Pure Type Systems without Explicit Contexts

Herman Geuvers
Radboud University Nijmegen
Technical University Eindhoven
The Netherlands
Robbert Krebbers James McKinna Freek Wiedijk

Radboud University Nijmegen
Institute for Computing and Information Sciences
Heyendaalseweg 135, 6525 AJ Nijmegen
The Netherlands

We present an approach to type theory in which the typingrjuelgs do not have explicit contexts.
Instead of judgments of shape- A : B, our systems just have judgments of shdpeB. A key
feature is that we distinguish free and bound variables avpeeudo-terms.

Specifically we give the rules of the ‘Pure Type System’ clafstype theories in this style. We
prove that the typing judgments of these systems correspoadhatural way with those of Pure
Type Systems as traditionally formulated. I.e., our systéave exactly the same well-typed terms
as traditional presentations of type theory.

Our system can be seen as a type theory in which all type judignsbare an identical, infinite,
typing context that has infinitely many variables for eacksilole type. For this reason we call our
systemls,. This name means to suggest that our type judgrAer should be read &s., - A: B,
with a fixed infinite type context calleit..

1 Introduction

1.1 Problem

One of the important insights type theory gives us is the need to be aware adritextin which one
works. This was already stressed by de Bruijn in his 1979 péfeers contextbewust in W8], Dutch
for “Be context aware in the mathematical vernacular”. In type theorym &ways is considered with
respect to a context, which gives the types of the variables occurring free in the term. Thisds als
apparent in the shage M : A of the judgments of type theory, where the contiexs made explicit.
Thus a ‘bound’ variable is bounidcally in a term, while a ‘free’ variable actually globally bound,
namely by the context.

In customary presentations of first order predicate logic [16, 22, Xamgle], and in fact in the
presentation of most other logics as well, free variables are not treatadhrasvay. In these logics free
variables are reallfree. They are taken from an infinite supply of variables that are just avaitatile
used in formulas and terms, without them having to be declared first.

This difference between type theory and predicate logic means that whemoael predicate logic
in type theory, actually we do not get the customary version of predicait lmgt instead get a version
calledfreelogic [12]. In traditional treatments the formu(ax. P(x)) — (3x.P(x)) is usually provable.
For instance a natural deduction proof of this formula would look like:

© H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk
This work is licensed under the
Creative Commons Attribution License.

LFMTP 2010
EPTCS ??, 20??, pp.[1-15, doi:10.4204/EPTCS.??.??

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Pure Type Systems without Explicit Contexts

[Vx.P(x)]
P(y)
Ix. P(x)
-
(VX.P(x)) — (3x.P(x))
This proof uses the free variabfelf one cannot use any other variables than those introduced by earlier

rules, then this proof fails. Indeed, the type corresponding to the forimulat inhabited: there is no
termM such that the following judgment is derivable:

D:%,P:D—x*FM:(MNx:D.P(x)) — (x: D.P(x))

VE

because we cannot avoid the case in which the domasrempty, where the formula is false.
Now there are two things one can do to bridge this gap between type thabtsaditional logic:
e Make predicate logic more like type theory, by explicitly keeping track in therjuelgs of the set
of variables that can be used in the proof.

e Make type theory more like predicate logic, by having a version of type yiibat does not need
contexts in the judgments, i.e., in which free variables are just taken fromisdimee supply.

Although the first option is interesting too, especially in categorical treatmélatgio [11, for example],
in this paper we focus on the second. We originally thought that the depetyges in type theory would
prevent a version of type theory without contexts from being a viable ophiat to our surprise it turns
out that onecan present type theory in a style where there are no contexts and in whididiefree
variables are really free, provided we are prepared to pay the smallqdriabelling variables in a rather
involved manner.

In those type theories actually implemented in interactive theorem proverspmitext always con-
sists of a part holding globaefinitionsand parameters and a part holding fiee variablesn the term
(as in [19, 21, for example]). For simplicity of exposition, and for the safkproving an exact corre-
spondence between a standard presentation of type theory and the wegrigropose, in this paper we
consider only the second part of such contexts. We believe, hovieaethe other part can be treated in
exactly the same way.

There is another reason why it is interesting to look at a version of typeytivdtere there are no
explicit contexts. One of the most popular architectures for proof astssis theLCF architecture
named after the LCF system from the seventies [9]. In the original forsuci a system there is an
abstract data type calleckrm, whose elements can only be created by a small number of functions
exported from the type-checking kernel. Elements of this datatype ale@ysspond to type-correct
terms, and those terms can contain free variables.

A system using this approach has a kernel interface containing a function

app : term * term -> term
When this function is called, the kernel of the system makes sure that the dyplee arguments are
compatible, i.e., that the result is again a type-correct term.

This is how the HOL family of theorem provers is implemented. These systengsahégical
foundation that is based on a typed lambda calculus. However, in thesensythe free variables in
the terms are not recorded in a context of variables. The only contexese thystems is the context
of definitions, which is kept track of in a stateful variable. Definitions areen allowed to be removed
from this context, as that would compromise the safety of the kernel. Hérese systems are stateful,
although they can be made functional using a variant of the approaséntegl here [24].

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 3

There are two classes of systems that can be said to implengre theorya typed lambda calculus:

e The simpler type theories, in which no dependent types are allowed. Tteyare a form of
simple type theory with some enhancements, such as some form of polymoiptiigme classes.
These include the systems from the HOL family: HOL4, HOL Light, ProofRoavel Isabelle.
These systems can be, and are, implemented following the LCF architectuvatjuged. In these
systems variables come from an infinite ‘sea’ of free variables, and ingfiealdheory there iso
context keeping track of the variables.

e More advanced type theories, often called type theory daipendent typeg hese come from the
Dutch AUTOMATH systems, the Swedish tradition of Martidtype theory, the French tradition
of the Calculus of Constructions and variations on the Edinburgh Logieah&vork. Their im-
plementations include Coq, NuPRL, Twelf, Agda, Lego, Plastic and Epigrathe logical theory
of these systems theiga context keeping track of the variables.

For this second style of type theory the pure LCF approach is not ateadtineapp function will need
to check whether the contexts in which the terms live are compatible, which wiktdlyeexpensive, if it
needs to be done for the type-checking of each function application.

For this reason actual type-theoretical proof assistants have a lgtimeldifferent kind of interface.
In such a kernel there is no abstract datatyp¢eahs(there just is a—non-abstract—type pgeudo-
termg. Instead there is an abstract type of well-typedtexts which we callcontext here. (There is
also a typepseudocontext, but that is irrelevant here.) The interface then looks like:

mkApp : pseudoterm * pseudoterm -> pseudoterm
add_constant : string * pseudoterm -> context -> context

wheremkApp is just the constructor of the data type of pseudoterms, wheseasonstant is a function
that does the type-checking: a pseudoterm will only be added to the taitex it has been type-
checked. (These are the actual names of the functions in the kerned Gfoilp system. The types of
those functions in Coq are essentially what is presented here. Thedypé&oterm is calledconstr in
Coq, while the typeontext is calledsafe_environment.) The system also has a global variable

global_env : context ref

corresponding to thstateof the system in which the user works. It is not part of the kernel (afatinis
changed back by an undo operation), but as there are no intereséregiops combining two different
contexts, only one globatontext is ever relevant, the one given by the contents of this variable.

Although the architecture with contexts that we described is purely funtijass the Coq kernel),
the fact that the actual implementation has this global variable means that itigseather ‘stateful’
way. The desire to investigate a possible LCF-style kernel for type ttibatys ‘less stateful’ motivated
this research. In the conclusions we will address the question whettsythef type theory we present
here will lead to such a type-checking architecture.

1.2 Approach

The approach we will follow here is to imagine there to be an ‘infinite conteXed#& ... For each type-
correct typeA this context will have infinitely many variabled. It should be stressed that tfsshould

be considered to just be a labelsting. Reduction will never happen inside thesg Also,x®* andx?

will be differentvariables, even wheftandB are convertible, or even if they aceequivalent. Note that
the (free) variables i themselves will also be of shapﬁ: this means that the variables themselves, as
well as the terms, have a recursive tree-like structure.

4 Pure Type Systems without Explicit Contexts

For example, a variable corresponding to the successor function aalnambers looks like:
If we use numbered names for the variables, this might become:

Xéé*Xé
So the “small price” alluded to above is that a free variailén a well-typed term carries with it the
(well-founded) history of how it comes to be well-typed; that is, the l#beitnesses the validity of the
context extensiol, x; : A.

Now our systems will have judgmen#s: B, which should be interpreted &s + A : B. For this
reason we call the general approach to type theory introducedlhgrgéusing the name of the context
as the name of the system). Note thatis not a single system: each type theory will have gVvariant'.

The T, approach has the essential feature that there are two differentclafsgariables. There
are the variables that come from thg context (the ‘free’ variables), and then there is another kind of
‘bound’ variables. When thinking about our systems one might imagine adignBndices for the bound
variables, although the presentation we give here uses named var@itlesr as well.

Although we expect many type theories to have.avariant, here we only consider the class of type
theories called Pure Type Systems [2] (PTSs). That way we keeptleieryoncrete, and it allows us
to prove a precise correspondence between PTSs in the traditionalrefybeiaversion i ., style.

One should note that in., any type will be inhabited, simply because there are free variables of ever
type: in particular, just as in traditional treatments of logic, all domains angneess$ to be inhabited.
This is in essence the same as in the version with contexts, except thaesiaties are there explicitly
recorded in the context.

1.3 Related Work

To our surprise, we found little published work investigating such an a&gbrtodependentype theory.

In Church’s original formulation osimpletype theory [5], variables, both freend bound, are anno-
tated with their types, writing for examplex?.f9~%x9. (whereas in our formulation we would write
Axa*.f9° % x) Girard adopted ‘Church-style’ in the account of System F in his thekidriheither
system ddermvariables occur in types, whilypevariables are not regulated by an explicit context. In
these non-dependent type theories, contexts are not strictly neededsie one can define the different
syntactic classes — types, terms — in stages. One can regard our dpasoextending that of Church
to dependent types, but optimised to avoid the need to consider substitutitelis damboundvariables
which otherwise might arise in the application rule.

Conor McBride (private communication) observed that Pollack’s LEGO implaation already
supported thé ., idea, and this idea was then used in his OLEG extensions, and subsequehdy in
architecture of EIGRAM 1. However, this approach has not been treated theoretically as weelo he

The explicit distinction between free and bound variables on a syntactiakesady can be found in
[15]. The motivation there was to avoid capture during substitution whileikgepclose correspondence
with the informal presentation of PTSs with named variables, rather than hgiveta T .,’ presentation,
as here. Various approaches to representing binding are discug&&d, iwhich considers named free
variables and de Bruijn index bound variables one of the best optiommdohanisation. Indeed, in
ongoing work[10] the second author has formalised one half of thespondence proved in Section 4
in such a style. We expand on the niceties of this formalisation in Section 5.

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 5

Elsewhere, Pollack considered presentations of type theory sepatreityping judgment from that
for context well-formedness [17], although judgments are still ‘in contéittis allows a subtle range of
issues to be explored, especially regarding closure umemmversion, here treated only informally.

Most significantly, but starting from a rather different point, Sacer@otn considered the problem
of proof-checking in the setting of a distributed library, and hence thel@no of how toreconstructa
context in which a given term may be successfully type-checked [18% Work (elaborated in [18], and
forming the basis of the Matita system) goes beyond the standard PTS setigidered in this paper.
It identifies a subtle problem which arises when attempting to merge contextsd{irg definitions) in
the presence of global constraints (such as universe levels).

Added in proof. Between acceptance of the final version of this paper and this finabmeisur
attention was drawn to the recent work of Matthias Boespflug [4], whiclf itskerences an earlier
(2009) account of our ideas. By contrast with our presentation, whkighrely first-order, Boespflug
uses higher-order abstract syntax (HOAS), with a view to implementation.

1.4 Contribution

We present a different approach to type theory, much closer to the wagalsystems usually are
presented than the standard presentation, in which free variablestd®umal in a finite context but are
taken to be really free.

We validate our approach by proving two theorems, 13 and 19 below]isktap a straightforward
correspondence between the standard presentation and the vegeritpd here.

1.5 Outline

The structure of the paper is as follows. In Section 2 we recall the PTS anlé some of its theory. In
Section 3 we present tHe,-variant of the PTS rules, in which the judgments do not have contexts. In
Section 4 we show that both systems correspond to each other in a nayrahv8ection 5 we conclude
with a prospectus for an implementation based on our variant of the PTS rules

2 Pure Type Systems in the traditional style

Pure Type Systems (PTSs) generalize many existing type systems and tlelasthef PTSs contains
various well-known systems, like systems F and, Elependent type theor¥yP and the Calculus of
Constructions.

Definition 1. For . a set (the set oforty, & C . x . (the set ofaxiomg and#Z C .¥ x .¥ x ./
(the set ofruleg, thePure Type System (., .o/, %) is the typed\ -calculus with inference rules as in
Figure[1. In the rules, the expressions N A, B,C are taken from the set gfseudo-terms7 defined by

T =S|V VT T\AV.T.T|TT.
with ¥ a set of variables, and thie taken from the set gbseudo-contexts
XUiAL XA (K eY A e T, 1<i<n)

with the x all distinct. (We leave the choice of variablamesunspecified at this point, as this does not
matter as long a¥” is countably infinite, but below we will take a specific choice of names.)

6 Pure Type Systems without Explicit Contexts

(sort) P if (s1,%) € &
M-A:s _
(var) —— if x¢ T
MXxXAEX:A
rN-A:s r=M:C _
(weak) if x¢ T
MxAFM:C
N-A:sg INxAFB:s)
(M) if (s1,5,%) € %
M=TIxAB:s3
) NxAFM:B TFIMxAB:s
M= AxAM:TIxAB
N-M:TxAB TEN:A
a
(app MEMN:B[x:=N]
N-M:A I'+B:s
(conv) A=pB
r’-mM:B

Figure 1: Typing rules for PTSs

There is a lot of theory about PTSs and various systems have beerdstutlie context of PTSs.
We do not give a complete overview but referto [2, 3, 7] for details aqpdie@ation. Here we just give
the results that we use in the rest of the paper to prove the equivalemaebea PTS and itS.-variant.

Definition 2. The pseudo-term A is calledell-typedif a pseudo-context and pseudo-term B exist such
thatl - A:Borl -B: Ais derivable. A pseudo-contdxis well-formedif pseudo-terms A and B exist
such that” - A: B is derivable; acontextis a well-formed pseudo-context. The set of variables declared
in pseudo-context is called thedomainof I', dom(I"). For x € dom(I"), let type-(X) denote the ‘type’
assignedto xim: if x : A€ I, thentype-(x) = A. The expressiotype(I”) denotes the set of such ‘types’
occurring inl". The set of well-typed terms df., o7, %) is denoted byferm(A (., <7, %)).

We adopt the usual notions of bound and free variablepnversion €£), substitution B[x := NJ,
used in the rule (app)B-reduction (~g) andB-equality &g, used in the rule (conv)) on pseudo-terms.
The following are well-known properties of PTSs. The relafioa A denotes inclusion betwedn

andA regarded as sets of variable assignments. The third, Permutation, idlargaybStrengthening.

Proposition 3.

Thinning If =M :AandA DT is well-formed, thedh - M : A.

Strengthening If I',x: B,AF M : A and x¢ FV(type(A),M,A), thenl,AF M : A.
Permutation If ,x:B,y:C,AFM:Aandx¢ FV(C), thenl,y:C,x: B,A-M:A.

In proving the equivalence between a PTS and ifsvariant, we need to merge two contexts to
create a new one. Therefore we introduce the following:

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 7

Definition 4. Letl" andA be two pseudo-contexts. We $agndA are compatible notationl” ||| A, if

vx € dom(I") Ndom(A)(typer (X) = type(X)).

Themergeof I' and A, notationl x A, is the pseudo-context,(A\). This isT followed by the
declarations x B € A for which x¢ dom(I").

Note the strong requirement in||| A that the types ok in I' andA should bea-equal, and not just
B-convertible.

Lemma 5. If I andA are contexts and ||| A, thenl” x A is well-formed.

Proof. We writexy : By,...,X,: By for A. I x A is the pseudo-context, (A\T'). AsT is well-formed,
we only have to consider the pakt\I' = x;, : Bi,,..., X%, : Bi,. Butxs :Bs,...,X,-1:Bj;—1 C T, so by
Thinningl™ F B;, : sfor some sors, sol’, x;, : B;; is well-formed.

The same reasoning appliesqo: Bi,, ..., X, : Bi,, So we conclude thdt, (A\ ') is well-formed. [

In our systenT ., the free variables will have special names, as they are labelled by theg. tQ)J
course, consistently renaming the free variables in a judgmen¥ : A does not change its meaning, as
the free variables iM andA are actually bound ifv. For clarity, we introduce this notion explicitly.

Definition 6. The judgmenE - M : A is a-equivalent td™’ = M’ : A’ in case one can be obtained from
the other by renaming bound variables, where we consider the freebl@sian M and A to be bound by
their declaration inl".

3 Pure Type Systems in thd , style

We now make the set of variablgsexplicit. We have two kinds: variableswith a dot on top, intended
to be bound bys andln binders; and variableg' tagged with a pseudo-terf intended to be bound in
the context. This means we takeéin Definition/1 as follows, where?” supplies thanamef variables:

v o= 2|27
Z X|y|z]...|Xo| X1 |*2]...

Clearly the rules for7 and?” are mutually recursive.

Note that although the variables dntendedto be used in a certain way (made precise in Defini-
tion/10 below), in the PTSs as defined above both kindg @fin be used for all purposes. In particular
x can be put in a context” can be bound, and the lab&bf x* need not correspond to the typexjt

Note also that the definition of substitution, and hence the relatigh@duality, is agnostic about
the structure of the annotations of the variables. (The definitieazah Section 2 takey” just as a set).
This means that although

(AA:%.A)B* =3 B*
we have that o
(AR A)BT £ B

We will now define the rules df .. To do this we first have to introduce the notionhafreditarily
free variables of the types of the free variabiles term. We first motivate the need for this notion.

In a PTS, the context takes care that one can only abstract over blgafiaothing else depends on
that variable. In the rules, this is formalised by requiring thatth& abstracted over in thid or A rule

8 Pure Type Systems without Explicit Contexts

must be the last declaration in the context. This ensurescttaes not occur free in any of the other
types in the context. Ifi,, we do not have contexts, so we have to replace this by another side conditio
on the rules. We would like to havelarule as follows:
A:ss B:
My:A B[xA:=y]:s3

(S1,%2,83) € Z

but that is wrong, because then we would be able to form (in PTS termindloghi-type

L FADx Ak P A—x Qi MxXAPXx—x*,a:Ah:PakQah: %
A:x,P:A—% Q : MXAPX—xh:PaFTNy: AQyh: x

But this cannot be correct, becausés not of typePy in the conclusion. I ., this derivation would
read (adding some brackets for readability):

AF o QI'IX:A*.(PA*ﬁ*)'()H* a~ hPA*H* a* "k

rly T A* ,QHXZA*,(PA*—** X)— y hPA*ﬁ* S T

which would be derivable according to thierule above, but clearly undesirable.
Definition 7. Given Me .7, we define th&ereditarily free variables iM, denotechfv(M), as follows:

hfv(s) =hfv(x) = 0
hiv(x*) = {x*}Uhfv(A)
hfv(FN) = hfv(F)Uhfv(N)
hfv(Ax:ANN) = hfv(Mx:AN) = hfv(A)Uhfv(N)
So, where=g basically ignores the structure of the type labels of free variables, weal@them
seriously, collecting the variables (hereditarily) free in the type labels s we

We put as a side condition in thié-rule thatx* should not occur free in any of thigpes of the free
variables in B and similarly for theA rule. We give an explicit definition of this notion.

Definition 8. Given Me .7, we define théereditarily free variables of the types of the free variables in
M, denotechfvT (M), as follows:

hfvT(s) =hfvT(X) = 0
hivT(xX}) = hifv(A)
hivT(FN) = hfvT(F)UhfvT(N)
hfvT(AxAN) = hivT(MxAN) hfvT(A) UhfVT(N)

So, for example hivih™ @) = {PA"~* g A*}. An easy corollary of the definition is that
hVT(M) C hfv(M)

We now give the derivation rules of the system.

Definition 9. The derivation rules of ., are given by the inference rules in Figure 2. ThendA rules
have the side condition thatshould not beapturedn B or M when doing the substitution. That is,
should not be bound by a binder under whiénogcurs.

The side condition on thB andA rules is no restriction as you can go to@requivalent version of
the term afterwards.

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 9

(sort) E if (s1,%) € o7
(var) A:s
var
XA A
A:ss B:s

(M)

if (s1,%,83) € Z andy” ¢ hfvT(B)

M:B NMxABy*:=X:s
AXAMY =X : IxAB* := X

(A) if y* ¢ hfvT(M)UhfvT(B)

M:TMxAB N:A

a
(apD MN : B[x:= N]
M:A B:s
(con) —— A= B
M:B

Figure 2: Typing rules foF

4 The correspondence theorems

We now prove that a PTS and ifs,-variant correspond to each other. FoF & judgmentM : A we
generate a conteXtsuch that” - M : Ais PTS-derivable. Conversely,lif- M : Ais PTS-derivable, we
always have a-equivalent judgment (see DefinitionB)~ M’ : A’ such thatvl’ : A’ is derivable in ..
This specific fornT’ = M’ : A’ we call atype annotategudgment.

Definition 10. A type annotated conteit a PTS is a context of the form
x§t:By,... xE B,

where we moreover assume that all bound variables in {rerd3of the fornx.
Definition 11. Atype annotated judgmeirt a PTS is one of the form
X1 By, X B M A

where:)El :Ba,... ,xﬁn : By is a type annotated context; all free variables in M and A are of the f(ﬁ‘m X
and all bound variables are of the forkra

We now first show the easy direction of our correspondence result:
Lemma 12. Every judgmenit - M : Aina PTS isx-equivalent to a type annotated judgme&hit- M’ : A'.
Proof. From left to right we rename the variables in the context (and of coursdrald andA) to the

‘standard’ names
B: . By .
Xt Bn, .. X" Bn

(Herex; is not a meta-variable for a variable name, but reallyekicit variable namex” in 2".) We
alsoa-rename any bound variable of the foxhto a fresh variable of the form - O

10 Pure Type Systems without Explicit Contexts

As an example, consider the PTS judgment
Alx a:AE (AxAXx)a:A

This does not fit the variable names from o4y so this does not conform to the definitions in this paper.
Instead using our variables it should be something like:

Arsx a i A (ABAXE)a : A

This of course is not &pe annotategudgment, the annotations make no sense at all, but still this is a
perfectly fine PTS judgment as defined in Definition 1.

Now according to the theorem thisdsequivalent to a judgment thittype annotated. And it is, for
example it isoa-equivalent to

Xk, XX (AKX X)X
Or, if one uses more readable names, to
A A (AAR)@

The other part of the easy direction of our correspondence is thateaatypotated PTS judgment
essentially is the same a$ a judgment:

Theorem 13. If the type annotated PTS judgmdnt- M : A is derivable, then M A is a derivable
judgment of the corresponding. type theory.

Proof. By induction on the size of the derivation bf- M : A. We do a case split on the last rule used in
the derivation:

(sort) Immediate.
(weak) Trivial, because if,x:Ais a type annotated context, then certainlis a type annotated context.

(var) By induction we havé : sderivable inl.,, and because the context is type annotated the variable
name must be of the forsf. Hencex® : Ain .

(conv) We know thal =M : Aandrl - B:s. Now A need not have bound variables of the faxpbut
one can rename them to obtaih= A such thaf - M : A’ will be type annotated. Thév : A’ and
B:sin I« by induction and therefore aldd : Bin .

(app) Again, we might need to change the bound variabletrM : MNx:A.B to the dotted kind, to get a
type annotated judgment. Apart from that this case is trivial, just like thequswne.

(M) The conclusion will be of the forr - Mx:A.B : s3. Now if we takey” a completely fresh variable,
thenl,y*: A B[x:= y"] : s, will be a type annotated judgment, as well as baimgquivalent to
I,x:AF B:s,. Accordingly, letB' := B[x := y*], so that8 = B'[y* := X|.

Clearly nowy* ¢ hivT(B') becausd ,y* : Al B : s, so all type annotations will be typable i
which does not contaiy’.

By inductionA: s; andB' : s, in ., and becausg® ¢ hfvT(B') we get thaflxAB[y* := X : s3
in . But this is precisely1xAB: s;.

(A) This case essentially follows that of the previous one.

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 11

The other direction of our correspondence—frbgto traditional PTS style—is a bit more involved.
We need tesynthesisan appropriate context, and because we build this context by recursonhe
type derivation, we need to merge these synthesised contexts wsifgr this we need a number of
lemmas involving type annotated contexts in PTSs.

Lemma 14. If I andA are type annotated contexts, thien|| A.

Proof. If x* € dom(I") ndom(A), thenx®: Ac T andx*: A< A, of course A= A and this is what we
need to prove according to Definition 4. O

Lemma 15. If I is a type annotated context with x dom(I"), I - M : B and X ¢ hfvT(M, B), then
3ACT (A XA:AF-M:B)

Proof. Write I = '1,x* : A T2, and supposg® € dom(I",) with x* € FV(C). If y* € FV(M,B), then
xA € hfvT (M, B), contradiction. S§© ¢ FV(M, B). This means that all declaratioys: Cin I, for which
xA € FV(C) can be removed by Strengthening (Proposition 3), starting from the rightteokration in
IM>. We end up with a judgment

Fr,x*:ATH5FM:B
with I, C ', andx” ¢ type(I';). Using Permutation (Proposition 3), we conclude that™,, x* : At
M : B and we takd 1,5 for A. O

Corollary 16. If ' =M : B is a type annotated judgment, there if\& " such thatA+ M : A and
dom(A) C hfv(M,B).

Proof. Letx” € dom(I") andx” ¢ hfv(M,B). Thenx” ¢ hfvT(M,B), so (according to Lemma 15), there
is aA C I such thatd, x* : A- M : B. But alsox” ¢ FV(M,B), so by Strengthening (Proposition 3),
AFM:B.]

So, inT F M : B, we can always make the contdxtso small that its domain is within the set of
hereditarily free variables dfl, B. The other way around, the hereditarily free variableMoB should
be in donil):

Lemma 17.If I - M : B is type annotated, therfv(M,B) C dom(I").
Proof. We provel - M : B = hfv(M) C dom(I"), by induction on the derivation and then we are done,
because if - M : B, thenl" - B: sfor some sors, orB is a sort.
(sort) Immediate.
(var) By induction, hfyA) C dom(I"), so hfx*) C dom(I",x*: A).
(conv) By induction, hfyM) C dom(I"), so we are done.
(app) By induction, hfyF) C dom(I") and hiyM) C dom(I"), so hi\F M) C dom(I").
(M) By induction, hfA) € dom(T") and hfyB) C dom(I",y* : A), so hf(Mx:A.B[y* := x]) C dom(I").

(A) By induction, hfyM) C dom(T",y*: A) and hfiyMxA.By* := x]) € dom(T"), so hf(A) dom(I"),
and hence hffA xAM[y* := x]) C dom(I").

O]

The more difficult direction of our correspondence now follows:

12 Pure Type Systems without Explicit Contexts

Lemma 18. Let M: A be a derivabld ., judgment. Then all free variables in M and A have the fofm x
and all bound variables have the form

Proof. By induction on the derivation d¥l : A. Ol

Theorem 19. Let M: A be a derivabld ., judgment. Then there is a type annotated judgnientv : A
derivable in the associated PTS, such thatontains exactly the variables irffv(M) U hfv(A).

Proof. By induction on the derivation d¥1 : A we show there exists a type annotated conlfiéil, A)
such thaf" (M,A) - M : A. Note that” (M, A) depends on thderivationof the judgmeni : A, not just
on the term3vi andA.

(sort) Immediate.
,S)FA:s Sol(As),x": A XA A

A.S)
(conv) By induction] (M,A) =M :Aandl(B,s) - B:s, and we also know tha =g B.
B,s)

(var) By induction]" (
(
Sol(M,A) x I'(F M : B by Thinning and the (conv) rule.
(
)
(

)

(app) By induction] (F,Mx:A.B) - F : NMx:A.Bandln(M,A) - M : A
Sol (F,Mx:A.B) x '(M,A) - F M : B[x:= M] by Thinning and the (app) rule.

(M) By induction,l (A,;s1) FA: s andln(B,s) FB: sp.
If YA ¢ T(B,sp), thenl(A,s1) x I'(B,sp),y*: A - B: 5, so by Thinning and thdT) rule we have
M(A) xT(B,s) FNxABYA =X : s3.
If y* € dom(T'(B,s;)), thenA,y* : A B: s, for someA C I'(B,s,). So by Thinning and the)
rule we have (A, s1) x AFMXABY* =X : 3.

(A) By induction, we obtair (M,B) - M : B andl (MxA.B[y* :=X],s) - MxAB[y* :=X] : s.
If y* ¢ dom(I'(M,B)), thenl" (A, s;) x I'(M,B),y": A - M : B. So by Thinning and theA(rule,
we havel (Mx:ABy" :=X|,8) x '(M,B) - AXAM[y* := x| : IxABly* := X].
If y* € dom(I" (M, B)), thenA,y* : A= M : B for someA € I (M, B), by Lemma 15. So by Thinning
and the 4) rule, we havd (MxAB[y* :=X],s) x AF AXAM[y* := X : MxABy" ;= X.

By Lemma 17, dor(l (M, A)) D hfv(M,A). Corollary 16 lets us strengthen the contextita ' (M, A)
such thath - M : A and donfA) = hfv(M, A). O

Corollary 20. Let
M:A

be a derivablel ., judgment. Take all variables of the forrft ccurring in hfv(M) U hfv(A), and put
them inany order >¢11,...,xf:" such that if ﬁ* occurs in A then k< I. Then the following judgment is
derivable in the PTS:

XA AgEM A

Proof. From the previous Theorem using Permutation. O

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 13

5 Conclusion and Further work

There are three obvious continuations of this work:
1. The firstis to investigate to what extent other type theories than the RIi8sead ., presentation.

2. The second is to see how well the approach presented here caadbasus basis of an LCF-style
kernel for type theory.

3. The third is to formally develop the theory presented in this paper in a pssidtant.

With respect to the first point. we expect most type theories to hdueaariant, although the obser-
vations about universe inconsistency [19] arising from merging ctsiteay complicate the picture for
applied type systems such as that of Coq. More important is to investigateut@proach needs to be
adapted to support type theories with definitions. As previously noted yimeah implementation, the
definitions for defined constants form a more significant part of the rtaitewe are eliminating than
the free variables.

We are currently investigating the second point, developing an OCaml impletioerf@ar the PTS
AP extended with definitions (a system corresponding to the logical framelylalong the lines of
this paper. The main question is how expensive, computationally, the two fotjaperations are:

e The substitutiongy” := X] that occur in thel andI rules.
e The check of the side-conditioft ¢ hfvT(M,B) in theA andI rules.

The first is in some sense ‘local’, because it does not look inside cdmshnitions in the environment.
To make the second reasonably efficient will be harder. It is possibleesd to considethreekinds
of variables, distinguishing (¥ bound variables, (2)* variables to be substituted with bound variables
later (essentially, theigenvariablesf the (1) and @) rules), and (3X* variables that do remain free,
so they may be considered as ‘axiomatic constants’ of the system.

In such a system, it is essential that the implementation language can use pquméty to effi-
ciently determine equality of terms (and in particular, equality of annotations iablaroccurrences).
This motivated our choice of OCaml, which is such a language. Although imD@e comparison
function “=” does not have this feature (because floating points NaNs are nottmkerequal to them-
selves, the system never looks at pointer equality when evaluating §”), the comparison function
“fun x y -> Pervasives.compare x y = 0" does.

We are currently working on the third point as well. In ongoing work [1@ second author has
formalised a large part of the theory presented in this paper up to theifgstidn of the correspondence
theorem in the proof assistant Coq. However, the presentation in thislfdewelopment is slightly
different from that of this paper.

e Firstly, we distinguish bound from free variables at the level of PTS g¢is¢erms, following
existing practice, established since the third author’'s work with Pollack in 9#96<1[14, 15].
Our informal presentation above uses named variables in each case;dakeslocally named
approach, whereas the formalisation usesldlcally namelessepresentation: de Bruijn indices
for bound variables and names for free variables. Because we makifitience at the level of
PTS pseudo-terms already, we have a canonical representativacfoteem and therefore need
not worry aboutr-equivalence. For further details of both approaches, see [186; &xample].

e Secondly, variable binding in th€lj and @) rules ofl" ., is handled by substituting free variables
for bound variables, rather than bound for free as in Section 3. Thisehas been used success-
fully in other formalisationsibid.), and emphasises the conceptual priority of free variables over

14 Pure Type Systems without Explicit Contexts

bound. Recent work by Pollack and Sato compares the two approaclzedetailed account of
canonical representation for languages with binding [20].

Based on the methodology described in [1], we have combined the localljesspeesentation with
co-finite quantification to obtain strong induction principles. To be sure trat@-finite presentation is
adequate we have proved it to be equivalent to an exists-fresh pxtisen

For example thell) rule, in respectively exists-fresh and co-finite presentation, is asv®llo

A:s B0=x':s
MAB:s3

(N exists-fresh if (s1,%,%3) € Z andx? ¢ hiv(B)

A:s; Vx¢L.B0=x:s
MAB:s3

(M co-finite) if (s1,%2,53) € Z andL Cjpjte ¥/

Observe that we requiré* ¢ hfv(B) instead oi” ¢ hfvT(B) (this was also observed by John Boyland).
The reason for this is that we have to bind every occurrence of thedreblex® in B[0 := x*], hencex”
should not be in FYB) either. While the condition is (potentially) more expensive to check, it removes
the need for Definition[8, in favour of the (conceptually) simpler Definition 7.

The other direction of the correspondence theorem uses the seopedtygy Strengthening, of Propo-
sition[3 in an essential way. This presents two difficulties: a practical amee the existing formalisa-
tions of this lemma are highly non-trivial [15]; and a theoretical one, namelywie maynot be able to
establish a correspondence between traditionalianpresentations of a given type theory without first
establishing strengthening.

More interestingly, from the point of view of the pragmatics of formalisation this direction it is
essential to abstract over the kinds of free variables used in the definftiemS judgments. At first
this does not seem troublesome, however, many definitions and theorerosjdst depend on the kind
of free variables but also on finite sets of free variables. Hence walsoerequired to abstract over
various operations on such finite sets. The recently developed finite seyI{iB], based on the new
type classes feature in Coq, might be very useful in implementing this abstractio

Acknowledgments Thanks to Jean-Christophe Fitre for details about the architecture of the Coq
kernel. We are grateful to the anonymous referees, and to the audiehEMTP, especially John Boy-
land, Brigitte Pientka and Andrew Pitts, who made several helpful remeskecially concerning related
work. This research is partially funded by the NWO BRICKS/FOCUS ptdigRPA: Advancing the
Real use of Proof Assistants” and the NWO clustesiDANT .

References

[1] B. Aydemir, A. Charg@raud, B. C. Pierce, R. Pollack & S Weirich (2008ngineering Formal Metatheory
In: POPL'08 ACM, pp. 3-15.

[2] H. Barendregt (1992)Lambda Calculi with typesin: S. Abramsky, Dov M. Gabbay & T.S.E. Maibaum,
editors: Handbook of Logic in Computer Science, VolumeRJP, pp. 117-309.

[3] H. Barendregt & H. Geuvers (2001Proof Assistants using Dependent Type SystdmsA. Robinson &
A. Voronkov, editors:Handbook of Automated Reasonijrigjsevier, pp. 1149-1238.

[4] M. Boespflug (2010)Context-free Pure Type SystenSaibmitted to POPL.
[5] A. Church (1940):A Formulation of the Simple Theory of Typds Symbolic Logids, pp. 56—68.

H. Geuvers, R. Krebbers, J. McKinna & F. Wiedijk 15

[6]
[7]
(8]
9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]
(23]

[24]

N.G. de Bruijn (1979)Wees contextbewust in WORuclides55, pp. 7-12.
H. Geuvers (1993)Logics and Type SystenBh.D. thesis, Nijmegen University.

J-Y. Girard (1972): Interprétation fonctionelle eg&limination des coupures de l'aritrétique d’ordre
sugerieur. Ph.D. thesis, UnivergtParis VII.

M. Gordon, R. Milner & C. Wadsworth (1979)Edinburgh LCF: A mechanised logic of computation
LNCS78. Springer.

R. Krebbers (2010)A formalization of ., in Cog http://robbertkrebbers.nl/research/gammainf/.

J. Lambek & P. Scott (1988)introduction to Higher-Order Categorical LogicNumber 7 in Cambridge
Studies in Advanced Mathematics. CUP.

K. Lambert (1963)Existential import revisitedNotre Dame J. Formal Logi&(4), pp. 288—292.
S. Lescuyer (2010)Containers http://www.lri.fr/~lescuyer/Containers.en.html.

J. McKinna & R. Pollack (1993):Pure type systems formalizedn: J-F.Groote & M. Bezem, editors:
TLCA93, LNCS664, Springer, pp. 289-305.

J. McKinna & R. Pollack (1999)Some lambda calculus and type theory formalized\utomated Reasoning
23, pp. 373-409.

E. Mendelson (1964)ntroduction to Mathematical Logicvan Nostrand.
R. Pollack (1994)Closure under alpha-conversioin: TYPES '93 LNCS 806, Springer, pp. 313-332.

C. Sacerdoti Coen (2004Knowledge Management of Formal Mathematical Theories atetactive Theo-
rem Proving Ph.D. thesis, University of Bologna. Technical report WE3-2004-05.

C. Sacerdoti Coen (2004)Mathematical Libraries as Proof Assistant Environmenti: A. Asperti,
G. Bancerek & A. Trybulec, editorsyKM2004, LNCS 3119, Springer, pp. 332—-346.

M. Sato & R. Pollack (2010)internal and External Syntax of the-calculus J. Symbolic ComputatioA5s,
pp. 598-616.

P. Severi & E. Poll (1994)Pure Type Systems with definitioms. Logical Foundations of Computer Science
'94, LNCS 813, Springer, pp. 316-328.

D. van Dalen (1980)Logic and StructureSpringer.

J.A. Vaughan (2006)A Review of Three Techniques for Formally RepresentingaldéiBinding University
of Pennsylvania CIS Technical Report Number MS-CIS-06-19.

F. Wiedijk (2009): Stateless HOL In: J.W. Klop, V. van Oostrom & F. van Raamsdonk, editotgber
Amicorum for Roel de VrijerVrije Universiteit Amsterdam, pp. 227—240.

http://robbertkrebbers.nl/research/gammainf/
http://www.lri.fr/~lescuyer/Containers.en.html

	Introduction
	Problem
	Approach
	Related Work
	Contribution
	Outline

	Pure Type Systems in the traditional style
	Pure Type Systems in the style
	The correspondence theorems
	Conclusion and Further work

