
LFM 2004 Preliminary Version

A logical framework with explicit conversions

Herman Geuvers and Freek Wiedijk 1,2

Department of Computer Science, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract

The type theory λP corresponds to the logical framework LF. In this paper we
present λH, a variant of λP where convertibility is not implemented by means of
the customary conversion rule, but instead type conversions are made explicit in
the terms. This means that the time to type check a λH term is proportional to
the size of the term itself.

We define an erasure map from λH to λP , and show that through this map the
type theory λH corresponds exactly to λP : any λH judgment will be erased to a
λP judgment, and conversely each λP judgment can be lifted to a λH judgment.

We also show a version of subject reduction: if two λH terms are provably con-
vertible then their types are also provably convertible.

1 Introduction

1.1 Problem

This paper addresses the question whether a formal proof should be allowed
to contain the formal equivalent of the sentence ‘this is left as an exercise to
the reader.’ To explain what we mean here, consider the following ‘proof’:

Theorem. The non-trivial zeroes of Riemann’s ζ(s) function all lie on the
complex line <s = 1

2
.

Proof. There exists a derivation 3 of this statement with a length less than
1010

100

symbols (finding it is left as an exercise to the reader). Therefore
the statement is true. 2

1 Thanks to Thorsten Altenkirch for the suggestion to use John-Major equality in our
system.
2 Email: {herman,freek}@cs.kun.nl
3 The formal system in which this derivation is constructed does not really matter. Take
any system in which one can do practical formal proofs. Some version of ZFC, like Mizar.
Or HOL. Or Coq. It does not matter.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Geuvers and Wiedijk

Now suppose that the statement in the proof about the existence of the deriva-
tion is true. 4 Then would this be an acceptable proof of the Riemann hypoth-
esis? Can we really accept the number 1010

100

(which is the only interesting
thing that this ‘proof’ contains) to be a proof here? Somehow it does not
seem to contain enough relevant information.

At the TYPES meeting in Kloster Irsee in 1998, there was an interesting
discussion after the talk by Henk Barendregt, where he had explained and
advocated how to use the βδι-reduction of type theory to make Coq [12] auto-
matically do calculations during its type check phase. This uses the technique
of reflection (see e.g. [3,10] for examples and a discussion), where part of the
object language is reflected in itself to make computations and reasoning on
the meta-level possible within the system.

Most people clearly considered this way of using Coq’s convertibility check
to be a feature. The only dissenting voice came from Per Martin-Löf, who did
not like it at all and seemed to consider this to be a bug. We do not have an
overview of todays opinions, but the community seems to be quite unanimous
that this kind of ‘automatic calculations by type checking’ is a good thing.

In the Automath system [8] the main performance bottleneck was the con-
vertibility check (if the calculated type of a term M is N , but it is used in
a context where the type should be N ′, then the system needs to verify that
N =βδ N

′.) In fact, the inefficiency of the convertibility check meant that cor-
rectness of Automath was in practice only semi-decidable. Although in theory
it is decidable whether an Automath text is type correct, in practice when it
is not correct the system often just would be endlessly reducing and would
not terminate in an acceptable time anymore. 5 For this reason the Automath
system from the seventies just gave up after having failed to establish con-
vertibility after some given number of reduction steps. Automath apparently
searched for a ‘convertibility proof’. This proof would have to be rediscovered
every time the Automath terms would be type checked, and it would not be
stored in a ‘convertibility proof term’.

The LF system [11] (currently implemented in the Twelf system [5]), which
is the best known logical framework, has – like Automath and Coq – a con-
version rule. But the HOL system [4,6] does not. In HOL β-reduction is not
automatically tried by the system, but is one of the derivation rules of the
logic. Similarly δ- and ι-reductions are performed using the rules of the logic.
If one considers a HOL ‘proof term’ that stores the HOL rules that have been
used to obtain a certain theorem [2], then this proof term somehow documents
the ‘reduction information’ that is not available in a proof term from the type
theoretical/LF world. 6

4 Which of course we do not know. But suppose.
5 This problem is less noticeable in Coq because there many definitions are ‘opaque’ (they
cannot be unfolded).
6 Of course, as the HOL logic does not have dependent types, this kind of reduction is
much less important in the first place.

2

Geuvers and Wiedijk

The goal of this paper is to investigate whether it is possible to have a
system close to the systems from type theory, but in which the convertibility
of types is explicitly stored in the proof terms (like it is done in HOL). In
such a system the type checker will not need to do a convertibility check on
its own. Instead the term will contain the information needed to establish
the convertibility. In such a system the type of a term will be unique, instead
of only being unique up to conversion. 7 Because of all this, type checking a
term will be cheap. If we consider the substitution operation and term identity
checking to take unit time, the time to type check a term will be linear in the
size of the term.

In the system that we describe in this paper, checking a proof matches
much more the image of ‘following the proof with your little finger, and check-
ing locally that everything is correct’ than is the case with the standard type
theoretical proof systems.

1.2 Approach

We define a system called λH. 8 This system is very close to λP , the proper
type system that corresponds to LF. However, there is no conversion rule.
Instead conversions are made explicit in the terms. If H is a term that shows
that A is convertible to A′, which we will write as

` H : A = A′

and if the term a has type A, then the term aH (the conversion H applied to
a) will have type A′.

Note that in our system we have explicit ‘equality judgments’ just like in
Martin-Löf style type theory [9]. However there is a significant difference. In
Martin-Löf style type theory there are no terms that prove equalities. The
equality judgments in such theories look like:

` A = A′ : B

and the equality is on the left of the colon. In contrast, in our system two
terms that are provably equal do not need to have the same computed type,
so there will not be a common type to the right of the colon. Instead we will
have a proof term, and so our equality will be to the right of the colon.

The fact that two terms in our system that occur in an equality judgment
do not need to have computed types that are syntactically equal, means that
our judgmental equality is a version of John-Major equality [7].

7 So in such a system the type of a term will be (λx:A.B) a, or it will be B[x := a], but
not both.
8 The ‘H’ in the name of the system reflects the letter that we use for the convertibility
proof terms. So λH is ‘the logical framework with Hs’, i.e., with convertibility proofs.

3

Geuvers and Wiedijk

1.3 Related Work

Robin Adams is working on a version of pure type systems that have judg-
mental equalities in the style of Martin-Löf type theories [1]. However, he
does not have terms in his system that represent the derivation of the equal-
ity judgments. Also, he does not represent the conversions themselves in the
terms. Therefore in his system more terms are syntactically identical than in
our system. Another difference is that he develops his system for all functional
pure type systems, while we only have a system that corresponds to λP .

1.4 Contribution

We define a system λH in which type conversion is represented in the proof
term. We show that this system corresponds exactly to the proper type system
λP . We also show that this system has a property closely related to subject
reduction.

The λH system is quite a bit more complicated than the λP system. It
has 13 instead of 4 term constructors, and 15 instead of 7 derivation rules.

1.5 Outline

In Section 2 we define our system. In Section 3 we show that it corresponds to
the λP system. In Section 4 we show that an analog of the subject reduction
property of λP holds for our system. In Section 5 we define a weak reduction
relation for our equality proof terms that is confluent and strongly normalizing
and that satisfies subject reduction. Finally, in Section 7 we present a slight
modification of our system, where we do not allow conversions to go through
the ill-typed terms. Such a system corresponds more closely to a semantical
view upon type theory.

2 The system λH

Definition 2.1 The λH expressions are given by the following grammar (the
syntactic category V are the variable names):

T ::=2 | ∗ | ΠV :T .T | λV :T .T | T T | T E

E ::= T̄ | E† | E · E | β(T) | ι(T) | {E , [V]E} | 〈E , [V]E〉 | EE

C ::= | C,V : T

J ::= C ` T : T | E : T = T

The T are the terms of the system, the E are convertibility proofs, the C are
the contexts, and the J are the judgments. The sorts are the special cases of
T that are the elements of {2, ∗}.

Definition 2.2 We define the erasure operation recursively by:

4

Geuvers and Wiedijk

|x| ≡ x

|2| ≡2

|∗|≡ ∗

|Πx:A.B| ≡Πx:|A|.|B|

|λx:A.b| ≡λx:|A|.|b|

|Fa| ≡ |F ||a|

|aH | ≡ |a|

It maps λH terms to λP terms and is extended straightforwardly to contexts.

There are two kinds of judgments in λH: equality judgments and typing
judgments. The first are of the form H : a = b, where H codes a proof of
convertibility (through not necessarily well-typed terms) of a and b. The rules
for equality judgments are independent of typing judgments. In the rules for
the typing judgments, equality judgments appear as a side-condition (in the
rule for conversion).

Definition 2.3 The rules that inductively generate the λH judgments are
the following (in these rules s only ranges over sorts):

definitional equality

Ā : A = A

H : A = A′

H† : A′ = A

H : A = A′ H ′ : A′ = A′′

H ·H ′ : A = A′′

β-redex

β((λx:A.b) a) : (λx:A.b) a = b[x := a]

erasing equality proofs

ι(a) : a = |a|

congruence rules

H : A = A′ H ′ : B = B′

{H, [x]H ′} : Πx:A.B = Πx:A′.B′

H : A = A′ H ′ : B = B′

〈H, [x]H ′〉 : λx:A.B = λx:A′.B′

5

Geuvers and Wiedijk

H : F = F ′ H ′ : a = a′

HH ′ : Fa = F ′a′

start & weakening

Γ ` A : s

Γ, x : A ` x : A

Γ ` A : s Γ ` b : B

Γ, x : A ` b : B

box & star

` ∗ : 2

typed lambda terms

Γ ` A : ∗ Γ, x : A ` B : s

Γ ` Πx:A.B : s

Γ ` A : ∗ Γ, x : A ` b : B : s

Γ ` λx:A.b : Πx:A.B

Γ ` F : Πx:A.B Γ ` a : A

Γ ` Fa : B[x := a]

conversion

Γ ` a : A H : A = A′

Γ ` aH : A′

We write Γ ` A : B : C as an abbreviation of Γ ` A : B and Γ ` B : C.
We write A =λH A′ if we have that H : A = A′ for some H. We write ‘A
is type correct in context Γ’ if we have that Γ ` A : B for some B. We
write ‘A is type correct’ if it is type correct in some context. We write ‘Γ is
well-formed’ if some derivable judgment has Γ as the context. Finally we will
write derivability in λH as `λH to distinguish it from derivability in λP which
is written `λP . (If we omit the subscript, it will be apparent from the context
which system is meant.)

The following lemmas about λH are immediate:

Lemma 2.4 Any subterm of a type correct term is type correct (in the appro-
priate context).

Lemma 2.5 If Γ ` A : B : C then C is a sort.

Lemma 2.6 If Γ ` a : A then either Γ ` A : s for some sort s, or A ≡ 2.

6

Geuvers and Wiedijk

Lemma 2.7 (uniqueness of types) If Γ ` a : A and Γ ` a : A′ then A ≡
A′.

We now show that typing is in linear time by defining a type checking
algorithm.

Definition 2.8 Define the function type : C×T → T ∪{false} simultaneously
with the functions wf : C → {true, false} and comp : E × T → T ∪ {false} as
follows.

typeΓ(∗)= if wf(Γ) then 2 else false

typeΓ(2)= false

typeΓ(x)= if wf(Γ) ∧ (x:A) ∈ Γ thenA else false

typeΓ(Πx:A.B)= if typeΓ(A) ≡ ∗ ∧ typeΓ,x:A(B) ∈ {∗,2}

then typeΓ,x:A(B) else false

typeΓ(λx:A.M)= if typeΓ(A) ≡ ∗ ∧ typeΓ,x:A(M) 6= 2

thenΠx:A.typeΓ,x:A(M) else false

typeΓ(MN)= if typeΓ(M) ≡ Πx:typeΓ(N).B
thenB[x := N] else false

typeΓ(M
H)= if typeΓ(M) ≡ A then comp(H,A) else false

wf(〈−〉)= true

wf(Γ, x:A)= typeΓ(A) ∈ {∗,2}

comp(Ā, B)= if A ≡ B thenB else false

comp(H†, B)= comp−1(H,B)

comp(H ·H ′, B)= comp(H ′, comp(H,B))

comp(ι(A), B)= if A ≡ B then |A| else false

comp(β((λx:A.M)N), B)= if B ≡ (λx:A.M)N thenM [x := N] else false

comp({H, [x]H ′}, B)= if B ≡ Πy:A.C
thenΠx:comp(H,A).comp(H ′, C[y := x])
else false

comp(〈H, [x]H ′〉, B)= if B ≡ λy:A.C
thenλx:comp(H,A).comp(H ′, C[y := x])
else false

comp(HH ′, B)= if B ≡ AC
then comp(H,A)comp(H ′, C) else false

The function comp−1 is defined totally similar to comp, with two exceptions:

comp−1(ι(A), B)= if |A| ≡ B thenA else false

comp−1(β((λx:A.M)N), B)= if B ≡M [x := N] then (λx:A.M)N else false

Proposition 2.9 (type checking) Γ `λH a : A if and only if type(Γ, a) ≡ A
and the time for type to compute an answer is linear in the length of the inputs.

7

Geuvers and Wiedijk

Proof. One first proves the fact that, H : B = C if and only if comp(H,B) =
C. Then Γ `λH a : A implies type(Γ, a) ≡ A is proved by induction on
the derivation, simultaneously with ‘Γ is well formed’ implies wf(Γ) = true.
The other way around, one proves simultaneously that type(Γ, a) ≡ A implies
Γ `λH a : A and that wf(Γ) = true implies ‘Γ is well formed’ (by induction
over the length of the input: lth(Γ, a), resp. lth(Γ)).
comp(H,A) is clearly linear in the size of the equational proof term H. To
make sure that type computes a type in linear time, one has to collect the
‘side conditions’ wf(Γ) properly to avoid checking the well-foundedness of the
(local) context for every variable separately.

3 Correspondence to λP

Lemma 3.1 If A =λH A′ then |A| =β |A
′|.

Proof. By induction on the derivation of A =λH A′.

Proposition 3.2 (‘from λH to λP ’) If Γ `λH a : A then |Γ| `λP |a| : |A|.

Proof. By induction on the derivation of Γ `λH a : A, using the previous
Lemma in the conversion rule.

Lemma 3.3 For A,A′ ∈ T ,

(i) if |A| ≡ |A′|, then A =λH A′,

(ii) if |A| =β |A
′|, then A =λH A′.

Proof.

(i) If |A| ≡ |A′|, then ι(A) · ιA′ : A = A′.

(ii) If |A| =β |A
′|, we first prove that |A| =λH |A

′|, by induction on the proof
(in the equational theory of the λ-calculus) of |A| =β |A

′|. Then we
conclude by using that ι(A) : A = |A|. We do some cases
• A ≡ Πx:B.C and A′ ≡ Πx:B′.C ′ and |Πx:B.C| =β |Πx:B

′.C ′| was
derived from |B| =β |B

′| and |C| =β |C
′|. By IH, H0 : |B| = |B′|

and H1 : |C| = |C ′| for some H0, H1, so {H0, [x]H1} : |Πx:B.C| =
|Πx:B′.C ′|.

• A ≡ (λx:B.M)P , A′ ≡ M ′[P ′/x] with |(λx:B.M)P | →β |M
′[P ′/x]|.

Then β((λx:B.M)P) : (λx:B.M)P = M [P/x] and we are done by two
applications of (i) (using |M [P/x]| ≡ |M ′[P ′/x]|).

Proposition 3.4 (‘from λP to λH’) Let Γ be a λP -context and a,A be λP -
terms such that Γ `λP a : A. Then the following two properties hold.

(i) There is a correct λH-context Γ′ such that |Γ′| ≡ Γ.

(ii) For all λH-contexts Γ′ for which |Γ′| ≡ Γ, there are λH-terms a′, A′ such
that Γ′ `λH a′ : A′ and |a′| ≡ a, |A′| ≡ A.

8

Geuvers and Wiedijk

Proof. Simultaneously by induction on the λP derivation, distinguishing
cases according to the last applied rule. We treat four cases and abbrevi-
ate ‘induction hypothesis’ to IH.

• (application)
Γ `λP F : Πx:A.B Γ `λP a : A

Γ `λP Fa : B[x := a]

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. Further-
more, for Γ′ any λH-context such that |Γ′| ≡ Γ, by IH, there are F ′, a′, A′, A′′

and B′ such that Γ′ `λH F ′ : Πx:A′.B′, Γ′ `λH a′ : A′′ and |F ′| ≡ F , |a′| ≡ a,
|A′| ≡ |A′′| ≡ A and |B′| ≡ B. By Lemma 3.3, we have H : A′′ = A′ for
some H, so Γ′ `λH a′H : A′ and Γ′ ` Fa′H : B′[a′H/x]. We are done, because
|Fa′H | ≡ Fa and |B′[a′H/x]| ≡ B[a/x].

• (λ)
Γ, x:A `λP M : B Γ `λP A : ?

Γ `λP λx:A.M : Πx:A.B

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. Further-
more, for Γ′ any λH-context such that |Γ′| ≡ Γ, by IH, there is an A′ such
that Γ′ `λH A′ : ? and |A′| ≡ A. So Γ′, x:A′ is a correct λH-context. So,
by IH there are M ′ and B′ such that Γ′, x:A′ `λH M ′ : B′ and |M ′| ≡ M
and |B′| ≡ B. Hence, Γ′ ` λx:A′.M ′ : Πx:A′.B′ and we are done, because
|λx:A′.M ′| ≡ λx:A.M and |Πx:a′.B′| ≡ Πx:A.B.

• (conversion)
Γ `λP M : A Γ `λP B : s A =β B

Γ `λP MH : B

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. Further-
more, for Γ′ any λH-context such that |Γ′| ≡ Γ, by IH, there is areM ′, A′, B′

such that Γ′ `λH M ′ : A′, Γ `λH B′ : s and |A′| ≡ A, |B′| ≡ B, |M ′| ≡ M .
So |A′| ≡ A =β B ≡ |B

′| and by Lemma 3.3, H : A′ = B′ for some H. Now,
Γ′ `λH M ′ : B′ by the conversion rule in λH and we are done.

• (weakening)
Γ `λP A : ? Γ `λP M : B

Γ, x:A `λP M : B

The IH states that there is an λH-context Γ′ such that |Γ′| ≡ Γ. By IH,
there is an A′ such that Γ′ `λH A′ : ? and |A′| ≡ A. So Γ′, x:A′ is a correct
λH-context, proving part (1). Now, for any λH context Γ′, x:A′ such that
|Γ′, x:A′| ≡ Γ, x:A, we know that |Γ′| ≡ Γ, so, by IH there are M ′ and B′

such that Γ′ `λH M ′ : B′ and |M ′| ≡M and |B′| ≡ B. As Γ′, x:A′ is correct,
we can weaken this to obtain Γ′, x:A′ `λH M ′ : B′ and we are done.

Corollary 3.5 (conservativity of λP over λH) Given a well-formed λH
context Γ and λH type A in Γ,

|Γ| `λP M : |A| ⇒ ∃M ′(Γ `λH M : A ∧ |M ′| ≡M)

9

Geuvers and Wiedijk

Proof. The second part of the Proposition ensures that there are N and B
such that Γ `λH N : B and |N | ≡ M and |B| ≡ |A|. Then B =λH A, due to
Lemma 3.3, say H : B = A. Then Γ `λH NH : A.

4 An analogue of subject reduction

The following proposition is the equivalent for λH of the subject reduction
property of λP . The system λH does not have a notion of β-reduction, so the
statement a→β a

′ in the condition of the statement is replaced by a =λH a′.
Also, we do not get that the type is conserved, it just is conserved up to
convertibility (so if a = a′ and a : A then we will not always get that a′ : A,
but just that a′ : A′ for some A′ with A = A′.)

Proposition 4.1 (‘subject reduction’) If Γ `λH a : A : s and Γ `λH a′ :
A′ : s′ and a =λH a′ then A =λH A′ and s ≡ s′.

Proof. From Proposition 3.2 we get that |Γ| `λP |a| : |A| : s and |Γ| `λP |a
′| :

|A′| : s′ and |a| =β |a
′|. By subject reduction of λP and uniqueness of types

in λP we get that |A| =β |A
′| and s ≡ s′. From Lemma 3.3 we finally get that

A =λH A′.

5 Conversion reduction

Definition 5.1 We define the conversion reduction relation→→ as the rewrite
relation of the following rewrite rules:

AA′

→A

AH·H′

→ (AH)
H′

Ā†→ Ā

H††→H

(H ·H ′)†→H ′† ·H†

We will now list some simple properties of conversion reduction (with some
proofs omitted for space reasons):

Proposition 5.2 Conversion reduction is confluent.

Proposition 5.3 Conversion reduction is strongly normalizing.

(These two propositions even hold for terms that are not type correct.)

Proposition 5.4 (subject reduction for conversion reduction)
If Γ `λH a : A and a→→ a′ then Γ `λH a′ : A.

Proof. By induction on the derivation of Γ `λH a : A one proves that, if
a → a′, then Γ `λH a′ : A, distinguishing cases according to the applied
reduction step. (The a→→ a′ case then follows immediately.)

10

Geuvers and Wiedijk

Although this proposition is a subject reduction property, it is not related to
the subject reduction property of λP , as it does not involve β-reduction.

Proposition 5.5 If Γ `λH a : A and a→→ a′ then a =λH a′.

Proof. If a→→ a′, then |a| ≡ |a′| and hence a =λH a′ by Lemma 3.3.

Proposition 5.6 A term that is in conversion reduction normal form does
not contain the operations Ā and H · H ′, and it only contains the operation
H† in the combinations β(. . .)† and ι(. . .)†.

This last proposition shows that we can do away with the Ā and H · H ′

operations in our system.

6 Discussion

Imagine formalizing the ‘proof’ of the Riemann hypothesis on page 1 in Coq.
Using reflection this would be doable (even constructively) and, if the Riemann
hypothesis has a proof, it would actually be a correct proof too. However, type
checking this proof would be completely infeasible.

Now imagine a version of Coq that is built on top of the logical framework
λH. When type checking this Coq ‘proof’ the system would need to store the
reduction information in the explicit conversions in the λH proof term that it
would build internally. Therefore that proof term would be impractically big.
So in such a system the proof would not be considered to be a real proof as
the underlying λH proof object would be impossible to construct.

For this reason λH adequately represents both our unease with our ‘proof’
of the Riemann hypothesis, as well as Per’s unease with Henk’s talk in Kloster
Irsee.

(Note that this formalization of the ‘proof’ of the Riemann hypothesis
needs ι-reduction, so it is not possible in LF itself. Therefore for our argu-
ment one needs to imagine a version of Coq’s type theory that has explicit
conversions: a system that relates to the calculus of inductive constructions
CiC, in the same way that the system λH relates to λP .)

7 Future work

An interesting thing to do now is to implement λH as the basis of an actual
proof assistant, to see whether it is a practical system for doing actual proof
checking. Part of such a system might be a term lifter that lifts proof terms
from λP to λH, inserting the conversions that were needed to make the terms
type check.

Another issue is whether it is possible to build such a system in a way that
the bulk of the proof terms will not actually be stored in memory, but checked
and discarded while it is being generated. This is the way that HOL checks
its proofs. Henk Barendregt calls this ephemeral proofs. So the question is

11

Geuvers and Wiedijk

whether it will be possible to have a λH implementation with ephemeral proof
terms.

7.1 Avoiding ill-typed terms

In the system λH, we have avoided the conversion rule by introducing proof
terms that witness an equality (and that can be checked in linear time). But
the conversion goes through T , the set of ‘pseudo-terms’. This is in line with
most implementations of proof checkers, where equality checking is done by
a separate algorithm that does not take typing into account. But what if we
restrict equalities to conversions that pass through the well-typed terms only?
This is more in line with a semantical intuition, where the ill-typed terms just
do not exist. We can adapt the syntax of λH to cover this situation and we
put the question whether this system is equivalent to λH. We call this new
system λF . 9

The system λF has the same terms and equality proofs as λH, but the
judgments are different:

J ::= C ` T : T | C ` E : T = T

So an equality in λF is always stated and proved within a context, in which the
terms are well-typed. The rules that inductively generate the λF judgments
are the same as for λH, apart from the rules that involve equalities, which are
as follows (in these rules s only ranges over sorts):

definitional equality

Γ ` A : B

Γ ` Ā : A = A

Γ ` H : A = A′

Γ ` H† : A′ = A

Γ ` H : A = A′ Γ ` H ′ : A′ = A′′

Γ ` H ·H ′ : A = A′′

β-redex

Γ ` A : ∗ Γ, x : A ` b : B : s Γ ` a : A

Γ ` β((λx:A.b) a) : (λx:A.b) a = b[x := a]

conversion

Γ ` a : A Γ ` H : A = A′

Γ ` aH : A′

9 The ‘F ’ stands for ‘fully well-typed’.

12

Geuvers and Wiedijk

Γ ` a : A Γ ` H : A = A′

Γ ` ι(aH) : a = aH

congruence rules

Γ ` A : ∗ Γ, x : A ` B : s
Γ ` A′ : ∗ Γ, x′ : A′ ` B′ : s

Γ ` H : A = A′ Γ, x : A ` H ′ : B = B′[x′ := xH]

Γ ` {H, [x:A]H ′} : Πx:A.B = Πx′:A′.B′

Γ ` A : ∗ Γ, x : A ` b : B : s
Γ ` A′ : ∗ Γ, x : A′ ` b′ : B′ : s

Γ ` H : A = A′ Γ, x : A ` H ′ : b = b′[x′ := xH]

Γ ` 〈H, [x:A]H ′〉 : λx:A.b = λx:A′.b′

Γ ` F : Πx:A.B Γ ` a : A
Γ ` F ′ : Πx′:A′.B′ Γ ` a′ : A′

Γ ` H : F = F ′ Γ ` H ′ : a = a′

Γ ` HH ′ : Fa = F ′a′

(Note that the ι(. . .) of λF just removes one conversion, in contrast to the
ι(. . .) of λH which removes all conversions at once. Removing all conversions
generally leads to a term that is not well-typed, so that is not an option for
λF where all terms have to be well-typed, even in the conversion proofs.)

References

[1] Robin Adams. Pure Type Systems with Judgemental Equality. Unpublished,
2003.

[2] Stefan Berghofer. New features of the Isabelle theorem prover – proof terms and
code generation, 2000.
http://www4.in.tum.de/~berghofe/papers/TYPES2000_slides.ps.gz

[3] H. Geuvers, F. Wiedijk, J. Zwanenburg, Equational Reasoning via Partial
Reflection, in Theorem Proving for Higher Order Logics, TPHOL 2000, Portland
OR, USA, eds. M. Aagaard and J. Harrison, LNCS 1869, pp. 162–178.

[4] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cambridge
University Press, Cambridge, 1993.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin, A framework for defining
logics, in Symposium on Logic in Computer Science, IEEE Computer Society
Press, 1987, pp. 194–204.

13

http://www4.in.tum.de/~berghofe/papers/TYPES2000_slides.ps.gz

Geuvers and Wiedijk

[6] John Harrison. The HOL Light manual (1.1), 2000.
http://www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz

[7] Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999.
http://www.dur.ac.uk/c.t.mcbride/thesis.ps.gz

[8] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Automath,
volume 133 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science, Amsterdam, 1994.

[9] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf ’s Type Theory, An Introduction. Oxford University Press, 1990.
http://www.cs.chalmers.se/Cs/Research/Logic/book/book.ps

[10] M. Oostdijk and H. Geuvers, Proof by Computation in the Coq system,
Theoretical Computer Science 272 (1-2), 2001, pp. 293–314.

[11] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-
logical framework for deductive systems, in Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), ed. H. Ganzinger, LNAI 1632,
1999, pp. 202–206.

[12] The Coq Development Team. The Coq Proof Assistant Reference Manual, 2002.
ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.ps.gz

14

http://www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz
http://www.dur.ac.uk/c.t.mcbride/thesis.ps.gz
http://www.cs.chalmers.se/Cs/Research/Logic/book/book.ps
ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.ps.gz

	Introduction
	Problem
	Approach
	Related Work
	Contribution
	Outline

	The system H
	Correspondence to P
	An analogue of subject reduction
	Conversion reduction
	Discussion
	Future work
	Avoiding ill-typed terms

	References

