there exists
some y such that G′(x, y) is equal to zero. Now, while rewriting F′ and F″ a ‘diagonal’
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pattern is followed by the pair of arguments y1 and y2. So, after some finite time y1
will become again the y for which the term G′(x, y) reduces to 0, and the rewriting will
terminate.

Now, let be given some closed term t. By the same ‘diagonal pattern’ argument, we
find that we can adorn each function symbol F, F′ and F″ that occurs in t with an index
that ‘counts’ the number of steps it takes this function symbol to ‘reach’ the rule F″(x,
y1, y2, 0) → G(y1). This gives us a new term t′. Now, each reduction sequence of t
according to the original term rewriting system corresponds to a reduction sequence
of t′ according to the term rewriting system in which the rules for Fi, F′i and F″i are:

Fi(x) → F′i(x, 0, 0)
F′i(x, y1, y2) → F″i(x, y1, y2, G′(x, y1))
F″i(x, y1, y2, 0) → G(y1)
F″0(x, y1, y2, S(z)) → some small irrelevant term, say 0
F″i+1(x, y1, S(y2), S(z)) → F′i(x, S(y1), y2)
F″i+1(x, y1, 0, S(z)) → F′i(x, 0, S(y1))

But this term rewriting system is monotone terminating according to the path or-
dering given by 0 < S < G0 < G1 < G2 < … < Gn < F″0 < F′0 < F″1 < F′1 < F″2 < F′2< …
and F′0 < F0, F′1 < F1, F′2 < F2, …. This implies that the adorned term t′ has no infinite
reduction sequence, and therefore that the original term t also has no infinite
reduction sequence. And this means that the original term rewriting system is strongly
closed terminating. To see that it is even strongly open terminating, suppose some
open term has an infinite reduction. Then, if we substitute some fixed constant term
(e.g. the constant 0) for all variables that occur in this reduction sequence, we obtain an
infinite reduction of a closed term, which contradicts strong closed termination.

Now, if F is not a total function, by choosing for x an argument of the form Sn(0) for
which F diverges we find a term F(Sn(0)) that has no normal form, and this implies that
in this case the term rewriting system is not even weakly closed terminating.  

2.3. Confluence

In this section we will:
• Show how the notion of confluence affects the relation between a term algebra of a

term rewriting system and the initial algebra of its associated equational specifica-
tion.

• Give an algorithm for verifying whether a strongly terminating term rewriting sys-
tem is open confluent

• Show the undecidability of closed confluence, even in the presence of some heavy
restrictions

This section defines a number of variations on the theme of confluence. There are
(again) two, orthogonal, dimensions to this notion. On the one hand there is a dichot-
omy between weak and strong confluence. On the other hand there is a dichotomy
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between open and closed confluence.
We will start the section by showing, as promised in section 2.1, that it follows

from strong closed confluence that a term rewriting system has at most one normaliz-
ation function, and that strong closed confluence is equivalent to the condition that the
mapping ι (defined in section 2.1 and relating a term algebra to the initial algebra) is
injective. This proposition is trivial, but essential because it shows the desirability of
the notion of confluence.

Now, if a term rewriting system is both weakly closed terminating and strongly
closed confluent it is called semi-complete. Such a term rewriting system has exactly
one normalization function and the mapping ι is an isomorphism, which implies that
in that case the term algebra will be isomorphic to the initial algebra.

It will be clear that we should like to show a term rewriting system to be strongly
confluent. This turns out not to be easy. Fortunately when a term rewriting system is
strongly terminating – a property that we will want anyway – it is easy.

The algorithm to check whether a strongly terminating term rewriting system is
strongly open confluent really only checks whether it is weakly open confluent. This is
done is by looking for critical pairs: if they exist, the check has failed. These pairs are
looked for by trying all overlapping pairs of redex patterns. This gives a larger term –
formed by the overlap – that has two natural one step reducts. Normalizing these two
reducts and comparing the normal forms tells whether the overlapping redex
patterns were a critical pair. If the normal forms are equal, all is well, but if they are not
equal we have found a critical pair, which implies that the check has failed.

This shows that (weak/strong) open confluence is decidable when the term rewrit-
ing system is strongly terminating. On the other hand (weak/strong) closed con-
fluence is not decidable even when the following requirements are satisfied by the
specification:

monotone terminating with respect to some given path ordering + left
linear + strongly persistent

To see this, we associate a term rewriting system with each pair of primitive recursive
functions F and G. It is defined such that it is (weakly/strongly) closed confluent if and
only if F is equal to G (i.e., their values are equal for all natural numbers). Because this
last property is undecidable, the property of being (weakly/strongly) confluent is also
undecidable.

2.3.1. Weak and strong confluence

2.3.1.1. Definition. A term rewriting system is called strongly open confluent when, if
an open term t reduces both to terms t1 and t2 those terms have a common reduct t′.
It is called weakly open confluent when this only needs to be true in the case that t
reduces to t1 and t2 in one step.

If one restricts oneself in the previous paragraph to the set of closed terms instead
of that of all open terms, one gets the definition of strong and weak closed conflu-
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ence.
Just like in the definition of termination, here ‘strong’ and ‘closed’ are again the

default, i.e., when we call a term rewriting system confluent, we mean that it is strongly
closed confluent.

2.3.1.2. Proposition. If a term rewriting system is strongly closed confluent it has at
most one normalization function.

Proof. Suppose this is not true, so let some strongly closed confluent term rewriting
system have more than one normalization function. Then, for some closed term these
strategies will give different normal forms. But these normal forms have no common
reduct, and so the term rewriting system cannot be strongly closed confluent. Contra-
diction.  

2.3.1.3. Proposition. The homomorphism ι is always surjective.

Proof. Let [t] be some element of the initial algebra I(E(T)). Then the image under the
normalization function N(t) is a normal form of t, and is provably equal to t in E(T), so
[t] = [N(t)]. But N(t) is a normal form, so is an element of IN(T) which is mapped to
[N(t)] by ι. So, [t] is in the image of ι.  

2.3.1.4. Proposition. The homomorphism ι is injective if and only if the term rewrit-
ing system is strongly closed confluent.

Proof. ‘⇒’: Let a closed term t have two reducts t1 and t2. Now, the normal forms N(t1)
and N(t2) are both provably equal to t, so [N(t1)] = [N(t2)]. In other words ι(N(t1)) =
ι(N(t2)). But because ι is injective this means that N(t1) = N(t2). But that means that
N(t1) = N(t2) is a common reduct of t1 and t2.

‘⇐’: Let n1 and n2 be normal forms with ι(n1) = ι(n2). By definition of ι this means
that [n1] = [n2] in I(E(T)), so n1 is provably equal to n2. So, there exists some sequence
t0, t1, …, tn with t0 = n1, tn = n2 and each ti provably equal in one step to ti-1 or vice
versa. Now, strong confluence gives that each ti has the same normal form as ti-1 so
with induction one sees that t0 has the same normal form as tn. But t0 has n1 as normal
form and tn has n2 as normal form, so n1 = n2.  

2.3.1.5. Definition. A term rewriting system is called semi-complete when it is weakly
closed terminating and strongly closed confluent.

2.3.1.6. Corollary. A term rewriting system is semi-complete ⇔ it has exactly one
normalization function ⇔ the homomorphism ι  is an isomorphism (and therefore
the term algebra is isomorphic to the initial algebra of the associated equational
specification).

Proof. First, the equivalence between semi-completeness and having exactly one nor-
malization function. ‘⇒’: This follows from 2.2.1.2 and 2.3.1.2. ‘⇐’: Weak closed
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termination follows from 2.2.1.2. We have to show strong closed confluence. Suppose
this is false, so there is some closed term t that reduces to t1 and t2 without a common
reduct. Then t has two different normal forms in the normal forms of t1 and t2. Now
let N be the unique normalization function. One can create two different normalization
strategies by replacing N(t) by N(t1) and by N(t2). Contradiction.

The equivalence between semi-completeness and ι being an isomorphism follows
directly from 2.3.1.3 and 2.3.1.4.  

2.3.1.7. Newman’s lemma [Newman, 1942]. If a term rewriting system is strongly
open terminating and weakly open confluent it is strongly open confluent.

Proof. We are going to show that in a strongly terminating and weakly confluent term
rewriting system there are no terms having more than one different normal form.
From this strong confluence directly follows.

In order to do this we show that a term with more than one normal form has at
least one one-step reduct that has the same property. This leads to an infinite reduc-
tion, in contradiction with strong termination.

So, suppose that t is a term with at least two different normal forms n1 and n2. This
means t has one-step reducts t1 and t2 that are the initial steps in the reductions to n1
and n2. Because of weak confluence, t1 and t2 have a common reduct and because of
termination that common reduct has to have a normal form. This shows that t1 and t2
have a common normal form. But if t1 or t2 each have only one normal form it has to
be n1 respectively n2, which are different. So either t1 or t2 has to have at least one
other normal form. This shows that t has a one-step reduct with more than one nor-
mal form.  

2.3.2. Overlapping

2.3.2.1. Definition. Two terms s and t unify when there are substitutions σ and τ such
that σ[s] = τ[t]. Such a pair of substitutions is called a most general unifier when for all
substitutions σ′ and τ′ such that σ′[s] = τ′[t] there always exists some substitution υ such
that σ′(x) = υ[σ(x)] and τ′(x) = υ[τ(x)]. It can be shown that two terms that unify always
have a most general unifier. (Note that the definitions of these notions are different
from what is customary. For example, with these definitions terms x and F(x) unify.)

Two terms are called overlapping when one of the terms has a subterm which is
not a variable and which unifies with the other term.

2.3.2.2. Definition. Let be given a term rewriting system T. Let further be given two
rewriting rules s → s′ and t → t′ from T such that s and t overlap. The terms s and t are
called overlapping redex patterns.

According to the previous definition this means that one of the terms – say s – has
the form s1[s2] for some context s1[♦] and term s2, with the property that s2 unifies
with the other term – t. This pair of a context s1[♦] and a term s2 is called the position
of the overlap.
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Let σ and τ be some most general unifier for s2 and t, which implies that σ[s2] = τ[t],
then consider the term σ[s] = σ[s1][σ[s2]] = σ[s1][τ[t]]. Its two one-step reducts σ[s′] and
σ[s1][τ[t′]] are called its natural reducts.

2.3.3. Decidability

2.3.3.1. Algorithm [Knuth, Bendix, 1970]. Procedure for deciding whether a strongly
open terminating term rewriting system is strongly open confluent.

For each pair of overlapping redex patterns and for each overlap position calculate a
normal form for both natural reducts and verify whether they are equal.

Proof sketch of the correctness of the algorithm. Suppose that the algorithm suc-
ceeds and suppose that we have some open term t with one-step reducts t1 and t2.
There are two possibilities. Either the redex patterns in t that lead to t1 and t2 overlap.
Then, because the algorithm succeeded, the natural reducts of this overlap have reduc-
tions to a common normal form. By applying a substitution to these reductions, and
by placing the resulting reductions in a context, we obtain reductions of t1 and t2 to a
common reduct.

Or, the redex patterns in t do not overlap. If they are not contained in each other
(i.e., they occur in different subterms of the term) it is easy to see that t1 and t2 have a
common reduct. So, suppose that one redex pattern is contained in the other. Let t1
be the result of reducing the ‘outer’ redex pattern. This might have duplicated the
‘inner’ redex pattern a number of times. By reducing all these copies, one arrives at
the common reduct from t1. On the other hand the instance of the ‘outer’ redex
pattern may no longer apply in t2, because terms that matched in t may have become
different. So, first find all copies of the ‘inner’ redex pattern that have to be reduced
to restore these matches. After that reduce the ‘outer’ redex pattern to get to the
common reduct.

This shows that the term rewriting system is weakly open confluent. But it is given
that it is strongly open terminating. Then Newman’s lemma says that it is strongly
open confluent.  

2.3.3.2. Proposition. It is not decidable whether a term rewriting system is strong-
ly/weakly closed confluent, even when it is known that it is monotone terminating
with respect to both a recursive and a lexicographic path ordering and is left
linear.

Proof. Let F and G be two primitive recursive functions. We are going to give a left
linear term rewriting system that is monotone terminating with respect to both a
recursive and a lexicographic path ordering, such that it is strongly closed confluent
when F and G are the same function, but not even weakly closed confluent when they
differ.
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Associate two sets of function symbols F0, F1, …, Fm ≡ F and G0, G1, …, Gn ≡ G
with F and G, and represent the way they are defined in terms of each other by means
of two sets of rules like we did in the proof of proposition 2.2.3.2. Further add the two
rules:

H(x) → F(x)
H(x) → G(x)

Left linearity is trivially satisfied. To see monotone termination, order the function
symbols in the obvious way: 0 < S < F0 < F1 < … < F, 0 < S < G0 < G1 < … < G, F < H, G
< H. One can verify that the representation of the definition of a primitive recursive
function as a set of rewriting rules is decreasing in both the recursive and lexicogra-
phic path orderings given by this ordering on the function symbols.

Now, let F be the same primitive recursive function as G. Then we can ‘calculate’
the value of a term by evaluating it inside out. When reducing a term, the associated
values of the terms in the reduction sequence clearly cannot change. This implies that
each closed term has a unique normal form, and so the term rewriting system will be
strongly closed confluent.

That the term rewriting system is not even weakly closed confluent in the case that
F differs from G follows trivially by choosing some n for which F(n) ≠ G(n), and
considering the one-step reducts F(Sn(0)) and G(Sn(0)) of the closed term H(Sn(0)).

Note that the term rewriting system given here will in general not be open con-
fluent because the open terms F(x) and G(x) which are both reducts of the open term
H(x) will in general not reduce, and thus will not have a common reduct.  

2.4. Reduction strategies

In this section we will:
• Define a number of reduction strategies that will be mentioned in the description

of compilation to Prolog in chapter 4, and list some of their properties

In section 2.1 we introduced the concept of a normalization function. It is a function
that maps each closed term to one of its normal forms. Here we are interested in
reduction strategies: they map each closed term to one of its reducts. A reduction
strategy might lead to a normalization function (by iterating it until it reaches a normal
form); however it need not to because this iteration might not terminate.

The four reduction strategies that will be briefly recapitulated are:
• leftmost innermost reduction
• leftmost outermost reduction
• parallel outermost reduction
• Gross-Knuth reduction
Parallel outermost reduction has the nice property that – under certain conditions – it
is normalizing. This means that for terms having a normal form some normal form
will be reached after finitely many steps.
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Gross-Knuth reduction is not only normalizing, but is also a cofinal reduction strat-
egy. This means that if a term does not have a normal form, reducing it under Gross-
Knuth reduction gives an infinite reduction that will eventually be cofinal, which means
that any reduct of a term in the sequence then can always be reduced back to a term in
the sequence. The notion of a cofinal infinite reduction is conceptually the ‘best’ ap-
proximation to that of a normal form for terms that do not have a normal form.

2.4.1. Definition. A function R: Tc(Σ) → Tc(Σ) is called a reduction strategy if each
closed term reduces to its image under R.

2.4.2. Definition. We will define a number of reduction strategies. Clearly, a reduction
strategy has to map a normal form to itself, so in order to define these strategies it is
sufficient to define what happens to terms that are not already in normal form.

A term rewriting system consists of a set of rewriting rules without an intrinsic
ordering, but in this definition we will need such an ordering. So, suppose we have a
term rewriting system T together with some total ordering on the rewriting rules.

Let t ≡ f(t1, t2, …, tn) be a closed term that is not a normal form. Then if t is a redex
– i.e., there is some rewriting rule s → s′ and some substitution σ such that t = σ[s] –
and none of the ti are reducible, then define R(t) to be the one-step reduct σ[s′]. In
order to remove the ambiguity which rule s → s′ should be taken we use the order on
the rewriting rules that we have introduced: the first rule that matches wins. Otherwise
– t is not redex or one of its arguments is not in normal form – let R(t) be recursively
defined as f(t1, t2, …, ti-1, R(ti), ti+1, …, tn), in which t1, t2, …, ti-1 are all in normal form
and in which ti the first argument that is reducible. This choice of R defines leftmost
innermost reduction.

If we reduce a non-redex in the same way, but reduce a redex regardless whether its
arguments are in normal form or not, we get leftmost outermost reduction.

If furthermore when t is not a redex we recurse in all arguments simultaneously, i.e.,
use the construction f(R(t1), R(t2), …, R(tn)) instead of f(t1, t2, …, ti-1, R(ti), ti+1, …, tn),
we get parallel outermost reduction.

If we finally modify the definition of parallel outermost reduction still further by
not defining R(t) ≡ σ[s′] when t is a redex but by taking R(t) ≡ σR[s′] in which σR is
defined by σR(x) = R(σ(x)) we get Gross-Knuth reduction.

2.4.3. Definition. A term is called linear when a variable occurs in it at most once. A
term rewriting system is called left linear when the left hand sides of its rules all are
linear. A term rewriting system is called orthogonal when it is left linear and when the
left hand sides of its rules only overlap trivially, i.e., each left hand side overlaps only
with itself and only at the root.

2.4.4. Definition. A reduction strategy R is called normalizing if for each open term t
that has some normal form there exists some n such that Rn(t) is in normal form.
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2.4.5. Proposition. Parallel outermost reduction and Gross-Knuth reduction are both
normalizing for orthogonal term rewriting systems.

Proof. See [O’Donnell, 1977], [Klop, 1980].  

2.4.6. Definition. A sequence of terms is called cofinal when each reduct of some el-
ement in the sequence in its turn has a reduct that is again an element in the sequence.

A reduction strategy R is called cofinal when for all closed terms t there exists
some n such that Rn(t), Rn+1(t), Rn+2(t), … is a cofinal sequence. It is easy to see that a
cofinal reduction strategy is always normalizing.

2.4.7. Proposition. Gross-Knuth reduction is cofinal for orthogonal term rewriting
systems.

Proof. See [O’Donnell, 1977], [Klop, 1980].  

2.5. Persistence

In this section we will:
• Introduce modular specifications and define persistence
• Give the relation between strong and weak persistence
• Show how to check strong persistence in the left linear case
• Show the undecidability of weak persistence, even in the presence of some heavy

restrictions

While termination and confluence are properties of one set of rules, persistence is a
property of the relation between a number of such sets. Therefore, in order to
define the notion of persistence, we first have to introduce the concept of a modular
specification. Such a specification consists of a set called the modules of the specifi-
cation, plus a relation between the elements of that set which is called the import
relation. Furthermore, with each module M in the set is associated a module signature
ΣM and either (in the case of a modular equational specification) a module equational
specification EM or (in the case of a modular term rewriting system) a module term
rewriting system TM. Finally, these module signatures and module specifications
should satisfy an inclusion property: if a module M′ imports a module M, then ΣM ⊆
ΣM′ and EM ⊆ EM′ (or, TM ⊆ TM′) should hold.

This definition does not represent the concept of hiding. While hiding is essential
when writing real specifications, incorporating it would make the presentation of per-
sistence more complicated, without any clear advantages: therefore, we did not clutter
our definitions with it.

Now, what is usually called persistence, we will call weak persistence (in contrast
to the notion of strong persistence, that we will also introduce). This is a property of a
modular equational specification, which relates the initial algebras of the module
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specifications. In a modular specification, even in one that is not persistent, there is
for each import a natural homomorphism between the initial algebras of the module
specifications. Precisely: If M′ imports M, then (because of the inclusion relations) we
can define a homomorphism κ that maps I(EM) to I(EM′)ΣM. The definition of weak
persistence now says that these homomorphisms should be isomorphisms, i.e., that
they should be both surjective and injective. This means that the sorts in the initial
algebra get no new members (because κ is a surjection; this goes under the slogan ‘no
junk’), and also that elements of a sort that are different in the imported module will
not become equal in the importing module (because κ is a injection; ‘no confusion’).

In the previous sections we studied the relation between the set of normal forms of
a term rewriting system and the initial algebra of its associated equational specification.
The property of strong persistence is the analogon for the set of normal forms of a
specification to the property of weak persistence for initial algebras. This means that
the notion of strong persistence is defined as a property of modular term rewriting
systems (while the notion of weak persistence was defined as a property of modular
equational specifications).

A modular term rewriting system is called strongly persistent if, for all modules M′
importing a module M, the set of closed TM normal forms is equal to the set of closed
TM′ normal forms whose type is a sort from ΣM. This means that while in a weakly
persistent specification the sorts in the specification should not change on import be-
tween modules, in a strongly persistent specification the objects in that sort should be
given by the same normal forms (if at all) as well. Or: in a weakly persistent specifica-
tion the specified objects do not change on import; in a strongly persistent specifica-
tion even the normal forms representing them do not change.

One cannot simply say that strong persistence implies weak persistence. First of all,
specifications that are strongly persistent are of a different type than specifications
that are weakly persistent. Second, even when we consider the associated equational
specification, it is not true that strong persistence implies weak persistence. But, if we
add the requirement that the module term rewriting systems all have to be semi-
complete, it is true. This is not surprising: we have the equations (the first and the
third by semi-completeness, and the second because of strong persistence):

I(E(TM)) = IN(TM) = IN(TM′)ΣM = I(E(TM′))ΣM

and all these equalities between algebras are canonical.
So, we now have introduced the notion of persistence, and we want to show that

the notion of strong persistence is decidable (if we know that all the term rewriting
systems are left linear). The major part of the rest of section will consist of the devel-
opment of an algorithm to check this property.

If we look at the definition of strong persistence, we see that we have to compare sets
containing closed normal forms. A problem with the approach of just trying to calcu-
late these sets and then compare them is that in general they are infinite.

Now, in order to have a finite object that we can manipulate (which still resembles
this infinite set of closed normal forms), we have to apply a ‘trick’: of each term we
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only retain the upper part, so ‘deep’ in the term we replace subterms by variables.
This gives us a finite set of open terms (because we replaced parts of the term by
variables). These open terms we call normal form approximations.

Now, if we perform the approximation procedure of replacing subterms by vari-
ables in a sufficiently systematic way, we can arrange two term rewriting systems to
have the same set of closed normal forms if and only if they have the same set of
normal form approximations.

We also can find an algorithm for computing these sets of normal form approxi-
mations. The result of this computation is a finite set of terms, which is easily repre-
sentable by virtue of it being a finite object.

Together, this shows that we have an effective way of comparing the sets of closed
normal forms of two term rewriting systems: it consists of calculating the sets of
normal form approximations (which are finite) and then comparing these sets. This
gives us the somewhat surprising result that it is decidable whether two left linear term
rewriting systems over the same signature have the same sets of closed normal forms.
This result is surprising because generally it is not decidable whether two term rewrit-
ing systems have a given correspondence that is ‘semantic’.

There are two details in this procedure that have to be made explicit:
• the choice of an approximation for each closed normal form, i.e., a method for

systematically ‘pruning’ normal forms to normal form approximations
• the algorithm for calculating the set of normal form approximations (in fact we

even want something that is stronger than just this algorithm: we want to be able to
decide whether some given open term can be obtained by approximating a closed
normal form)

The method for choosing the normal form approximations can go wrong in two ways.
On the one hand, we can make the approximations too shallow (i.e., cut off too large
parts of the term tree). In that case, we will lose essential information, and the equality
of the sets of normal form approximations will not tell us anything. On the other
hand, we can make the approximations too deep. This is not as bad, but in that case
the sets of normal form approximations might become very large, and the algorithm
might become very inefficient.

A first attempt to approximate normal forms is to ‘cut off’ all parts of the term that
are ‘deeper’ than a given cut-off depth. In order for this to work, the cut-off depth
must be greater than the maximal depth of all left hand sides in the relevant term
rewriting systems. This approach is simple, but the sets of normal form ap-
proximations obtained in this way can easily become very large.

A second attempt is to let the top of the term tree – the outermost function sym-
bol of the term – determine the cut-off depth. If a function f occurs only shallowly on
the left hand side of the rewriting rules, it should not be necessary to have a deep ap-
proximation of terms with function symbol f.

The continuation of this line of thought leads to the following recursive definition.
We form a set of reference terms REF, consisting of all left hand sides of all equations,
together with all subterms of those terms.

Now, if we want to find the approximation of some term f(t1, t2, …, tn) we select all
terms with head function f from REF. Then, for all i, we (recursively) approximate the
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argument ti with respect to a new set of reference terms consisting of the i-th argu-
ment of those terms that have head function f.

This construction leads to two notions that will be introduced separately, before we
introduce the approximation construction.
• The first notion is denoted: Rf,i. Given some set of terms R, one has to – first –

select the terms in R with head function f, and – then – take the i-th arguments of
those terms.

• The second notion is called the basis associated with a set of terms R, which we
denote by Rπ. It consists of the approximations of all closed terms with respect to
the set R in the recursive manner that was sketched above. It is called a basis, be-
cause it has the property that each closed term matches exactly one of the open
terms in Rπ, so it gives a natural partitioning of the set of all closed terms.

We argued before that the ‘pruned’ terms which are the elements of Rπ should
be ‘deep enough’. The definition of Rπ is framed in such a way that all terms in Rπ

are in a sense ‘deeper’ than the elements of R.
Now, from the basis REFπ we take those terms that are a normal form approximation.
This gives a set called NFA. It is a finite set strongly resembling the set of closed nor-
mal forms of the term rewriting system. For instance, the function symbols that occur
in this set are exactly the generators of the initial algebra corresponding to the term
rewriting system, while the function symbols that do not occur in it are the defined
functions of the specification.

We now turn to the algorithms given in this section. They are fairly straightforward.
There are three algorithms which are built on top of each other. They are:
• The calculation of the set NFA of normal form approximations
• A decision procedure for deciding whether some term is a normal form approxi-

mation
• A procedure that compares the sets of closed normal forms of two term rewriting

systems
The idea behind the algorithm for calculating the set NFA is not too difficult. Instead of
calculating one set – the set NFA itself – directly, we will calculate a sequence of sets
that will steadily increase to the set we are looking for. Each set in this sequence will
contain the approximations of deeper closed normal forms. When the sequence be-
comes constant, we have found the full set NFA.

The construction of this sequence is as follows. We start with the empty set. At
each iteration we form all terms that have arguments from the previous set in the
sequence (initially we will of course only be able to form constants). If such a term is
reducible, it is not interesting. Else, we approximate it and add it to the set.

The main application of this set NFA is in the algorithm that decides whether a
given open term is a normal form approximation. It turns out that this gives a power-
ful technique for investigating the set of normal forms of a term rewriting system. We
call this technique normal form analysis.

The decision procedure that decides whether some term is a normal form ap-
proximation works in the following way. Suppose that one is given some template
term, and that one wants to decide whether there is a closed normal form that
matches it. In order to do this, one looks at all elements from the set NFA that unify
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with the template. If one of these unifying elements of NFA is an instance of the tem-
plate, we are finished and may conclude that the template approximates some closed
normal form. If this is not yet true, we go in recursion: we calculate the unification and
invoke the algorithm on the arguments of this unification.

Once one has the ability to decide whether a given open term is a normal form
approximation, checking strong persistence is not very hard. In order to check that
there is no junk, one just has to verify that there are no normal forms containing a
‘new’ function symbol, i.e., a function symbol that was introduced after the import.
This can easily be done by checking whether there exists some left hand side f(t1, t2,
…, tn) of a rule in the new, importing, module for which f is such a new function and
for which all ti are normal form approximations in the original, imported, module. In
order to check that there is no confusion, one has to verify that all ‘new’ left hand
sides, i.e., left hand sides of rewriting rules introduced after the import, are not normal
form approximations in the original module.

The complexity of this algorithm for checking strong persistence turns out to be
rather bad in the worst case: it uses at least exponential space. However, in practice
the algorithm appears feasible for checking the persistence of moderately sized
specifications as the examples in chapter 3 show.

We end this section with a proof of the fact that it is not decidable whether a modular
specification is weakly persistent, even if all module specifications are:

monotone terminating with respect to some given path ordering + open
confluent + left linear

This is proved by associating a modular term rewriting system to a primitive recursive
function F and choosing the construction in such a way that this modular term rewrit-
ing system is weakly persistent if and only if F is a bijection.

2.5.1. Weak and strong persistence

2.5.1.1. Definition. A modular equational specification consists of a set called the set
of modules of the specification, a relation on this set called the import relation, and
for each module M in the specification a module signature ΣM and a module equa-
tional specification EM, such that EM has signature ΣM, and such that when a module
M′ imports a module M the inclusions ΣM ⊆ ΣM′ and EM ⊆ EM′ both hold.

A modular term rewriting system consists of a set of modules, an import relation
on this set, and for each module M in the specification a module signature ΣM and a
module term rewriting system TM, such that TM has signature ΣM, and such that when
a module M′ imports a module M the inclusions ΣM ⊆ ΣM′ and TM ⊆ TM′ both hold.

Each modular term rewriting system has an associated modular equational specifi-
cation that is obtained by taking the same set of modules, the same import relation,
the same module signatures ΣM, and by taking for the module equational specification
EM the equational specification E(TM) associated with TM.
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2.5.1.2. Definition. Let be given some modular equational specification. Then, if a
module M′ imports a module M we can define a homomorphism κ that maps I(EM) to
I(EM′)ΣM in the following way. Each element of I(EM) is by the definition of initial
algebra an equivalence class of closed terms over ΣM. Let t be such a closed term and
let [t] be its equivalence class. The term t is also a term over the larger signature ΣM′
and as such is in some equivalence class [t] in the initial algebra I(EM′). Because t is a
term over the signature ΣM, it will be clear that the [t] is an element of I(EM′)ΣM.
Now, define the mapping κ by

κ([t]) ≡ [t]

Because EM ⊆ EM′, it will be clear that this definition of κ([t]) does not depend on the
representative t of [t] that is used in the definition. It is also straightforward to verify
that the mapping κ that is defined in this way is a homomorphism.

The modular equational specification is called weakly persistent when for each im-
port the homomorphism κ is an isomorphism, i.e., when for each import the map-
ping κ is both surjective and injective.

2.5.1.3. Definition. A modular term rewriting system is called strongly persistent if,
for all modules M′ importing a module M, the set of closed TM normal forms is equal
to the set of closed TM′ normal forms whose type is a sort from ΣM.

2.5.1.4. Proposition. If a modular term rewriting system is strongly persistent, and
all module term rewriting systems are semi-complete, the associated modular
equational specification is weakly persistent.

Proof. According to 2.3.1.6 the fact that each module term rewriting system TM is
semi-complete implies that each closed term t over ΣM has a TM normal form, and
that for two closed terms t1 and t2 the normal forms are equal if and only if [t1] = [t2] in
I(EM).

Now, in order to prove weak persistence, we have to show that for each import of
a module M in a module M′ the mapping κ is both surjective and injective.

Surjective: Let [t] be some element from I(EM′)ΣM. This means that t is a closed
term over the signature ΣM′ typed by a sort in ΣM. The term t has a TM′ normal form
n to which it is provably equal in EM′. Now by strong persistence n is also a closed TM
normal form. But this means that n is a closed term over the signature ΣM, so [n] is an
element of I(EM). This means that [t], which is equal to [n] in I(EM′)ΣM is the κ-image
of [n] in I(EM).

Injective: Let [t1] and [t2] be two elements of I(EM) that map to the same element of
I(EM′)ΣM, which means that the closed terms t1 and t2 are provably equal in EM′.
They have in TM the normal forms n1 and n2, which because of strong persistence are
also TM′ normal forms, and because TM ⊆ TM′ they are also the TM′ normal forms of t1
and t2. But, because t1 and t2 are provably equal in EM′ they have the same normal
form, so n1 = n2. But this means that that t1 and t2 had the same TM normal form, so
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they were also provably equal in TM, and so [t1] = [t2] in I(EM).  

2.5.2. Term approximations and bases

2.5.2.1. Definition. In the rest of section 2.5 we will only be interested in linear terms.
Therefore we will not work here with terms in which variables have a name (which is
not very relevant here because all terms are known to be linear and we do not need to
able to apply a substitution) but with terms in which all variables have been replaced
by the symbol ♦, which is pronounced ‘hole’. One should realize that the term f(♦, ♦)
does not correspond to a non-linear term like f(x, x); instead it corresponds to a term
like f(x, y). So, each ♦ denotes a different variable.

The set T(Σ, ♦) of linear open terms or (for the remainder of this section) terms
is the minimal set such that:

(i) for each sort σ it contains the hole ♦σ of type σ. If the type of a hole is clear
from the context we will omit the subscript σ and just write ♦.

(ii) if f is a function symbol, and t1, t2, …, tn are terms from T(Σ, ♦) of the appropri-
ate types, then t ≡ f(t1, t2, …, tn) is also a term in T(Σ, ♦).

This definition clearly mimics 2.1.1.3. Most of the notions in 2.1 concerning the set
T(Σ, V) have counterparts for the set T(Σ, ♦). We will not treat this distinction formal-
ly, so, we will talk about ‘subterms’, ‘contexts’, etc, and consider the specific defini-
tions for linear open terms understood.

2.5.2.2. Definition. A term s is a approximation of a term t when it is obtained from t
by replacing a number of subterms of t by a hole ♦ of the appropriate type. Formally:

(i) a hole ♦σ  is an approximation of all terms t of type σ
(ii) a term f(s1, s2, …, sn) is an approximation of a term f(t1, t2, …, tn) when all argu-

ments si are approximations of the corresponding ti.
If s is an approximation of t, the term t is called an instance of s.

A term is called a normal form approximation when it is an approximation of
some closed normal form. Note that an approximation of an open normal form
need not be a normal form approximation. For instance, consider the term rewriting
system given by the following Perspect specification:

external Addition

 import Naturals

 function add(NAT,NAT): NAT

internal Addition

 variable m, n: NAT

 equation

  add(0,n): n

  add(succ(m),n): succ(add(m,n))

Then the term t ≡ add(♦,♦) is an open normal form because there does not exist a
rule that can reduce t. However, there is no closed normal form that is an instance of t
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because all closed normal forms have the form succn(0). So t is not a normal form
approximation.

2.5.2.3. Definition. Let R be some set of terms. Let f be a function symbol and i some
index that corresponds to an argument position of f. Then the set Rf,i is obtained by
selecting the elements from R that have the outermost function symbol f, and collect-
ing the set of the i-th argument of each element from this subset. This operation is
called setwise argument selection. More formally:

Rf,i  ≡  { t | ∃ s = f(s1, s2, …, sn) ∈ R: t = si }

2.5.2.4. Definition. A set of terms B is called a basis when each closed term in Tc(Σ) is
an instance of exactly one element of B.

2.5.2.5. Definition. Let R be some set of terms called reference terms. The set Rπ

called the basis associated with R is defined as the union of sets (Rπ)σ for each type
σ. The definition of the sets (Rπ)σ has two cases:

(i) if R does not contain non-hole terms of type σ, then (Rπ)σ ≡ {♦σ}
(ii) if R contains a non-hole term of type σ we define the set (Rπ)σ recursively as:

(Rπ)σ  ≡  ∪f∈F(Σ), ran(f)=σ { t = f(t1, t2, …, tn) | ∀ i: ti ∈ (Rf,i)
π }

Note that the set Rπ may contain terms of different types, and that the definition of Rπ

not only depends on the set R but also on the signature Σ.

2.5.2.6. Proposition. The set Rπ is a basis.

Proof. Let t ≡ f(t1, t2, …, tn) be some closed term of type σ. We have to prove that Rπ

contains exactly one term that approximates t. This is proved using induction on the
depth of t. There are two cases (because the definition of  (Rπ)σ has two cases). Either
(Rπ)σ = {♦σ} in which case the claim is trivially true, or we are in case (ii) of the defini-
tion of Rπ. Then induction gives that each ti has exactly one approximation si in (Rf,i)

π,
and then s = f(s1, s2, …, sn) is the unique approximation of t in Rπ.  

2.5.2.7. Proposition. Let be given terms s ∈ Rπ and t ∈ R. Then the fact that s does
unify with t implies that s is an instance of t.

Proof. This proposition is proved using induction on the depth of s and t. The case
that t is a hole is trivial – every term is an instance of a hole – so suppose t has the form
f(t1, t2, …, tn). Then s cannot be a hole – because t is not a hole we are in case (ii) in the
definition of Rπ – so because s and t unify we find that s also has the form f(s1, s2, …,
sn). We know that each si ∈ (Rπ)f,i = (Rf,i)

π and ti ∈ Rf,i, so induction gives that each si is
an instance of the corresponding ti. But that means s is an instance of t.  
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2.5.2.8. Proposition. Let be given a set R1 that contains a set R2. Then each term in
(R1)

π is approximated by some term in (R2)
π.

Proof. Let t be some term of type σ in (R1)
π. If t is a hole, R1 does not contain non-

hole elements of type σ, and nor will R2, so the hole of type σ will also be in (R2)
π and

R2 contains an approximation of t. If t is not a hole, say t = f(t1, t2, …, tn), then for each
i we may conclude, with induction, from the fact that (R1)f,i contains (R2)f,i that the
argument ti – being in ((R1)

π)f,i = ((R1)f,i)
π – has an approximation si in ((R2)f,i)

π. And
then the term s = f(s1, s2, …, sn) is the required approximation of t.  

2.5.2.9. Proposition. Let be given a set R1 that contains a set R2 and let be given
terms s ∈ (R1)

π and t ∈ (R2)
π. Then the fact that s unifies with t implies that s is

an instance of t.

Proof. This proposition is proved using induction on the depth of s and t. The case
that t is a hole is trivial, so let t have the form f(t1, t2, …, tn).  Then R2 has to contain a
non-hole term of the same type as t, and therefore so has R1. Moreover, because s and
t unify, s also has the form f(s1, s2, …, sn). Now, ((R1)f,i)

π contains ((R2)f,i)
π, further-

more we know that si ∈ ((R1)
π)f,i = ((R1)f,i)

π and  ti ∈ ((R2)
π)f,i = ((R2)f,i)

π and finally si
unifies with ti. Therefore, induction tells us that si is an instance of ti. This shows that s
is an instance of t.  

2.5.3. Normal form analysis

2.5.3.1. Definition. Let T be some left linear term rewriting system. Then define the set
of reference terms REF associated with T as the set of all subterms of the left hand
sides LHS of rules from T.

Now the set NFA of normal form approximations associated with T is defined as
the elements from REFπ that are normal form approximations. More formally:

NFA  ≡  { t ∈ REFπ| ∃ normal form n ∈ Tc(Σ): t is an approximation of n }

2.5.3.2. Algorithm. Procedure for calculating the set NFA.

Construct a sequence of sets NFA0, NFA1, NFA2, … in the following way. Let NFA0 ≡ ∅
be the empty set. Now if NFAi-1 is given, construct NFAi as follows. Form all terms of
the form f(t1, t2, …, tn) in which the ti are taken from NFAi-1 and for each of these
terms take the approximation that is in REFπ. Only retain the approximations which
are an open normal form (i.e., which are not an instance of a left hand side of a rule of
T). These are the elements of the set NFAi.

The sequence that one obtains in this way will after some index n become constant,
i.e., for some index n we have NFAn = NFAn+1 = NFAn+2 = … The set NFA will be
equal to this ‘limit set’ NFAn.
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Proof of the correctness of the algorithm. The algorithm contains the hidden as-
sumption that the terms of the form f(t1, t2, …, tn) occurring in the inductive
construction of the sets NFAi all have an approximation in REFπ. That this is true
follows from the fact that REF contains all subterms of its elements, because it consists
of all subterms of elements from LHS. Therefore REF contains REFf,i for each i. Now
proposition 2.5.2.8 shows that all ti – which have been taken from NFAi-1 and
therefore are in REFπ – have some approximation in (REFf,i)

π. And this means that f(t1,
t2, …, tn) has an approximation in REFπ.

We will now give a characterization of the sets NFAi. We claim that each NFAi
consists of the approximations in REFπ of the closed normal forms that have depth
less than i. We prove this using induction. For i = 0 this is easy: NFA0 is empty and
there are no natural numbers less than 0.

The induction step has two directions: given some closed normal form of depth
less than i we have to show that its approximation is in NFAi and vice versa. So, let be
given some closed normal form n = f(n1, n2, …, nn) of depth less than i. Then, its
arguments ni are normal forms of depth less than i-1, so their REFπ approximations ti
are in NFAi-1. We define t = f(t1, t2, …, tn) and let t′ be the REFπ approximation of t.
Now, t′, being an approximation of the normal form n, will itself be an open normal
form. So t′ which is the approximation of n will end up in NFAi as desired.

In the other direction, let be given some element t = f(t1, t2, …, tn) of NFAi. The ti
are approximations of elements from NFAi-1, which by induction are approximations
of normal forms ni of depth less than i-1. But then t is an approximation of n = f(n1,
n2, …, nn). Now, suppose that n is not a normal form. Then t unifies with the left hand
side s of the rule that reduces n. According to proposition 2.5.2.7, we may conclude
from the fact that some element t of REFπ unifies with some element s of LHS (which
is a subset of REF) that t is in fact an instance of s. This shows that t is not in normal
form, which contradicts the construction of NFAi. So n in fact is a normal form, and
therefore t is an approximation of a normal form of depth less than i.

Finally we will give the proof of the correctness of the algorithm. Because the con-
struction of the set NFAi only depends on the set NFAi-1 and this dependency is
monotone with respect to set inclusion, the sequence of sets is increasing. However,
each set is a subset of the set REFπ, which is finite. So, after finitely many steps we
reach the point that NFAn = NFAn+1 and then the NFAi’s cannot change anymore. The
characterization that we have given of the NFAi then shows that the set NFAn is equal
to NFA.  

2.5.3.3. Algorithm. Procedure for deciding whether some term t is a normal form
approximation.

There are four cases:
(i) The first case is the one that t is a hole. In this case, check whether NFA contains

some term of the same type as t. If it does, t is a normal form approximation;
else it is not.

In the next three cases t is not a hole so t has the form f(t1, t2, …, tn).
(ii) NFA does not contain a term that unifies with t. In this case t is not a normal
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form approximation.
(iii) NFA contains a hole of the same type as t. Check – by going into recursion –

whether each argument ti is a normal form approximation. If they all are, t is also
a normal form approximation; else it is not.

(iv) In this last case, NFA contains a non-hole term that unifies with t. Such a term
clearly has the form s = f(s1, s2, …, sn). Now, for each argument position i of f,
first check whether ti is an approximation of si. If this is not the case, decide –
by going into recursion – whether the unification of ti and si is a normal form
approximation. If there is an element s of NFA that unifies with t, for which
either of these checks succeeds for all i, the term t is a normal form approxima-
tion; else it is not.

Proof of the correctness of the algorithm. There is a hidden assumption in this algo-
rithm as well, which is that the algorithm will not go into infinite recursion. We first
show that this will not happen. If the algorithm invokes itself, it always does this by
unifying the term t with an element of NFA, and then selecting one of the arguments
(actually, in case (iv) of the algorithm these two steps are performed in a different
order, but because all terms are linear this makes no difference). Let the sequence of
elements in this recursive invocation lead to the sequence s0, s1, s2, … in which each si
is the term after unification and before argument selection. Also, let the sequence in
which each time only the argument is being selected (omitting the unification) be
called t0 = t, t1, t2, …, tn = ♦.

We claim that each si is the unification of ti with some element ui of NFA. For i = 0
this is evident. In order to prove the induction step, one has to verify that the unifica-
tion of some element of NFA and an argument of some element of NFA gives an
element of NFA. This is a consequence of the fact that all subterms of elements of REF
are also an element of REF, which means that we may take R1 = REF and R2 = REFf,i in
proposition 2.5.2.9. This proposition then shows that if some element s of NFA
(which will also be an element of REFπ) and the argument t of some element of NFA
(this argument then is an element (REFπ)f,i = (REFf,i)

π) unify, s will be an instance of t,
and so their unification will be s which is an element of NFA.

To finish the proof of the fact that this algorithm will not go into infinite recursion:
We have shown that each si is the unification of ti with some element of NFA. This
means that because tn = ♦, it follows that sn is an element of NFA, and this means that
at that point the recursion will end.

And now for the correctness of the algorithm. We have to prove that the algorithm
succeeds if and only if it has been given some normal form approximation.

‘⇒’: We use induction on the running time of the algorithm. This means that when
the algorithm goes into recursion, we may assume that in that case the answer will be
correct. Now, let t be some term of type σ for which the algorithm succeeds. It is easy
to see that in the first two cases of the algorithm, it will give the correct answer. If the
algorithm succeeds in the third case, we know that t has the form f(t1, t2, …, tn) and
that each ti is an approximation of some closed normal form ni. Now suppose that n =
f(n1, n2, …, nn) is reducible. Then n must be a redex, but because NFA only contains a
hole of the type σ, there are no left hand sides of rewriting rules that have type σ. So, n



Persistence 59

is not a redex but a closed normal form, and t, being an approximation of n, is indeed
a normal form approximation.

If we are in the fourth case of the algorithm, t again has the form f(t1, t2, …, tn), and
we also have some s = f(s1, s2, …, sn) in NFA such that for all i the unification of ti and
si is a normal form approximation – say the approximation of some closed normal
form ni. Now, define n = f(n1, n2, …, nn) and suppose that n is reducible. Then n must
be a redex, i.e., it must unify with some left hand side u of some rewriting rule. Now s
is an approximation of n, so s also unifies with u. We further know that u ∈ LHS and
that s ∈ REFπ. From this it follows (as was shown in the proof of 2.5.3.2) that u
approximates s. But that means that s is reducible, i.e., s cannot be a normal form ap-
proximation, which means it cannot be in NFA. This contradiction show that in fact n
was a normal form, and so t which approximates n is indeed a normal form approxi-
mation.

‘⇐’: Again we use induction on the running time of the algorithm. Suppose we are
given some normal form approximation t which is the approximation of the closed
normal form n. By the definition of NFA the set NFA also has to contain the approxi-
mation s of n in REFπ. Now, if we are in the first case of the algorithm, because s exists
we get the right answer. Again, because of the existence of s we cannot be in the
second case of the algorithm. In the third case we will also get the correct answer,
because each argument of t approximates the corresponding argument of n, so each
argument of t is a normal form approximation, and by induction the algorithm will
succeed for it. In the fourth case the approximation s of n in NFA will of course work:
We know that t has the form f(t1, t2, …, tn), s has the form f(s1, s2, …, sn) and n has the
form f(n1, n2, …, nn). If some argument ti is not an approximation of si, the recursion
will – by induction – still give an affirmative answer, because both ti and si approxi-
mate ni, so their unification also does.  

2.5.3.4. Example. For a small example, consider the term rewriting system T given by
the following Perspect specification:

external Naturals

 sort NAT

 function

  0, succ(NAT): NAT

internal Naturals

 [empty]

external Integers

 import Naturals

 sort INT

 function

  pos(NAT), neg(NAT): INT

internal Integers

 equation

  neg(0): pos(0)
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The infinite set of closed normal forms of T is:

{0, succ(0), succ(succ(0)), succ(succ(succ(0))), …,
pos(0), pos(succ(0)), pos(succ(succ(0))), …,
neg(succ(0)), neg(succ(succ(0))), neg(succ(succ(succ(0)))), …}

With the term rewriting system T the following sets are associated:

LHS = {neg(0)}
REF = {0, neg(0)}
REFπ = {0, succ(♦NAT), pos(♦NAT), neg(0), neg(succ(♦NAT))}
NFA = {0, succ(♦NAT), pos(♦NAT), neg(succ(♦NAT))}

Note that one can partition the set of closed terms according to the elements of the
basis REFπ and that one can partition the set of closed normal forms according to the
normal form approximations in the set NFA.

2.5.4. Decidability

2.5.4.1. Algorithm. Procedure for deciding whether two left linear term rewriting
systems T1 and T2 over the signatures Σ1 and Σ2 have the same set of closed
normal forms with a type in S(Σ1) ∩ S(Σ2).

In the first place, check that all closed normal forms with a type in S(Σ1) ∩ S(Σ2)
involve in both T1 and T2 only functions from F(Σ1) ∩ F(Σ2). In order to do this verify
(using algorithm 2.5.3.3) that all terms f(♦, ♦, …, ♦) with f in F(Σ1) \ F(Σ2) and ran(f) in
S(Σ1) ∩ S(Σ2) are not normal form approximations of T1 and vice versa.

In the second place, check (again, using algorithm 2.5.3.3) that all left hand sides of
T2 with a type in S(Σ1) ∩ S(Σ2) are not normal form approximations of T1 and vice
versa.

Proof of the correctness of the algorithm. The set of the closed T1 normal forms
consists of two parts: those with an outermost function symbol in F(Σ1) \ F(Σ2) and
those with an outermost function symbol in F(Σ1) ∩ F(Σ2). The first check verifies that
this first part is empty. This implies that T1 normal forms cannot contain any function
symbol from F(Σ1) \ F(Σ2) (because a subterm of a normal form is itself a normal
form). So, after the first check we know that the closed normal forms of T1 and T2
with types in S(Σ1) ∩ S(Σ2) only contain function symbols from F(Σ1) ∩ F(Σ2).

Suppose that some T1 normal form is reducible in T2. The subterm which reduces
is a T1 normal form and a T2 redex. But then the corresponding T2 rewriting rule has a
left hand side that is a T1 normal form approximation. The second check verifies
whether that happens.

We have now shown that if the algorithm says that the sets of normal forms are
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equal, it is right. On the other hand, if they are equal, it is easy to verify that the algo-
rithm will succeed.  

2.5.4.2. Algorithm. Procedure for deciding whether a modular left linear term re-
writing system is strongly persistent.

For all modules M′ importing a module M compare the sets of closed normal forms
with a type in ΣM = ΣM ∩ ΣM′ of the term rewriting systems TM and TM′ using algo-
rithm 2.5.4.1.

2.5.4.3. Proposition. The previous algorithm uses space at least exponential in the
length of the specification.

Proof. Consider the following Perspect specification scheme (which is inspired by the
examples in [Bergstra, Mauw, Wiedijk, 1989]):

external HypercubeWithOneCornerRemoved

 sort B, C  ["Bit" and "Cube"]
 function

  0, 1: B

  f(B,B,…,B): C

internal HypercubeWithOneCornerRemoved

 equation

  f(1,1,…,1): f(0,0,…,0)

The ellipses should be expanded such that the function f becomes an n-ary function.
Clearly this specification has length of order n. The set NFA consists of all terms of the
form f(b1,b2,…,bN) with all bi in {0, 1} and at least one bi ≠ 0 and so clearly has
size exponential in n. Now algorithm 2.5.4.2 uses this set, and so uses exponential
space to store it.  

2.5.4.5. Proposition. It is not decidable whether a modular equational specification
is weakly persistent, even when it is known that it corresponds to a modular term
rewriting system in which each module term rewriting system is monotone termin-
ating with respect to both a recursive and a lexicographic path ordering, is open
confluent and is left linear.

Proof. For an arbitrary primitive recursive function F we are going to define a modular
term rewriting system for which each module term rewriting system is monotone ter-
minating with respect to both recursive and lexicographic path orderings, is open
confluent and is left linear. Furthermore, it will be chosen in such a way that if F is a
bijection, its associated modular equational specification is weakly persistent, while if F
is not a bijection, the specification is not weakly persistent. Because it is not decidable
whether some arbitrary primitive recursive function is a bijection, it is not decidable
whether the specification is weakly persistent.
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The first module of this specification has two sorts: the natural numbers and a
second sort called X. It has three functions: the generators 0, S of the natural numbers
and a function G that maps the natural numbers on X. In this module there are no re-
writing rules.

In the second module there are no new sorts. There are a number of new func-
tions: the sequence of functions F0, F1, …, Fn ≡ F defined on the natural numbers and
leading to the primitive recursive function F as in 2.2.3.2 and 2.3.3.2, and a new func-
tion H mapping the natural numbers on X. There are the set of rules ‘defining’ F in
terms of the sequence, and one additional rewriting rule:

G(x) → H(F(x))

Now, the ordering on the function symbols for which this is a monotone terminating
term rewriting system is of course 0 < S < F0 < F1 < … < F, F < G, H < G. (Note that it is
impossible to do this in Perspect, because there functions in ‘later’ modules always
have to be ‘larger’. In fact, in Perspect weak persistence is equivalent to strong persist-
ence.) Open confluence and left linearity are also trivial.

Now, before the import, in the initial algebra the sort X is the set {[G(0)], [G(S(0))],
[G(S(S(0)))], …}, while after the import it becomes {[H(0)], [H(S(0))], [H(S(S(0)))], …},
with the mapping κ from definition 2.5.1.2 given by κ([G(x)]) = [H(F(x))]. So in a sense
κ is given by F, and so κ is a bijection if and only if F is. This shows that the import is
weakly persistent if and only if F is a bijection.  

2.6. Primitive recursive algebras

In this section we will:
• Introduce the notion of a primitive recursive algebra
• Give the construction of a ‘diagonal algebra’ that is not primitive recursive but can

be specified in the presence of some heavy restrictions

The class of primitive recursive algebras is for algebras what the class of primitive
recursive functions is for functions. Just like each primitive recursive function is a total
recursive function whereas a lot of everyday functions are primitive recursive, each
primitive recursive algebra is a decidable semi-computable algebra while a lot of
everyday algebras are primitive recursive algebras.

The definition of primitive recursive algebra that is given here is somewhat ad hoc.
It does not have the property that the minimal subalgebra of a primitive recursive
algebra is necessarily primitive recursive, which is not very satisfying. One can ask the
analogous question here for ‘Perspect algebras’: is the minimal subalgebra of an
algebra that is specifiable in Perspect again specifiable in Perspect? The answer to this
question is unknown to me, though the analogy with the class of primitive recursive
algebras suggests that this is not the case.

We use the notion of a primitive recursive algebra to give a lower bound to the
expressiveness of specifications satisfying all the restrictions that gave the decidable
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class of persistent specifications. We find that the following inclusions hold:

primitive recursive algebras ⊂ algebras specifiable under the restrictions of
the decidable class of persistent specifications ⊂ algebras in which equality
between terms is decidable ⊂ semi-computable algebras

In order to prove that the first inclusion is proper, we need an algebra that can be
specified under the restrictions of the decidable class of persistent specifications,
while not being primitive recursive. This algebra is the subject of the sole proposition
of this section. It is constructed from a diagonal function δ that has to satisfy a certain
diagonal property, which can easily be satisfied by some diagonal construction.

2.6.1. Definition. A primitive recursive algebra is an algebra that is isomorphic to an
algebra in which all sorts are either the set of all natural numbers or a set of the form
{0, 1, …, n-1}, and in which all functions are primitive recursive.

2.6.2. Proposition. There is a term rewriting system that is monotone terminating,
open confluent and left linear, but whose initial algebra is not primitive recursive.

Proof. A term rewriting that satisfies this proposition is given by the Perspect specifi-
cation in 3.3.3. Because this is a Perspect specification it is trivially monotone termin-
ating, open confluent and left linear.

It contains (among other things) a sort containing the natural numbers – given by
generators 0 and S – and a function δ from the natural numbers to the natural numbers
that has the property that for all primitive recursive functions F and G, with F a
bijection on the natural numbers, the function δ is not equal to the composition F-1⋅G.
This equivalent to the property that for each primitive recursive F and G, with F a
bijection, there exists some natural number n with F(δ(n)) ≠ G(n). For the explanation
why this is true see 3.3.3.

Suppose that the initial algebra of this specification is primitive recursive. Then it
has to be isomorphic to an algebra in which all sorts are either the set of all natural
numbers or a set of the form {0, 1, …, n-1}, and in which all functions are primitive
recursive – its primitive recursive representation. Call the primitive recursive func-
tions that correspond to 0, S and δ in this representation 0′, S′ and δ′.

The component of the isomorphism for the natural numbers is a bijection i from
the natural numbers to the natural numbers that satisfies i(S(n)) = S′(i(n)). From this it
follows that i(n) = i(Sn(0)) = S′n(0′), which implies that i is itself also a primitive recur-
sive function because it can be defined by primitive recursion in terms of S′ and 0′,
which are primitive recursive.

Also, we know that i(δ(n)) = δ′(i(n)) or, equivalently, δ(n) = i-1(δ′(i(n))). This means
that δ = i-1⋅(δ′⋅i). Now define, F ≡ i and G ≡ δ′⋅i. Both functions are primitive recur-
sive, and F is a bijection. This gives a contradiction with the property that δ cannot
have the form F-1⋅G.  





 

Chapter 3

 

Perspect

 

If it has syntax, it isn’t user-friendly.

 

In this chapter we will define an algebraic specification language called Perspect. This

 

language will be shown to have a number of desirable properties. A couple of inter-

 

esting example specifications written in Perspect will be given. Finally, an implemen-

 

tation of a checker for Perspect written in Modula-2 will be described.

 

3.1. Language definition

 

Section 3.1 of this thesis is the revised report on the specification language Perspect.

 

In this report both the language Perspect itself is defined, as well as a range of five dia-

 

lects of Perspect. The main language is defined in sections 3.1.1 to 3.1.5. The dialects

 

are defined in section 3.1.6.

 

3.1.1. Syntax

 

3.1.1.1. Lexical syntax. 

 

Perspect has nine keywords which are written using lower case

 

letters. The keywords are reserved, and cannot be used as an identifier.

 

〈

 

keyword

 

〉

 

 ::=

 

‘

 

echo

 

’ | ‘

 

equation

 

’ | ‘

 

external

 

’ | ‘

 

function

 

’ | ‘

 

import

 

’ |

 

‘

 

internal

 

’ | ‘

 

rec

 

’ | ‘

 

sort

 

’ | ‘

 

variable

 

’.

 

Perspect identifiers are strings of the form:

 

〈

 

ident

 

〉

 

 ::= (

 

〈

 

lower case letter

 

〉

 

 | 

 

〈

 

upper case letter

 

〉

 

 | 

 

〈

 

digit

 

〉

 

)

 

+

 

different from the nine reserved keywords. Upper case letters and lower case letters

 

are considered to be different.

 

Perspect has five symbols for punctuation: the comma, the round brackets, the

 

colon and the asterisk.
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Perspect

 

〈

 

punctuation mark

 

〉

 

 ::= ‘

 

,

 

’ | ‘

 

(

 

’ | ‘

 

)

 

’ | ‘

 

:

 

’ | ‘

 

*

 

’.

 

The following lexical elements are used for layout and have no further meaning:

 

〈

 

layout element

 

〉

 

 ::= 

 

〈

 

comment

 

〉

 

 |

 

〈

 

space

 

〉

 

 | 

 

〈

 

horizontal tab

 

〉

 

 | 

 

〈

 

vertical tab

 

〉

 

 | 

 

〈

 

newline

 

〉

 

 | 

 

〈

 

carriage return

 

〉

 

 |

 

〈

 

form feed

 

〉

 

.

 

A layout element should not occur inside another lexical element (like an identifier),

 

but is meant to separate lexical elements.

 

Comments are delimited by square brackets ‘

 

[

 

’ and ‘

 

]

 

’. Comments may be nested.

 

This makes it possible to temporarily remove some part of a specification (even if it

 

already contains other comments) by placing the text of this part between comment

 

brackets.

 

〈

 

comment

 

〉

 

 ::= ‘

 

[

 

’ (

 

〈

 

printable character 

 

≠

 

 square bracket

 

〉

 

 | 

 

〈

 

comment

 

〉

 

)

 

∗

 

 ‘

 

]

 

’.

 

Comments are only permitted to contain printable ASCII characters, i.e., characters

 

with an ASCII value in the set:

 

{9, 10, 11, 12, 13, 32, …, 90, 92, 94, …, 126}

 

(The ASCII values of the characters ‘

 

[

 

’ and ‘

 

]

 

’ are respectively 91 and 93). Characters

 

from an extended ASCII character set, i.e., with a value larger than 127, are not allowed

 

in a comment.

 

Comments that start with the character ‘

 

-

 

’ (hyphen) are reserved as ‘pragma’.

 

These comments should be used when it is necessary to communicate information to

 

an implementation of Perspect. For example, a comment like:

 

[-

 

implementation Integers.MOD]

could be used to tell a Perspect compiler not to compile a module, but to use the
manually written implementation in the file Integers.MOD instead. Note that this kind
of comment is not allowed to alter the correctness or the meaning of a specification.

3.1.1.2. Concrete syntax. A Perspect specification consists of a number of texts that
are represented in a computer by a number of different files. A Perspect file consists
of the external part of a module, the internal part of a module, or the concatenation of
one or more parts of modules.

〈specification〉 ::= 〈file〉∗.
〈file〉 ::= 〈external〉 | 〈internal〉 | (〈external〉 | 〈internal〉)+.

When a file only contains the external part of a module, the name of that file is 〈mod-
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ule ident〉 followed by the suffix ‘.ext’ (which consists of lower case letters). When a
file contains the internal part of a module, the name of the file is 〈module ident〉 fol-
lowed by ‘.int’. When a file contains several parts of a module, the name of the file
should end in ‘.per’.

The first two kinds of files are intended to enable a Perspect implementation to
easily locate all relevant files on import. The last kind of file makes it possible to rep-
resent a Perspect specification (or some part of it) as one big file.

The context free syntax of Perspect is given by the following EBNF grammar. Note
that braces ‘{’ and ‘}’ have a special status here: we use the notation {〈notion〉 〈separ-
ator〉}∗ for zero or more 〈notion〉s separated by 〈separator〉s, and similarly {〈notion〉
〈separator〉}+ for one or more 〈notion〉s separated by 〈separator〉s. This means that
{〈notion〉 〈separator〉}∗ differs from (〈notion〉 〈separator〉)∗ in which the brackets are
used for grouping. A set of syntax diagrams corresponding to this grammar appears as
appendix I of this thesis.

〈external〉 ::=
‘external’ 〈module ident〉 (〈import〉 | 〈declaration〉)∗.

〈internal〉 ::=
‘internal’ 〈module ident〉 (〈import〉 | 〈declaration〉 | 〈equation〉)∗.

〈import〉 ::= ‘import’ {〈module ident〉 ‘,’}+.
〈declaration〉 ::=

‘sort’ {〈sort ident〉 ‘,’}+ |
‘function’ 〈function〉+ |
‘variable’ 〈variable〉+.

〈function〉 ::= {〈function type〉 ‘,’}+ ‘:’ 〈sort ident〉.
〈function type〉 ::=

[‘rec’] [‘echo’] 〈function ident〉 [‘(’ {([‘*’] 〈sort ident〉) ‘,’}+ ‘)’].
〈variable〉 ::= {〈variable ident〉 ‘,’}+ ‘:’ 〈sort ident〉.
〈equation〉 ::= ‘equation’ ({〈term〉 ‘,’}+ ‘:’ 〈term〉)+.
〈term〉 ::=

〈sort ident〉 | 〈function ident〉 [‘(’ {〈term〉 ‘,’}+ ‘)’] | 〈variable ident〉.

(Most syntactic constructions in Perspect will be self-explanatory for someone who
already knows an algebraic specification formalism, except for the use of sort ident-
ifiers for unnamed variables (see section 3.1.4.4), the keywords echo and rec (see
sections 3.1.3.2 and 3.1.5.2) and the use of the asterisk character ‘*’ (see section
3.1.5.2).)

Note that, when a function identifier is preceded both by the rec and echo key-
words, the rec keyword should come first.

Also, note that it is possible to write more than one function declaration after the
keyword function. However, one is not allowed to write functions (as in ASF).
The keyword function should be interpreted as ‘function section’.
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3.1.2. Elimination of abbreviations

A number of Perspect constructions are used as an abbreviation. Typing, semantics
and restrictions of Perspect specifications will only be described for a kernel for-
malism, from which these abbreviations have been eliminated. This elimination pro-
cedure is called simplification.

Simplification eliminates the various lists in the Perspect specification, after which
each imported module has its own import statement, each object has its own de-
claration (including keyword sort, function or variable), and every rewrite
rule has its own equation (again, including the keyword equation).

3.1.2.1. The kernel formalism. The kernel formalism of which the simplified Perspect
specification will be an instance, is a subset of Perspect and is given by the following
syntax:

〈external〉 ::=
‘external’ 〈module ident〉 (〈import〉 | 〈declaration〉)∗.

〈internal〉 ::=
‘internal’ 〈module ident〉 (〈import〉 | 〈declaration〉 | 〈equation〉)∗.

〈import〉 ::= ‘import’ 〈module ident〉.
〈declaration〉 ::=

‘sort’ 〈sort ident〉 |
‘function’ 〈function〉 |
‘variable’ 〈variable〉.

〈function〉 ::= 〈function type〉 ‘:’ 〈sort ident〉.
〈function type〉 ::=

[‘rec’] [‘echo’] 〈function ident〉 [‘(’ {([‘*’] 〈sort ident〉) ‘,’}+ ‘)’].
〈variable〉 ::= 〈variable ident〉 ‘:’ 〈sort ident〉.
〈equation〉 ::= ‘equation’ 〈term〉 ‘:’ 〈term〉.
〈term〉 ::=

〈sort ident〉 | 〈function ident〉 [‘(’ {〈term〉 ‘,’}+ ‘)’] | 〈variable ident〉.

Note that the nonterminals in this context free grammar have the same names as those
in the full grammar (given in the previous section). However, this is a different gram-
mar, and therefore here a different interpretation is given to those nonterminals. Yet,
all instances of a nonterminal in the grammar of the kernel formalism will always be an
instance of the nonterminal with the same name in the grammar of the full formalism.

3.1.2.2. List elimination. Simplification of a Perspect specification eliminates eight
kinds of lists from the specification. These kinds of lists correspond to the plus signs
in the following fragment of the Perspect grammar:

〈import〉 ::= ‘import’ {〈module ident〉 ‘,’}+.
〈declaration〉 ::=

‘sort’ {〈sort ident〉 ‘,’}+ |
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‘function’ 〈function〉+ |
‘variable’ 〈variable〉+.

〈function〉 ::= {〈function type〉 ‘,’}+ ‘:’ 〈sort ident〉.
〈variable〉 ::= {〈variable ident〉 ‘,’}+ ‘:’ 〈sort ident〉.
〈equation〉 ::= ‘equation’ ({〈term〉 ‘,’}+ ‘:’ 〈term〉)+.

Each list is eliminated by replacing the import, declaration or equation by as many
imports, declarations or equations as there are elements in the list. The order in which
these lists are eliminated from the specification is irrelevant for the result of the sim-
plification.

3.1.2.3. Example. Consider the following simple Perspect specification that defines the
Booleans (For a description of the use of the sort identifier BOOL as an unnamed vari-
able, see section 3.1.4.4.):

external Booleans

 sort BOOL

 variable bool: BOOL

 function

  true, false, not(BOOL), or(BOOL,BOOL), and(BOOL,BOOL): BOOL

internal Booleans

 equation

  not(false), or(true,BOOL), or(BOOL,true), and(true,true):

   true

  not(true), or(false,false), and(false,BOOL), and(BOOL,false):

   false

  or(false,bool), or(bool,false), and(true,bool), and(bool,true):

   bool

After simplification, this specification becomes:

external Booleans

 sort BOOL

 variable bool: BOOL

 function true: BOOL

 function false: BOOL

 function not(BOOL): BOOL

 function or(BOOL,BOOL): BOOL

 function and(BOOL,BOOL): BOOL

internal Booleans

 equation not(false): true

 equation or(true,BOOL): true

 equation or(BOOL,true): true

 equation and(true,true): true

 equation not(true): false
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 equation or(false,false): false

 equation and(false,BOOL): false

 equation and(BOOL,false): false

 equation or(false,bool): bool

 equation or(bool,false): bool

 equation and(true,bool): bool

 equation and(bool,true): bool

Note that the Perspect kernel formalism syntactically resembles the RAP formalism
(see for example [Hussmann, 1987]).

3.1.3. Declarations and typing

In the rest of the Perspect language definition, only specifications that are written
using the kernel formalism will be considered. All other Perspect specifications have
to be seen as abbreviations of specifications in the kernel formalism.

3.1.3.1. Modules. A Perspect specification consists of a number of files, that together
describe a number of modules. A module is identified by a module identifier that
must be unique for the module in the specification (so a module identifier should not
be used for more than one module; however, it may also be used as a sort, function
or variable identifier). Therefore a module identifier occurs exactly once in the specifi-
cation after the keyword external, and once after the keyword internal.

It must be possible to order the files of a Perspect specification in such a way that
the text that one obtains by concatenating the files consists of a succession of all mod-
ules in the specification. Here, a module consists of its external part directly followed
by its internal part. (When the internal part of a module directly follows the external
part of a module in a file – the name of the file should in this case end in ‘.per’, as
described in section 3.1.1.2 – then it follows that these parts have to be the two parts
of the same module.)

The ordering on the modules of a specification that is chosen has to satisfy another
restriction. It also is used to disallow cyclical imports in the specification. See for this
extra restriction the end of section 3.1.3.3.

3.1.3.2. Echo declarations. In a Perspect specification, a function declaration may con-
tain the keyword echo. In the language definition these declarations are not con-
sidered to be real declarations. The only use of these echo declarations is to give the
place of a function in a preordering that will be defined in 3.1.5.2. For the origin rule
(3.1.3.4), typing (3.1.3.5) and semantics (3.1.4), these echo declarations should be
ignored.

Echo declarations should satisfy the following requirements:
(i) Echo declarations are only allowed in the internal part of a module.
(ii) Each echo declaration should correspond to a declaration in the external part of

the same module, so the external part should contain a function declaration with
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the same function name, the same domain, and the same range. This external
counterpart to an echo declaration is not allowed to contain the keyword rec.

(iii) Each declaration in the external part of a module corresponds to at most one
echo declaration in the internal part of the same module.

3.1.3.3. Visibility. In a Perspect text there are three kinds of objects: sorts, functions
and variables. These objects are declared (in the kernel formalism) by means of a de-
claration that starts with one of the keywords sort, function or variable. A
declaration introduces an identifier for the declared object. Furthermore, the declar-
ation indicates the domain and range for functions, and the type for variables.

In a specification, an object is not identified by an identifier (possibly with extra
typing information), but by the place in the text where the object is declared. This is
necessary to distinguish between objects with the same name without having to
rename objects, an operation that is not present in Perspect. A Perspect specification
has always the property however, that at a specific place in the specification text an
object is always uniquely determined by its identifier (compare sections 3.1.3.4 and
3.1.3.5).

Not all declarations are visible at all places in the text; the visibility of declarations is
determined by the module structure and by the import statement. This visibility is
defined in the following way:

At the start of a module, no declaration is visible. After a sort, function or variable
declaration, that declaration is visible in the rest of the module (so a declaration in the
external part of a module is also visible in the internal part). After an import statement
all declarations that are visible at the end of the external part of the imported module
(which is the module whose identifier occurs in the import statement) are also visible
in the rest of the (importing) module (again an import statement in the external part
of a module is also effective in the internal part of that module).

The following restriction should hold for the identifier that occurs in an import
statement: it should be the module identifier of a module that occurs in the Perspect
specification. Furthermore, this module should occur earlier in the specification (using
the ordering on the Perspect files chosen in section 3.1.3.1) than the module in which
the import statement occurs. This implies that Perspect forbids cyclical imports.

3.1.3.4. The origin rule. There exists a restriction on the use of declarations, that is
called the origin rule. Perspect specifications should satisfy the origin rule, which can
be formulated in the following way:

When in two different declarations (of sorts, functions or variables) the two de-
clared objects are named with the same identifier, then these two declarations
should not both be visible at the same place anywhere in the specification text.

An object can be visible at some point in the text only once. If an object is imported
in a module through more than one route, it still stays one object.

For a more complicated version of the origin rule in the context of ASF, see section
1.1.7 in [Bergstra, Heering, Klint, 1989].
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3.1.3.5. Typing. When an identifier is used, the declaration that introduces that ident-
ifier should be visible at the place it is used. There are two kinds of identifier that refer
to an object that was defined earlier:

(i) The sort identifiers that occur in a function or variable declaration.
(ii) The sort, function or variable identifiers in terms.

These identifiers should have been introduced in a corresponding declaration (so, a
sort declaration for a sort identifier, a function declaration for a function identifier and
a variable declaration for a variable identifier) that is visible where the identifier is
used. By the origin rule, at most one such declaration is visible. This declaration, then,
is called the declaration of the object that is referred to by the identifier.

According to the declarations of the identifiers that occur in the terms in the spec-
ification, those terms should be well-typed in an inside-out fashion. The definition of
well-typedness is recursive:

(i) A sort or variable identifier is always well-typed. A sort identifier is used as an
unnamed variable, and has as type the sort the identifier refers to. A variable
identifier is used as a named variable. This variable has as type the sort that is
given in the declaration of the variable.

(ii) A function identifier that is not followed by arguments is used as a constant. Such
a term is well-typed if and only if no domain is present in the declaration of this
function.

(iii) A function identifier that is followed by one or more arguments is well-typed
when the arguments are well-typed, and when in the declaration of the function
the domain is given as the sequence of sorts that are the types of the arguments,
in the same order.

Finally, a Perspect specification should satisfy the restriction that for all equations in
the specification, the left hand and right hand sides of the equation should be well-
typed, and have the same type.

3.1.4. Semantics

In the rest of the definition of Perspect only specifications that are syntactically cor-
rect (section 3.1.1), lie within the kernel formalism (section 3.1.2) and that satisfy the
origin rule and are well-typed (section 3.1.3) will be considered. Only for those spec-
ifications a semantics will be defined.

A module in a Perspect specification has two different types of semantics: a seman-
tics in the form of a term rewriting system, and a semantics in the form of an algebra.
When the extra requirements that will be stated in section 3.1.5 are not satisfied, the
two kinds of semantics do not necessarily correspond to each other. However, a Per-
spect specification is only correct when those requirements are satisfied. In that case
the two kinds of semantics correspond.

A Perspect specification is a concrete object: a text in a computer memory or on
paper. However, the meaning of a module from a Perspect specification is an abstract
object: a term rewriting system or algebra. The definitions of the various notions that
are used in the definition of these meanings are given in chapter 2.
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With a Perspect module a number of signatures will be associated. The sorts and
functions in such a signature correspond each with a declaration in the specification
text. This means that a sort or function can uniquely be determined by pointing at a
certain declaration in the text of the specification. It is well possible that in different
modules the same identifier is used for different sorts (or functions). However, ambi-
guity is excluded by the origin rule.

Two signatures are associated with a module in a Perspect specification: its external
and its total signature.

3.1.4.1. External signature. The external signature of a module consists of those sorts
and functions whose declarations are visible at the end of the external part of the
module (these declarations can occur within the external part itself, or can have been
made visible by an import statement).

3.1.4.2. Relevance. To define the total signature of a module, the relation of relevance
between modules must be defined. A module is relevant for some other module, if it
has been imported by that other module (either in the external, or in the internal
part), or if it is relevant to a relevant module. Furthermore, a module is relevant to it-
self. So relevance is the reflexive and transitive closure of the import relation, in which
the distinction external versus internal is ignored.

3.1.4.3. Total signature. The total signature of a module consists of all sorts and func-
tions that are visible at the end of the internal part of the modules that are relevant to
that module.

The total signature of a module does not only consist of those sorts and functions
whose declarations are visible at the end of the internal part of that module (the
hidden objects from the imported modules would be missing). The concept of inter-
nal signature could be defined in this way, but the notion of the internal signature of a
module has no further application.

It is possible that the total signature contains objects that are referred to by the
same identifier, and it is even possible for those objects to have the same kind. We
apply here the statement that an object is not identified with its name, but with its
declaration in the specification text (conform the remark in section 3.1.3.3).

3.1.4.4. Total rewriting system. With a Perspect module a term rewriting system is
associated that is called the total rewriting system of that module. The total rewriting
system of a module consists of all equations (instances of the syntactic notion 〈equa-
tion〉) in all modules that are relevant to the module. The ‘:’ in the equations is to be
interpreted as a rewriting arrow ‘→’, and the equations are to be interpreted as re-
writing rules.

The terms that are a sort identifier must be seen as unnamed variables over the
given sort. When in a rewriting rule a sort identifier is used more than once, these
identifiers must be interpreted as different unnamed variables. (The way Perspect has
unnamed variables is a typed variation on the way Prolog uses the ‘_’ symbol (see, for
example, [Clocksin, Mellish, 1981]).)
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3.1.4.5. Semantics. A Perspect module has two different kinds of semantics: one as a
term rewriting system, and one as an algebra. The meaning of a Perspect module as a
term rewriting system is the total rewriting system of the module as described in sec-
tion 3.1.4.4. The meaning of a Perspect module as an algebra is the initial algebra of the
total rewriting system considered as a set of equations (that is, after forgetting the
direction of the rewriting arrows), restricted to the external signature of the module.

3.1.5. Restrictions on the specification

A Perspect specification, in order to be correct, must satisfy a number of require-
ments:

(i) The text of the specification must be syntactically correct according to the
grammar in section 3.1.1.

(ii) The specification should satisfy the origin rule everywhere, and be well-typed
according to the description in section 3.1.3.

(iii) A number of requirements must be satisfied by the rewriting systems that are
associated with the different modules, as defined in section 3.1.4. These require-
ments on the rewriting systems are syntactic in the sense that they are (taken
together) decidable. In the rest of this section these ‘semantic’ requirements
imposed on a Perspect specification will be enumerated.

So, suppose we have a Perspect specification expressed in the kernel formalism, syn-
tactically correct, satisfying the origin rule and correctly typed, and consider some
module in the specification, with as its meaning the total rewriting system associated
with it.

3.1.5.1. Variables. There are a number of restrictions on the use of variables in Per-
spect rewriting rules:

(i) Each variable should only occur once in the left hand side of a rewriting rule. This
is the requirement of left linearity of the term rewriting system.

(ii) All variables that occur in the right hand side of a rewriting rule should also occur
in the left hand side of the same rewriting rule, and all named variables that occur
in the left hand side of the rewriting rule should also occur in the right hand side
of the same rewriting rule. When a variable is needed in the left hand side of a
rewriting rule that does not occur in the right hand side of that rule, an unnamed
variable should be used, i.e., the sort identifier of the type of that variable.

(iii) Unnamed variables in a term, i.e., variable given as a sort identifier, should only
occur in the left hand side of a rewriting rule.

3.1.5.2. Monotone termination under a path ordering. Given the text of a Perspect
specification, it is possible to derive from this text a partial preordering on all func-
tions in the total signature of a module in the specification:

(i) When a module is relevant for another module (see 3.1.4.2), then all functions of
the first module are smaller in the preordering than those from the second one.
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(ii) Functions that are declared within different modules which are not relevant for
each other are not related by the preordering.

(iii) Functions that are declared within one module, are ordered by the textual order-
ing of the declarations. However, the order of the external and internal part of
the module has been interchanged, i.e., although the textual ordering determines
the preordering within the external and internal parts, all functions in the
internal part come before the external part. Also, the next two clauses overrule
this clause for the case of declarations containing the keyword echo or rec.

(iv) For functions that also have a declaration containing the keyword echo (see also
3.1.3.2), the place of the echo declaration determines the place in the preorder-
ing, instead of the real declaration. This makes it possible to have an arbitrary
ordering between the functions in a module, whatever the status as external or
internal functions may be.

(v) If a function declaration contains the keyword rec, the function is equivalent to
the previous function in the preordering that is defined here, instead of ‘next
greater’. This makes it possible to have different functions in the specification
that are equivalent with regard to the preordering which can be useful when two
functions are defined recursively in terms of each other. Obviously, the first
function declaration of the internal part of a module is not allowed to contain the
rec keyword. Likewise, the first function declaration of the external part of a
module should not contain the rec keyword.

(There are some restrictions on the occurrences of the echo, rec and ‘*’ markers
that should be satisfied by the specification: if a function has an echo declaration, only
that echo may participate in a rec relation with another function. Also, only that
echo declaration may contain the ‘*’ marker.)

Now, for each argument position of a function in the total signature of the module a
Boolean called the status of that argument position is defined in the following way. A
function argument position has lexical status if the sort identifier in the declaration of
that function is preceded by an asterisk character ‘*’. If it is not preceded by an
asterisk, it has multiset status.

The preordering on the function symbols and the status of the argument positions
of the functions together define an associated path ordering with argument status as
is described in section 2.2.2.

A module in a Perspect specification should satisfy the requirement that the right
hand sides of all rewriting rules have to be smaller in this path ordering than the cor-
responding left hand sides. In other words, the rewriting rules should be monotone
decreasing in this path ordering.

This requirement implies strong termination of the term rewriting system.

3.1.5.3. Open confluence. The total rewriting system associated with a module should
be strongly open confluent as defined in section 2.3.1.1. This means that the rewriting
system should also be confluent on terms that contain free variables. In the case of a
terminating rewriting system this requirement can be verified using a weak form of
the Knuth-Bendix algorithm.

This requirement of course implies confluence of the term rewriting system. The
requirements from sections 3.1.5.2 and 3.1.5.3 together imply the completeness of the
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term rewriting system.

3.1.5.4. Strong persistence. For each sort in the module, it is required that the set of
closed normal forms (i.e., normal forms without variables) of that sort should be equal
to the set of closed normal forms of the sort with respect to the total rewriting system
of the module in which the sort is declared.

This requirement implies, given the requirements from 3.1.5.2 and 3.1.5.3, per-
sistence of the specification. For the definition of persistence see section 2.5.1.

This last requirement transcends the modular structure of the specification, and
says effectively that the semantics of the specification should respect the modular
structure of the specification. It is not a requirement on the total rewriting system of
one module of the specification, but on the relation between the total rewriting sys-
tems of two related modules.

3.1.6. Five levels of Perspect

It is hard to write a correct Perspect specification. It might be nice to have a way to
say that a specification is halfway between an ordinary algebraic specification and a
Perspect specification. Therefore, we will describe in this section five dialects of Per-
spect that are less restrictive than the full language as defined above. These dialects are
called Perspect Level 1, Perspect Level 2, Perspect Level 3, Perspect Level 4 and Per-
spect Level 5. This sequence is monotone: a text that is in a certain dialect is also in all
earlier dialects (at least if it does not contain the identifiers if and then, which are
keywords in Perspect Levels 1, 2 and 3).

We will define the dialects in reverse order, because each dialect is obtained from
the next by weakening the restrictions that are imposed on the specification texts.
The following diagram shows some of the properties of the five dialects that we will
define:

Perspect  Level 1 2 

Decidable 

3 

Persistent 

4 

Executable 

5 

‘ASF’ Full
Perspect 

+

–

–

+

–

–

–

+

–

–

+

+

+

+

+

Decidable means here that it is decidable whether a text is correct according to the
definition of the language, not that it is decidable whether two terms are equal ac-
cording to a specification in the language. This second property has the same signature
as the row labeled executable.

Perspect Level 5 or Full Perspect is the Perspect language as defined in sections
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3.1.1 until 3.1.5. This means level 5 is the highest level there is, because a Perspect
Level 5 specification meets all Perspect’s requirements.

Perspect Level 4 is the dialect in which all restrictions from section 3.1.5 that were
slightly too heavy are replaced by their more ‘natural’ equivalents. This means that Per-
spect Level 4 is not a decidable language (these restrictions were heavier than was
desirable in order to make the language decidable). We will now list the restrictions
that a Perspect Level 4 specification has to satisfy instead of the restrictions from sec-
tion 3.1.5:
• The requirements of section 3.1.5.1 should still be satisfied. In particular the term

rewriting system of the specification should still be left-linear.
• The specification should be strongly closed terminating as defined in section 2.2.1.1

(it need not be strongly open terminating). The keywords echo and rec, and the
marker ‘*’ are still allowed in the specification (as well as in all dialects that we still
have to define), and if they occur they should satisfy the requirements in sections
3.1.1 up to 3.1.5. However, the path ordering with argument status that is implicit in
the specification is now irrelevant. So, the equations need not be monotone in the
path ordering anymore.

• The specification should be strongly closed confluent as defined in section 2.3.1.1
(it need not be strongly open confluent as in Full Perspect).

• The requirements of section 3.1.5.4 should still be satisfied: not only is persistence
required, but also the stronger form that says that normal forms should stay normal
forms.

The motivation for retaining the requirement of left-linearity in the definition of Per-
spect Level 4 is that it makes it possible to execute a specification in a more efficient
way. Perspect Level 4 is the language for writing executable specifications. This also
motivates the emphasis on the normal forms in the way persistence is required.

While Perspect Level 4 is the language that focuses on executability, Perspect Level
3 is a pure specification language. This means that all constraints from section 3.1.5
are removed, apart from the requirement of persistence. This means that all texts that
satisfy the requirements in sections 3.1.1 to 3.1.4 are a correct Perspect Level 3
specification provided that:
• If the keywords echo and rec, and the marker ‘*’ are present they still should

behave as in Full Perspect.
• Conditional equations are added to the language. The definition of 〈equation〉:

〈equation〉 ::= ‘equation’ ({〈term〉 ‘,’}+ ‘:’ 〈term〉)+.

in the grammar in section 3.1.1.2 is replaced by:

〈equation〉 ::=
‘equation’ ([‘if’ 〈simple equation〉+ ‘then’] 〈simple equation〉)+.

〈simple equation〉 ::= {〈term〉 ‘,’}+ ‘:’ 〈term〉.

Clearly this makes it necessary to add the keywords if and then to the language.
The interpretation of a conditional equation is straightforward.
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• The meaning of a module as a term rewriting system does not make sense any-
more, so we cannot require the specification to be strongly persistent. It still makes
sense as an equational specification, however. We require the specification to be
weakly persistent as defined in section 2.5.1.2.

There are no longer any restrictions on the use of variables in Perspect Level 3. This
means for instance that unnamed variables can be used anywhere. Note however that
the equation:

equation S: S

in which S is a sort identifier collapses sort S to one point, because the two unnamed
variables S are considered to be different variables.

Perspect Level 3 is equivalent to ASF with Perspect syntax and the requirement of
persistence (to deserve the name Perspect) added.

Perspect Level 2 is just Perspect Level 3 without the requirement of persistence. It
is ASF in a Perspect syntax. One could write ASF-to-Perspect-Level-2 and Perspect-
Level-2-to-ASF translators that leave the specified algebra invariant (at most they will
have to rename some of the identifiers because of Perspect’s lexical conventions).

While Perspect Level 2, 3, 4 and 5 specifications all have the property that a module
in a specification has one algebra as its meaning, we lose this property in Perspect
Level 1.

When specifying, one often works with incomplete specifications, in which detail
still has to be added. Perspect Level 1 is an attempt to give these kind of protospecifi-
cations a formal status.

Let be given a correct Perspect Level 2 specification with an associated syntax tree.
Now, omit any number of instances of the notions 〈external〉, 〈internal〉, 〈import〉,
〈declaration〉 and 〈equation〉. This will give a text (not necessarily correct according to
the syntax of Perspect, as a number of internal parts of modules may be missing). This
text is, by definition, a correct Perspect Level 1 specification, and the algebra that was
the meaning of a module in the Level 2 specification is now a meaning of the corre-
sponding module in the Level 1 specification. Clearly, a specification gets a large num-
ber of meanings in this way. For example, the empty text:

has all semi computable algebras as a meaning for any module which has a name that
can be named by a Perspect identifier.

This ends the description of the five dialects of Perspect. A possible application of
these dialects might be the development cycle of a specification: one can try to go
from a Level 1 specification, via a Level 2, 3 and 4 specification to a Full Perspect
specification. Another application might be financial: a software house might require a
specification of the program you order from it, and the price you have to pay for the
program might depend on the language level on which you submit your specification.



79

3.2. Properties

Perspect was designed to have a number of desirable properties: decidability of the
language, executability of the specifications, persistence of the specifications, a mod-
est amount of expressiveness and compositionality of the definition. In the following
sections we will show why these properties hold. We show how to apply the theory
from chapter 2 to the language defined in the previous section.

While a number of languages have some of these properties, Perspect has all of
these properties. We think that it is desirable that a specification language does not
compromise on any of these aspects. In this sense Perspect is a powerful language.

3.2.1. Decidability

It is decidable whether a string of ASCII characters is a correct Perspect specification
according to the language definition of section 3.1. This makes it possible to write a
computer program, a checker, that checks whether a given string is a correct
Perspect specification. Such a program will be described in section 3.4. We will show
that Perspect is a decidable language by showing how a checker could be imple-
mented.

The language definition consists of two parts. The first part consists of sections
3.1.1 to 3.1.4. In these sections we define an ordinary algebraic specification language
and give it a meaning. The second part is section 3.1.5. Here we put a number of extra
restrictions on the texts that are allowed in the language.

In order to check the first part of the language definition, one has to perform a
syntax and type check. These checks are completely standard, and we will not
describe how to perform them. The existence of these checks implies that it is de-
cidable whether a specification satisfies the first four sections of the Perspect defini-
tion. So, let be given a text that satisfies the requirements from this first part. We have
to show how to verify the requirements from 3.1.5. We will see that each of these
requirements is decidable when the earlier requirements from this section have al-
ready been shown to be true.

First, the specification has to satisfy the restrictions on the usage of variables from
section 3.1.5.1. These requirements are simple to verify by looking at each equation in
the specification in turn. If these requirements are not satisfied we clearly do not have
a Perspect specification. If they are satisfied we know that the term rewriting system
associated with the specification is left linear.

Second, the specification has to satisfy the restriction that all equations are de-
creasing in a given path ordering with argument status: it should be monotone termin-
ating. Algorithm 2.2.3.1 shows how to decide whether this is the case.

Third, the specification has to satisfy the restriction that the term rewriting system
is strongly open confluent. Now, we may assume that we already have tested the
specification for monotone termination. So, we may assume that we know that the
term rewriting system associated with the specification is strongly open terminating.
This means that algorithm 2.3.3.1 gives us a way to check strong open confluence.
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Last, the term rewriting system should be strongly persistent. In the case that it is
left linear, algorithm 2.5.4.2 shows us how to decide whether it is strongly persistent.
But may assume we already know that it is left linear, so we can check strong persist-
ence.

One can wonder if it is possible to replace one of the requirements of section 3.1.5
by a weaker restriction. For example, each of the requirements is somewhat ‘too
strong’. Instead of requiring strong termination we require monotone termination
under some path ordering. Instead of requiring strong closed confluence (which
would be enough for the persistence check) we require strong open confluence. And,
instead of requiring just persistence we require strong persistence: we are not allowed
to change the normal form that is associated with an object, even if the algebra is not
modified by this change.

It turns out that these ‘more semantic versions’ of the requirements in 3.1.5 destroy
the decidability of the language. This is shown by propositions 2.2.3.2, 2.3.3.2 and
2.5.4.5. So, the easy way to make the requirements in 3.1.5 weaker does not work.

3.2.2. Executability

In the previous section we saw that the term rewriting system associated with a Per-
spect specification is left linear, strongly terminating and strongly confluent. Also, the
language Perspect does not allow conditions in equations. Together this means that for
each Perspect specification we have a term rewriting system that is very easily ex-
ecutable (because no conditions or equality of arguments has to be verified) and this
term rewriting system (according to propositions 2.3.1.6) corresponds directly to the
initial algebra associated with the specification.

Executability is the property of Perspect that is the least desirable (why should a
specification be executable, after all). However, as we indicated in section 1.1.5, ex-
ecutability is a property that is closely linked to persistence, and the easiest way to
verify persistence is by just requiring executability as a term rewriting system first.

As shown in section 1.1.4, a specification can behave reasonably when executing it
as a term rewriting system, while it is completely incorrect. Of course, this cannot
happen with a Perspect specification, because we know (because of confluence) that
the behavior of the term rewriting system corresponds to the behavior of the algebra.
So, the example from section 1.1.4 cannot be translated to the Perspect language and
both still be incorrect and behave plausibly when debugging. Even though this
example is strongly persistent (because it consists of only one module).

3.2.3. Persistence

In section 3.1.5 one of the requirements that a Perspect specification has to satisfy is
that it has to be strongly persistent. In section 3.2.1 we saw that a Perspect specifica-
tion also is always strongly terminating and strongly confluent. From this it follows that
a Perspect specification is always persistent.
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The persistence check of a Perspect checker can be used to check the persistence
of a specification when it is known that the specification is a left-linear, strongly termi-
nating and strongly confluent term rewriting system, even though the Perspect system
is not able to verify this. If the Perspect checker only complains about the termina-
tion or confluence of the specification, while the specification is strongly terminating
and strongly confluent, the specification is strongly persistent.

3.2.4. Expressiveness

As we said before: The three properties from the last three sections, decidability,
executability and persistence are not very hard to satisfy. In particular the empty lan-
guage (i.e., the language that admits no texts at all) has those same three properties.
Clearly, we want to show that the language is in some sense ‘big enough’.

Not all semi-computable algebras are expressible in Perspect (while they are in
ASF). This follows from the fact that in a Perspect specification it is decidable whether
two closed terms represent the same object in the algebra. To decide this, one just has
to evaluate the normal form of those terms. Because the term rewriting system asso-
ciated with the algebra is confluent, the two terms represent the same object if and
only if the two normal forms are equal. There are semi-computable algebras in which
it is not decidable whether two closed terms are equal.

On the other hand, all primitive recursive algebras, as defined in section 2.6, are
specifiable in Perspect. This follows from the example that we will give in section
3.3.3. In this specification we have two sorts N and PRIM, representing the natural
numbers and the primitive recursive functions, plus a function appl that makes it
possible to apply primitive recursive functions from PRIM to the elements of N. Using
these sorts and this function as ‘building blocks’ it is clear that each primitive recursive
algebra can be modelled in Perspect.

On the other hand, the same example from section 3.3.3 shows that it is possible to
specify an algebra in Perspect that is not primitive recursive. The function xdiag from
the last module of the specification satisfies a condition that will be used in proposi-
tion 2.6.2, to prove that the algebra specified by the last module of the specification is
not primitive recursive.

3.2.5. Compositionality

According to [Janssen, 1983], the semantics of a language should be compositional.
This property means that whenever an object is built from a number of parts and
each part has a meaning of its own, the meaning of that object should be a function of
the meanings of the parts, without reference to the parts themselves. Compositio-
nality of the semantics of a language can be a heuristic for finding errors in the
definition of the language: often, when a semantics is not compositional, it is not the
intended semantics.

The semantics of an algebraic specification language is in general not compositional.
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Consider for example the following ASF specification:

module M

 begin

  exports

   begin

    sorts S

    functions

     c: → S

   end

  variables

   v: → S

  equations

   [1] v = c

 end M

module M′
 begin

  exports

   begin

    functions

     c′: → S

   end

  imports M

 end M′

In this specification the equation c′ = c is true because of equation 1. However, if this
equation is removed from the specification, this equation is no longer true, while mod-
ule M still has the same meaning (a one point algebra). The meaning of M′ depends on
the form of module M, and not only on the meaning of module M. This shows that the
semantics of ASF is not compositional.

Now, one of the two specifications in this examples (the one without equation [1])
is not persistent. So, maybe, if it is known that the specification is persistent, we do
have a compositional semantics, i.e., in that case it might be possible to derive the
meaning of a module from the meanings of the modules it imports.

Surprisingly, this is not the case. If we have a specification formalism that supports
hiding of some proper part of the signature of an imported module, even if the
specification is persistent, we still cannot derive the meaning of a module from the
meanings of its imported modules.

For example, take a module that specifies one sort TrafficLight, and two con-
structor functions stop and go. Consider a second module that imports this module,
hides the two constructors, and introduces two new functions red and green that (in
order to satisfy persistence) are made equal to stop and go using two equations. Also,
consider a third module that performs the same actions but with two functions top
and bottom instead of red and green. We finally consider a fourth module that im-
ports both the second and the third module without any further modifications or
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additions. The algebras that are the meaning of the second and third modules both
have the sort TrafficLight. In order to give the fourth module a persistent meaning,
somehow the pair red & green has to be equated to top & bottom. However, by
symmetry it will be clear that it cannot be determined how the ‘matching’ between
these two pairs of functions should be performed. This shows that in this case the
semantics cannot be compositional, while the specification is perfectly persistent.

We see that the semantics of a language in which the specifications are not a priori
persistent is not compositional. We also see that a language that admits hiding of part
of an imported signature does not have a compositional semantics. However, Per-
spect does not have these properties: it allows only persistent specifications, and it
does not allow partial hiding of an imported signature. It turns out to be the case that
Perspect has a compositional semantics. We will now give a precise description of
the sense in which this is true.

Consider a secret Perspect specification. Suppose that one has to find the meaning
of the final module, in the form of the algebra associated with that module. One is
given the complete text of that module, but only the external part of all other
modules in the specification. Furthermore, one is given the algebras associated with all
modules imported by the final module. Finally, one is told that the specification is a
correct Perspect specification (this is not decidable from the other information). The
statement that Perspect has a compositional semantics is taken to mean that this task
can be executed, i.e., one can determine the algebra associated with the final module
from this information.

The fact that this is true follows from the observation that when it is ambiguous
how to put the various copies of a sort in the algebras that have been imported
together, this leads to an automorphism of the algebra in which that sort originated.
And this automorphism extends to an automorphism of the imported algebras that
contain that sort. This means that it does not matter in what way the identification of
that sort in the imported algebras is chosen, because it will lead to an equivalent result.

Note that the fact that Perspect has a compositional semantics does not lead to a
‘plus’ operation on algebras (in the sense of module algebra). Because of the origin
rule, it is in general not possible to obtain two given algebras as the meaning of two
modules in a Perspect specification that can then can be ‘added’ by importing them
both in a third module. This is even true if those algebras have to be ‘mutually com-
patible’, i.e., when they have to be isomorphic when restricted to the intersection of
their signatures. As the TrafficLight example shows, it is too much to hope for a
‘natural’ way to combine all pairs of mutually compatible algebras.

It is true that Perspect gives a ‘partial plus’. For all pairs of algebras that can simul-
taneously be present in a correct Perspect specification, the result of the ‘addition’ of
these algebras is unambiguously determined.

3.3. Examples

When considering a language like Perspect, one can ask oneself the question how diffi-
cult it is to write a correct specification. To give an indication of the amount of effort
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that will be needed for this, we first describe some of the problems one encounters
when writing Perspect specifications, followed by a number of example specifica-
tions.

When writing Perspect specifications, a number of difficulties occur. It is amazing
that the least of these difficulties lies in the requirement that the specification should
be persistent. If one wants a specification to be persistent, all one has to do is find the
proper modularization of the problem at hand.

Writing a specification that is monotone terminating under a path ordering turns
out to be one of the main problems. This requirement makes it hard to use most
forms of induction in the specification. It is, for example, almost unavoidable to use a
unary representation for the natural numbers in a specification, if induction over the
natural numbers is present. The examples in section 3.3.1 (which give a representation
for the natural numbers and the integers that is not unary), while interesting, are not
useful as a foundation for a larger specification.

It is also hard to get an open confluent specification. When a specification is written
without confluence in mind, there are usually a number of open terms that can be re-
written to two different open normal forms. To avoid these critical pairs, there exist
two conflicting strategies.

The first strategy consists of adding equations to the specification. This process is
called Knuth-Bendix completion. It turns out that this is generally not a good solution.
There are three problems that can be caused by the addition of an equation:

(i) The equation that has to be added has no direction for which it will be decreasing
in the path ordering implied by the specification, and the ordering cannot be
modified in order to make the system monotone terminating again.

(ii) The added equation is not left linear.
(iii) The added equation leads to new critical pairs. In this case the same problems

can be caused by the equations that must be added for these new critical pairs.
The second strategy for removing critical pairs from a specification consists of making
some equations more specific than is really necessary when considering the algebra
that is being specified. This method in its most extreme form consists of only ad-
mitting an orthogonal term rewriting system. If one makes an equation more specific
than is necessary, one can eliminate some overlap between redex patterns, and in this
way the number of critical pairs in the specification decreases. However, one must be
aware that if one makes the equations in the specification too specific, one might miss
some ‘cases’ in a specification that contains an enumeration of cases. The persistence
check of Perspect is the perfect protection in this situation, so this is not a real prob-
lem.

It is our experience that the second approach for eliminating critical pairs should
be preferred over the first one.

The rest of this chapter consists of a number of Perspect specifications. There is a
large amount of overlap between these specifications, and with the other specifica-
tions that are scattered throughout this thesis. For example almost every specification
present either contains the Booleans or the natural numbers, and most contain both.
We have not integrated these specifications in one long specification (which would
have been esthetically more pleasing). There is a great difference in approach and
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style between some of these specifications, and it seemed to us that in this way we
would give a better impression of the variety of ways in which Perspect can be used.
Also, while the examples in section 3.3.1 (the binary natural numbers and the binary
integers) are interesting in their own right, they cannot be naturally integrated with the
more involved specifications in the later sections.

3.3.1. Natural numbers and integers

The first example shows a number of properties of Perspect. It specifies the natural
numbers, using two sorts called uN and bN which represent the natural numbers in
unary and in binary form. Both sorts are mapped to each other by the two bijections
bu and ub.

The representation of the unary numbers uN is the usual one. There are two
generators. The zero is called u0 (the prefix u is used to distinguish u0 from the binary
zero b0 which will be introduced below) and the successor function is called S. The
number 6, which is unary 111111, becomes the sixfold successor of zero:
S(S(S(S(S(S(u0)))))). Note that each 1 in the unary representation corresponds to
an S in the associated term.

The representation of the binary numbers bN is less standard. There are three
generators: the zero, the function that adds a 0 at the back of the binary represen-
tation of a number, and the function that adds a 1 at the back. These generators are
called respectively b0, 2 (‘the double’: adding a 0 at the back is the same as multiplying
by 2, so 2(i) corresponds to 2⋅i) and S2 (‘the successor of the double’, S2(i)
corresponds to 2⋅i+1). The number 6, binary 110, is represented by the term
2(S2(S2(b0))). Note that each 0 in the binary representation corresponds to a 2 in
the term, and each 1 to an S2, and that the order of the digits is reversed under this
correspondence.

Each generator, both unary as well as binary, has a counterpart that operates on the
other sort. These functions are necessary to define the bijections between these two
types of natural numbers. The binary successor is called bS, the unary counterparts of
2 and S2 are called u2 and uS2.

The bijections that are defined using these auxiliary functions are called bu (the bi-
nary representation of a unary number) and ub (the unary representation of a binary
number).

A specification formalism that has a more powerful notation than Perspect would
be able to indicate, using overloading of function names and invisible functions, that
some of the sorts and functions are in some sense ‘the same’. The same effect is ob-
tained by removing all u’s and b’s from the identifiers in this specification.

This specification has a number of properties that are typical for a well written Per-
spect specification.

First, the sorts are, with their generators, isolated in a separate module. In this way,
one has the guarantee that in a series of equations that define a function by enumerat-
ing all ‘cases’, none of these cases will be forgotten, because that would cause an im-
persistence in the specification. This is the reason for separating module NATU1 from
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module NATU2, and similarly for separating module NATB1 from module NATB2.
Second, there is a separate module, REL, that states that the two bijections bu and

ub are inverse to each other. In most other specification formalisms this module
would be useless, because the equations in this module do not add to the meaning of
the rest of the specification. The statement that each bijection is the inverse of the
other one already was true in module BIJ. However, in Perspect the presence of
module REL makes sense. The system will check whether the statements from the
module were already true. Note that the last three equations in REL are necessary to
prove the total term rewriting system of REL open confluent. If these equations would
not be present, a term like:

ub(bu(S(u)))

would be reducible to:

ub(bS(bu(u)))

and to:

S(u)

without these terms having a common (open) normal form.
Third, there are a number of sorts, in this case uN and bN, that represent the ‘same’

sort. In a normal algebraic specification, one sort would have been sufficient here. We
see here a consequence of the fact that Perspect considers the specification to be a
term rewriting system. This leads to this kind of ‘tricks’.

external NATU1  [unary natural numbers: "6" is S(S(S(S(S(S(u0))))))]
 sort uN

  variable u: uN

 function u0, S(uN): uN

internal NATU1

 [empty]

external NATB1  [binary natural numbers: "6" is 2(S2(S2(b0)))]
 sort bN

  variable b: bN

 function b0, 2(bN), S2(bN): bN

internal NATB1

 equation 2(b0): b0

external NATU2  [binary constructor functions on unary numbers]
 import NATU1

 function

  u2(uN), uS2(uN): uN

internal NATU2
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 equation

  u2(u0): u0

  u2(S(u)): S(S(u2(u)))

  uS2(u): S(u2(u))

external NATB2  [unary constructor functions on binary numbers]
 import NATB1

 function

  bS(bN): bN

internal NATB2

 equation

  bS(b0): S2(b0)

  bS(2(b)): S2(b)

  bS(S2(b)): 2(bS(b))

external BIJ  [bijections between uN and bN]
 import NATU2, NATB2

 function

  bu(uN): bN  [converts unary to binary]
  ub(bN): uN  [converts binary to unary]
internal BIJ

 equation

  bu(u0): b0

  bu(S(u)): bS(bu(u))

  ub(b0): u0

  ub(2(b)): u2(ub(b))

  ub(S2(b)): uS2(ub(b))

external REL  [verify that bu and ub are inverses to each other]
 import BIJ

internal REL

 equation

  ub(bu(u)): u

  bu(ub(b)): b

[in order to satisfy the confluence check]
  bu(u2(u)): 2(bu(u))

  bu(uS2(u)): S2(bu(u))

  ub(bS(b)): S(ub(b))

Next, we will give a specification of the integers, in which the representation of an
integer is a term which has a size that is proportional to the logarithm of the absolute
value of the integer being represented. This is realized by representing the integers in
a binary way.

There are various ways to represent integers in a term rewriting system:
• The most common (but not most useful) representation generates the integers in a
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unary fashion, with a successor and a predecessor function. In this representation it
turns out to be surprisingly hard to test whether an integer is equal to zero.

• The most useful representation constructs the set of the integers by gluing together
two copies of the natural numbers, a positive and a negative copy (see for an
example the integers in section 3.3.2). There is some variation possible in the way
the zero is treated.

• Another method is to describe the integers as a pair of natural numbers. The
integer being represented is the difference of those two numbers. This method, as
well as the previous one, has the esthetical disadvantage of needing another layer in
the specification to describe the natural numbers. The representation of the natural
numbers in this layer can of course be unary as well as binary.

• The method we will show here describes the integers in a binary way. We use an
infinite row of binary zeroes and ones to represent an integer. We use the two
complement representation: an infinite row of ones stands for -1. In the specifica-
tion this will be denoted by the constant 11. In the same way the constant 00 stands
for an infinite row of zeroes, which represents 0. As in the previous specification,
there is a function for adding a zero at the end of a number, and one to add a one at
the end of a number. Here, these functions (which in the previous specification
were called 2 and S2) are called 0 and 1.

The specification of the integers that we give here does not have many applications. If
one wants to be able to do induction in a monotone terminating way, it is almost un-
avoidable to have a unary representation. This specification is only an example.

This specification cannot be easily extended obeying Perspect’s restrictions. It is
hard to add multiplication. Also, it is difficult to add equations stating properties of the
integers. In both cases, open confluence tends to get lost.

external BooleanGenerators

 sort BOOL

 variable

  bool: BOOL

 function

  true, false: BOOL

internal BooleanGenerators

 [empty]

external BooleanOperations

 import BooleanGenerators

 function or(BOOL,BOOL), and(BOOL,BOOL), not(BOOL): BOOL

internal BooleanOperations

 equation

  not(false), or(true,BOOL), or(BOOL,true), and(true,true): true

  not(true), or(false,false), and(false,BOOL), and(BOOL,false):

   false

  or(false,bool), or(bool,false), and(true,bool), and(bool,true):

   bool
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[properties]
 variable x, y, z: BOOL

 equation

 [double negation law:]
  not(not(x)): x

 [de morgan:]
  not(or(x,y)): and(not(x),not(y))

  not(and(x,y)): or(not(x),not(y))

[[distributivity:]
  and(x,or(y,z)): or(and(x,y),and(x,z))

  and(or(y,z),x): or(and(y,x),and(z,x))]

external Booleans

 import BooleanGenerators, BooleanOperations

internal Booleans

 [empty]

external IntegerGenerators

 sort INT

 variable

  i, j, k, l, m, n: INT

 [generators: 00 is 0, 11 is -1, 0(i) is 2 . i, 1(i) is 2 . i+1]
 function

  00, 11, 0(INT), 1(INT): INT

internal IntegerGenerators

 equation

  0(00): 00

  1(11): 11

external IntegerOperations

 import IntegerGenerators

 function

  inc(INT), dec(INT), add(INT,INT), min(INT), sub(INT,INT): INT

internal IntegerOperations

 equation

  inc(00): 1(00)

  inc(11): 00

  inc(0(i)): 1(i)

  inc(1(i)): 0(inc(i))

  dec(00): 11

  dec(11): 0(11)

  dec(0(i)): 1(dec(i))

  dec(1(i)): 0(i)

  add(00,i), add(i,00): i

  add(11,i), add(i,11): dec(i)
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  add(0(i),0(j)): 0(add(i,j))

  add(0(i),1(j)), add(1(i),0(j)): 1(add(i,j))

  add(1(i),1(j)): 0(inc(add(i,j)))

  min(00): 00

  min(11): 1(00)

  min(0(i)): 0(min(i))

  min(1(i)): 1(dec(min(i)))

  sub(i,j): add(i,min(j))

 [properties]
  inc(dec(i)), dec(inc(i)): i

  min(inc(i)): dec(min(i))

  min(dec(i)): inc(min(i))

  min(min(i)): i

external IntegerPredicates

 import Booleans, IntegerOperations

 function

  zero(INT), neg(INT), pos(INT),

  eq(INT,INT), ne(INT,INT),

  gt(INT,INT), ge(INT,INT), lt(INT,INT), le(INT,INT):

   BOOL

internal IntegerPredicates

 equation

 [signs]
  zero(00): true

  zero(11), zero(1(INT)): false

  zero(0(i)): zero(i)

  neg(00): false

  neg(11): true

  neg(0(i)), neg(1(i)): neg(i)

  pos(i): neg(min(i))

 [comparison]
  eq(i,00), eq(00,i): zero(i)

  eq(i,11), eq(11,i): zero(inc(i))

  eq(0(INT),1(INT)), eq(1(INT),0(INT)): false

  eq(0(i),0(j)), eq(1(i),1(j)): eq(i,j)

  ne(i,j): not(eq(i,j))

  gt(i,j): pos(sub(i,j))

  ge(i,j): not(gt(j,i))

  lt(i,j): gt(j,i)

  le(i,j): not(gt(i,j))

 [properties]
  gt(i,00), lt(00,i): pos(i)

  lt(i,00), gt(00,i): neg(i)

external Integers
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 import IntegerGenerators, IntegerOperations, IntegerPredicates

internal Integers

 [empty]

3.3.2. Rational numbers

The specification in this section has been written in response to a specification by Piet
Rodenburg [Hoekzema, Rodenburg, 1987]. It is a specification of ‘numbers’. It is an
attempt to describe one sort containing numbers and a number of functions on it,
that are as generally applicable as possible.

When specifying algebraically, one sometimes feels the need for the real numbers.
Obviously, there is no specification that has the real real numbers as its initial algebra.
This is immediately clear from the consideration that an initial algebra is the quotient
of a term algebra, so is countable, while the real numbers are uncountable.

One can try to approximate the real numbers in a number of ways. First, one can
try to describe the ‘normal’ floating-point numbers, for instance the floating-point
numbers as defined by IEEE standard 754 [IEEE, 1985]. While this is possible – there
are only a finite number of IEEE numbers after all – this is a highly arbitrary algebra. It
would be analogous to specifying the integers by specifying the integers modulo some
high power of two. The second possibility is to specify a sort containing some kind of
constructive reals, like the implementation of the reals as described in [Böhm, Cart-
wright, O’Donnell, Riggle, 1986] and [Böhm, 1987]. This would be interesting, but
would result in a rather complicated specification. The third option, the one chosen
by [Hoekzema, Rodenburg, 1987], and the one that we also will follow, is just to specify
the rational numbers.

Now, there are a number of problems when specifying the rational numbers. First,
there is the problem of division by zero. Second, one would like two rational num-
bers with the same numerical value to have the same normal form. Both problems are
addressed by this specification.

The fact that division by zero is undefined is often a real problem. For example the
Macintosh computer will give a system error with ID = 4 when encountering such a
division (leaving the user no other option than rebooting the computer). In an
algebraic specification in the Perspect formalism, one has only total functions at ones
disposal. In order to define division as a total function, one has to resort to one of two
tricks. In this specification both tricks are present simultaneously.

The solution that is used by the IEEE floating-point numbers is to extend the set of
fractions with two values: 1/0 which is called infinity, and 0/0 which is called ‘not a
number’ (or NaN, for short). These two values behave like a kind of error values.

In fact, in IEEE standard 754 there are a whole variety of infinities and NaNs, but that
is not relevant to this specification, which will only define one infinity called inf, and
one NaN called nan. Also, the IEEE infinities are affine infinities which means that
they are signed, in contrast to the infinity from this specification which is unsigned
and closely resembles the projective infinity from draft 8.0 for standard 754 in [IEEE,
1981].
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Alternatively, one can require the second argument of the division function to
come from a sort that only contains rational numbers that differ from zero. One gets a
specification that has a variety of sorts, which can be seen as subsort of each other. (In
a specification formalism that supports order-sorted algebras (see, e.g., [Goguen,
Jouannaud, Meseguer, 1985]), these subsort relations could have been handled by the
formalism. Here, we have to specify embedding functions between these sorts
explicitly if we want to indicate the subsort relations.)

This specification has a lot of sorts that all contain numbers. These sorts are:

N the natural numbers
Zp the positive integers
Z all integers
Qp the positive rational numbers
Qf the rational numbers from the interval (0,1)
Q all rational numbers
Qe the rational numbers extended with the ‘numbers’ inf and nan

A number of functions have a suffix to indicate the sort they are associated with. These
suffixes are n, zp, z, qp, qf, q and the empty string respectively. So, addition on the
sort Qe (the most general sort that contains numbers) is called add, while addition on
the sort N is called addn.

The problem of division by zero is solved in both ways in this specification. On the
one hand, the function:

divq(Q,Qp): Q

avoids the problem by only allowing positive rational numbers for a divisor. On the
other hand, the function:

div(Qe,Qe): Qe

has no problem with division by zero. For example the fraction 1/0 which can be ex-
pressed in the specification by the term:

 div(num(whole(plusz(nat(succ(0n))))),num(whole(0z)))

turns out to have normal form inf.
The other problem with a specification of the rational numbers was that the

simplest representation for the rational numbers, in which a number is represented
as a pair of two integers, does not have the property that two terms representing the
same number have necessarily the same normal form. This means that the simplest
specification of the rational numbers has been ruled out if we require that the specifi-
cation should have this property.

In [Hoekzema, Rodenburg, 1987] this problem is solved by representing numbers
as a list of exponents in its prime factorization. Clearly, this is a representation in
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which it is easy to define multiplication. However, in order to define addition, one has
to recover the numerator and denominator of a fraction. Therefore, the specification
has to contain a specification of an enumeration of the prime numbers.

In the specification from this section, a different representation for the rational
numbers has been chosen. Here, a rational number is given as a continued fraction.

The two sorts that are used to represent a continued fraction are the sorts Qp and
Qf, which are defined in terms of each other. The sort called Qp contains the positive
rational numbers, and the sort Qf the rational numbers between 0 and 1. The two
sorts are generated by the functions wholep, brokenp and invadd1. Expressions of
the form wholep(Zp) and brokenp(N,Qf) represent an element of Qp. In the first
case, we have an element of Zp that has been embedded in Qp. In the second case we
have a representation of the sum of its first argument (which is the integral part of the
number) and its second argument (which is the fractional part). An expression of the
form invadd1(Qp) is an element of Qf. The expression invadd1(x) represents the
value 1/(1+x). If x is a positive number, 1/(1+x) will be a number between 0 and 1.
Together, the three generators wholep, brokenp and invadd1 give a unique continued
fraction representation for each positive rational number.

For example, consider the fraction 355/113 (the well known approximation of the
number π) as an element of Qp. This fraction is expressed in the form of a continued
fraction as 3+1/(7+1/16), which in turn can be written in the form 3+1/(1+6+1/(1+15)).
It is represented in this specification by:

brokenp(

 nat(succ(nat(succ(nat(succ(0n)))))),

invadd1(brokenp(

 nat(succ(nat(succ(nat(succ(nat(succ(nat(succ(nat(succ(

 0n)))))))))))),

invadd1(wholep(

 nat(succ(nat(succ(nat(succ(nat(succ(nat(succ(nat(succ(

 nat(succ(nat(succ(nat(succ(nat(succ(nat(succ(nat(succ(

 nat(succ(nat(succ(nat(succ(0n))))))))))))))))))))))))))))))

)))))

which should be read as:

brokenp(‘3’,invadd1(brokenp(‘6’,invadd1(wholep(‘15’)))))

While these continued fraction representations are nice and simple, they are clearly
not well suited for performing arithmetic. Therefore, the specification contains func-
tions nume, deno and fraction to convert them to and from a representation as ‘nor-
mal’ fractions.

In order to be able to specify the function fraction that converts a normal frac-
tion to a continued fraction, we will have to define the division and remainder func-
tions on positive integers. Now, these functions (that might have been called div and
mod) do not occur separately in the specification. Instead, they are only present in a
‘bundled’ way, together in the divmod function. The divmod function takes two posi-
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tive integers and returns a bundle of three integers in an object of the sort QR. This
bundle contains both the quotient and the remainder of the division together. It also
contains, for convenience in the definition, the co-remainder which is the difference
of the divisor and the remainder. Together, these three numbers are ‘bundled’ by the
generator function qr of the sort QR. For an example, suppose that we evaluate:

divmod(‘42’,‘5’).

This expression will normalize to the normal form:

qr(‘8’,‘2’,‘3’)

There is a slight complication with the definition of sort QR. The first argument of qr
might be zero. However, if we know that the division is even, i.e., that the second
argument is equal to zero, the first argument can not be zero, because we are dividing
two positive integers. Now, it turns out that we will need this knowledge in order to
be able to apply the divmod function. Therefore, the qr function has typing
qr(N,Zp,Zp), and for the case in which the second argument of the qr function
would have been zero we have a second generator of sort QR, called q0 with typing
q0(Zp,Zp). So, if we ignore the type errors, the expression q0(i,j) is just another
way of saying qr(i,‘0’,j).

There is one other interesting problem left in this specification. The function
fraction (or rather the auxiliary function qrtoqp that is used by it) recursively
converts a fraction to a continued fraction by repeatedly applying divmod. Now we
know that this process terminates after finitely many steps. However, Perspect also
has to be convinced of this fact. And a path ordering does not have the power to
show the termination of this process.

The way out that we take is an ugly one; its only merit is that it works. We add a
parameter to each function in the recursion that counts the number of steps that the
recursion has taken. After this counter reaches zero (it is counting backwards), the
recursion is broken off with some default answer. Furthermore, we tell Perspect that
this parameter is the induction variable by declaring the function with a star in front of
the new parameter. Now, we know (if we made no mistakes) that this extra par-
ameter is harmless and does not change the meaning of the function. And Perspect
will be satisfied that the induction will terminate.

The disadvantage of this method is that we will loose the protection that Perspect
normally gives us. If the counter is started at too low a value, the meaning of the spec-
ification is changed.

This extra parameter has a nice ‘application’. In the equation:

fractionqp(i,j): qrtoqp(nat(j),divmod(i,j))

the ‘counter’ parameter is started at nat(j). This means that we know that the con-
tinued fraction of i/j has depth ≤ j. Now, if we start the parameter at some constant
value instead, for example at 3, as in:
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fractionqp(i,j):

 qrtoqp(nat(succ(nat(succ(nat(succ(0n)))))),divmod(i,j))

we will get a specification of finite precision arithmetic. In that case, the results of all
calculations will be ‘rounded’ to a close approximation from a finite set of ‘simple’
fractions.

external B

 sort B

 function

  true, false: B

internal B

 [empty]

external Logic

 import B

 function

  not(B), or(B,B), and(B,B): B

internal Logic

 variable

  b: B

 equation

  not(false), or(true,B), or(B,true): true

  not(true), and(false,B), and(B,false): false

  or(false,b), or(b,false), and(true,b), and(b,true): b

external N

 sort N, Zp

 function

  0n, nat(Zp): N

  succ(N): Zp

internal N

 [empty]

external ArithmeticZp

 import N

 function

  addzp(N,Zp), mulzp(Zp,Zp): Zp

internal ArithmeticZp

 variable

  n: N

  i, j: Zp

 equation

  addzp(0n,i): i
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  addzp(n,succ(0n)): succ(n)

  addzp(nat(succ(n)),i), addzp(n,succ(nat(i))):

   succ(nat(addzp(n,i)))

  mulzp(succ(0n),i), mulzp(i,succ(0n)): i

  mulzp(succ(nat(i)),j): addzp(nat(mulzp(i,j)),j)

external ArithmeticN

 import N

 function

  addn(N,N), muln(N,N): N

internal ArithmeticN

 import ArithmeticZp

 variable

  m, n: N

  i, j: Zp

 equation

  addn(0n,n), addn(n,0n): n

  addn(m,nat(i)): nat(addzp(m,i))

  muln(0n,N), muln(N,0n): 0n

  muln(nat(i),nat(j)): nat(mulzp(i,j))

external Z

 sort Z

 import N

 function

  0z, plusz(N), minusz(N): Z

internal Z

 equation

  plusz(0n), minusz(0n): 0z

external ArithmeticZ

 import Z

 function

  addz(Z,Z), subz(Z,Z), mulz(Z,Z): Z

internal ArithmeticZ

 import ArithmeticN

 variable

  m, n: N

  i, j: Z

 function

  minus(Z): Z

 equation

  minus(0z): 0z

  minus(plusz(n)): minusz(n)

  minus(minusz(n)): plusz(n)
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 function

  subn(N,N): Z

 equation

  subn(n,0n): plusz(n)

  subn(0n,n): minusz(n)

  subn(nat(succ(m)),nat(succ(n))): subn(m,n)

 equation

  addz(0z,i), addz(i,0z): i

  addz(plusz(m),plusz(n)): plusz(addn(m,n))

  addz(plusz(m),minusz(n)): subn(m,n)

  addz(minusz(m),plusz(n)): subn(n,m)

  addz(minusz(m),minusz(n)): minusz(addn(m,n))

  subz(i,j): addz(i,minus(j))

  mulz(0z,Z), mulz(Z,0z): 0z

  mulz(plusz(m),plusz(n)): plusz(muln(m,n))

  mulz(plusz(m),minusz(n)): minusz(muln(m,n))

  mulz(minusz(m),plusz(n)): minusz(muln(m,n))

  mulz(minusz(m),minusz(n)): plusz(muln(m,n))

external ComparisonZ

 import Z, B

 function

  posz(Z), negz(Z), zeroz(Z): B

internal ComparisonZ

 equation

  posz(plusz(nat(Zp))), negz(minusz(nat(Zp))), zeroz(0z): true

  posz(minusz(N)), posz(0z), negz(plusz(N)), negz(0z),

   zeroz(plusz(nat(Zp))), zeroz(minusz(nat(Zp))): false

external QR

 sort QR

 import N

 function

  q0(Zp,Zp), qr(N,Zp,Zp): QR

internal QR

 [equation

  q0(i,j) = qr(nat(i),"0",j)]

external DivMod

 import QR, Z

 function

  divmod(Zp,Zp): QR

internal DivMod

 variable

  n: N

  i, j: Zp
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 function

  succqr(QR): QR

 equation

  succqr(q0(i,succ(0n))): q0(succ(nat(i)),succ(0n))

  succqr(q0(i,succ(nat(j)))): qr(nat(i),succ(0n),j)

  succqr(qr(n,i,succ(0n))): q0(succ(n),succ(nat(i)))

  succqr(qr(n,i,succ(nat(j)))): qr(n,succ(nat(i)),j)

  divmod(succ(0n),succ(0n)): q0(succ(0n),succ(0n))

  divmod(succ(0n),succ(nat(i))): qr(0n,succ(0n),i)

  divmod(succ(nat(i)),j): succqr(divmod(i,j))

external Qp

 sort Qp, Qf

 import N

 function

  wholep(Zp), brokenp(N,Qf): Qp

  invadd1(Qp): Qf

internal Qp

 [empty]

external Q

 sort Q

 import Z, Qp

 function

  whole(Z), broken(Z,Qf): Q

internal Q

 [empty]

external Inv

 import Qp

 function

  inv(Qp): Qp

internal Inv

 variable

  n: N

  i: Zp

  f: Qf

  x: Qp

 equation

  inv(wholep(succ(0n))): wholep(succ(0n))

  inv(wholep(succ(nat(i)))): brokenp(0n,invadd1(wholep(i)))

  inv(brokenp(0n,invadd1(wholep(i)))): wholep(succ(nat(i)))

  inv(brokenp(0n,invadd1(brokenp(n,f)))): brokenp(nat(succ(n)),f)

  inv(brokenp(nat(succ(n)),f)): brokenp(0n,invadd1(brokenp(n,f)))
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external PlusMinus

 import Q

 function

  plus(Qp), minus(Qp): Q

internal PlusMinus

 import Inv

 variable

  n: N

  i: Zp

  f: Qf

  x: Qp

 equation

  plus(wholep(i)): whole(plusz(nat(i)))

  plus(brokenp(n,f)): broken(plusz(n),f)

 function

  1sub(Qf): Qf

 equation

  1sub(invadd1(x)): invadd1(inv(x))

 equation

  minus(wholep(i)): whole(minusz(nat(i)))

  minus(brokenp(n,f)): broken(minusz(nat(succ(n))),1sub(f))

external TruncationQ

 import Q

 function

  truncq(Q): Z

  fractq(Q): Q

internal TruncationQ

 variable

  i: Z

  f: Qf

 equation

  truncq(whole(i)), truncq(broken(i,Qf)): i

  fractq(whole(Z)): whole(0z)

  fractq(broken(Z,f)): broken(0z,f)

external FractionsQ

 import Q

 function

  fractionq(Z,Zp): Q

  numeqp(Qp), denoqp(Qp): Zp

  numeq(Q): Z

  denoq(Q): Zp

internal FractionsQ

 import ArithmeticZp, ArithmeticN, ArithmeticZ, DivMod, PlusMinus
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 variable

  m, n: N

  i, j: Zp

  k: Z

  f: Qf

  x: Qp

 function

  qrtoqp(*N,QR), fractionqp(Zp,Zp): Qp

 equation

  qrtoqp(N,q0(i,Zp)): wholep(i)

  qrtoqp(0n,qr(n,Zp,Zp)): wholep(succ(n))

  qrtoqp(nat(succ(m)),qr(n,i,j)):

   brokenp(n,invadd1(qrtoqp(m,divmod(j,i))))

  fractionqp(i,j): qrtoqp(nat(j),divmod(i,j))

 equation

  fractionq(0z,Zp): whole(0z)

  fractionq(plusz(nat(i)),j): plus(fractionqp(i,j))

  fractionq(minusz(nat(i)),j): minus(fractionqp(i,j))

 function

  numeqf(Qf), rec denoqf(Qf),

  rec echo numeqp(Qp), rec echo denoqp(Qp): Zp

 equation

  numeqf(invadd1(x)): denoqp(x)

  denoqf(invadd1(x)): addzp(nat(numeqp(x)),denoqp(x))

 equation

  numeqp(wholep(i)): i

  denoqp(wholep(Zp)): succ(0n)

  numeqp(brokenp(n,f)): addzp(muln(n,nat(denoqf(f))),numeqf(f))

  denoqp(brokenp(N,f)): denoqf(f)

 equation

  numeq(whole(k)): k

  denoq(whole(Z)): succ(0n)

  numeq(broken(k,f)):

   addz(mulz(k,plusz(nat(denoqf(f)))),plusz(nat(numeqf(f))))

  denoq(broken(Z,f)): denoqf(f)

external ArithmeticQ

 import Q

 function

  addq(Q,Q), subq(Q,Q), mulq(Q,Q), divq(Q,Qp): Q

internal ArithmeticQ

 import ArithmeticZp, ArithmeticZ, FractionsQ

 variable

  x, y: Q

  z: Qp
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 equation

  addq(x,y):

   fractionq(addz(mulz(numeq(x),plusz(nat(denoq(y)))),

     mulz(plusz(nat(denoq(x))),numeq(y))),

    mulzp(denoq(x),denoq(y)))

  subq(x,y):

   fractionq(subz(mulz(numeq(x),plusz(nat(denoq(y)))),

     mulz(plusz(nat(denoq(x))),numeq(y))),

    mulzp(denoq(x),denoq(y)))

  mulq(x,y):

   fractionq(mulz(numeq(x),numeq(y)),mulzp(denoq(x),denoq(y)))

  divq(x,z):

   fractionq(mulz(numeq(x),plusz(nat(denoqp(z)))),

    mulzp(denoq(x),numeqp(z)))

external Qe

 sort Qe

 import Q

 function

  num(Q), inf, nan: Qe

internal Qe

 [empty]

external Truncation

 import Qe

 function

  trunc(Qe), fract(Qe): Qe

internal Truncation

 import TruncationQ

 variable x: Q

 equation

  trunc(num(x)): num(whole(truncq(x)))

  fract(num(x)): num(fractq(x))

  trunc(inf): inf

  fract(inf), trunc(nan), fract(nan): nan

external Fractions

 import Qe

 function

  fraction(Z,Z): Qe

  nume(Qe), deno(Qe): Z

internal Fractions

 import FractionsQ, ArithmeticQ

 variable

  i, j: Z

  k: Zp
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  x: Q

 equation

  fraction(i,plusz(nat(k))): num(fractionq(i,k))

  fraction(i,minusz(nat(k))): num(subq(whole(0z),fractionq(i,k)))

  fraction(plusz(nat(Zp)),0z), fraction(minusz(nat(Zp)),0z): inf

  fraction(0z,0z): nan

  nume(num(x)): numeq(x)

  deno(num(x)): plusz(nat(denoq(x)))

  nume(inf): plusz(nat(succ(0n)))

  deno(inf), nume(nan), deno(nan): 0z

external Arithmetic

 import Qe

 function

  add(Qe,Qe), sub(Qe,Qe), mul(Qe,Qe), div(Qe,Qe): Qe

internal Arithmetic

 import ArithmeticZ, ArithmeticQ, Fractions

 variable

  x, y: Q

  s, t: Qe

 equation

  add(num(x),num(y)): num(addq(x,y))

  add(inf,num(Q)), add(num(Q),inf): inf

  add(inf,inf), add(nan,Qe), add(Qe,nan): nan

  sub(num(x),num(y)): num(subq(x,y))

  sub(inf,num(Q)), sub(num(Q),inf): inf

  sub(inf,inf), sub(nan,Qe), sub(Qe,nan): nan

  add(s,t):

   fraction(addz(mulz(nume(s),deno(t)),mulz(deno(s),nume(t))),

    mulz(deno(s),deno(t)))

  sub(s,t):

   fraction(subz(mulz(nume(s),deno(t)),mulz(deno(s),nume(t))),

    mulz(deno(s),deno(t)))

  mul(num(x),num(y)): num(mulq(x,y))

  mul(inf,inf): inf

  mul(nan,Qe), mul(Qe,nan): nan

  mul(s,t): fraction(mulz(nume(s),nume(t)),mulz(deno(s),deno(t)))

  div(s,t): fraction(mulz(nume(s),deno(t)),mulz(deno(s),nume(t)))

external Comparison

 import Qe, B

 function

  pos(Qe), neg(Qe),

  eq(Qe,Qe), ne(Qe,Qe),

  lt(Qe,Qe), le(Qe,Qe), ge(Qe,Qe), gt(Qe,Qe),
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  un(Qe,Qe): B

internal Comparison

 import Logic, ComparisonZ, Fractions, Arithmetic

 variable

  x, y: Q

  s, t: Qe

 equation

  pos(num(x)): posz(nume(num(x)))

  neg(s): negz(nume(s))

  pos(inf), pos(nan), neg(inf), neg(nan): false

  eq(num(x),num(y)): zeroz(nume(sub(num(x),num(y))))

  eq(inf,inf): true

  eq(inf,num(Q)), eq(num(Q),inf), eq(nan,Qe), eq(Qe,nan): false

  ne(s,t): not(eq(s,t))

  lt(s,t): pos(sub(t,s))

  le(s,t): or(lt(s,t),eq(s,t))

  ge(s,t): le(t,s)

  gt(s,t): lt(t,s)

  un(s,t): not(or(eq(s,t),or(lt(s,t),gt(s,t))))

  un(inf,num(Q)), un(num(Q),inf), un(nan,Qe), un(Qe,nan): true

external Choice

 import B, Qe

 function

  if(B,Qe,Qe): Qe

internal Choice

 variable

  s: Qe

 equation

  if(true,s,Qe), if(false,Qe,s): s

3.3.3. Primitive recursive functions

In this section we will specify the primitive recursive functions. The sorts that will be
specified are N, the sort of the natural numbers, LIST, the sort of the lists of natural
numbers and PRIM, the sort of the primitive recursive functions.

It is customary to define a primitive recursive function to have an arity, the num-
ber of arguments the function takes, which can be any natural number. However, in
order to specify this kind of functions we must introduce a separate sort to contain
the functions of a given arity, and an application function for each arity as well. Clearly,
in this way we would need an infinite signature which cannot be specified in Perspect.
One can imagine specifying only the subalgebra restricted to some finite sub-signa-
ture, but such a specification is then not as general as possible.

In this specification, the primitive recursive functions do not act on several argu-
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ments. Instead, they operate on one object that consists of a list of natural numbers:
an object from sort LIST. Furthermore, we do not want to introduce a sort consisting
of lists of primitive functions. For this reason it turns out to be convenient that the
result of a primitive recursive function also is a member from LIST.

So, we have a sort of primitive recursive functions PRIM, and an application func-
tion:

appl(PRIM,LIST): LIST

that takes a primitive recursive function together with a list of natural numbers and
produces a list of natural numbers.

This function appl is total. This means that it also has to give some answer when the
number of elements in the LIST is inappropriate. We will use the convention here
that if the number of arguments in the LIST is too low, the ‘missing’ arguments will be
taken to be zero. So, the equation:

appl(F,append(x,list(0))): appl(F,x)

is supposed to hold. Conversely, if the number of arguments given to appl is too high
the ‘extra’ arguments will conveniently be ignored.

The specification of the sort PRIM is straightforward. The algebra is freely generated
by the functions zero, succ, proj, concat, compose and primrec. The meaning of
these generators can be seen from the various equations in module appl.

The specification of the application function appl also looks simple. Its only
subtlety lies in the star in front of the first argument in the declaration of appl. The
meaning of this is that the ‘function’ argument of appl is the argument that appl is
inductively defined over. In fact, the main reason for including the path ordering with
argument status in Perspect was that it made it possible to write this specification. If
the star in front of the first argument of appl had been missing, the equation:

appl(compose(F,G),x): appl(F,appl(G,x))

would not have been decreasing in the path ordering, and so the termination of the
evaluation of the appl function could not have been verified by the Perspect system.

The specification also contains a function enum, that enumerates all primitive recur-
sive functions as a function of the natural numbers. This function can be used for the
construction of diagonal functions.

In order to be able to define enum, we must first define functions that code the
product N × N in the sort N itself. These functions, called left and right, are defined
in module split. These functions are defined with the aid of a function next that acts
as a ‘successor’ on pairs of natural numbers which have been defined as the sort PAIR.

Now, the function enum is defined recursively in a way that is not straightforward.
The reason for this is the termination check that has to be satisfied in Perspect. If this
check had not been present, the equations defining enum would have been:
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enum(n): enum1(left(n),right(n))

enum1(0,N): zero

enum1(S(0),N): succ

enum1(S(S(0)),n): proj(n)

enum1(S(S(S(0))),n): concat(enum(left(n)),enum(right(n)))

enum1(S(S(S(S(0)))),n): compose(enum(left(n)),enum(right(n)))

enum1(S(S(S(S(S(N))))),n): primrec(enum(left(n)),enum(right(n)))

In these equations the ‘left’ part of the coding number is a code for the kind of func-
tion – zero, succ, concat, compose or primrec – while the ‘right’ part codes the
parameters, if any.

In order to be able to verify that the recursion eventually peters out (which it does),
we have added another parameter (declared with a ‘*’ to indicate that it is the
induction parameter) that gives an upper bound for the number of recursions that are
allowed; the function enum becomes enum2 with the extra parameter and the function
enum1 becomes enum3. If this parameter is exceeded the function that is coded is
zero, regardless of the code. The same trick was also present in the specification of
the rational numbers in section 3.3.2.

With the enumeration function enum in hand we are able to define a diagonal. In fact
we define two diagonals, diag and xdiag. The function diag is the standard diagonal.
It is constructed by using the fact that:

n → car(appl(F,list(n)))

is a function from N to N, for any element F from PRIM. If we replace F by enum(n)
and subsequently take the successor we have the desired diagonal.

However we do not know whether the algebra specified by diag is a primitive
recursive algebra. So, in order to specify an algebra of which we do know this prop-
erty we have also specified the function called xdiag. This is the function referred to
in section 3.2.4.

The function xdiag has the property that if F and G are primitive recursive
functions on the natural numbers, and if F is a bijection on the natural numbers as well,
then xdiag is a function different from F-1⋅G. This is equivalent to saying that for each
such F and G there exists some natural number n for which:

F(xdiag(n)) ≠ G(n)

Now, xdiag will have this property even for functions F and G for which the function
F is not a bijection on the natural numbers, but only has the property that F(0) ≠ F(1).
This is a consequence of the definition of xdiag. For each primitive recursive F and G
with F(0) ≠ F(1) there is a natural number n with:

F(0) = G(n)  ⇒  xdiag(n) ≡ 1
F(0) ≠ G(n)  ⇒  xdiag(n) ≡ 0

In both cases it is easy to verify that then F(xdiag(n)) ≠ G(n). This definition can be re-
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formulated by saying that xdiag(n) ‘codes’ the equality between F(0) and G(n).
So, using this method to construct a diagonal function, we see that the definition of

xdiag is:

xdiag(n):

 eq(car(appl(enum(left(n)),list(0))),

    car(appl(enum(right(n)),list(n))))

It should be noted that the signature of module xdiag is simple. It only has one sort,
i.e., N, and only three functions: 0, S and xdiag. As we already said in section 3.2.4 the
algebra specified by this module is not primitive recursive. So, this specification
shows explicitly that the class of algebras that can be specified in Perspect is strictly
greater then the class of primitive recursive algebras.

external N

 sort N

 function 0, S(N): N

 variable n, m: N

internal N

 [empty]

external LIST

 import N

 sort LIST

 function

  nil, cons(N,LIST), list(N), append(LIST,LIST): LIST

  car(LIST): N

 variable x, y: LIST

internal LIST

 equation

  list(n): cons(n,nil)

  append(nil,y): y

  append(cons(n,x),y): cons(n,append(x,y))

  car(nil): 0

  car(cons(n,LIST)): n

external PRIM

 import N

 sort PRIM

 function

  zero, succ, proj(N), concat(PRIM,PRIM), compose(PRIM,PRIM),

  primrec(PRIM,PRIM):

   PRIM

 variable F, G: PRIM

internal PRIM
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 [empty]

external appl

 import LIST, PRIM

 function appl(*PRIM,LIST): LIST

internal appl

 equation

  appl(zero,LIST): list(0)

  appl(succ,nil): list(S(0))

  appl(succ,cons(n,LIST)): list(S(n))

  appl(proj(N),nil): list(0)

  appl(proj(0),cons(n,LIST)): list(n)

  appl(proj(S(n)),cons(N,x)): appl(proj(n),x)

  appl(concat(F,G),x): append(appl(F,x),appl(G,x))

  appl(compose(F,G),x): appl(F,appl(G,x))

  appl(primrec(F,PRIM),nil): appl(F,nil)

  appl(primrec(F,PRIM),cons(0,x)): appl(F,x)

  appl(primrec(F,G),cons(S(n),x)):

   appl(G,cons(n,append(appl(primrec(F,G),cons(n,x)),x)))

external split

 import N

 function left(N), right(N): N

internal split

 sort PAIR

 function pair(N,N): PAIR

 function first(PAIR), second(PAIR): N

 equation

  first(pair(n,N)), second(pair(N,n)): n

 function next(PAIR), enump(N): PAIR

 equation

  next(pair(0,n)): pair(S(n),0)

  next(pair(S(m),n)): pair(m,S(n))

  enump(0): pair(0,0)

  enump(S(n)): next(enump(n))

  left(n): first(enump(n))

  right(n): second(enump(n))

external enum

 import PRIM

 function enum(N): PRIM

internal enum

 import split

 function enum2(*N,N), rec enum3(*N,N,N): PRIM

 equation
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  enum(n): enum2(S(n),n)

  enum2(0,N), enum3(0,N,N): zero

  enum2(S(m),n): enum3(m,left(n),right(n))

  enum3(S(N),0,N): zero

  enum3(S(N),S(0),N): succ

  enum3(S(N),S(S(0)),n): proj(n)

  enum3(S(m),S(S(S(0))),n):

   concat(enum2(m,left(n)),enum2(m,right(n)))

  enum3(S(m),S(S(S(S(0)))),n):

   compose(enum2(m,left(n)),enum2(m,right(n)))

  enum3(S(m),S(S(S(S(S(N))))),n):

   primrec(enum2(m,left(n)),enum2(m,right(n)))

external diag

 import N

 function diag(N): N

internal diag

 import appl, enum

 equation

  diag(n): S(car(appl(enum(n),list(n))))

external xdiag

 import N

 function xdiag(N): N

internal xdiag

 import appl, split, enum

 function eq(N,N): N

 equation

  eq(0,0): S(0)

  eq(S(N),0), eq(0,S(N)): 0

  eq(S(m),S(n)): eq(m,n)

 equation

  xdiag(n):

   eq(car(appl(enum(left(n)),list(0))),

      car(appl(enum(right(n)),list(n))))

3.3.4. Stacks

It has once been remarked that the stack appears to be an inescapable example in
the realm of algebraic specifications [Bergstra, Tucker, 1988]. In this section we will
therefore give two specifications of the notion of a stack. The first is a nice variant of
the conventional solution to this problem. The second is the correct way to do it.

A stack is an object on which three operations are defined called: push, pop and
top. The operation push adds an element to the stack, the operation pop removes the
top element of the stack, and the operation called top tells what that top element is.
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The problem of specifying a stack lies in the conflict that seems to exist between
the requirement that we use total functions in our specification, and the fact that on
the empty stack the operations pop and top are not well defined. If we denote the
empty stack by the identifier empty, the expressions pop(empty) and top(empty)
pose a problem.

The customary solution for this problem is to extend the sort, D, of the data el-
ements that can be pushed on the stack by a new element called error. This gives us a
new sort, eD (extended data), in which the sort D is embedded by the embedding
function i. Now the problem of the expression top(empty) can be solved by
equating it to the error object.

However, the expression pop(empty) is still a problem. At this point there are a
number of choices, as is described in [Bergstra, Tucker, 1988]. The solution that we
will show here, which corresponds to specification SAE4 in [Bergstra, Tucker, 1988],
consists of considering the empty stack empty to be an infinite stack of errors. This
way, the specification has two nice properties. First, if:

top(s1) = top(s2) & pop(s1) = pop(s2)

then stack s1 has to be equal to stack s2. Second, the nice equation:

push(top(s),pop(s)): s

holds. Note that this equation cannot be expressed in Perspect because it is not left
linear. This means we cannot add it to the specification in order to make the Perspect
system verify it.

The first specification from this section differs slightly from the specification called
SAE4 in [Bergstra, Tucker, 1988]. First, there is no sort consisting of the stacks of
objects of type D. In [Bergstra, Tucker, 1988] that sort was hidden, and it is clear that it
was not needed in this specification. Second, we have added a projection function j
that projects sort eD back on sort D. In a sense it is the inverse of the embedding
function i. It has two arguments: if one tries to project the error object on sort D, the
second argument tells what the result will be. This function is not strictly needed,
because it can be defined by any module that might need it. However, when the
function j is present, one does not need to rely on the specific term rewriting system
that is given here when using this specification.

external DATA

 sort D

 function d0, d1: D

internal DATA

 [empty]

external STACKS

 import DATA

 sort eD, S
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 function

  i(D), error: eD

  j(eD,[if error:]D): D
  empty, push(eD,S), pop(S): S

  top(S): eD

internal STACKS

 variable

  d: D

  e: eD

  s: S

 equation

  j(i(d),D), j(error,d): d

  push(error,empty): empty

  pop(empty): empty

  pop(push(eD,s)): s

  top(empty): error

  top(push(e,S)): e

There is a better solution for solving the problem of the undefinedness of the ex-
pressions pop(empty) and top(empty). It has the same two pleasant properties as
the first solution, but it avoids the need for error objects.

The solution is simple. It consists of the observation that the expressions
pop(empty) and top(empty) are not well typed, because the operations pop and top
cannot be defined on a sort that contains the object empty.

Instead of extending the sort D in order to accommodate the problem of the ex-
pression top(empty) we restrict the sort S. This restricted sort we call neS (which
consists of the non-empty stacks). We define the operations top and pop only on this
new sort, which we embed by an embedding function i in the sort S of all stacks.

Again we have a projection function j that is kind of an inverse to i. This makes it
possible to write for example:

pop(j(pop(j(i(push(d1,i(push(d0,empty)))),neS)),neS))

when we want to describe the stack that we get when we push two elements, d0 and
d1, on the empty stack and then pop them both again. Clearly, this open expression
which contains two anonymous variables neS, reduces to the expression empty.

This second specification could be made more clear by using a specification system
in which the embedding of sorts is built in the language (the best known of these
languages is OBJ2, see for example [Futatsugi, Goguen, Jouannaud, Meseguer, 1985]).
One can consider this specification to be a translation into Perspect of a specification
in such a language.

external DATA

 sort D

 function d0, d1: D
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internal DATA

 [empty]

external STACKS

 import DATA

 sort S, neS

 function

  empty, i(neS), pop(neS): S

  push(D,S), j(S,[if empty:]neS): neS
  top(neS): D

internal STACKS

 variable

  d: D

  s: S

  t: neS

 equation

  j(i(t),neS), j(empty,t): t

  pop(push(D,s)): s

  top(push(d,S)): d

The solution for avoiding the problem of the partiality of some functions by intro-
ducing new sorts (which was also used in the previous specification) has a wide range
of applicability. We would like to argue for the adoption of the following analogon for
pointers in current (Pascal like) languages. This analogon for pointers was brought to
our attention by [Pemberton, 1989].

Consider a Pascal like language (entirely fictional) with the following constructs. If T
is a datatype, there is the datatype ptr(T) in the language that consists of the pointers
to objects of type T. If E is an expression of type ptr(T), then the dereferencing op-
erator denoted by * gives the object *E which is an object of type T. The expression
new(T) gives a ‘new’ pointer of type ptr(T). Also, there is an expression nil(T)
which gives the ‘null’ pointer of type ptr(T). Now, conventionally the expression
*nil(T) is not well defined. A program that encounters such an expression can do
anything at all (perhaps it crashes or maybe it prints ‘(null)’). This problem is the
source of a large class of programming errors in conventional computer programs.

There exists a solution that solves this problem by relying on the type system of
the language. It consists of replacing the type ptr(T) by two types, ref(T) and
ptr(T) which are respectively the type of the non-null pointers and that of the
pointers that might be null. The * operator is then only defined on the first kind of
pointers and the expression new(T) has this type as well, while the expression
nil(T) is a pointer of the second kind.

Now, an expression of type ref(T) can be used in any context in which a ptr(T)
is required, because it is a subtype. However, the inverse operation (the one that we
called j in the stack specification) cannot be implicitly present. For this we have to
add a statement to the language. Let r be a variable of type ref(T) and p an express-
ion of type ptr(T) (possibly also a variable) and let S be some statement. A state-
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ment of the following structure can then be added to the language as a way to convert
a ptr(T) to a ref(T) (the exact syntax is immaterial):

let

 r := p

if null

 S

tel;

If the pointer that is the value of p is non null this value is assigned to r. If it is null, the
statement S is executed. This statement could allocate a new block, abort the program
with a diagnostic or take some other appropriate action.

A language that adopts this type structure will never abort because a null pointer is
being dereferenced. This shows that strong typing is powerful enough to ‘solve’ the
problem of dereferencing null pointers.

3.3.5. Arrays

In section 3.3.6 we will give an example with a practical flavor: text and pictures. When
we wrote it, it turned out that the main problem was finding a form that was open
confluent. This led to the following specification, which specifies unbounded arrays, in
which this problem has been isolated. Therefore, there is some overlap here
(modules NaturalNumbers, Integers and IntegerOperations) with the specifica-
tion in the next section.

The specification in this section describes arrays without explicit bounds, that are
indexed using integers. The arrays can be considered to be a doubly infinite list that
contains in almost all positions, apart from a finite number of places, the value
undefined. An auxiliary sort for constructing these arrays is the sort of the Pre-
Arrays. These are arrays that at the left hand side continue forever, but at the right
hand side end at some finite index.

The representation of an array in this specification might become clear in the fol-
lowing example. In the procedural fragment:

var

 a: array [-2..9] of color;

begin

 a[-1] := red;

 a[1] := white;

 a[2] := blue

end;

the variable a will in the end contain a value, that would be represented in the specifi-
cation by the term:
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array(

 conc(conc(conc(conc(conc(conc(conc(conc(conc(conc(conc(conc(

  index(minus(S(S(0)))),

   undefined),datum(red)),undefined),datum(white)),datum(blue)),

   undefined),undefined),undefined),undefined),undefined),

   undefined),undefined))

So, the generators of sort Array are:
• the function index to start an array,
• the function conc to extend an array with an element, and
• the function array to close an array (or more exactly to convert a PreArray to an

Array).
Because the arrays in the specification do not contain information about their

bounds, this term for array a is equal to the normal form:

array(conc(conc(conc(conc(

 index(minus(S(0))),

  datum(red)),undefined),datum(white)),datum(blue)))

Note that the array bounds -2 and 9 have been lost here. Because of the first two equa-
tions in module Arrays a normal form of sort Array will always start at the first filled
element (here: at index -1), and will always end at the last filled element.

The functions that are used to give an element of an array a certain value, respect-
ively recover that value, are called set and get. The term:

set(x,i,a)

corresponds to the state of the array a after the statement:

a[i] := x

and the term:

get(i,a)

corresponds to the value:

a[i]

In order to be able to define these functions, one needs a number of auxiliary func-
tions:
• the function end gives the upper limit of a PreArray,
• the function extend adds an element to a PreArray at the right hand side,
• the function insert changes an existing element of a PreArray,
• the functions setrel and getrel are to PreArrays what set and get are to
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Arrays. The index that is the argument is in this case not absolute, but relative to
the end of the PreArray (which explains the suffix rel). The difference between
setrel and insert is subtle: setrel can modify elements outside the PreArray
(and in that case extends it); insert is not able to do this. This difference can also
be seen in the difference in domain of these functions: setrel takes an Int for an
index, insert takes a Nat.

In this specification an equation occurs that is on purpose more specific than appears
to be necessary. The equation is:

set(x,i,array(conc(a,datum(d)))):

 setrel(x,dec(sub(i,end(a))),conc(a,datum(d)))

(note that the subterm dec(sub(i,end(a))) of the right hand side of this equation is
a reduct of the term sub(i,end(conc(a,datum(d)))))

This rule is also true in the more general case:

set(x,i,array(a)):

 setrel(x,sub(i,end(a)),a)

If the specification had contained this more general equation, it would not have been
open confluent, and it would have been hard to find extra equations to restore open
confluence.

external NaturalNumbers

 sort Nat

 variable

  m, n: Nat

 function

  0, S(Nat): Nat

internal NaturalNumbers

 [empty]

external Integers

 sort Int

 variable

  i, j, k: Int [a la Fortran]
 import NaturalNumbers

 function

  zero, plus(Nat), minus(Nat): Int

internal Integers

 equation

  plus(0), minus(0): zero

external IntegerOperations

 import Integers
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 function

  inc(Int), dec(Int), sub(Int,Int): Int

internal IntegerOperations

 equation

  inc(zero): plus(S(0))

  inc(plus(n)): plus(S(n))

  inc(minus(S(n))): minus(n)

  dec(zero): minus(S(0))

  dec(plus(S(n))): plus(n)

  dec(minus(n)): minus(S(n))

  sub(i,zero): i

  sub(i,plus(S(n))): dec(sub(i,plus(n)))

  sub(i,minus(S(n))): inc(sub(i,minus(n)))

  sub(plus(S(n)),i): inc(sub(plus(n),i))

  sub(minus(S(n)),i): dec(sub(minus(n),i))

 [properties]
  inc(dec(i)), dec(inc(i)): i

  sub(inc(i),j), sub(i,dec(j)): inc(sub(i,j))

  sub(dec(i),j), sub(i,inc(j)): dec(sub(i,j))

external Data

 sort Datum

 variable

  d: Datum

internal Data

 function someDatum, another(Datum): Datum

external ArrayElements

 import Data

 sort Element

 variable

  x, y: Element

 function

  datum(Datum), undefined: Element

internal ArrayElements

 [empty]

external Arrays

 sort Array

[constructors]
 import Integers, ArrayElements

 sort PreArray

 variable

  a: PreArray

 function
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  index(Int), conc(PreArray,Element): PreArray

  empty, array(PreArray): Array

internal Arrays

 import IntegerOperations

 equation

  conc(index(i),undefined): index(inc(i))

  array(conc(a,undefined)): array(a)

  array(index(Int)): empty

external ArrayAccess

 import Arrays

 function

  set(Element,Int,Array): Array

  get(Int,Array): Element

internal ArrayAccess

 import IntegerOperations

[set]

 function

  end(PreArray): Int

 equation

  end(index(i)): i

  end(conc(a,Element)): inc(end(a))

 function

  extend(Nat,PreArray): PreArray

 equation

  extend(S(n),a): conc(extend(n,a),undefined)

  extend(0,a): a

 function

  insert(Element,Nat,PreArray): PreArray

 equation

  insert(x,S(n),conc(a,y)): conc(insert(x,n,a),y)

  insert(x,0,conc(a,Element)): conc(a,x)

  insert(x,n,index(i)):

    extend(n,conc(index(dec(sub(i,plus(n)))),x))

 function

  setrel(Element,Int,PreArray): Array

 equation

  setrel(x,plus(n),a): array(conc(extend(n,a),x))

  setrel(x,zero,a): array(conc(a,x))

  setrel(x,minus(n),a): array(insert(x,n,conc(a,undefined)))

 equation

  set(x,i,array(conc(a,datum(d)))):

   setrel(x,dec(sub(i,end(a))),conc(a,datum(d)))

  set(x,i,empty): array(conc(index(i),x))

[get]

 function
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  getrel(Int,PreArray): Element

 equation

  getrel(Int,index(Int)), getrel(plus(Nat),PreArray),

  getrel(zero,PreArray):

   undefined

  getrel(minus(S(S(n))),conc(a,Element)): getrel(minus(S(n)),a)

  getrel(minus(S(0)),conc(PreArray,x)): x

 equation

  get(i,array(conc(a,datum(d)))):

   getrel(dec(sub(i,end(a))),conc(a,datum(d)))

  get(Int,empty): undefined

3.3.6. Text and pictures

The specification in this section describes ‘real’ objects: text and pictures. It was in-
spired by the Macintosh computer in which the two standard datatypes (for files, re-
sources and scrap) have types TEXT and PICT.

Macintosh pictures have an internal structure. They are hierarchically constructed
from a number of primitive graphical objects like text, lines, rectangles, ovals, etc.
They behave nicely under scaling: an enlarged circle is still a circle. The pictures that
we will specify here, however, only consist of black and white pixels.

A similarity between the pictures that are specified here and Mac pictures is their
locality. If one draws such a picture on a bitmap, the color of one of the pixels after
the draw operation only depends on the color of that specific pixel before drawing.
For example, unlike a drop of water, a picture cannot take the average of a number of
neighboring pixels.

We will now give some explanation of the specification. For the major part the
specification is self explanatory. An exception is the representation of pictures.

There are two possible interpretations for the term picture. There is the action of
drawing the picture, and there is the result of that action, the final drawing itself. The
second notion is called a BitMap in the specification, the first is called Pict.

A BitMap consists of a grid of square cells that are either black or white, and in
which only finitely many squares are black. We have here a two-dimensional array,
which explains the relation to the example in the previous section: the specification
here is a double version of the specification of the arrays. The one-dimensional arrays
built from Bits are called Rows, and the associated functions have an identifier ending
in an r: concr, endr, extendr, etc. The two-dimensional arrays built from Rows are
called BitMaps, and the associated functions have an identifier ending in a b: concb,
endb, extendb, etc.

The function set (with associated auxiliary functions) was used in the previous
example to give an element in an array a certain value. Here, the function set modifies
a pixel in a BitMap according to a certain Mode. This mode can take three values:
• if the mode is bic the pixel is set to white,
• if the mode is or the pixel is set to black, and
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• if the mode is xor the pixel is inverted: if it was white it becomes black and if it
was black it becomes white.

To give set this functionality, all auxiliary functions associated with set have a first
argument that is a Mode, and that is recursively passed on until the function called
change makes the required modification.

With the aid of set three Boolean operations on BitMaps are inductively built.
These operations are given by the function op, which again has as first argument a
Mode.

In the specification the active pictures, or Picts, are built from two BitMaps, the
image and the mask. Drawing the picture is performed by first clearing the pixels that
are black in the mask, and then by inverting the pixels that are black in the image.

Drawing a Pict on a BitMap can now be expressed in terms of the operations on
the BitMaps. This is described by the penultimate equation of the specification:

draw(pict(image,mask),bits): op(xor,image,op(bic,mask,bits))

The last equation describes in a similar way composition of pictures, which is called
seq in the specification.

external Bits

 sort Bit

 variable

  b: Bit

 function

  white, black: Bit

internal Bits

 [empty]

external Bytes

 import Bits

 sort Byte

 function

  byte(Bit,Bit,Bit,Bit,Bit,Bit,Bit,Bit): Byte

internal Bytes

 [empty]

external NaturalNumbers

 sort Nat

 variable

  m, n: Nat

 function

  0, S(Nat): Nat

internal NaturalNumbers

 [empty]
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external Integers

 sort Int

 variable

  i, j, k: Int [a la Fortran]
 import NaturalNumbers

 function

  zero, plus(Nat), minus(Nat): Int

internal Integers

 equation

  plus(0), minus(0): zero

external IntegerOperations

 import Integers

 function

  inc(Int), dec(Int), sub(Int,Int): Int

internal IntegerOperations

 equation

  inc(zero): plus(S(0))

  inc(plus(n)): plus(S(n))

  inc(minus(S(n))): minus(n)

  dec(zero): minus(S(0))

  dec(plus(S(n))): plus(n)

  dec(minus(n)): minus(S(n))

  sub(i,zero): i

  sub(i,plus(S(n))): dec(sub(i,plus(n)))

  sub(i,minus(S(n))): inc(sub(i,minus(n)))

  sub(plus(S(n)),i): inc(sub(plus(n),i))

  sub(minus(S(n)),i): dec(sub(minus(n),i))

 [properties]
  inc(dec(i)), dec(inc(i)): i

  sub(inc(i),j), sub(i,dec(j)): inc(sub(i,j))

  sub(dec(i),j), sub(i,inc(j)): dec(sub(i,j))

external Characters

 import Bytes

 sort Char

 variable

  c: Char

 function

  char(Byte): Char

internal Characters

 [empty]

external Texts

 import Characters
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 sort Text

 variable

  t, t1, t2: Text

 function

  emptyText, conc(Char,Text): Text

internal Texts

 [empty]

external TextOperations

 import Texts

 function

  append(Text,Text): Text

internal TextOperations

 equation

  append(emptyText,t): t

  append(conc(c,t1),t2): conc(c,append(t1,t2))

external BitMaps

 import Bits, Integers, IntegerOperations

 sort PreRow, Row, PreBitMap, BitMap

 variable

  pr: PreRow

  ro: Row

  pb: PreBitMap

  bits: BitMap

 function

  x(Int), concr(PreRow,Bit): PreRow

  emptyRow, row(PreRow): Row

  y(Int), concb(PreBitMap,Row): PreBitMap

  emptyBitMap, bitMap(PreBitMap): BitMap

internal BitMaps

 equation

  concr(x(i),white): x(inc(i))

  row(concr(pr,white)): row(pr)

  row(x(Int)): emptyRow

  concb(y(j),emptyRow): y(inc(j))

  bitMap(concb(pb,emptyRow)): bitMap(pb)

  bitMap(y(Int)): emptyBitMap

external Modes

 sort Mode

 variable

  mode: Mode

 function

  or, xor, bic: Mode

internal Modes
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 [empty]

external PixelOperations

 import BitMaps, Modes

 function

  endr(PreRow), endb(PreBitMap): Int

  set(Mode,[x:]Int,[y:]Int,BitMap): BitMap
internal PixelOperations

 function

  echo endr(PreRow), echo endb(PreBitMap): Int

 equation

  endr(x(i)): i

  endr(concr(pr,Bit)): inc(endr(pr))

  endb(y(j)): j

  endb(concb(pb,Row)): inc(endb(pb))

[change a pixel in a row...]
 function

  change(Mode,Bit), pixelr(Mode): Bit

 equation

  change(or,Bit), change(xor,white): black

  change(xor,black), change(bic,Bit): white

  pixelr(mode): change(mode,white)

 function

  extendr(Nat,PreRow): PreRow

 equation

  extendr(S(n),pr): concr(extendr(n,pr),white)

  extendr(0,pr): pr

 function

  insertr(Mode,Nat,PreRow): PreRow

 equation

  insertr(mode,S(n),concr(pr,b)): concr(insertr(mode,n,pr),b)

  insertr(mode,0,concr(pr,b)): concr(pr,change(mode,b))

  insertr(mode,n,x(i)):

   extendr(n,concr(x(dec(sub(i,plus(n)))),pixelr(mode)))

 function

  setrelr(Mode,Int,PreRow): Row

 equation

  setrelr(mode,plus(n),pr): row(concr(extendr(n,pr),pixelr(mode)))

  setrelr(mode,zero,pr): row(concr(pr,pixelr(mode)))

  setrelr(mode,minus(n),pr): row(insertr(mode,n,concr(pr,white)))

 function

  setr(Mode,Int,Row): Row

 equation

  setr(mode,i,row(concr(pr,black))):

   setrelr(mode,dec(sub(i,endr(pr))),concr(pr,black))
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  setr(mode,i,emptyRow): row(concr(x(i),pixelr(mode)))

[... and in a bitmap]
 function

  pixelb(Mode,Int): Row

 equation

  pixelb(mode,i): row(concr(x(i),pixelr(mode)))

 function

  extendb(Nat,PreBitMap): PreBitMap

 equation

  extendb(S(n),pb): concb(extendb(n,pb),emptyRow)

  extendb(0,pb): pb

 function

  insertb(Mode,Int,Nat,PreBitMap): PreBitMap

 equation

  insertb(mode,i,S(n),concb(pb,ro)):

   concb(insertb(mode,i,n,pb),ro)

  insertb(mode,i,0,concb(pb,ro)): concb(pb,setr(mode,i,ro))

  insertb(mode,i,n,y(j)):

   extendb(n,concb(y(dec(sub(j,plus(n)))),pixelb(mode,i)))

 function

  setrelb(Mode,Int,Int,PreBitMap): BitMap

 equation

  setrelb(mode,i,plus(n),pb):

   bitMap(concb(extendb(n,pb),pixelb(mode,i)))

  setrelb(mode,i,zero,pb): bitMap(concb(pb,pixelb(mode,i)))

  setrelb(mode,i,minus(n),pb):

   bitMap(insertb(mode,i,n,concb(pb,emptyRow)))

 equation

  set(mode,i,j,bitMap(concb(pb,row(concr(pr,black))))):

   setrelb(mode,i,dec(sub(j,endb(pb))),

    concb(pb,row(concr(pr,black))))

  set(mode,i,j,emptyBitMap): bitMap(concb(y(j),pixelb(mode,i)))

external BitMapOperations

 import BitMaps, PixelOperations

 function

  op(Mode,BitMap,BitMap): BitMap

internal BitMapOperations

 equation

  op(Mode,emptyBitMap,bits): bits

  op(mode,bitMap(concb(pb,row(concr(pr,black)))),bits):

   set(mode,endr(pr),endb(pb),

op(mode,bitMap(concb(pb,row(pr))),bits))

external Pictures
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 import BitMaps

 sort Pict

 function

  pict([image:]BitMap,[mask:]BitMap): Pict
internal Pictures

 [empty]

external PictureOperations

 import Pictures, BitMapOperations

 function

  draw(Pict,[on:]BitMap): BitMap
  seq([first:]Pict,[second:]Pict): Pict
internal PictureOperations

 variable image, image1, image2, mask, mask1, mask2: BitMap

 equation

  draw(pict(image,mask),bits):

   op(xor,image,op(bic,mask,bits))

  seq(pict(image1,mask1),pict(image2,mask2)):

   pict(op(xor,image2,op(bic,mask2,image1)),op(or,mask1,mask2))

3.3.7. Small text editor

We will now specify a simple text editor. It will be used as an example for the scheme
for translating term rewriting systems to Prolog that will be described in section 4.1.3.

The program that will be specified here is the sample program from [Apple, 1985].
It is a miniature Macintosh text editor. The style of editing that is used here originated
at Xerox PARC in the seventies (and can therefore already be found in the Smalltalk
system, as described in [Goldberg, 1984]). The way this style should behave in a Macin-
tosh application is described extensively in [Apple, 1987]. The program is simple, but
is representative for this style of editing in that it uses a mouse for selecting text and
that it supports the operations ‘cut’, ‘copy’ and ‘paste’.

The program that is being specified here is simple. It has one fixed window in
which text can be entered by typing it. The mouse can be used for making selections.
There are three menus: the apple menu, the file menu and the edit menu. The apple
menu does not contain commands for the program, but only provides access to the
desk accessories in the system. In the specification these are not present. The file
menu contains the ‘quit’ command. The edit menu contains the commands ‘cut’,
‘copy’, ‘paste’ and ‘clear’.

The three functions in the specification that give the representation of the program
are:

welcomeToMacintosh, transition(State,Event): State

show(State): Screen
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Clearly, this program is event driven. We will now highlight some noticeable details of
the specification:
• The natural numbers in the specification can be given with the aid of the function

called addDigit. This function ‘adds’ its second argument, if it is a digit, at the end
of the number given by its first argument. This means that the value of
addDigit(Na1,Na2) is equal to 10 ∗ Na1 + Na2. The function addDigit will not be
used in the specification. It is only present for convenience when operating the
Prolog translation from section 4.1.3.

• Objects of type List are constructed from the generators emptyList and dot. The
function emptyList is called nil in Lisp and [] in Prolog. The expression
dot(It1,Li1) corresponds to the Lisp expression (cons It1 Li1) and to the
(equivalent) Prolog expressions [It1|Li1], It1.Li1 and '.'(It1,Li1). The last
two forms explain the use of the identifier ‘dot’.

• A text containing a, possibly empty, selection (which is shown on the screen as in-
verted text), is called a Document in the specification. It consists of three Strings,
the part in front of the selection, the selection itself and the part after the selection.
If the selection is empty (there will then be a blinking cursor called caret in the
appropriate location on the screen) it will be represented by the empty string. As
an aid for the construction of objects of type Document, there are three functions
in the specification called front, middle and back, which partition a String
according to two Naturals that are taken to be indices in the String.

• The specified system has two kinds of States, on the one hand States in which
the application is running and on the other hand one State called finder outside
the application. A State that describes the running application consists of a
Document being edited, and a String representing the clipboard. The State
outside the application does not retain the clipboard. The real program of which
this specification is an abstraction also has this property of not retaining the
clipboard.

• It is remarkable that after a paste operation the selection in the text is empty
instead of consisting of the pasted material. This means that the equation spec-
ifying the paste operation is:

transition(state(document(Str1,String,Str3),Str4),paste):

 state(document(append(Str1,Str4),empty,Str3),Str4)

instead of the more straightforward:

transition(state(document(Str1,String,Str3),Str4),paste):

 state(document(Str1,Str4,Str3),Str4)

• The way Events are specified is too simple. The selection of a command in a pull
down menu is represented by an object from the sort Event. This means that it is
possible to give commands from menus in contexts in which they are not present
in the menus at all. For example, it is possible to quit the application when it is not
running, or to open it when it is already running. In the specification these Events
are inert, in reality they are impossible.
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This specification is a nice example of the fact that it is possible to sweep a lot of detail
under the rug when specifying a system algebraically. It is remarkable that, after omit-
ting so much (for instance, the windowing system that is necessary to operate the real
program cannot be found in the specification at all), the Prolog translation from sec-
tion 4.1.3 shows that the specification captures the ‘look and feel’ of the specified
program neatly.

external NATURAL

 sort Natural

 function

  0, succ(Natural),

  1, 2, 3, 4, 5, 6, 7, 8, 9,

  addDigit(*Natural,Natural): Natural

 variable Na1, Na2: Natural

internal NATURAL

 equation

  1: succ(0)  2: succ(1)  3: succ(2)

  4: succ(3)  5: succ(4)  6: succ(5)

  7: succ(6)  8: succ(7)  9: succ(8)

  addDigit(0,Na1): Na1

  addDigit(succ(Na1),Na2):

   addDigit(Na1,

    succ(succ(succ(succ(succ(

    succ(succ(succ(succ(succ(Na2)))))))))))

external CHAR

 sort Char

 function

  a, b, c, d, e, f, g, h, i, j, k, l, m,

  n, o, p, q, r, s, t, u, v, w, x, y, z,

  space, newLine: Char

 variable Chr1, Chr2: Char

internal CHAR

 [empty]

external STRING

 import CHAR

 sort String

 function

  empty, dot(Char,String),

  append(String,String), deleteLast(String): String

 variable Str1, Str2, Str3, Str4: String

internal STRING

 equation

  append(empty,Str1): Str1
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  append(dot(Chr1,Str1),Str2): dot(Chr1,append(Str1,Str2))

  deleteLast(empty), deleteLast(dot(Char,empty)): empty

  deleteLast(dot(Chr1,dot(Chr2,Str1))):

   dot(Chr1,deleteLast(dot(Chr2,Str1)))

external EVENT

 import NATURAL, CHAR

 sort Event

 function

  openApplication, quit,

  cut, copy, paste, clear,

  enter(Char), return, backSpace,

  select(Natural,Natural), click(Natural): Event

internal EVENT

 equation

  return: enter(newLine)

  click(Na1): select(Na1,Na1)

external DOCUMENT

 import NATURAL, STRING

 sort Document

 function

  document(String,String,String): Document

  fromTo(String,Natural,Natural): Document

 variable Doc1: Document

internal DOCUMENT

 function

  front(String,Natural,Natural), middle(String,Natural,Natural),

   back(String,Natural,Natural): String

 equation

  fromTo(Str1,Na1,Na2):

   document(front(Str1,Na1,Na2),middle(Str1,Na1,Na2),

    back(Str1,Na1,Na2))

  front(empty,Natural,Natural),

  front(String,0,Natural), front(String,Natural,0):

   empty

  front(dot(Chr1,Str1),succ(Na1),succ(Na2)):

   dot(Chr1,front(Str1,Na1,Na2))

  middle(empty,Natural,Natural), middle(String,0,0): empty

  middle(dot(Chr1,Str1),0,succ(Na1)): dot(Chr1,middle(Str1,0,Na1))

  middle(dot(Chr1,Str1),succ(Na1),0): dot(Chr1,middle(Str1,Na1,0))

  middle(dot(Char,Str1),succ(Na1),succ(Na2)): middle(Str1,Na1,Na2)

  back(empty,Natural,Natural): empty

  back(dot(Chr1,Str1),0,0): dot(Chr1,Str1)

  back(dot(Char,Str1),0,succ(Na1)): back(Str1,0,Na1)



Examples 127

  back(dot(Char,Str1),succ(Na1),0): back(Str1,Na1,0)

  back(dot(Char,Str1),succ(Na1),succ(Na2)): back(Str1,Na1,Na2)

external STATE

 import DOCUMENT

 sort State

 function

  finder, state(Document,String): State

internal STATE

 [empty]

external SCREEN

 import STRING

 sort Selection, Screen

 function

  caret, selection(String): Selection

  deskTop, window(String,Selection,String): Screen

internal SCREEN

 equation

  selection(empty): caret

external EDITOR

 import EVENT, STATE, SCREEN

 function

  welcomeToMacintosh, transition(State,Event): State

  show(State): Screen

internal EDITOR

 equation

  welcomeToMacintosh: finder

  transition(finder,openApplication):

   state(document(empty,empty,empty),empty)

  transition(finder,quit) [should not be possible],
  transition(finder,cut), transition(finder,copy),

  transition(finder,paste), transition(finder,clear),

  transition(finder,enter(Char)), transition(finder,backSpace),

  transition(finder,select(Natural,Natural)):

   finder

  transition(state(Doc1,Str1),openApplication): state(Doc1,Str1)

   [should not be possible]
  transition(state(Document,String),quit): finder

  transition(state(document(Str1,Str2,Str3),String),cut):

   state(document(Str1,empty,Str3),Str2)

  transition(state(document(Str1,Str2,Str3),String),copy):

   state(document(Str1,Str2,Str3),Str2)

  transition(state(document(Str1,String,Str3),Str4),paste):

   state(document(append(Str1,Str4),empty,Str3),Str4)
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  transition(state(document(Str1,String,Str3),Str4),clear):

   state(document(Str1,empty,Str3),Str4)

  transition(state(document(Str1,String,Str3),Str4),enter(Chr1)):

   state(document(append(Str1,dot(Chr1,empty)),empty,Str3),Str4)

  transition(state(document(Str1,dot(Char,String),Str3),Str4),

    backSpace):

   state(document(Str1,empty,Str3),Str4)

  transition(state(document(Str1,empty,Str3),Str4),backSpace):

   state(document(deleteLast(Str1),empty,Str3),Str4)

  transition(state(document(Str1,Str2,Str3),Str4),

    select(Na1,Na2)):

   state(fromTo(append(append(Str1,Str2),Str3),Na1,Na2),Str4)

  show(finder): deskTop

  show(state(document(Str1,Str2,Str3),String)):

   window(Str1,selection(Str2),Str3)

3.4. Checker

In this section we will describe the Perspect checker that has been developed. We
will first describe the operation of the checker in section 3.4.1. After that, an outline
of the implementation of the checker will be given in section 3.4.2.

The checker that was implemented does not check Perspect as it has been defined
in the Perspect report as included in this thesis as section 3.1. Instead it checks a
language that is slightly different. The difference between the ‘official’ language and the
implemented language will be described and motivated in section 3.4.3.

3.4.1. Operation

The Perspect checker is called ‘Perspect’. In its current form it only runs on the Mac-
intosh microcomputer, as a ‘tool’ under the Macintosh Programmer’s Workshop
(MPW) environment.

The Perspect checker has a simple interface. While we have not ported the pro-
gram to any other environment, it should be easy to modify it in order to make it run
under any other environment that considers the external world as a TTY, like MS-DOS
or UNIX. Care has been taken to isolate the system-dependent parts of the program
in two small modules, in order to facilitate a port.

The Perspect checker as it is implemented only forms a partial checker, compared
to what it should be according to the Perspect definition. In particular, no checking
on filenames and partitioning into files is done. One should think of the Perspect
checker as a back-end for a program that performs a complete check of the Perspect
definition. In its present form, the Perspect checker considers the specification to be
a stream of bytes, and does not check or use the filenames of the constituent files of
that stream.
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The interface of the Perspect checker is simple. It is invoked by the name of the
checker, ‘Perspect’, followed by zero or more filenames. Those files are concat-
enated to a specification which is checked. If no filename is present, the specification
is taken from the standard input stream of the program. The checker subsequently
checks the specification, and writes any errors it encounters on the standard output
stream of the program.

For purpose of keeping the interface of the checker simple, it does not have some
of the customary properties of an MPW (or, for that matter, UNIX) tool. For example,
the program will not write to the standard error stream. Also, after the program ter-
minates, the exit status of the program (as printed by the MPW command ‘Echo
{Status}’) will be 0, regardless of the correctness of the specification.

The error messages that the Perspect checker prints all have a uniform format. The
general structure of such a message is:

##  Message
#   Message [Reference]
    File "filename"; Line linenumber

Here ‘Message’ is some string describing the problem found in the specification. ‘Ref-
erence’ is a reference to the Perspect report. It is a part of the section number of the
relevant section in this thesis. In order to get the full section number, it has to be
prefixed by the string ‘3.1.’, because section 3.1 is the section that contains the Per-
spect report.

A list of all error messages that the Perspect system can print appears as appen-
dix II of this thesis. There are four classes of these messages. The first class is the class
of messages related to the operating system. This class has only one member, which is
the complaint:

##  Can't open: File filename.

The second class contains the messages that say that the text being checked is not a
correct Perspect specification as defined in the Perspect report. For example, if a
syntax error has been made in the specification, the message:

##  Syntax error: Unexpected token. [1.2]
    File "filename"; Line linenumber

will be printed, and checking will terminate. The third class of messages are prefixed
by the string ‘Implementation restriction’. These errors are caused by the way
the program has been structured, or by the limitations of the machine the checker is
running on. A representative example of this class is:

##  Implementation restriction: Memory full.

The fourth, and last, class of messages printed by the Perspect checker are prefixed
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by the string ‘Internal error’. If such a message is printed, it means that there is an
error in the implementation of the Perspect checker. These messages are used for de-
bugging and act as runtime verification of a number of assertions on the behavior of
the program. A representative example of this fourth class is:

##  Internal error: Dangling pointer.

The input of the checker consists of the concatenation of all the files that are men-
tioned in the command line. However, this means that a subtle problem can occur
when files are present in which the last line is not terminated by a carriage return
character. The reason for this is that the file boundary does not act as a token separ-
ator.

For instance, suppose that we have two files A.per and B.per. The file A.per con-
tains the string:

‘external A internal A’

(without a trailing carriage return or newline). The file B.per contains the string:

‘external B internal B’

Now because of the way the Perspect checker gets its input, it will take the concatena-
tion of these strings to be the specification that should be checked. Because of this,
the stream that it reads is:

‘external A internal Aexternal B internal B’

Therefore, the command ‘Perspect A.per B.per’ will print the following error
messages:

##  Module identifiers don't match: Aexternal should be A. [3.1]

    File "B.per"; Line 1

##  Syntax error: Unexpected identifier B. [1.2]

    File "B.per"; Line 1

(In the UNIX world this problem is not likely to show, because in that environment it
is hard to create a text file that does not terminate with a newline character. However,
on the Macintosh, particularly under MPW, it is easier to create a file that does not end
with a line separator than it is to create one that does.)

The Perspect checker contains one message that is not an error message. This
message will not be printed without modifying the code of the program (in fact, the
statements that print it are only present as a comment in the source). This message
prints the set NFA as defined in 2.5.3.1 (To be honest: this is not quite what it prints.
The checker uses a version of algorithm 2.5.4.2 that uses the modular structure of the
specification in order to be more efficient. This means that the set that is printed
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resembles NFA, but may be different.) It has the format:

##  sort identifier
#     term
#     term
#     …

If this message is enabled, it will be printed for all sorts in the specification. It has
primarily been used to study the behavior of the persistence check algorithm that is
present in the checker. However, it might be useful in its own right.

3.4.2. Program

The Perspect checker has been written in Modula-2, and has been compiled with the
TML Modula-2 compiler (version 1.0), which is a single-pass compiler that runs under
the MPW environment as a MPW tool.

The checker consists of the following fourteen modules: StdAlloc, StdInOut,
Allocation, Input, Output, Messages, Idents, ParserTypes, Attributes, Scan-
ner, Parser, Modules, Symbols and Perspect. The definition modules of these
modules are included in this thesis as appendix III.

The last module, Perspect, is the main program that invokes the checker. It just
calls the parse routine Parser.yyparse, which invokes the rest of the checker while
parsing. The complete text of this main module is:

MODULE Perspect;

 IMPORT Attributes;

 IMPORT Parser;

 VAR

  result: Attributes.YYSTYPE;

BEGIN

 IF Parser.yyparse(result) THEN

 END

END Perspect.

The other modules in the checker can be classified into six groups.
The first group consists of modules StdAlloc and StdInOut. These are just copies

of the parts of the TML library modules that are used by the checker. They give some
low-level memory allocation and block I/O functionality. The functions from these
two modules are easily emulated in other environments. For instance, all calls from
these modules correspond to standard UNIX functions. Apart from these two
modules, the checker is completely platform independent.

The second group consists of modules Allocation, Input and Output. These are
the higher level counterparts of the modules from the first group. They basically add
buffering for a higher performance. The implementation of Allocation is a straight-
forward Modula-2 translation of the BSD 4.3 implementation of malloc. The routines
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from Input and Output perform conversion from integers to strings.
The third group consists of modules Messages and Idents. Here the identifier

table is implemented. Also, a general facility for producing error messages is pro-
vided. If a different format for error messages might be needed, only module Mess-
ages need to be changed.

The fourth group consists of modules Attributes, Scanner and Parser. These
contain the scanner and parser used by the checker. The scanner is a straightforward,
manually written program, because of the simple lexical syntax of Perspect. The
parser was generated by a Modula-2 version of yacc, which consists of a simple lex
program and an ex script that translate the C code that comes out of yacc to Modula-
2. The structure of the code of this Modula-2 version of yacc is as follows:

module definition module implementation module
Attributes manually written empty
Scanner fixed manually written
Parser fixed generated

The definition module of module Attributes should define only one type, called
YYSTYPE. It is the type of values passed on yacc’s parse stack. It should have the fol-
lowing format:

 TYPE

  YYSTYPE =

   RECORD

    CASE: INTEGER OF

    0: … |

    1: … |

    …
    ELSE

    END

   END;

The definition modules of modules Scanner and Parser are fixed. They are:

DEFINITION MODULE Scanner;

 IMPORT Attributes;

 PROCEDURE yylex

  (VAR token: INTEGER; VAR value: Attributes.YYSTYPE);

 PROCEDURE yyerror (token: INTEGER; value: Attributes.YYSTYPE);

 PROCEDURE yyabort;

END Scanner.

DEFINITION MODULE Parser;

 IMPORT Attributes;

 PROCEDURE yyparse (VAR yyresult: Attributes.YYSTYPE): BOOLEAN;
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END Parser.

It will be clear that the attributes passed around by yacc are more visible in this Mod-
ula-2 scheme because of the stronger typing of Modula-2 as compared to C. The func-
tions yyerror and yyabort are called in case an error occurs. The former is called
when a syntax error is detected; the latter when yacc’s parse stack (which has a fixed
size) overflows.

The Modula-2 version of the parser driver is a literal translation of the yacc driver
under 4.3 BSD. Some work had to be done to eliminate the various gotos from this
code. The size of this code is modest as is shown by the following line counts. The in-
put file for yacc consisted of 252 lines of code. The template file, used by yacc and
containing the parser driver, consisted of 182 lines of code. Finally, the generated
implementation module of module Parser consisted of 808 lines of which 431 lines
(each one containing one assignment statement) consisted of initialization code for the
various tables used by the (table driven) parser.

The fifth group of modules in the checker consists of modules ParserTypes and
Modules. The sixth group is the single module Symbols. The functions defined in the
modules in the fifth group are called from yyparse, and call in their turn the functions
in module Symbols. In a sense, these two last groups implement the same functional-
ity: they both build a data structure reflecting the structure of the specification. The
similarities between these two parts of the program are striking (for example, both
have a datatype of ‘lists of terms’: TermList from module ParserTypes and Tuple
from module Symbols).

A difference between these two parts of the checker is that the functions from
module Modules have to take possible erroneous input into account. However, if the
input turns out to be incorrect, the routines from Symbols are simply not called. This
means that Symbols has always a consistent picture of the world. This makes it easier
to implement the various ‘semantic’ checks in module Symbols, because they will
always have a correct data structure to operate on.

The data structures in ParserTypes are opaque. They can only be operated on by
means of iterator functions that are provided in the interface of this module. This is a
clean programming style, but it gives some notational overhead. Therefore, the data
structures in module Symbols are simply pointers to records. This representation is
visible to the program, and the only way to access the information present in the data
is by dereferencing pointers and selecting fields from records. Because the data
structures have no clean interface and the type definition of the various types is not
included in the definition module of module Symbols, all routines that operate on
them have been made part of module Symbols.

This is the reason that module Symbols is very large. Its size is approximately half
of that of the program. It would have been cleaner to separate module Symbols in a
half that creates the data structures and a half that operates on them. However,
because both halves have to operate very intensively on the same data structure, this
would have meant a lot of notational overhead.

Module Symbols also contains all the ‘semantic’ checks that have to be performed
on a Perspect specification. These checks correspond to the requirements of section
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3.1.5, and are all straightforward implementations of the algorithms described in
chapter 2. In particular, the persistence check is performed following algorithm
2.5.4.2.

The total program consists of 4789 lines of Modula-2 code. The implementation
module of module Symbols consists of 2792 lines. In this module 1127 lines are used
for persistence analysis. Of those lines, 439 are general purpose term manipulation
routines and associated garbage collection routines (a simple reference counting
scheme is used); 448 are used for the routines that manipulate sets of terms and lists of
sets of terms (which are specifically needed for the persistence check); 120 are
needed for an implementation of algorithm 2.5.3.2 which is the one that calculates the
set called NFA. Finally, 120 lines perform the persistence check proper.

The analysis of the persistence check in section 2.5.4.3, where it was shown that this
algorithm uses at least exponential space in the worst case, gave a rather negative
picture of its efficiency. Experimentation with the implementation of this algorithm
gives a more positive view. The following pie chart indicates the relative amount of
time spent on the various tasks in a sample run of Perspect, during which, among
others, all the specifications in section 3.3 were checked.

 

persistency

confluency

left linearity and
termination

syntax and typing

3.4.3. Deviation from the formal definition

The language recognized by the Perspect checker differs slightly from the language
that was defined in section 3.1. The latter language is easier to describe, the former is
easier to implement (and more efficiently). The difference between these two lan-
guages lies in the way the confluence of the specification is verified. This requirement
was described in section 3.1.5.3.

There are two properties that one would like the Perspect language to possess. One
of these properties is satisfied by the defined language, the other is satisfied by the
implemented language.
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The first of these properties of the language is that correctness of a specification
should be retained under normalization. The normalized form of a specification is
obtained by removing all modular structure from the specification. (One has to re-
name hidden objects in this ‘flat’ specification, in order to remove potential name
clashes). Also, the order of the functions in the normalized specification should be
chosen in such a way that it corresponds to the order on the functions implied by the
original specification. Now, if we take a Perspect specification, it would be desirable if
the normalized form was also a correct Perspect specification. This property is
satisfied by the language as it was defined in 3.1, but not by the language for which the
checker was implemented.

The second desirable language property is that correctness of a specification
should be retained under module addition. If M1 and M2 are the names of modules in a
Perspect specification, the sum of M1 and M2 is defined as the same specification with
module M3 added at the end:

external M3 [= M1 + M2]
 import M1, M2

internal M3

 [empty]

In general adding the sum of two modules to a correct specification will again give a
correct specification when no violations of the origin rule – name clashes – occur in
the extended specification. However, this is not always true in the language as defined
in 3.1. It is true in the language as recognized by the checker.

If one wants to implement the requirement of section 3.1.5.3, one has to check for
overlaps in all pairs of equations occurring in modules that are relevant at one point of
the specification. This means that if we take a sum of two modules, we have to check
all equations that are relevant to one of those modules for potential overlaps. So, the
checking of a sum according to the defined language can involve a lot of pairs of equa-
tions. In the implementation only pairs of equations are considered in which one of
the equations in the pair is present in the module being checked. In this case, a sum
does not lead to any new pairs to be checked.

While the implementation deviates from the definition of Perspect, it checks a
language, (one could call it Perspect′) that also satisfies all properties that were de-
scribed in section 3.2. This follows from the fact that a specification that the checker
accepts is still confluent (though not open confluent).

In order to be more concrete, let us consider an example. We start by considering
the following specification which is correct both according to the language definition
and according to the checker:

external M

 sort A

 function

  a, fg(A), gh(A), f(A), g(A), h(A): A

 variable x: A

internal M
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 equation

  fg(a), gh(a), f(a), g(a), h(a): a

external M1

 import M

internal M1

 equation

  f(g(x)): fg(x)

external M2

 import M

internal M2

 equation

  g(h(x)): gh(x)

Now, if we add the sum M3 of M1 and M2 to this specification, it will no longer be cor-
rect according to the definition of the language, though the checker will not complain.

The reason this ‘addition’ of modules in the specification destroys the correctness
of the specification is that the equation in module M1 and the one in module M2
together are not open confluent. This will become apparent when we consider the
normalized form of the extended specification.

external M123

 sort A

 function

  a, fg(A), gh(A), f(A), g(A), h(A): A

 variable x: A

internal M123

 equation

  fg(a), gh(a), f(a), g(a), h(a): a

  f(g(x)): fg(x)

  g(h(x)): gh(x)

This specification is not correct, neither according to the definition of the language
nor according to the checker. This can be seen by studying the output of the checker:

##  Module M123 is not open confluent.

#     f(g(h(x))):

#       fg(h(x))

#       f(gh(x))

#   Maybe the equations

#     f(g(x)): fg(x)

#     g(h(x)): gh(x)

#   should be more specific. [5.3]
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So, the problem is that the term f(g(h(x))) both rewrites to fg(h(x)) and to
f(gh(x)), which have no common (open) normal form. This defies open confluence.

Note that while the specification of M123 is both incorrect according to the
definition and the implementation of Perspect, it still is a confluent term rewrite sys-
tem.

It would have been nice if we had found a definition of a Perspect like language (call
it Perspect″) that satisfies the following three requirements:
• The language definition is simple.
• Correctness of a text in the language is retained under normalization.
• Correctness of a text in the language is retained when adding sums to the specifica-

tion.
We have not found a definition that implies confluence, and that satisfies these three
requirements simultaneously.





 

Chapter 4

 

Compilation

 

How many Prolog programmers does it take to change a lightbulb?

 

no

 

In this chapter we will describe two schemes for compiling left linear complete term

 

rewriting systems to conventional programs. In section 4.1 we will study compilation

 

to Prolog, and in section 4.2 we will study compilation to Modula-2.

 

For both schemes the complete translation of a sample specification is given. In

 

the Prolog section, the small text editor from the previous chapter is translated to a

 

Prolog program that manages to capture the ‘look and feel’ of the specified program

 

remarkably well. In the Modula-2 section it is shown that it is possible to use the

 

machine representation of low level objects (like, in the example, the integers) in a

 

nice transparent way.

 

 The main advantage of these schemes is their conceptual simplicity; they were not

 

designed with efficiency in mind. The simplicity of the Prolog scheme comes from

 

the comprehensibility of the predicates in the translation. The simplicity of the Mod-

 

ula-2 scheme lies in the way it becomes possible to interface handwritten implemen-

 

tations to automatically generated ones. This is the reason why a program compiled

 

using the Modula-2 scheme (while not very efficient as generated) can be made as

 

efficient as desired by replacing low level modules by handcrafted ones.

 

The main statement of this chapter – the fact that it is possible to implement a

 

term rewriting system as a conventional program – is trivial. However, the way the

 

implementation is done might still be interesting.

 

4.1. Prolog

 

In this section we will describe a scheme for compiling complete term rewriting

 

systems to Prolog. Because Prolog is not a modular language, it does not retain the

 

modular structure of the original specification. The scheme is constructed in such a

 

way that nine different variants result from the choice of two options. Each variant

 

implements a different reduction strategy. Among these strategies are leftmost in-

 

nermost reduction, leftmost outermost reduction, parallel outermost reduction and

 

Gross-Knuth reduction.
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4.1.1. Compilation scheme

 

4.1.1.1. Various relations.

 

 We start our description of the compilation scheme to

 

Prolog by defining a number of relations between the closed terms that are associated

 

with a term rewriting system. For these relations we use a notation that can also be

 

used in Prolog programs.

 

The first relation is the rewriting relation. We represent this relation in this section

 

by the symbol 

 

--->

 

 (a legal Prolog symbol) instead of the symbol 

 

→

 

 that was used

 

until now. The reduction relation means that one step of the rewriting system has

 

been executed, i.e., that one subredex of the term has been reduced one step. This

 

relation is derived from the rewriting rules by instantiating the variables in both sides

 

of a rule by closed terms, and by placing the resulting terms in an identical context.

 

From the rewriting relation 

 

--->

 

 we can derive four other relations by taking vari-

 

ous closures. They are:

 

 =

 

take zero reduction steps, syntactical identity on closed terms

 

-=->

 

take zero reduction steps or one reduction step, the reflexive closure

 

of the relation 

 

--->

 

--->>

 

take zero or more reduction steps, the reflexive and transitive closure

 

of the relation 

 

--->

 

->->>

 

take one or more reduction steps, the transitive closure of 

 

--->

 

As is shown in the following diagram, this is a natural set of relations derived from      

 

--->

 

:

 

number of reductions

 

≤

 

 0

 

≤

 

 1

 

≤

 

 

 

∞

 

≥

 

 0

 

 

 

=

 

-=->

 

--->>

 

≥

 

 1

 

--->

 

->->>

 

The use of Prolog syntax for the mathematical relation of term reduction may be a

 

source of confusion. For that reason, we give a list of the various meanings the sym-

 

bols 

 

--->

 

 and 

 

--->>

 

 take on throughout the description of the compilation scheme.

 

The symbols 

 

--->

 

 and 

 

--->>

 

 will occur:

 

•

 

As abstract relations between closed terms, as in the previous paragraphs. These

 

are the customary relations from the theory of term rewriting, only written using

 

Prolog syntax.

 

•

 

In the Prolog programs below, read as a logic programs. For 

 

--->>

 

 this inter-

 

pretation corresponds exactly to the previous one, i.e., the expression that states

 

that s 

 

--->>

 

 t is true will be provable if and only if s 

 

--->>

 

 t is indeed true. (This

 

will also be the case when t is not in normal form, in contrast to the next inter-

 

pretation.) The relation 

 

--->

 

 does not correspond exactly to the abstract notion of

 

taking one reduction step. However, if taking one step in the reduction strategy
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means taking only one reduction step, it 

 

does

 

 correspond exactly to the mathe-

 

matical interpretation of 

 

--->

 

.

 

•

 

In the Prolog programs, read as Prolog programs. We now have an interpretation

 

as Prolog predicates with one input and one output parameter. Again the predicate

 

--->

 

 does not mean ‘take one reduction step’, but ‘take one step in the current

 

reduction strategy’. This may mean that more than one reduction step is taken. The

 

meaning of 

 

--->>

 

 is now ‘normalize’. This implies that the statement that s 

 

--->>

 

 t

 

implies that t is the reduct of s, so now t is automatically in normal form.

 

4.1.1.2. A simple example.

 

 We will now show how to translate a term rewriting system

 

to Prolog. While our scheme has a number of choices, we will first give only one

 

specific instance of it, which implements leftmost outermost reduction.

 

We could now describe the translation 

 

in abstracto

 

. However, for clarity we will

 

just give a simple example. The example that we will use is addition on the natural

 

numbers:

 

external

 

 Naturals

 sort NAT

 function 0, succ(NAT), add(NAT,NAT): NAT

internal Naturals

 variable X1, X2: NAT

 equation

  add(0,X2): X2

  add(succ(X1),X2): succ(add(X1,X2))

The translation of this specification consists of a description of the definitions of the
abstract rewriting relations ---> and --->> in Prolog.

/* part 1: independent of the specific term rewriting system */

:- op(700, xfx, [--->,--->>]).

X--->>Z :- X--->Y, Y--->>Z.

X--->>X.

/* part 2: for every rewriting rule one Prolog rule */
add(0,X2)--->X2.

add(succ(X1),X2)--->succ(add(X1,X2)).

/* part 3, the context rules: for every n-adic function symbol n Prolog rules */
succ(X1)--->succ(Y1)     :- X1--->Y1.

add(X1,X2)--->add(Y1,Y2) :- X1--->Y1, X2 =  Y2.

add(X1,X2)--->add(Y1,Y2) :- X1 =  Y1, X2--->Y2.

This Prolog program has two related but different meanings. The first interpretation is
as a logic program. The second as a Prolog program. We will first consider the mean-
ing as a ‘pure’ logic program.

It is easy to see that with this interpretation the following property holds:
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∀ closed terms s and t:
the program proves s --->> t  ⇔  s --->> t is a true statement

This equivalence is a more formal restatement of the fact that we have given the defi-
nition of --->> in Prolog syntax. It is not only true for this version of the translation
scheme, but also for the various variants that will occur below.

The other interpretation of the program is as a Prolog program. It is easy to see
that when we ask the program:

?- s--->>N.

for some closed term s, that Prolog will answer with:

N = the result of leftmost outermost reduction of s

provided that leftmost outermost reduction of s terminates with a normal form. If
leftmost outermost reduction of s does not terminate, execution of the query will not
terminate either (or more precisely, in practice it will probably terminate by running
out of memory).

In order to be more explicit, we will give a concrete example. The input of the user
is in italics. The query:

?- add(succ(succ(succ(0))),succ(succ(succ(succ(0)))))--->>N.

will give the output:

N = succ(succ(succ(succ(succ(succ(succ(0)))))))

which is the expected normal form.

4.1.1.3. The general scheme. The scheme that was used in the example from the pre-
vious section can be generalized in a relatively natural way. To do this we first have to
make a number of =-relations explicit, and after that consider some of the = and --->
relations as ‘parameters’. Different reduction strategies can be realized by taking dif-
ferent relations as ‘values’ of those parameters. Once again we will demonstrate the
form of our scheme by implementing the example of the natural numbers.

The Prolog program that now follows is almost identical to that in the previous
section. However, some of the = symbols have been replaced by =1, some of the =
symbols by =2 and some of the ---> symbols by --->2.

/* part 1: independent of the specific term rewriting system */

:- op(700, xfx, [-=->,--->,--->>,->->>]).

X-=->Y :- X--->Y.

X-=->X.
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X--->>Z :- X--->Y, Y--->>Z.

X--->>X.

X->->>Z :- X--->Y, Y--->>Z.

/* part 2: for every rewriting rule one Prolog rule */
add(0,X2)--->Y2                      :- X2 =1 Y2.

add(succ(X1),X2)--->succ(add(Y1,Y2)) :- X1 =1 Y1, X2 =1 Y2.

/* part 3, the context rules: for every n-adic function symbol n Prolog rules */
succ(X1)--->succ(Y1)     :- X1--->2Y1.

add(X1,X2)--->add(Y1,Y2) :- X1--->2Y1, X2 =2  Y2.

add(X1,X2)--->add(Y1,Y2) :- X1 =   Y1, X2--->2Y2.

The structure of the context rules is as follows. For each function symbol, there is a    
--->2 on the diagonal, a =2 to the upper right of the diagonal and a = to the lower left
of the diagonal.

(By also using =2 to the lower left of the diagonal one does not gain anything. If the
rule could have been executed because of this replacement, one of the earlier rules
(the one with the --->2 in the same place) already would have been applicable.)

Depending on the relations that are substituted for =1, =2 and --->2 one gets a
program implementing a different reduction strategy. Most of the well known reduc-
tion strategies can be obtained in this way.

In the table below it is shown which substitution corresponds to which strategy.
The empty places in the diagram correspond to strategies that are not very natural, so
they do not have a name of their own. The relation of the upper-right corner to the
implementation scheme by van Emden and Yukawa will be explained in section
4.1.2.1.

The only normalizing strategies in the table are parallel outermost reduction and
Gross-Knuth reduction. The only cofinal strategy in the table is Gross-Knuth reduc-
tion.

=2: = -=-> --->>

--->2: ---> ---> ->->>

=1: = leftmost parallel van Emden-
outermost outermost Yukawa

-=-> Gross-
Knuth

--->> leftmost
innermost

We will not give a formal proof of the fact that this table is correct. To see that the
correspondence between Prolog programs and reduction strategies is as this table
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says, it is useful to think of the ---> operator as a procedure that takes its input in its
first argument, and uses its second argument to output the term after taking one step
according to the reduction strategy. In the same way the --->> operator can be seen
as a procedure that tries to normalize its first argument according to the reduction
strategy.

4.1.1.4. Optimizations. The scheme from section 4.1.1.3 has a number of interesting
variations.

It is easy to see that when the ---> condition at the right hand side of a context rule
(in part 3 of the program) is met, further backtracking is superfluous (in all variants!).
Still, Prolog will continue backtracking. To avoid this, it makes sense to add cuts to
the program, in the following way:

add(X1,X2)--->add(Y1,Y2) :- X1--->Y1, !, X2 =  Y2, !.

add(X1,X2)--->add(Y1,Y2) :- X1 =  Y1,    X2--->Y2, !.

A second optimization consists of explicitly indicating the typing from the specifica-
tion in the generated Prolog program. Because the system now only has to look at re-
writing rules of the right kind, this produces a program that is more efficient. The
example of the natural numbers could for instance be transformed to (admittedly, the
typing in this example is a bit boring):

/* part 1: for every sort two Prolog rules */
:- op(700, xfx, [--->,--->>]).

nat(X--->>Z) :- nat(X--->Y), nat(Y--->>Z).

nat(X--->>X).

/* part 2: for every rewriting rule one Prolog rule */
nat(add(0,X2)--->X2).

nat(add(succ(X1),X2)--->succ(add(X1,X2))).

/* part 3, the context rules: for every n-adic function symbol n Prolog rules */
nat(succ(X1)--->succ(Y1))     :- nat(X1--->Y1).

nat(add(X1,X2)--->add(Y1,Y2)) :- nat(X1--->Y1),    X2 =  Y2.

nat(add(X1,X2)--->add(Y1,Y2)) :-     X1 =  Y1, nat(X2--->Y2).

It would be even better to represent the combination nat(X--->Y) by just one op-
erator.

A third optimization, not in execution time, but in the size of the generated pro-
gram (giving a smaller but slower program) is the following. Instead of writing down n
Prolog rules for each n-adic function symbol occurring in the specification, the fol-
lowing three rules can be used, which are independent of the specification that is be-
ing translated:

T ---> S :- T=..[F|X], append(Z,[X1|X2],X),

  X1--->Y1, parallel(X2,Y2), append(Z,[Y1|Y2],Y), S=..[F|Y].
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parallel([],[]).

parallel([X1|X2],[Y1|Y2]) :- X1=Y1, parallel(X2,Y2).

(While parallel seems to be equivalent to =, which it is, in other variants of the com-
pilation scheme it is not.)

These rules can be seen as an ‘interpreter’ that simulates the context rules. It is also
possible to give the third part of the Prolog program a ‘compiler’ that puts the con-
text rules using assertz in the Prolog database. In order to be able to do that, one has
to give a list of all function symbols occurring in the specification.

4.1.2. Comparison with other schemes

The compilation scheme from the previous section will now be compared to two well
known schemes from the literature. Those implementations can be reformulated to
resemble our scheme surprisingly closely.

4.1.2.1. Van Emden & Yukawa. In [van Emden, Yukawa, 1986] two Prolog programs are
associated with a term rewriting system. These programs are constructed according to
the so called ‘interpretational’ and ‘compilational’ approaches. The second of these
approaches does not resemble the scheme described here; it is more related to the
approach from section 4.2 (the Modula-2 scheme) formulated for Prolog. However,
the ‘interpretational’ approach closely resembles our scheme.

Van Emden and Yukawa do not write Prolog. Their programs are logic programs
in an abstract sense. Because of this, what they call ‘=’ is not the Prolog unification
operator, but the equality relation as defined by the equations (rules) of the specifica-
tion. So, in [van Emden, Yukawa, 1986] a rule like:

eq2(X,Y) :- X=Y.

should be read as:

eq2(X,Y) :- rule(X,Y).

rule(〈left hand side of first rewriting rule〉,〈right hand side of first rule〉).
rule(〈left hand side of second rule〉,〈right hand side of second rule〉).
…

Bearing this in mind, we obtain the following ‘interpretational’ translation of the
example specification of the natural numbers with addition (the predicate canonical
that tests whether a term is in normal form is defined in a different part of the pro-
gram, and its definition is omitted here):

eq1(X,X) :- canonical(X).

eq1(X,Z) :- not canonical(X), eq2(X,Y), eq1(Y,Z).
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eq2(X,Y) :- rule(X,Y).

rule(add(0,X2),X2).

rule(add(succ(X1),X2),succ(add(X1,X2))).

eq2(succ(X1),succ(Y1))     :- eq1(X1,Y1).

eq2(add(X1,X2),add(Y1,Y2)) :- eq1(X1,Y1), eq1(X2,Y2).

Now eliminate the predicate called rule from the program, and rename:

eq1 → --->>

eq2 → --->

If we do this we get:

:- op(700, xfx, [--->, --->>]).

X--->>X :- canonical(X).

X--->>Z :- not canonical(X), X--->Y, Y--->>Z.

add(0,X2)--->X2.

add(succ(X1),X2)--->succ(add(X1,X2)).

succ(X1)--->succ(Y1) :- X1--->>Y1.

add(X1,X2)--->add(Y1,Y2) :- X1--->>Y1, X2--->>Y2.

This implementation gives the reduction strategy from the cell in the upper right
corner of the diagram in section 4.1.1.3, labeled ‘van Emden-Yukawa’. The main
difference between our implementation of this reduction strategy and van Emden &
Yukawa’s, which is caused by the fact that they do not have an equivalent of the ->->>
relation, is that their solution does not require at least one rewriting step to be taken in
the last two rules. This is why they need the predicate called canonical.

4.1.2.2. Drosten & Ehrich. Before we describe the implementation scheme of Drosten
& Ehrich, we will first generalize our own scheme.

The implementation scheme that we give here consists of nine different variants.
There is a way to add further variants. The Prolog rules that define the operator --->
in the program consist of two parts, the rewriting rules (which were called ‘part 2’ in
our scheme) and the context rules (‘part 3’). If we exchange these two parts we get
another group of nine implementations. Only three of them are distinct: it does not
matter any more which variant of =1 is chosen. All three variants implement a kind of
innermost reduction, a strategy that was already present in the original scheme.

There is a problem with these new implementations however: If the context rules
from part 3 come before those from part 2, it is never possible to apply two context
rules directly in succession. Because the scheme is innermost, after the first context
rule all proper subterms of the term that is being reduced will be in normal form, so



Prolog 147

trying a second context rule does not make sense. However, Prolog will attempt this
anyway. The program is correct but not optimal. At the end of this section we will
show how the program can be slightly modified in order to solve this efficiency
problem.

We will now turn to Drosten & Ehrich’s implementation scheme as described in
[Drosten, Ehrich, 1984]. According to their scheme the example becomes:

analyse(0,Z) :- normalize(0,Z).

analyse(succ(X1),Z) :- analyse(X1,Y1), normalize(succ(Y1),Z).

analyse(add(X1,X2),Z)

 :- analyse(X1,Y1), analyse(X2,Y2), normalize(add(Y1,Y2),Z).

rule(add(0,X2),X2).

rule(add(succ(X1),X2),succ(add(X1,X2))).

normalize(X,Z) :- rule(X,Y), analyse(Y,Z).

normalize(X,X).

We are going to show that this resembles our implementation by restructuring the
program and by renaming the predicates in it. First, we split the definition of analyse
in two parts:

analyse(X,Z) :- analyse1(X,Y), normalize(Y,Z)

analyse1(0,0).

analyse1(succ(X1),succ(Y1)) :- analyse(X1,Y1).

analyse1(add(X1,X2),add(Y1,Y2)) :- analyse(X1,Y1), analyse(X2,Y2).

Now, replace in this program:

rule → -#->

analyse1 → -##->

analyse → -##->>

normalize → -#->>

Then we get:

:- op(700, xfx, [-#->,-##->,-#->>,-##->>]).

X-#->>Z :- X-#->Y, Y-##->>Z.

X-#->>X.

X-##->>Z :- X-##->Y, Y-#->>Z.

add(0,X2)-#->X2.

add(succ(X1),X2)-#->succ(add(X1,X2)).



148 Compilation

0-##->0.

succ(I1)-##->succ(K1) :- I1-##->>K1.

add(I1,I2)-##->add(K1,K2) :- I1-##->>K1, I2-##->>K2.

This closely resembles our ‘modified’ scheme (in which part 2 and 3 have been ex-
changed). The difference is that ---> and --->> each have two variants called -#->,   
-##-> respectively -#->>, -##->>.

This difference between the ‘modified’ scheme and the Drosten & Ehrich scheme
solves the problem of the application of two context rules (which are called -##->
here) in succession. When we look at the definition of the normalization operator     
-##->>, it is easy to verify that the program will not try two -##-> rules in succession.

So the Drosten & Ehrich scheme solves the problem with our modified scheme!

4.1.3. Example

In order to show the ‘feel’ of a prototype that can be built using a Prolog translation of
a specification, we will now study an example. We will give the leftmost outermost
translation of the specification of the small text editor from section 3.3.7.

4.1.3.1. The Prolog translation. We first give the result of translating the specification
according to the scheme from section 4.1.1.3. Because we want to use the resulting
Prolog code to create a prototype that acts like the specified editor, some cosmetic
renamings have been applied in order to make it easier to interact with the final pro-
gram.

The first change to the literal translation is a renaming that causes Prolog to use the
built in Prolog lists for the specification’s ‘lists’. In order to accomplish this, we have
to apply two renamings:

dot → '.'

empty → []

The operator '.' is a built in operator of the Prolog system, and does not need to be
declared.

Now, a list that should be written according to the specification as:

dot(p,dot(e,dot(r,empty)))

is represented by:

'.'(p,'.'(e,'.'(r,[])))

which is equivalent to:

[p,e,r]
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This last representation is the one that the Prolog system will use to output the term. It
is clear that this is a much more readable form than the original one.

The other renaming that we have applied to the translation of the specification
concerns the representation of the natural numbers. Suppose that, while editing, we
want to select (using the mouse) the 43-th character of the text. In the original specifi-
cation the event that accomplishes this is designated:

select(addDigit(4,2),addDigit(4,3))

Replacing the function addDigit with the operator ^, makes it possible to write:

select(4^2,4^3)

which is again more readable. The operator is defined to be of type yfx. This causes
numbers containing more than two digits to behave as expected. The expression:

6^6^6

will be interpreted as:

(6^6)^6

and so will evaluate (as is clearly the intention) to 666.
The program as it is given here does not do anything yet: it only defines the

predicates ---> and --->>. In the subsequent sections we give some additional code
that makes use of these predicates in order to obtain a prototype that a user can
interact with.

/* part 1: independent of the specific term rewriting system */

:- op(700, xfx, [--->,--->>]).

X--->>Z :- X--->Y, Y--->>Z.

X--->>X.

/* the function addDigit is replaced by the operator ^ for convenience */
:- op(300, yfx, [^]).

/* part 2: for every rewriting rule one Prolog rule */
1--->succ(0). 2--->succ(1). 3--->succ(2).

4--->succ(3). 5--->succ(4). 6--->succ(5).

7--->succ(6). 8--->succ(7). 9--->succ(8).

'^'(0,Na1)--->Na1.

'^'(succ(Na1),Na2)--->

 '^'(Na1,succ(succ(succ(succ(succ(

         succ(succ(succ(succ(succ(Na2))))))))))).
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append([],Str1)--->Str1.

append('.'(Chr1,Str1),Str2)--->'.'(Chr1,append(Str1,Str2)).

deleteLast([])--->[].

deleteLast('.'(Char,[]))--->[].

deleteLast('.'(Chr1,'.'(Chr2,Str1)))--->

 '.'(Chr1,deleteLast('.'(Chr2,Str1))).

return--->enter(newLine).

click(Na1)--->select(Na1,Na1).

fromTo(Str1,Na1,Na2)--->

 document(front(Str1,Na1,Na2),middle(Str1,Na1,Na2),

  back(Str1,Na1,Na2)).

front([],Natural,Natural)--->[].

front(String,0,Natural)--->[].

front(String,Natural,0)--->[].

front('.'(Chr1,Str1),succ(Na1),succ(Na2))--->

 '.'(Chr1,front(Str1,Na1,Na2)).

middle([],Natural,Natural)--->[].

middle(String,0,0)--->[].

middle('.'(Chr1,Str1),0,succ(Na1))--->

 '.'(Chr1,middle(Str1,0,Na1)).

middle('.'(Chr1,Str1),succ(Na1),0)--->

 '.'(Chr1,middle(Str1,Na1,0)).

middle('.'(Char,Str1),succ(Na1),succ(Na2))--->

 middle(Str1,Na1,Na2).

back([],Natural,Natural)--->[].

back('.'(Chr1,Str1),0,0)--->'.'(Chr1,Str1).

back('.'(Char,Str1),0,succ(Na1))--->back(Str1,0,Na1).

back('.'(Char,Str1),succ(Na1),0)--->back(Str1,Na1,0).

back('.'(Char,Str1),succ(Na1),succ(Na2))--->back(Str1,Na1,Na2).

selection([])--->caret.

welcomeToMacintosh--->finder.

transition(finder,openApplication)--->

 state(document([],[],[]),[]).

transition(finder,quit)--->finder.

transition(finder,cut)--->finder.

transition(finder,copy)--->finder.

transition(finder,paste)--->finder.

transition(finder,clear)--->finder.

transition(finder,enter(Char))--->finder.

transition(finder,backSpace)--->finder.

transition(finder,select(Natural,Natural))--->finder.

transition(state(Doc1,Str1),openApplication)--->

 state(Doc1,Str1).

transition(state(Document,String),quit)--->finder.

transition(state(document(Str1,Str2,Str3),String),cut)--->
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 state(document(Str1,[],Str3),Str2).

transition(state(document(Str1,Str2,Str3),String),copy)--->

 state(document(Str1,Str2,Str3),Str2).

transition(state(document(Str1,String,Str3),Str4),paste)--->

 state(document(append(Str1,Str4),[],Str3),Str4).

transition(state(document(Str1,String,Str3),Str4),clear)--->

 state(document(Str1,[],Str3),Str4).

transition(state(document(Str1,String,Str3),Str4),enter(Chr1))--->

 state(document(append(Str1,'.'(Chr1,[])),[],Str3),Str4).

transition(state(document(Str1,'.'(Char,String),Str3),Str4),

  backSpace)--->

 state(document(Str1,[],Str3),Str4).

transition(state(document(Str1,[],Str3),Str4),backSpace)--->

 state(document(deleteLast(Str1),[],Str3),Str4).

transition(state(document(Str1,Str2,Str3),Str4),

  select(Na1,Na2))--->

 state(fromTo(append(append(Str1,Str2),Str3),Na1,Na2),Str4).

show(finder)--->deskTop.

show(state(document(Str1,Str2,Str3),String))--->

 window(Str1,selection(Str2),Str3).

/* part 3, the context rules: for every n-adic function symbol n Prolog rules */
succ(Na1)--->succ(Na2) :- Na1--->Na2.

'^'(Na1,Na2)--->'^'(Na3,Na4) :- Na1--->Na3, Na2=Na4.

'^'(Na1,Na2)--->'^'(Na3,Na4) :- Na1=Na3, Na2--->Na4.

'.'(Chr1,Str1)--->'.'(Chr2,Str2) :- Chr1--->Chr2, Str1=Str2.

'.'(Chr1,Str1)--->'.'(Chr2,Str2) :- Chr1=Chr2, Str1--->Str2.

append(Str1,Str2)--->append(Str3,Str4)

 :- Str1--->Str3, Str2=Str4.

append(Str1,Str2)--->append(Str3,Str4)

 :- Str1=Str3, Str2--->Str4.

deleteLast(Str1)--->deleteLast(Str2) :- Str1--->Str2.

enter(Chr1)--->enter(Chr2) :- Chr1--->Chr2.

click(Na1)--->click(Na2) :- Na1--->Na2.

select(Na1,Na2)--->select(Na3,Na4) :- Na1--->Na3, Na2=Na4.

select(Na1,Na2)--->select(Na3,Na4) :- Na1=Na3, Na2--->Na4.

document(Str1,Str2,Str3)--->document(Str4,Str5,Str6)

 :- Str1--->Str4, Str2=Str5, Str3=Str6.

document(Str1,Str2,Str3)--->document(Str4,Str5,Str6)

 :- Str1=Str4, Str2--->Str5, Str3=Str6.

document(Str1,Str2,Str3)--->document(Str4,Str5,Str6)

 :- Str1=Str4, Str2=Str5, Str3--->Str6.

fromTo(Str1,Na1,Na2)--->fromTo(Str2,Na3,Na4)

 :- Str1--->Str2, Na1=Na3, Na2=Na4.

fromTo(Str1,Na1,Na2)--->fromTo(Str2,Na3,Na4)
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 :- Str1=Str2, Na1--->Na3, Na2=Na4.

fromTo(Str1,Na1,Na2)--->fromTo(Str2,Na3,Na4)

 :- Str1=Str2, Na1=Na3, Na2--->Na4.

front(Str1,Na1,Na2)--->front(Str2,Na3,Na4)

 :- Str1--->Str2, Na1=Na3, Na2=Na4.

front(Str1,Na1,Na2)--->front(Str2,Na3,Na4)

 :- Str1=Str2, Na1--->Na3, Na2=Na4.

front(Str1,Na1,Na2)--->front(Str2,Na3,Na4)

 :- Str1=Str2, Na1=Na3, Na2--->Na4.

middle(Str1,Na1,Na2)--->middle(Str2,Na3,Na4)

 :- Str1--->Str2, Na1=Na3, Na2=Na4.

middle(Str1,Na1,Na2)--->middle(Str2,Na3,Na4)

 :- Str1=Str2, Na1--->Na3, Na2=Na4.

middle(Str1,Na1,Na2)--->middle(Str2,Na3,Na4)

 :- Str1=Str2, Na1=Na3, Na2--->Na4.

back(Str1,Na1,Na2)--->back(Str2,Na3,Na4)

 :- Str1--->Str2, Na1=Na3, Na2=Na4.

back(Str1,Na1,Na2)--->back(Str2,Na3,Na4)

 :- Str1=Str2, Na1--->Na3, Na2=Na4.

back(Str1,Na1,Na2)--->back(Str2,Na3,Na4)

 :- Str1=Str2, Na1=Na3, Na2--->Na4.

state(Doc1,Str1)--->state(Doc2,Str2)

 :- Doc1--->Doc2, Str1=Str2.

state(Doc1,Str1)--->state(Doc2,Str2)

 :- Doc1=Doc2, Str1--->Str2.

selection(Str1)--->selection(Str2) :- Str1--->Str2.

window(Str1,Sel1,Str2)--->window(Str3,Sel2,Str4)

 :- Str1--->Str3, Sel1=Sel2, Str2=Str4.

window(Str1,Sel1,Str2)--->window(Str3,Sel2,Str4)

 :- Str1=Str3, Sel1--->Sel2, Str2=Str4.

window(Str1,Sel1,Str2)--->window(Str3,Sel2,Str4)

 :- Str1=Str3, Sel1=Sel2, Str2--->Str4.

transition(State1,Event1)--->transition(State2,Event2)

 :- State1--->State2, Event1=Event2.

transition(State1,Event1)--->transition(State2,Event2)

 :- State1=State2, Event1--->Event2.

show(State1)--->show(State2) :- State1--->State2.

4.1.3.2. Checking the user input. The program that was given in the previous section
only works correctly when it is provided with correctly typed terms. However, the
program that the user sees has to handle errors in the user input gracefully (for
example by printing ‘?’ or maybe even ‘error’). So, the final program has to know
what terms represent correctly typed objects of the type that is expected from the
user.

In this case, the user will input terms of type Event. Therefore the following Prolog
lines define the predicate event that succeeds if and only if its only argument is an
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correctly typed object of type Event. Because the sort Event is derived from the
sorts Natural and Char, typechecking code for these sorts also has to be present.

The rules for typechecking a term are straightforward. However, to avoid having to
write a complete enumeration of all constants of type Natural and Char, the check
whether an atom is a digit or a letter is performed with the aid of the Prolog predicate
called name. This predicate returns a list of the ASCII codes of the characters in the
name of an atom.

event(openApplication).

event(quit).

event(cut).

event(copy).

event(paste).

event(clear).

event(enter(Chr1)) :- char(Chr1).

event(return).

event(backSpace).

event(click(Na1)) :- natural(Na1).

event(select(Na1,Na2)) :- natural(Na1), natural(Na2).

natural(Na1) :- name(Na1,[N]), 48=<N, N=<57.

natural(succ(Na1)) :- natural(Na1).

natural('^'(Na1,Na2)) :- natural(Na1), natural(Na2).

char(Chr1) :- name(Chr1,[N]), 97=<N, N=<122.

char(space).

char(newLine).

4.1.3.3. The driver. Finally, we give the driver of the small prototype that we are de-
scribing here. If one concatenates the Prolog fragments in sections 4.1.3.1, 4.1.3.2 and
4.1.3.3, one gets a program that simulates an edit session. It asks the user for objects of
type Event, and prints the current object of type Screen after each input.

This is a standard Prolog program, which primarily invokes --->> in a loop. The
two clauses that contain --->> are:

show(State1)--->>Screen1

and:

transition(State1,Event1)--->>State2

The first clause converts the current State to a Screen that can be intelligibly
printed. The second clause performs a State transition according to the user input.

The loop has been written using tail recursion. Cuts have been added to aid a clever
Prolog implementation to prevent running out of space after a long edit session.

A ‘fake’ Event called shutDown has been added for the driver. This Event never
reaches the implementation that was generated from the specification, but instead
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tells the driver to stop.
The main predicate that starts the simulation is simply called run. If during the

simulation no incorrect Events have been input by the user, it will succeed; else it will
fail.

run :- run(welcomeToMacintosh).

run(State1)

 :- show(State1)--->>Screen1,

  write(Screen1), nl,

  read(Event1), !,

  continue(State1,Screen1,Event1).

continue(State1,Screen1,Event1)

 :- Screen1 = deskTop, Event1 = shutDown, !.

continue(State1,Screen1,Event1)

 :- test(State1,Event1),

  transition(State1,Event1)--->>State2, !,

  run(State2).

test(_,Event1) :- event(Event1), !.

test(State1,Event1)

 :- write(error), nl, !,

  run(State1),

  fail.

4.1.3.4. A sample run. Below a representative run of the program is given. The input
from the user is printed in italics. The user in this session types one line containing the
word asf, and then edits it in order to modify it to sdf.

The look and feel of this simulation is remarkably close to that of a real Macintosh
editor. While, of course, typing ‘select(0,1)’ differs from selecting the first letter of
the text using a mouse, one gets a good impression of how the program behaves.

?- run.

deskTop

|: openApplication.

window([],caret,[])

|: enter(a).

window([a],caret,[])

|: enter(s).

window([a,s],caret,[])

|: enter(f).

window([a,s,f],caret,[])

|: return.

window([a,s,f,newLine],caret,[])

|: backSpace.

window([a,s,f],caret,[])

|: select(0,1).
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window([],selection([a]),[s,f])

|: cut.

window([],caret,[s,f])

|: click(1).

window([s],caret,[f])

|: enter(d).

window([s,d],caret,[f])

|: click(3).

window([s,d,f],caret,[])

|: quit.

deskTop

|: shutDown.

4.2. Modula-2

We will now study the concept of implementing an algebraic specification in some
modular procedural programming language. To be more specific, we will use the lan-
guage Modula-2 [Wirth, 1985] in the examples. However, the same concepts can be
applied to similar languages like C or Ada.

In the previous section, we gave an explicit scheme for the implementation of a
term rewriting system in Prolog. In this section we will be slightly more general:
before giving a scheme for implementing a class of algebraic specifications in Modula-
2, we will first define the notion of implementing an algebra. This means that we not
only will give one specific implementation, but also make explicit what it means to be
an implementation.

One nice property of this implementation notion, is that it is modular. This means
that the modules in the implementation correspond in a one-to-one fashion to the
modules in the specification.

An advantage of this is that this makes it possible to build heterogeneous imple-
mentations: implementations in which some modules are automatically compiled, and
in which other modules are implemented by hand. An implementation of some mod-
ule that is generated by the compilation scheme from this section is guaranteed to
work correctly when the other modules in the specification are correctly imple-
mented. Those other implementations do not have to be generated according to the
same scheme.

We will not define just one notion of implementing an algebra in a procedural lan-
guage, but two: a strong and a weak one. A strong implementation is only possible for
algebras in which the word problem is decidable. This means that some algebras do
not have a strong implementation. In contrast with this, each algebra has a weak
implementation. Our compilation scheme is defined for left linear complete term re-
writing systems and it produces a strong implementation.

Each algebra has a trivial weak implementation. This follows from the observation
that a weak implementation of some algebra is also a weak implementation of each
quotient of that algebra. This means that an implementation of the term algebra always



156 Compilation

is a weak implementation, though not a very useful one. This trivial implementation is
not sufficient when we demand in addition that for some of the modules in the spec-
ification (e.g. the Booleans, the integers and the strings) an implementation will be
used that has been given in advance. Even then, if the specification is persistent, it is
still guaranteed to have a weak implementation.

4.2.1. Compilation scheme

4.2.1.1. Algebras versus programs. The notion of an algebra and that of a module from
a modular program are similar. This means that we will have to be careful in our no-
menclature, if it is to be clear what we are referring to. In this section we will follow
the convention that an algebra consists of sorts and functions while a module from a
program, which we will call a program for short, has datatypes and procedures.

Of course, there are a number of differences between the notion of an algebra and
that of a program. The most important difference is that a program has a state which
the procedures can modify as a side effect. This means that an executing program is
not static but changes in time.

A more philosophical difference concerns the existence and identity of objects.
An object in an algebra is a mathematical object which exists and is unique. In a
running program, there are, at any point in time, only finitely many objects in exist-
ence. Furthermore, some objects can be present in more than one copy.

A third difference between an algebra and a program is that a program operates in
a finite world, which implies that it has limited resources. This means that a program
cannot operate on arbitrarily large objects. The limits imposed on a program, how-
ever, are not given beforehand. So the behavior of a program is dependent on the
environment that it is being run in. This shows that a program should not be com-
pared to a finite algebra. In a finite algebra, it is known in advance what the limits of
the algebra are. It is better to compare one run of a program to a finite subset of an
infinite algebra, which need not to be closed under the functions of the algebra (i.e.,
which need not be a subalgebra).

A difference between algebras and programs that is closely related to the previous
one is that a procedure in a program can fail, either by running for an infinitely long
time, or by external intervention, such as running out of resources or an interrupt
from the outside world. As an example, suppose that I call a procedure in order to
add two numbers. While this procedure is running, I turn the computer off. Now,
how does this correspond to the addition function in the algebra from which I took
the numbers?

4.2.1.2. Compiling the signature. Suppose that I have an algebra consisting of some
sorts σ and some functions f. In an implementation of this algebra, as will be defined
in this section, there exists a datatype for each sort in the algebra, and two pro-
cedures for each function in the algebra. These datatypes and procedures should all be
different. Also, these should be all datatypes and procedures that occur in the imple-
mentation.

In this section we will use the convention that the datatype has the same name as
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the sort it corresponds to. The first kind of procedure has the same name as the func-
tion it corresponds to, while the name of the second kind of procedure (which
behaves somewhat as an inverse to that of the first kind) is obtained by prefixing the
name of the function by the string ‘is’.

Of course, this way of naming can lead to name clashes. We will choose our
examples in such a way that these clashes do not occur. In a practical system some
deviation of our scheme for naming datatypes and procedures will be necessary. This
practicality is not important for the rest of this description, so it will not be treated
here.

A related problem is that some names in the signature of the algebra may be illegal
in the program because they are illegal in the language that is used, or because they
correspond to some reserved word. This problem can be treated similarly to the
handling of name clashes, and will also be ignored.

For an example, consider the following signature (in Perspect syntax):

external Naturals

 sort Nat

 function Zero, Succ(Nat), Add(Nat,Nat): Nat

The following Modula-2 ‘signature’ (which Modula-2 calls a ‘definition module’) corres-
ponds to this signature :

DEFINITION MODULE Naturals;

 TYPE Nat;

 PROCEDURE Zero(): Nat;

 PROCEDURE Succ(n: Nat): Nat;

 PROCEDURE Add(n1: Nat; n2: Nat): Nat;

 PROCEDURE isZero(m: Nat): BOOLEAN;

 PROCEDURE isSucc(m: Nat; VAR n: Nat): BOOLEAN;

 PROCEDURE isAdd(m: Nat; VAR n1: Nat; VAR n2: Nat): BOOLEAN;

END Naturals.

In this example it can be seen how the arguments of the procedures in the implemen-
tation should be typed. If f is a function in the algebra that has domain σ1 × σ2 × … ×
σn and range σ, then the procedure with the name ‘f’ has arguments with types named
σ1, σ2, …, σn while it returns a value from the datatype named σ. The function named
‘isf’ has one argument with type named σ, and n VAR-arguments with types named
σ1, σ2, …, σn while it returns a BOOLEAN.

Clearly, the datatype BOOLEAN has a special status in the implementation scheme
that we are defining here. This does not mean that the algebra that is being imple-
mented should contain a sort that corresponds to the Booleans. Also, it does not
mean that if there are one or more sorts in the specification that correspond to the
Booleans, that these sorts should or could be implemented by the ‘native’ Booleans,
i.e., the Modula-2 datatype called BOOLEAN.

The VAR-parameters that occur in the procedures called isf are used to return
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multiple values from the procedure. The reason for this is twofold. On the one hand,
Modula-2 has no other easy mechanism for returning multiple values. On the other
hand, it does only make sense to return values in the VAR-parameters in the case that
the procedure returns the constant TRUE. If the constant FALSE is returned, the VAR-
parameters can be left alone. This option would not have been present when multiple
values would have been returned as the result of the procedure.

4.2.1.3. Proper objects. Suppose we have a program that has a definition module as
described in the previous section. We then distinguish between two kind of objects in
the datatypes in such a program. An object that can be created by calling the various
procedures in the module we call proper objects. The other objects we call im-
proper.

In a sense the datatype that consists of the proper objects of a program is analog-
ous to the minimal subalgebra of an algebra. However, datatypes in a program can
only be specified by the primitive constructions that are built into the programming
language, so in general it will not be possible to create a datatype that has only proper
objects.

As an example, consider the following Perspect specification:

external Booleans

 sort Bool

 function True, False: Bool

internal Booleans

 [empty]

and the following Modula-2 program that gives a (strong) implementation of this spec-
ification:

DEFINITION MODULE Booleans;

 TYPE Bool;

 PROCEDURE True(): Bool;

 PROCEDURE False(): Bool;

 PROCEDURE isTrue(b: Bool): BOOLEAN;

 PROCEDURE isFalse(b: Bool): BOOLEAN;

END Booleans.

IMPLEMENTATION MODULE Booleans;

 TYPE Bool = INTEGER;

 PROCEDURE True(): Bool;

 BEGIN

  RETURN -1

 END True;

 PROCEDURE False(): Bool;
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 BEGIN

  RETURN 0

 END False;

 PROCEDURE isTrue(b: Bool): BOOLEAN;

 BEGIN

  RETURN b < 0

   (* ‘the high bit is set’ *)
 END isTrue;

 PROCEDURE isFalse(b: Bool): BOOLEAN;

 BEGIN

  RETURN b MOD 2 = 0

   (* ‘the low bit is cleared’ *)
 END isFalse;

END Booleans.

(A restriction of Modula-2 has been ignored here, which means that this is not a cor-
rect Modula-2 program on all systems. In Modula-2 an opaque datatype, i.e., a datatype
that is not defined in the definition module, must take exactly the same storage as a
pointer. An object of type INTEGER does not always satisfy this restriction. To get a
working program one may need to replace the INTEGER datatype by a datatype like
LONGINT or ADDRESS. The general compilation scheme that we will describe below
does not suffer from this problem, because there all opaque datatypes will turn out to
be pointers.)

In this program the only proper objects of datatype Bool are the integers -1 and 0.
All other objects of type Bool, the integers less than -1 and those greater that 0, are
improper. Note that the program does not need to behave sensible when given
improper objects (it even may abort if it likes to). For example isTrue(-2) and
isFalse(-2) both evaluate to TRUE, although we have an implementation of an
algebra in which True ≠ False.

4.2.1.4. Functionality. This section describes an implementation scheme for modular
procedural languages. However, from now on we will only allow programs that be-
have functionally. By this we mean that when we repeat a program fragment a num-
ber of times under different circumstances, all BOOLEANs returned by functions of the
form ‘isf’ should be identical.

One kind of side effect is unavoidable: the consumption of memory by the pro-
gram. In this respect repetition of a program can lead to different behavior. So we will
have to weaken our requirement a bit. It should have been: ‘if the program would be
run with an infinite memory’, it should behave functionally. For a discussion of how a
program could handle a situation in which it cannot obtain enough memory, see be-
low in section 4.2.1.10.

From now on, this restriction, which should hold for both strong and weak imple-
mentations, should be taken for granted and will not be repeated.
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4.2.1.5. Weak implementation. We are now going to define when we will call a pro-
gram a weak implementation of some algebra. The intuitive meaning of this is that the
objects in the datatypes of the program are ‘really’ terms over the signature of the
algebra.

In order for a program to be a weak implementation of an algebra, it has to be
possible to associate with each proper object (as defined in section 4.2.1.3) from the
datatypes in the program a specific term over the signature of the algebra, such that a
number of requirements are satisfied. These requirements are the following (the
various typing restrictions that are necessary for these requirements to be meaningful
are omitted for clarity):

(i) Let x1, x2, …, xn be proper objects from the program with associated terms t1,
t2, …, tn. Further, let f be some function from the algebra. If the procedure
named ‘f’ is called with arguments x1, x2, …, xn it should terminate after a finite
duration, and return some object x with associated term t. This term t should
evaluate to the same object in the algebra as the term f(t1, t2, …, tn).

(ii) Let x be a proper object from the program, with associated term t ≡ f(t1, t2, …,
tn). Further, let f be some function from the algebra. If we call the procedure
named ‘isf’ with x as first parameter it should terminate after a finite duration. If
the outermost function symbol of t is equal to f, then it should return TRUE; else
it should return FALSE. If the procedure returns TRUE, the VAR-parameters of
the procedure should be set to objects x1, x2, …, xn, whose associated terms are
identical to the arguments of t, i.e., t1, t2, …, tn, (in contrast to the situation in
requirement (i) is not sufficient that those terms evaluate to the same object in
the algebra; they should be identical). If the procedure returns FALSE, the VAR-
parameters should be left unmodified. Note that for each proper object x exact-
ly one function ‘isf’ returns TRUE when called with x as first argument, while all
other functions return FALSE.

From (ii) it follows that the collection of terms associated with the objects in the pro-
gram should be closed under taking subterms.

Some consideration will show that a weak implementation of an algebra is also a
weak implementation of each quotient of that algebra. Also, a weak implementation of
an algebra is also a weak implementation of each subalgebra of the algebra.

From this, it is easy to see how to construct a trivial implementation of an arbitrary
algebra. Just implement the term algebra over the signature of the algebra. The imple-
mentation that one gets in this way is called the free weak implementation of the alge-
bra.

4.2.1.6. Strong implementation. To define the concept of a strong implementation, we
have to add one requirement. The collection of all terms that are associated with an
object in the program has to satisfy the following constraint: For each object in the
algebra, there should be exactly one term from this collection (i.e., that occurs as a
term associated with some object in the program), such that that term evaluates to
that object.

From this it clearly follows that only minimal algebras have a strong implementa-
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tion. It is also true that only those algebras have a strong implementation, in which
equality of terms is decidable. This is slightly less trivial, but will be left to the reader.

The converse is also true: Each minimal algebra in which equality of terms over that
algebra is decidable has a strong implementation.

4.2.1.7. Term rewriting implementation. If an algebra is given by a semi-complete
term rewriting system, there is an even more restrictive notion: that of a term re-
writing implementation of the term rewriting system. The extra requirement here is
that only the normal forms of the rewriting system should occur as term associated
with an object in the program.

All implementations of some fixed term rewriting system behave identically.
Therefore, we will also speak of the term rewriting implementation of a term rewrit-
ing system.

4.2.1.8. Compilation. We will now outline an explicit scheme for transforming a left
linear complete term rewriting system to a term rewriting implementation. A com-
plete, but simple example of this compilation scheme will be presented in section
4.2.2. It is probably easiest to first take a look at this example before reading the
abstract description of the compilation scheme in this section.

We will implement the objects in the various datatypes as pointers to variant
records. Let σ be some sort in the term rewriting system. Then implement the data-
type called ‘σ’ as a pointer to a variant record, that has a variant for each function f with
range σ. This variant has one field for each of the arguments of function f. (Only the
functions that occur in normal forms need to have a variant in the record. Perspect
gives one enough information to deduce automatically what functions need be in-
cluded.)

Now the implementation of the procedures called ‘isf’ is simple. Just check
whether we have the variant corresponding to function f, and if so, copy all fields in
the record to the VAR-parameters.

The implementation of the procedures corresponding to the functions in the sig-
nature of the rewriting system is slightly more involved. Suppose procedure ‘f’ is
called with arguments x1, x2, …, xn. The terms corresponding to the xi are then
necessarily in normal form. The procedure then first tries to find out whether the
term f(x1, x2, …, xn) matches one of the rewriting rules in the rewriting system. If so,
then the procedures corresponding to the right hand side of such a rule is called, and
the result of that expression is returned. If not, a new object corresponding to f(x1, x2,
…, xn) is created, and returned.

To check whether an object corresponds to a term that matches an open term (a
left hand side of a rewriting rule), the object is ‘unpacked’ by applying procedures of
the form ‘isf’. In this way the left hand side of the rule is traversed in a depth-first left-
first manner. It is undoubtedly possible to describe this procedure ‘in abstracto’ here.
It is also probable that just referring to the example in section 4.2.2 will be much
clearer.
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4.2.1.9. Left linearity. The restriction of left linearity in section 4.2.1.8 makes that it is
not necessary to add routines to decide whether two objects correspond to the same
normal form. This is not problematic but because our example will only illustrate the
left linear case, and because the Perspect framework that we use here implies left
linearity, this will not be made explicit.

To give an impression of the form of a procedure for checking equality, we give
here the routine for the sort Nat from the example in the next section:

PROCEDURE eqNat(n1: Nat; n2: Nat): BOOLEAN;

VAR n11, n12, n21, n22: Nat;

BEGIN

 IF isZero(n1) THEN

  RETURN isZero(n2)

 END;

 IF isOne(n1) THEN

  RETURN isOne(n2)

 END;

 IF isAdd(n1, n11, n12) THEN

  RETURN

   isAdd(n2, n21, n22) AND eqNat(n11, n21) AND eqNat(n12, n22)

 END;

 HALT

END eqNat;

4.2.1.10. Memory management. There are two issues in these ‘compiled specifications’
that concern memory management.

First, there is the question what should happen when there is not enough memory
left to create a new object. One could simply abort, which is not very graceful. Alter-
natively, one could have a variable pointing to a user-defined procedure that should
allocate the memory to hold the new object. If this solution is chosen, the user
probably will do the aborting for us.

A similar issue occurs when one uses a manual implementation instead of the gen-
erated one, that has some built-in limitation. For example, suppose we implement the
natural numbers by the built-in datatype INTEGER. Now, what should happen on an
overflow? If we ignore it (the solution most programming languages take), we have an
incorrect implementation. Again, having a user installable function pointing to a
routine that should ‘take care of the problem’ for us seems the cleanest solution.

Second, a language like Modula-2 has no built-in facilities for garbage collection. This
means that once an object has been created, it will not be disposed of automatically
when it is no longer accessible by the program. This is not very nice, and will make
the problem of running out of memory worse.

There exists a nice scheme in which for each sort, two procedures are added, char-
acterized by the prefixes ‘duplicate’ and ‘dispose’. These procedures respectively
add and remove links to objects. It is possible to integrate these procedures with the
procedures from our scheme. This is necessary, as the following example shows. Sup-
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pose we first create the number 0 by calling:

z := Zero()

and then create the number 1 by calling:

sz := Succ(z)

Now, after removing the ‘0’ by calling:

disposeNat(z)

we do not want to find that the ‘1’ is damaged by this operation. Clearly, procedure
Succ should call duplicateNat.

Procedures like duplicateNat and disposeNat can conveniently be implemented
with a reference counting scheme. However, when for instance the natural numbers
are implemented as INTEGERs, these procedures will obviously be inert.

It is well known that reference counting schemes give a large overhead on the run-
ning time of a program. An alternative to the duplicate & dispose scheme could be
the garbage collection scheme from [Böhm, Weiser, 1988]. This scheme does not
need any support from the compiler or the user program, so it is clearly applicable
here. It is not clear whether it executes more efficiently than the reference counting
scheme, though.

4.2.2. Example

In this section we will give an explicit example of the compilation scheme from the
previous section. Because we believe that the example will be much clearer than an
abstract description, the description of the scheme in the previous section was rather
sketchy.

In sections 4.2.1.9 and 4.2.1.10 some additions to the compilation scheme were
described: procedures for testing equality, failing gracefully and memory management.
To keep the example simple, these additions will not be incorporated here.

4.2.2.1. Specification. Our example consists of two modules called Naturals and
Multiplication. The specification consisting of these modules is correct Perspect,
so together they form a left linear complete term rewriting system: suitable for com-
pilation to Modula-2.

The specification is:

external Naturals

 sort Nat

 function Zero, One, Add(Nat,*Nat): Nat

 variable n, n1, n2, n3: Nat
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internal Naturals

 equation

  Add(Zero,n), Add(n,Zero): n

  Add(n1,Add(n2,n3)): Add(Add(n1,n2),n3)

external Multiplication

 import Naturals

 function Mul(Nat,Nat): Nat

internal Multiplication

 equation

  Mul(Zero,Nat): Zero

  Mul(One,n): n

  Mul(Add(n1,n2),n3): Add(Mul(n1,n3),Mul(n2,n3))

The idea behind this example is that we suppose we have a machine that has addition
‘built in’, but on which multiplication is a ‘defined operation’. This motivates the way
our specification has been separated in two modules.

We will first give the Modula-2 program that we get when we apply the compilation
algorithm from the previous section. After that we will replace the implementation of
the ‘low level’ module by a manual implementation, to show that this does not pose
any problems.

4.2.2.2. Generated implementation. We will now give the implementation that one
gets when one just applies the compilation algorithm. Because the compilation algo-
rithm has not been actually implemented, the compilation was done ‘by hand’, which
means that the compiled code looks ‘too good’. In an automatic system, the various
variables would probably have had longer and more distracting names.

First we show the definition part of an auxiliary module that gives the runtime sup-
port needed by the implementation. This module is called ‘Allocation’, and contains
the procedure used to allocate memory. The implementation part of this module is
rather long, not very relevant and therefore omitted.

DEFINITION MODULE Allocation;

 FROM SYSTEM IMPORT ADDRESS;

 PROCEDURE NEW(size: INTEGER): ADDRESS;

END Allocation.

We will now give the definition modules that have been generated according to the
scheme of section 4.2.1.2.

The ‘FROM Naturals IMPORT Nat’ clause in the Modula-2 program corresponds
directly to the ‘import Naturals’ clause in the specification. In a sense the defini-
tion modules in the Modula-2 implementation are identical to the external parts of the
Perspect modules. One can imagine an integrated specification/implementation
language (which should probably be called ‘Specula’) in which each module has three
parts: an interface part (external part/definition module), a specification part and an



Modula-2 165

implementation part. The advantages of this integration between specification and
implementation language seem marginal because of the high level of similarity that is
already present between current specification and implementation languages.

DEFINITION MODULE Naturals;

 TYPE Nat;

 PROCEDURE Zero(): Nat;

 PROCEDURE One(): Nat;

 PROCEDURE Add(n1: Nat; n2: Nat): Nat;

 PROCEDURE isZero(m: Nat): BOOLEAN;

 PROCEDURE isOne(m: Nat): BOOLEAN;

 PROCEDURE isAdd(m: Nat; VAR n1: Nat; VAR n2: Nat): BOOLEAN;

END Naturals.

DEFINITION MODULE Multiplication;

 FROM Naturals IMPORT Nat;

 PROCEDURE Mul(n1: Nat; n2: Nat): Nat;

END Multiplication.

We now give the implementation part of module Naturals. It is admittedly a bit repeti-
tive. We hope that this repetitiveness makes the algorithm that produced the com-
piled specification more clear.

IMPLEMENTATION MODULE Naturals;

 FROM SYSTEM IMPORT ADDRESS;

 FROM Allocation IMPORT NEW;

 TYPE

  NatKind = (ZeroKind, OneKind, AddKind);

  NatRecord =

   RECORD

    CASE kind: NatKind OF

    ZeroKind: |

    OneKind: |

    AddKind:

     n1: Nat;

     n2: Nat

    END

   END;

  Nat = POINTER TO NatRecord;

 PROCEDURE Zero(): Nat;

 VAR m: Nat;

 BEGIN

  m := NEW(SIZE(NatRecord));
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  m^.kind := ZeroKind;

  RETURN m

 END Zero;

 PROCEDURE One(): Nat;

 VAR m: Nat;

 BEGIN

  m := NEW(SIZE(NatRecord));

  m^.kind := OneKind;

  RETURN m

 END One;

 PROCEDURE Add(n1: Nat; n2: Nat): Nat;

 VAR n21, n22, m: Nat;

 BEGIN

 (* Add(Zero,n2): n2 *)

  IF isZero(n1) THEN

   RETURN n2

  END;

 (* Add(n1,Zero): n1 *)

  IF isZero(n2) THEN

   RETURN n1

  END;

 (* Add(n1,Add(n21,n22)): Add(Add(n1,n21),n22) *)

  IF isAdd(n2, n21, n22) THEN

   RETURN Add(Add(n1, n21), n22)

  END;

 (* normal form *)

  m := NEW(SIZE(NatRecord));

  m^.kind := AddKind; m^.n1 := n1; m^.n2 := n2;

  RETURN m

 END Add;

 PROCEDURE isZero(m: Nat): BOOLEAN;

  BEGIN

   IF m^.kind = ZeroKind THEN

    RETURN TRUE

   END;

   RETURN FALSE

  END isZero;

 PROCEDURE isOne(m: Nat): BOOLEAN;

  BEGIN

   IF m^.kind = OneKind THEN

    RETURN TRUE
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   END;

   RETURN FALSE

  END isOne;

 PROCEDURE isAdd(m: Nat; VAR n1: Nat; VAR n2: Nat): BOOLEAN;

  BEGIN

   IF m^.kind = AddKind THEN

    n1 := m^.n1;

    n2 := m^.n2;

    RETURN TRUE

   END;

   RETURN FALSE

  END isAdd;

END Naturals.

The implementation of module Multiplication is completely analogous to that of
module Naturals. Note that there is no procedure called isMul. The reason for this is
that the range of function Mul, which is of course the sort Nat, is a sort imported from
an other module than the one in which Mul has been introduced.

IMPLEMENTATION MODULE Multiplication;

 FROM SYSTEM IMPORT ADDRESS;

 FROM Allocation IMPORT NEW;

 FROM Naturals IMPORT Nat, Zero, One, Add, isZero, isOne, isAdd;

 PROCEDURE Mul(n1: Nat; n2: Nat): Nat;

 VAR n11, n12: Nat;

 BEGIN

 (* Mul(Zero,n2): Zero *)

  IF isZero(n1) THEN

   RETURN Zero()

  END;

 (* Mul(One,n2): n2 *)

  IF isOne(n1) THEN

   RETURN n2

  END;

 (* Mul(Add(n11,n12),n2): Add(Mul(n11,n2),Mul(n12,n2)) *)

  IF isAdd(n1, n11, n12) THEN

   RETURN Add(Mul(n11, n2), Mul(n12, n2))

  END;

 (* impossible because of persistence *)
  HALT
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 END Mul;

END Multiplication.

4.2.2.3. Interfacing to a hand written implementation. The implementation of module
Naturals is inefficient because it represents the natural numbers in a unary way (using
approximately 20 bytes per unary digit). We are now going to rewrite module Natu-
rals so that it will use the native datatype INTEGER of Modula-2. The only part of our
program that has to be changed is the implementation part of module Naturals. The
definition part of module Naturals and the two parts of module Multiplication
are completely unaffected by this action.

(Once again we sweep the possible inappropriateness of using INTEGER instead of
LONGINT or ADDRESS under the rug (conform the remark in 4.2.1.3))

IMPLEMENTATION MODULE Naturals;

 TYPE Nat = INTEGER;

 PROCEDURE Zero(): Nat;

 BEGIN

  RETURN 0

 END Zero;

 PROCEDURE One(): Nat;

 BEGIN

  RETURN 1

 END One;

 PROCEDURE Add(n1: Nat; n2: Nat): Nat;

 BEGIN

  RETURN n1 + n2

 END Add;

 PROCEDURE isZero(m: Nat): BOOLEAN;

  BEGIN

   RETURN m = 0

  END isZero;

 PROCEDURE isOne(m: Nat): BOOLEAN;

  BEGIN

   RETURN m = 1

  END isOne;

 PROCEDURE isAdd(m: Nat; VAR n1: Nat; VAR n2: Nat): BOOLEAN;

  BEGIN
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   IF m > 1 THEN

    n1 := m - 1;

    n2 := 1;

    RETURN TRUE

   END;

   RETURN FALSE

  END isAdd;

END Naturals.

This implementation turns out to be nice. First, the implementation part of module
Naturals becomes very simple. For example, the implementation of procedure ‘is-
Zero’ turns out to be ‘= 0’.

Second, when we trace what happens when we call function Mul, it turns out that it
performs a repeated addition, which is not bad at all. The only overhead that remains
is that every time a multiplication by one has to be ‘detected’. One could try to reduce
this (slight) inefficiency by introducing the equation:

Mul(Add(n1,One),n3): Add(Mul(n1,n3),n3)

in front of the equations in the specification of module Multiplication. This would
introduce the fragment:

(* Mul(Add(n11,One),n2): Add(Mul(n11,n2),n2) *)

 IF isAdd(n1, n11, n12) AND isOne(n12) THEN

  RETURN Add(Mul(n11, n2), n2)

 END;

in procedure Mul. An inlining compiler could then short circuit the sequence ‘isAdd
→ n12 = 1 → isOne’, and after that eliminate it. This would result in the implementa-
tion of multiplication by a loop iterating an addition.





 

Chapter 5

 

Conclusion

 

Flon’s law: You can write bad software in any language.

 

In this thesis we have presented four results.

 

First, we have described a way to mechanically verify persistence of specifications

 

that satisfy a number of requirements. Second, we have defined a framework, Per-

 

spect, for operating this approach in practice. Third, we gave a scheme for compiling

 

Perspect specifications to Prolog. Fourth, we have described an explicit framework

 

for implementing specifications in a procedural language, and presented a scheme for

 

compiling Perspect specifications in a modular fashion to Modula-2, that fits in this

 

framework.

 

We will now describe for each result separately, what appears to us to be its main

 

strengths and weaknesses.

 

5.1. The persistence check.

 

 The main merit of the persistence check algorithm from

 

section 2.5 is that it exists at all. It is surprising that it is decidable whether two left-

 

linear term rewriting systems with the same signature have the same sets of normal

 

forms. It is useful to have a test for missing cases in specifications that use definition

 

by cases. It is also nice that the algorithm is able to determine the generators of a sort

 

without outside help.

 

The algorithm has two disadvantages. It only applies to specifications that are ‘real-

 

ly’ executable term rewriting systems. This is a small class of specifications compared

 

to the whole universe of specifications that one would like to write. The other dis-

 

advantage of the check algorithm is that it may use a lot of memory. This problem

 

becomes apparent when the specification that is checked is incorrect.

 

5.2. Perspect.

 

 Perspect, as described in sections 3.1 and 3.2, can be seen as a set of re-

 

quirements on specifications that together have some nice properties. Its main merit

 

is to show that it is possible to satisfy these properties (decidability, executability)

 

with simple requirements. Apart from the way Perspect handles termination, the

 

requirements that Perspect poses on a specification are in a sense 

 

canonical

 

, i.e., they

 

are natural properties to require of a persistent complete modular term rewriting

 

system. On the other hand, although a termination ordering exists that could be called

 

canonical, the one used in Perspect is much simpler, and in practice it is almost as
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good as the canonical, strongest, termination ordering.

 

An advantage of Perspect is that it is a 

 

language

 

. It is not a ‘persistence checking

 

laboratory’ in which the user might be confused by the interface of the program, but

 

instead it is explicit in what it does and what the user should comply with. Also, a

 

manually written text in a for humans readable language seems to be a good way to

 

formulate a specification; better than some intermediate state in an interaction with an

 

interactive program, or some set of computer generated files.

 

A third advantage of Perspect is that it is 

 

small

 

. Perspect avoids the complications

 

that can be caused by, possibly unfavorable, interactions between the features in a

 

language. The keywords 

 

echo

 

 and 

 

rec

 

, and the ‘

 

*

 

’ marker aside (which are made

 

necessary by the termination checking component of the Perspect system), it is in

 

some sense the minimal modular specification language.

 

The main disadvantage of Perspect is that it is too restrictive. For example, one

 

might be tempted to write a specification of an algebra with a finite sort in Perspect,

 

but experience has shown that this is not something to be undertaken lightly. Also,

 

Perspect does not catch all errors in a specification, as again experience has shown.

 

5.3. Compilation to Prolog.

 

 The scheme for compiling term rewriting systems to

 

Prolog that was developed in section 4.1 was not intended to be used in real

 

applications. Prolog is a high level language and is therefore not appropriate as a target

 

for a compilation. The reason for giving an implementation of a specification in Prolog

 

was mainly the simplicity of the scheme.

 

The attractiveness of the compilation scheme to Prolog lies in its simplicity. It con-

 

sists of a literal translation to Prolog syntax of the definition of equality in an equational

 

specification. Also, it is simpler than two other well-known schemes from the litera-

 

ture.

 

It is also nice that one can combine various rewriting strategies in one uniform

 

scheme.

 

5.4. Implementing a specification in Modula-2.

 

 While the implementation notion as

 

defined in section 4.2 is trivial, it is also useful. If one wants to transform a specification

 

into a working program, and not only wants to use the specification as a ‘guideline’ for

 

the structure of the resulting program (why should one then take the effort to write a

 

formal specification?), this scheme merits consideration.

 

A disadvantage of the way we instantiated the implementation scheme is that it is an

 

innermost

 

 reducing implementation. It would probably be better to use some form

 

of graph reduction in the generated code. While further research could indicate an

 

elegant way for incorporating this in the system as described here, we did not pursue

 

this topic further.

 

When using this scheme for obtaining an implementation of a significant specifica-

 

tion it is advisable to write the specification as an arbitrary specification (so not

 

restricted to the class of term rewriting systems) and then write the implementation

 

manually as a strong implementation as defined in section 4.2.
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5.5. Final conclusion.

 

 From our work with modular initial algebra specifications we got

 

the following impression. Algebraic specifications are nice because they have a simple

 

semantics and have a great range of applicability: both the low level parts as well as the

 

high level parts of a system can be described algebraically. They are cumbersome

 

because specifying systems algebraically turns out to be very laborious. Of course, this

 

depends somewhat on the system that one uses: Perspect – because of the heavy

 

restrictions that it imposes – is rather bad in this area. However, all systems that we

 

encountered had this problem. Therefore, we do not consider modular initial algebra

 

specifications, in the form they have today, to be a useful tool for practical software

 

development.
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The gods, greatly amused, revive you for some more fun.

 

I. Perspect syntax diagrams

 

(For the context free grammar in EBNF format, from which these diagrams have been

 

derived, see section 3.1.1.2.)
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module identexternal

import

 

internal
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import

import module ident
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declaration

sort sort ident

,

function function

variablevariable

 

function

,

function type : sort ident

 

function type

rec echo function ident

( sort ident )*

,

 

variable

,

variable ident : sort ident
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equation

equation

,

term : term

 

term

function ident

,

term( )

variable ident

sort ident

 

II. Error messages from the Perspect system

 

Environment errors

 

##  Can't open: File 

 

filename

 

.

 

Language errors

 

##  End of file reached inside a comment. [1.1]

 

##  Illegal character in comment, ASCII value: 

 

value

 

. [1.1]

 

##  Syntax error: Unexpected 

 

token

 

. [1.2]

 

##  Module identifiers don't match: 

 

identifier

 

 should be 

 

identifier

 

.

 

[3.1]

 

##  A module called 

 

identifier

 

 already exists. Module skipped. [3.1]

 

##  Echo-declaration of 

 

identifier

 

.

 

#   Echo's are only allowed in the internal part of a module.

 

[3.2]
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##  Domains don't match in echo-declaration of function 

 

identifier

 

.

 

[3.2]

 

##  Ranges don't match in echo-declaration of function 

 

identifier

 

.

 

[3.2]

 

##  Echo of function 

 

identifier

 

.

 

#   This function is declared in module 

 

identifier

 

, but echoed in

 

module 

 

identifier

 

. [3.2]

 

##  Echo of local function 

 

identifier

 

.

 

#   Echo declarations are only allowed for exported functions.

 

[3.2]

 

##  Function 

 

identifier

 

 already has an echo in this module. [3.2]

 

##  Echo of function 

 

identifier

 

 should not have rec external

 

counterpart. [3.2]

 

##  The external counterpart of the echo declaration of function

 

identifier

 

#   should not contain stars. [3.2]

 

##  Module 

 

identifier

 

 doesn't exist. [3.3]

 

##  Nameclash: 

 

identifier

 

 already in use. [3.4]

 

##  Nameclash of 

 

identifier

 

 on (implicit) import of 

 

identifier

 

 in

 

identifier

 

. [3.4]

 

##  Import of 

 

identifier

 

 skipped.

 

#   Replaced by all safe imports in the external part of 

 

identifier

 

.

 

[3.4]

 

##  Unknown sort 

 

identifier

 

. [3.5]

 

##  

 

identifier

 

 is not a sort. [3.5]

 

##  Unknown function 

 

identifier

 

. [3.5]

 

##  

 

identifier

 

 is not a function. [3.5]

 

##  Unknown variable 

 

identifier

 

. [3.5]

 

##  identifier is not a variable. [3.5]
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##  Unknown in term: object. [3.5]

##  The variable identifier should not have arguments. [3.5]

##  The function identifier has wrong arguments. [3.5]

##  Equation incorrectly typed.

#     term has type identifier, but
#     term has type identifier. [3.5]

##  Module identifier is not left linear.
#   The equation

#     term:

#       term
#   is not left linear. [5.1]

##  The equation

#     term:

#       term
#   has variables occurring right, that don't occur left,

#   or has unnamed variables occurring right. [5.1]

##  The equation

#     term:

#       term
#   has variables occurring left, that don't occur right. It

should be

#     term:

#       term
#   [5.1]

##  The first function of the external part of module identifier
#   can't have the rec attribute. [5.2]

##  The first function of the internal part of module identifier
#   can't have the rec attribute. [5.2]

##  Module identifier is not monotone terminating.
#     term:

#       term
#   Maybe some functions should be reordered. [5.2]

##  Module identifier is not open confluent.
#     term:

#       term
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#       term
#   Maybe the equations

#     term: term
#     term: term
#   should be more specific. [5.3]

##  Module identifier is not strongly persistent.
#   There are new normal forms of sort identifier of the form
#     term
#     term
#     …
#   added in this module (junk). [5.4]

##  Module identifier is not strongly persistent.
#   Some normal forms of sort identifier of the form
#     term
#     term
#     …
#   are now reducible (confusion).

#   Maybe the equation

#     term: term
#   should be more specific. [5.4]

Implementation restrictions

##  Implementation restriction: Memory full.

##  Implementation restriction: Identifier too long.

#   Truncated to count characters.
#   The identifier becomes: identifier

##  Implementation restriction: Expression too complicated.

#   Parser stack overflow.

Internal errors

##  Internal error: Keyword defined twice.

#   Internal codes are: code and code.

##  Internal error: Dangling pointer.

##  Internal error: Trying to hash NIL Ident.

##  Internal error: Unidentified object object.
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##  Internal error: Garbage collection error in ParserTypes

#   count objects not deallocated.

##  Internal error: Garbage collection error.

#    allocations: count
#    extra references: count

##  Internal error: Reducing a term that is not linear.

III. Definition modules of the Perspect checker

DEFINITION MODULE StdAlloc;

 IMPORT SYSTEM;

 PROCEDURE NewPtr (size: INTEGER): SYSTEM.ADDRESS;

END StdAlloc.

DEFINITION MODULE StdInOut;

 IMPORT SYSTEM;

 TYPE

  String = ARRAY [0..255] OF CHAR;

  StringPtr = POINTER TO String;

  StringVec = ARRAY [0..4000] OF StringPtr;

  StringVecPtr = POINTER TO StringVec;

 VAR

  ArgC: INTEGER;

  ArgV: StringVecPtr;

 CONST

  RDONLY = 0000H;

 PROCEDURE open

  (filename: ARRAY OF CHAR; mode: INTEGER): INTEGER;

 CONST

  InputFD = 0;

  OutputFD = 1;

 PROCEDURE close (fd: INTEGER): INTEGER;

 PROCEDURE read

  (fd: INTEGER; buffer: SYSTEM.ADDRESS; count: INTEGER): INTEGER;

 PROCEDURE write

  (fd: INTEGER; buffer: SYSTEM.ADDRESS; count:INTEGER): INTEGER;

END StdInOut.

DEFINITION MODULE Allocation;

 IMPORT SYSTEM;

 PROCEDURE Allocate (VAR ptr: SYSTEM.ADDRESS; size: INTEGER);

 PROCEDURE Free (VAR ptr: SYSTEM.ADDRESS);

END Allocation.
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DEFINITION MODULE Input;

 VAR

  eof: BOOLEAN;

  next: CHAR;

 PROCEDURE Get;

 PROCEDURE Read (VAR c: CHAR);

 PROCEDURE InputLoc

  (VAR file: ARRAY OF CHAR; VAR n: INTEGER;

   VAR pos, line: INTEGER);

END Input.

DEFINITION MODULE Output;

 PROCEDURE Write (c: CHAR);

 PROCEDURE WriteInt (i: INTEGER);

 PROCEDURE WriteString (s: ARRAY OF CHAR);

 PROCEDURE WriteNString (s: ARRAY OF CHAR; n: INTEGER);

 PROCEDURE WriteLn;

END Output.

DEFINITION MODULE Messages;

 PROCEDURE OpenError (message: ARRAY OF CHAR);

 PROCEDURE AddToError (message: ARRAY OF CHAR);

 PROCEDURE CloseError

  (reference: ARRAY OF CHAR; errorLocation: BOOLEAN);

END Messages.

DEFINITION MODULE Idents;

 TYPE Ident;

 PROCEDURE KeyWord (c: ARRAY OF CHAR; kind: INTEGER);

 PROCEDURE GetIdent

  (c: ARRAY OF CHAR; n: INTEGER; VAR kind: INTEGER): Ident;

 PROCEDURE WriteIdent (VAR ident: Ident);

 CONST HashSize = 101;

 PROCEDURE Hash (ident: Ident): INTEGER;

END Idents.

DEFINITION MODULE ParserTypes;

 IMPORT Idents;

 TYPE IdentList;

 PROCEDURE EmptyIdentList (): IdentList;

 PROCEDURE AppendToIdentList

  (theList: IdentList; isStar: BOOLEAN; theElement: Idents.Ident):

   IdentList;

 PROCEDURE DisposeIdentList (theList: IdentList);
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  TYPE ProcOnIdent = PROCEDURE(BOOLEAN,Idents.Ident);

  PROCEDURE ForEachIdentIn

   (theList: IdentList; theAction: ProcOnIdent);

 TYPE Type;

 PROCEDURE NewType

  (isRec, isEcho: BOOLEAN; theIdent: Idents.Ident;

   theDomain: IdentList): Type;

 PROCEDURE DisposeType (theType: Type);

 TYPE TypeList;

 PROCEDURE EmptyTypeList (): TypeList;

 PROCEDURE AppendToTypeList

  (theList: TypeList; theElement: Type): TypeList;

 PROCEDURE DisposeTypeList (theList: TypeList);

  TYPE ProcOnType =

   PROCEDURE(BOOLEAN,BOOLEAN,Idents.Ident,IdentList);

  PROCEDURE ForEachTypeIn

   (theList: TypeList; theAction: ProcOnType);

 TYPE

  Term;

  TermList;

 PROCEDURE NewTerm

  (theIdent: Idents.Ident; theArgs: TermList): Term;

 PROCEDURE DisposeTerm (theTerm: Term);

 PROCEDURE DecomposeTerm

  (theTerm: Term; VAR theIdent: Idents.Ident;

   VAR theArgs: TermList);

 PROCEDURE EmptyTermList (): TermList;

 PROCEDURE AppendToTermList

  (theList: TermList; theElement: Term): TermList;

 PROCEDURE DisposeTermList (theList: TermList);

  TYPE ProcOnTerm = PROCEDURE(Term);

  PROCEDURE ForEachTermIn

   (theList: TermList; theAction: ProcOnTerm);

END ParserTypes.

DEFINITION MODULE Attributes;

 IMPORT Idents;

 IMPORT ParserTypes;

 TYPE

  YYSTYPE =

   RECORD

    CASE: INTEGER OF

    0: boolean: BOOLEAN |

    1: ident: Idents.Ident |

    2: identList: ParserTypes.IdentList |
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    3: type: ParserTypes.Type |

    4: typeList: ParserTypes.TypeList |

    5: term: ParserTypes.Term |

    6: termList: ParserTypes.TermList

    ELSE

    END

   END;

END Attributes.

DEFINITION MODULE Scanner;

 IMPORT Attributes;

 PROCEDURE yylex

  (VAR token: INTEGER; VAR value: Attributes.YYSTYPE);

 PROCEDURE yyerror (token: INTEGER; value: Attributes.YYSTYPE);

 PROCEDURE yyabort;

END Scanner.

DEFINITION MODULE Parser;

 IMPORT Attributes;

 PROCEDURE yyparse (VAR yyresult: Attributes.YYSTYPE): BOOLEAN;

END Parser.

DEFINITION MODULE Modules;

 IMPORT Idents;

 IMPORT ParserTypes;

 IMPORT Symbols;

 TYPE Module = Symbols.Module;

 PROCEDURE EmptyModule (theIdent: Idents.Ident): Module;

 PROCEDURE CheckModuleIdent

  (theModule: Module; theIdent: Idents.Ident);

 PROCEDURE CloseModule (theModule: Module);

 PROCEDURE AddImport

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident);

 PROCEDURE AddSort

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident);

 PROCEDURE AddFunction

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident;

   theDomain: ParserTypes.IdentList; theRange: Idents.Ident;

   isRec: BOOLEAN);

 PROCEDURE EchoFunction

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident;

   theDomain: ParserTypes.IdentList; theRange: Idents.Ident;

   isRec: BOOLEAN);

 PROCEDURE AddVariable

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident;
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   theTypeIdent: Idents.Ident);

 PROCEDURE AddEquation

  (theModule: Module;

   leftHandSide, rightHandSide: ParserTypes.Term);

END Modules.

DEFINITION MODULE Symbols;

 IMPORT Idents;

 TYPE

  Module;

 PROCEDURE NewModule (theIdent: Idents.Ident): Module;

 PROCEDURE ModuleIdent (theModule: Module): Idents.Ident;

 PROCEDURE AddModuleToSpec (theModule: Module);

 PROCEDURE FindModuleInSpec

  (theIdent: Idents.Ident; VAR foundModule: Module): BOOLEAN;

 PROCEDURE AddImport

  (theModule: Module; visible: BOOLEAN; theImported: Module);

 TYPE

  Sort;

 PROCEDURE NewSort

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident);

 PROCEDURE FindSort

  (theModule: Module; theIdent: Idents.Ident;

   VAR foundSort: Sort): BOOLEAN;

 TYPE

  Domain;

 PROCEDURE EmptyProduct (): Domain;

 PROCEDURE Product

  (theDomain: Domain; theSort: Sort; isStar: BOOLEAN): Domain;

 PROCEDURE StarInDomain (theDomain: Domain): BOOLEAN;

 PROCEDURE EqualDomain

  (theDomain1, theDomain2: Domain): BOOLEAN;

 TYPE

  Function;

 PROCEDURE NewFunction

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident;

   theDomain: Domain; theRange: Sort; isRec: BOOLEAN);

 PROCEDURE FindFunction

  (theModule: Module; theIdent: Idents.Ident;

   VAR foundFunction: Function): BOOLEAN;

 PROCEDURE FunctionDomain (theFunction: Function): Domain;

 PROCEDURE FunctionRange (theFunction: Function): Sort;

 PROCEDURE EchoFunction

  (theModule: Module; theFunction: Function; isRec: BOOLEAN);

 TYPE

  Variable;
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 PROCEDURE NewVariable

  (theModule: Module; visible: BOOLEAN; theIdent: Idents.Ident;

   theType: Sort);

 PROCEDURE FindVariable

  (theModule: Module; theIdent: Idents.Ident;

   VAR foundVariable: Variable): BOOLEAN;

 TYPE

  Term;

  Tuple;

 PROCEDURE NewTerm

  (theModule: Module; theHead: Idents.Ident; theArgs: Tuple):

   Term;

 PROCEDURE TermIsApplication

  (theTerm: Term; VAR theFunction: Function; VAR theArgs: Tuple):

   BOOLEAN;

 PROCEDURE TermType (theTerm: Term; VAR theType: Sort): BOOLEAN;

 PROCEDURE WriteTerm (theTerm: Term);

 PROCEDURE EmptyTuple (): Tuple;

 PROCEDURE AppendToTuple

  (theTuple: Tuple; theTerm: Term): Tuple;

 PROCEDURE TupleDomain

  (theTuple: Tuple; theDomain: Domain): BOOLEAN;

 TYPE

  Equation;

 PROCEDURE NewEquation

  (leftHandSide, rightHandSide: Term): Equation;

 PROCEDURE AddEquation

  (theModule: Module; theEquation: Equation);

 TYPE TermSet;

 TYPE TermSetList;

END Symbols.
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Samenvatting

 

(Summary in dutch)

 

In dit proefschrift getiteld 

 

Persistence in Algebraic Specifications

 

 – in het Nederlands

 

Persistentie in Algebraïsche Specificaties

 

 – bestuderen we een aantal aspecten van

 

het begrip persistentie uit de theorie van de algebraïsche specificaties. Zowel een

 

theoretische beschrijving van dit begrip als een aantal praktische toepassingen hiervan

 

komen aan de orde.

 

Een specificatie heet persistent als de betekenis van de datatypen die erin worden

 

gespecificeerd niet afhangt van de module waarin het datatype wordt gebruikt. We

 

argumenteren dat het niet persistent zijn van specificaties een heuristiek is om specifi-

 

catiefouten op te sporen. Een aantal specificatiefouten die in specificaties uit de prak-

 

tijk zijn aangetroffen worden nader geanalyseerd, en er wordt gekeken in hoeverre de

 

persistentie van de specificaties door deze fouten is aangetast.

 

We presenteren een redelijk efficiënt algoritme voor het controleren van de per-

 

sistentie van modulaire termherschrijfsystemen. Hoewel dit algoritme in het ergste ge-

 

val tenminste exponentieel veel tijd en ruimte nodig heeft, suggereren experimenten

 

dat in de praktijk redelijk met dit algoritme te werken is.

 

Het algoritme is alleen toepasbaar als de te controleren specificatie aan een aantal

 

andere eigenschappen voldoet. Om concreet met deze algoritme te kunnen experi-

 

menteren, definiëren we een kleine specificatietaal die 

 

Perspect

 

 is gedoopt. In deze

 

taal worden een aantal voorbeeldspecificaties gegeven (waaronder een specificatie van

 

de rationale getallen, een specificatie van de primitief recursieve functies, een specifi-

 

catie van plaatjes die uit monochrome pixels zijn opgebouwd en een specificatie van

 

een kleine tekstverwerker). Ervaringen opgedaan met deze specificaties en met de

 

implementatie van een Perspect-checker worden beschreven.

 

Perspect is een simpele taal voor het opschrijven van modulaire herschrijfsyste-

 

men. Er zijn vier eisen waaraan een Perspect specificatie moet voldoen :

 

(i)

 

De herschrijfregels uit een Perspect specificatie mogen 

 

geen condities

 

 bevatten

 

en moeten 

 

links-lineair

 

 zijn.

 

(ii)

 

Een Perspect specificatie moet aan een sterke vorm van 

 

terminatie

 

 voldoen (de

 

terminatie moet volgens een impliciet aan te geven pad-ordening controleerbaar

 

zijn).

 

(iii)

 

Een Perspect specificatie moet aan een sterke vorm van 

 

confluentie

 

 voldoen

 

(confluentie moet ook bij het herschrijven van open termen gelden).

 

(iv)

 

Een Perspect specificatie moet aan een sterke vorm van 

 

persistentie

 

 voldoen

 

(normaalvormen moeten tussen de modules behouden blijven).

 

De definities van de verschillende begrippen die in deze eisen gebruikt worden zijn

 

expliciet in het proefschrift opgenomen. Bij het schrijven van specificaties blijkt in de

 

praktijk eis (ii) de meeste problemen te geven.
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Samenvatting

 

De taal Perspect heeft de volgende eigenschappen:

 

•

 

Het is beslisbaar of een tekst een correcte Perspect specificatie is.

 

•

 

Iedere correcte Perspect specificatie is persistent.

 

•

 

Iedere correcte Perspect specificatie is executeerbaar.

 

•

 

Elke primitief recursieve algebra is specificeerbaar door middel van een correcte

 

Perspect specificatie.

 

•

 

De semantiek van Perspect is compositioneel.

 

Perspect blijkt in de praktijk te restrictief voor realistische specificaties. Om aan dit

 

probleem tegemoet te komen definiëren we een spectrum van vijf varianten van Per-

 

spect, met aan het ene uiterste een taal waarin in een specificatie desgewenst met een

 

puur verbale beschrijving kan worden volstaan, en aan het andere uiterste Perspect

 

zelf.

 

Vervolgens beschrijven we een tweetal compilatieschema’s voor complete term-

 

herschrijfsystemen (en dus voor Perspect specificaties).

 

Het eerste schema behelst vertaling naar Prolog. In één uniform schema worden

 

hier negen verschillende implementaties van het herschrijfsysteem gegeven, waar-

 

onder implementaties die herschrijven volgens de leftmost innermost reductiestrate-

 

gie, volgens de leftmost outermost reductiestrategie, volgens de parallel outermost

 

reductiestrategie en volgens de Gross-Knuth reductiestrategie. Dit algemene schema

 

wordt vergeleken met twee andere schema’s uit de literatuur. Een voorbeeld van een

 

vertaling volgens dit schema – een vertaling van de specificatie van de kleine tekstver-

 

werker – wordt expliciet uitgeschreven en een voorbeeld van een executie van deze

 

vertaling wordt gegeven.

 

Het tweede compilatieschema dat wordt beschreven is een schema voor het ver-

 

talen van algebraïsche specificaties naar Modula-2. Er worden drie abstracte imple-

 

mentatiebegrippen ingevoerd: zwakke implementatie, sterke implementatie en term-

 

herschrijfimplementatie. Voor de laatste variant geven we een expliciet vertaalschema.

 

Er wordt een expliciet uitgeschreven voorbeeld gegeven van de vertaling van een spe-

 

cificatie waarin vermenigvuldiging van de gehele getallen wordt gedefinieerd in termen

 

van de optelling. De vertaling van de module waarin de gehele getallen en de optelling

 

worden ingevoerd wordt vervolgens vervangen door een met de hand geschreven

 

implementatie die gebruik maakt van het ingebouwde datatype van Modula-2. De mo-

 

dule die de vermenigvuldiging definieert hoeft hierbij niet aangepast te worden.

 

Het proefschrift eindigt met enige beschouwingen over de bruikbaarheid van het

 

gepresenteerde onderzoek in het bijzonder (conceptueel aantrekkelijk, maar in de

 

praktijk niet erg handig) en van modulaire initiële algebra specificaties in het algemeen

 

(in de huidige vorm te moeizaam voor serieuze toepassingen).



 

Stellingen

 

behorende bij het proefschrift van Freek Wiedijk getiteld

 

Persistence in Algebraic Specifications

 

1.

 

Algebraïsche specificaties zijn vaak onbegrijpelijk, en vrijwel altijd incorrect.

 

2.

 

Het staven van wiskundige bewijzen dient geautomatiseerd te worden. Zo zou het

 

mogelijk moeten zijn een bewijs van de hoofdstelling over Jordan-krommen

 

(‘een deelverzameling van het platte vlak die homeomorf is met de cirkel verdeelt

 

het platte vlak in precies twee samenhangscomponenten’) in de computer in te

 

voeren, en op correctheid te controleren. Om dit voorbeeld te kunnen verwer-

 

ken, dient een bewijsverificator op de axiomatische verzamelingenleer gebaseerd

 

te zijn.

 

3.

 

Er bestaat geen eindig orthogonaal termherschrijfsysteem dat de volgende twee

 

eigenschappen heeft:

 

(i)

 

De signatuur van het herschrijfsysteem bevat de soort NAT en de functies

 

0

 

:

 

→

 

NAT

 

1

 

:

 

→

 

NAT

 

+

 

:

 

NAT 

 

×

 

 NAT

 

→

 

NAT

 

(ii)

 

De normaalvormen van de soort NAT zijn 0, 1, 1+1, (1+1)+1, ((1+1)+1)+1, …

 

4.

 

Het ordetype 

 

α

 

 van een aftelbare totale ordening waarvoor geldt 

 

α⋅α

 

 = 

 

α

 

 heeft

 

één van de volgende vijf vormen:

 

1+

 

η

 

+1

 

η⋅β

 

(1+

 

η

 

)

 

⋅

 

(1+

 

β

 

)

 

(

 

η

 

+1)

 

⋅

 

(

 

β

 

+1)

 

(1+

 

η

 

2

 

+1)

 

⋅

 

(1+

 

β

 

+1)

 

Hierin is 

 

β

 

 een willekeurig ordetype, 

 

η

 

 het ordetype van de rationale getallen, en

 

η

 

2

 

 het ordetype van de rationale getallen waarin de breuken met een tweemacht

 

als noemer verdubbeld zijn.

 

5.

 

Indien iemand twaalf maal willekeurig een stap neemt in één van de twaalf rich-

 

tingen van de wijzerplaat, dan is de kans dat hij daarna op zijn beginpunt is terug-

 

gekeerd gelijk aan 17365421304 / 8916100448256, ofwel iets minder dan een vijfde



 

procent. (Hoe dit spel – met dodelijke afloop – gespeeld kan worden, is te lezen

 

op bladzijden 118 en 119 van Charles Harness’ roman 

 

De ring van Ritornel

 

 in de

 

uitgave van Meulenhoff uit 1976)

 

6.

 

De driedimensionale kubus heeft 20 verschillende tweedimensionale bouwplaten

 

(of 11 verschillende, indien gespiegelde bouwplaten niet als verschillend worden

 

opgevat). De vierdimensionale hyperkubus heeft 455 (of 261) verschillende drie-

 

dimensionale hyperbouwplaten. De vijfdimensionale hyperkubus heeft 17296 (of

 

9694) verschillende vierdimensionale hyperbouwplaten.

 

7.

 

Conforme supergravitatie (voor N=1) kan op een natuurlijke wijze worden op-

 

gevat als een veldentheorie met 1344 bosonische en 1344 fermionische vrijheids-

 

graden.

 

8.

 

De 

 

Watch It!

 

 INIT, waarvan het INIT resource bestaat uit de 525 bytes:

 

6008494E49540101000041FAFFF4A1282F08A992303CA851A14643FA01162288303CA8

 

5141FA0006A0474E754E56000048E7E0E0206E00083210670000EE303C0006343A013A

 

B441650000E0670AE24A51C8FFF4600000D4323C00069240303C000743FA013A45FA01

 

162419E2A2C498E3AAB49A660000B451C8FFF041FA00BC2D4800082038020C48407200

 

320082FCA8C04840320082FCA8C042414841200106800000079E80FC0E100681000000

 

9682FC012C48414241484182FC000C4841B07A00746606B27A0070675E41FA006830C0

 

308141FA00A843FA0060303C000722D851C8FFFC41FA00D6303A004CC0FC0006D0C043

 

FA004E303C000512188319524951C8FFF841FA00B7303A002AC0FC0006D0C043FA0030

 

303C000412180201001F8319524951C8FFF44CDF07074E5E4EF90041D89A000000003F

 

003F003F003F00408084408440846084608040804040803F003F003F003F003F003F00

 

3F003F007F80FFC0FFC0FFC0FFC0FFC0FFC07F803F003F003F003F00000800083F003F

 

003F003F00408080408040806080608040804040803F003F003F003F00FFFFFFFFFFFF

 

FFFFFFFFE1FFC0FFC0FFC0FFC0FFE1FFFFFFFFFFFFFFFFFFFFFF040404040000020204

 

0400000000010600000000000700000000000601000000000404020000000404040000

 

000404080000000C30000000003C00000000300C000008080404000004040404000000

 

verhoogt het realisme in het Macintosh interface, en dient daarom in de standaard

 

systeem software van de Macintosh te worden opgenomen.

 

9.

 

Een programma dat de limiet 

 

Lim[If[x==0,1,0],x->0]

 

 evalueert als 

 

1

 

 verdient

 

de benaming 

 

Mathematica

 

 niet.

 

10.

 

In tegenstelling tot wat Jorge Luis Borges in het korte verhaal

 

 Blauwe Tijgers

 

suggereert, betekent het feit dat in de quantum-mechanica ‘aantal deeltjes’ geen

 

behouden grootheid is niet de ondergang van de rekenkunde.

 

11.

 

Indien iemand zich afvraagt of hij op dat moment droomt of wakker is, en het

 

antwoord schuldig moet blijven, is het feitelijk zo dat hij wakker is, aangezien het

 

droombewustzijn zich niet leent voor een dergelijke filosofische twijfel. Het ge-

 

volg is dat men, door deze observatie tot zijn filosofie te laten doordringen, de

 

vraag of men droomt of niet, ook in de realiteit kan beantwoorden.

 

12.

 

De mooiste maat uit Stravinsky’s 

 

Le Sacre du Printemps

 

 is de laatste maat vóór

 

het begin van de 

 

Cercles mystérieux des adolescentes

 

.
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