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In the present paper, we will discuss various aspects of computable/constructive

analysis, namely semantics, proofs and computations. We will present some of the

problems and solutions of exact real arithmetic varying from concrete implementations,

representation and algorithms to various models for real computation. We then put these

models in a uniform framework using realisability, opening the door for the use of type

theoretic and coalgebraic constructions both in computing and reasoning about these

computations. We will indicate that it is often natural to use constructive logic to reason

about these computations.

1. Introduction

Computing with real numbers is usually done via floating point approximations; it is

well-known that the build-up of the rounding off that is inherent in these computations

can lead to catastrophic errors (Krämer 1997). As a first attempt to prevent this prob-

lem one may use interval arithmetic (Kearfott 1996). A different approach to computing

with real numbers is exact real arithmetic which provides a precision-driven approach to

computation with real numbers (Yap and Dubé 1995). Exact real arithmetic is motivated

by the need for unbounded precision in numerical calculations. Real numbers are infi-

nite objects of which arbitrary good finite approximations can be given. A computable

function over the reals is given by an algorithm that given the desired accuracy of the

output, asks for a sufficiently good approximation of the input to be able to compute

the result. Domain theory provides a systematic approach to interval computations and

exact real arithmetic, using the higher order features of modern programming languages.

A related, but slightly more concrete approach is Weihrauch’s Type Two theory of Ef-

fectivity (TTE). In TTE one considers (Turing machine) computations on streams. Yet

another approach (Markov’s) is to use the function type N → N, which is present in

functional languages, to work directly with Cauchy sequences.

We will illustrate the spectrum between floating point computation and exact real

arithmetic with a small example. Exact real arithmetic has found its main applications

when one wants to answer precise mathematical questions by means of computation, and

therefore we will use an example from mathematics.
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Define a sequence of real numbers by iterating the logistic map:

x0 = 0.5 , xn+1 = 3.999 × xn(1 − xn) .

(Note that the number 3.999 should not be taken to be an approximation of some number

from the real world, but should exactly have this value.) Now we want to determine a

good approximation of the 10000th element in this sequence, x10000. There are four ways

to proceed with this, of increasing sophistication:

1 First we can use floating point arithmetic, using the IEEE 754 numbers implemented

(IEEE Task P754 1985) in the floating point unit of our computer. For instance, we

might run the following small C program.

main() {

int n; double x = 0.5;

for (n = 0; n < 10000; n++)

x = 3.999 * x * (1 - x);

printf("%f\n", x);

}

This will then give the output 0.780738. Now this number is totally unrelated to the

correct answer, which (rounded to 6 decimals) is 0.354494. The sequence that the

program calculates, because of rounding errors and the chaotic nature of the logistic

map, will after the first few terms become essentially unrelated to the actual values

of the sequence. This also becomes very clear if one runs the same program on Intel

hardware which does not exactly follow the IEEE 754 standard. In that case, the

program will print 0.999336.

Note that interval arithmetic implemented using floating point numbers for the bounds

does not help here. In that case the result of the program will be the interval

[0, 0.99975]. While mathematically correct, this is not very informative.

2 The second approach to this problem, which will give the correct answer, is to use

the methods of numerical analysis. One still calculates using floating point numbers,

but with a greater precision. This is the method that the Maple computer algebra

package uses. In the case of this example it turns out that calculating using 1042

digits

will give the correct answer for x104 .

Note that with this approach the numerical analyst is the one that will need to de-

termine the necessary precision, this will not be automatically done by the computer.

For this specific problem determining this precision might not be very difficult, but

for more involved problems it might easily become the time bottleneck in obtaining

the answer (instead of the computation time by the computer.) Also, if this numerical

analyst makes a mistake in his error estimates without this being noticed, then the

answer will be incorrect without this being noticed. Therefore the correctness of the

answer will not only depend on the correctness of the calculation software, but also

on the correctness of the way that one poses the question.

3 The third approach for this problem is to have the computer keep track of the errors

when running the calculation, and then have it rerun the program using a larger

precision as long as the precision of the output is not good enough. That way the
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computer instead of the human will be the one to determine what precision will be

needed.

This approach can both be implemented using interval arithmetic (using bounds with

sufficiently large precision), as well as using sufficiently precise floating point numbers

together with an error estimate. It will be clear that both methods are essentially the

same.

However, with this approach we will have various intervals in our program that are

related in the sense that they correspond to the same exact real number, but without

this correspondence necessarily being reflected in the organisation of the program.

This makes programming using this method more difficult than necessary.

4 The fourth approach is similar to the previous one, but this time one uses a functional

(‘higher order’) data-type. Instead of using the (‘first order’) data-type of intervals one

then uses functions that map desired precisions to intervals. That way the intervals

that correspond to the same real number, but with different precisions, all become

part of one data object in the program.

Note that when using this approach it is important to cache the intervals that all

these functions calculate. Otherwise the same interval might be recalculated many

times, leading to a very bad complexity.

When looking at these four approaches, it will be clear that the last three all calculate the

correct answer, and that they all use a similar amount of running time. This means that

the increase of sophistication between the various methods that we have described does

not correspond to a more efficient way of obtaining the answer to the problem. Instead

it is primarily an improvement in correctness : the ease of getting a correct answer, and

the ease of establishing that this answer is indeed correct.

Several approaches to exact real arithmetic have been implemented, as described in

Section 2.2 below. An interesting question is what are the applications of these programs.

As in the real world all data is inherently imprecise, it can be disputed whether for real-

world applications exact real arithmetic will be an essential improvement over floating

point computation. However, for mathematics its usefulness seems quite clear.

We come back to the question of correctness of algorithms for real arithmetic. In some

modern systematic approaches to program correctness one uses a realisability interpreta-

tion to get a precise and tight connection between proofs and programs. It turns out that

the same can be done here. Most ‘higher order’ approaches, such as Domains, TTE and

Markov’s CRM which we will discuss later, can be unified in a realisability framework.

This means that there is a clear notion of an internal logic to reason about such compu-

tations. As usual when reasoning about computations, this internal logic is constructive.

We will expand on this in section 3.5.

It should be noted that in the transition from floats to a language for exact real

arithmetic with data types there is the usual friction between craft and technology: should

these issues be treated carefully on an individual basis, or do we use the apparatus of,

say, domain theory? A similar tension exists for proofs: do we treat them individually, or

do we use the technology of category theory, realisability and constructive mathematics?

The paper is organised as follows. We will focus on three important aspects of com-
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puting with real number: computations, semantics and proofs. Section 2 discusses repre-

sentations and implementations. Section 3 discusses domain theory, Markov’s recursive

analysis, Type Two Effectivity, coalgebras and realisability. Section 4 contains type the-

ory, program extraction and constructive analysis. We finish with a short conclusion.

2. Computations

2.1. Representations

While in theoretical models of computation real numbers can be considered as anything

between a subset of the rationals and an object in a category, when it comes to practical

computations, we must have a representation of real numbers (or of approximations to

real numbers) that is easily understood by humans and computers. Usually this boils

down to representing real numbers with decimals or bits; even though the intermediate

steps can use other representations, the syntax for input and output real numbers (or

approximations of real numbers) should not be far from the standard representations

used in practice.

This brings up a serious problem: it is well-known that the standard decimal represen-

tation is not suitable for real computations. When multiplying the stream x = 0.333 . . .

(considered as an infinite input) by 3, the multiplication algorithm cannot give the first

digit of the output: there is no way of deciding whether eventually the digit 2 may come

(and then the first digit should be 0) or eventually a 4 may come (and then the first

digit should be 1). Therefore, with the standard decimal representation, the deadlock is

inevitable in calculating the outcome of multiplication, while multiplication is universally

considered to be a computable function. This implies that the standard decimal represen-

tation is not computationally suitable. This shortcoming of the decimal representation

was already known to Brouwer, who in (Brouwer 1921) showed — by means of a so-called

weak counter example — that there are real numbers with no standard decimal repre-

sentation. In modern terms one might state this result as there is no computable map

from, say, the Cauchy representation to the decimal representation of the real numbers.

Or as we will express it in Section 3.3, the decimal representation is not admissible. As

another consequence of the example above we see that the real numbers do not allow an

effective way to compare real numbers, since the problem above arises precisely because

we can not decide whether x < 1
3 or x ≥ 1

3 . Similarly, one does not have an effective

equality test.

With the advent of computers, and partly due to this theoretical shortcoming, partly

in order to have a more efficient and hardware-compatible internal representation, other

representations for real numbers were considered. Some of these non-standard representa-

tions were already known for centuries and others were discovered and further developed

by computer scientists in the course of the 20th century. Knuth (Knuth 1997§ 4) gives a

thorough historical account of various representations for different number systems (in-

tegers, rationals and real numbers). While we do not intend to mention all the different

representation systems we focus on some of the main ideas that are theoretically and

practically important. Furthermore, while a study of different representations for inte-



Constructive analysis, types and exact real numbers 5

gers and rational numbers is relevant for approximative computations with real numbers,

we focus on the various approaches for representing real numbers since this is our main

interest in this paper.

Even though there are plenty of different representations for real numbers, in the

broader context of computable analysis they can be seen as an instance of one of the

few basic approaches. For example many representations that are used as basis of exact

arithmetic implementations are based on the Cauchy sequences. It is fine-tuning of the

details (such as modulus of convergence, or the representations for rational numbers)

that makes the difference between such implementations.

Here we mention the three main classes of representations. Related (but different)

classifications can be found in (Weihrauch and Kreitz 1987; Weihrauch 2000; Gowland

and Lester 2001):

1 Cauchy Sequences. Cauchy sequences are traditionally the way that real numbers

are represented in mathematics. In this approach real numbers are represented by

Cauchy sequences of rational numbers (or some other dense countable Archimedean

subset of the real numbers such as the dyadic numbers). The real number described

by this sequence is the limit under the usual Euclidean metric. The most general

case is the näıve Cauchy representation in which there is no modulus of convergence

required. Although this is quite inefficient, its theoretical importance and its suit-

ability for formalisation has made this representation to be the basis of the first full

implementation of constructive real numbers in a proof assistant and have been used

in formalising the proof of the fundamental theorem of algebra (Geuvers and Niqui

2002). Other constructive formalisations which exist in the literature usually use a

modulus of convergence (Troelstra and van Dalen 1988a; Bishop and Bridges 1985;

Weihrauch and Kreitz 1987).

An important variation on the theme of Cauchy sequences are the so called functional

representations. In this approach real numbers are represented by functions on some

fixed countable set, where the codomain of the function (the elements of the sequence)

need not be rational numbers. The semantics of such a function is always (in some

way) a Cauchy sequence, but the choice of a different domain or codomain can im-

prove the representation. An example of such representation was proposed by Boehm

et al. (Boehm et al. 1986) where Z is used for both domain and codomain of the

function representing a real number. Implicit semantic assumptions make sure that

these sequences (which are not indexed by N, rather by Z) can be mapped to Cauchy

sequences with a predetermined modulus of convergence. This approach forms the

basis of several exact arithmetic packages, especially inside functional programming

languages.

To give a specific example of this representation, if we represent the number x10000 =

0.35449383309125298131 . . . which we defined on page 2, then in a decimal variant

on Boehm’s functional representation, three examples of possible representations for
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this number are

...

−1 7→ 0

0 7→ 0

1 7→ 3

2 7→ 35

3 7→ 354

4 7→ 3544
...

...

−1 7→ 0

0 7→ 0

1 7→ 4

2 7→ 35

3 7→ 354

4 7→ 3545
...

...

−1 7→ 1

0 7→ 1

1 7→ 4

2 7→ 36

3 7→ 355

4 7→ 3545
...

and of course there are uncountably many more. These essentially are all maps that

for each n gives n digits after the decimal point (either rounded up or rounded down).

2 Dedekind cuts. Dedekind cuts are an alternative approach to representing real num-

bers which is based on the least upper bound property of the reals rather than the

Cauchy completeness. A key feature of Dedekind cuts, as compared to other repre-

sentations, is their uniqueness: any real number is represented by precisely one cut.

This feature, which is convenient to reason about cuts, makes it difficult to compute

with them. In computational approaches to Dedekind cuts a set of rational numbers

with additional computational structure is used to represent a real number which

is the least upper bound (or greatest lower bound) of that subset; see (Weihrauch

2000, p. 95) for details. Variations on this class of representations include choosing

the characteristic function of a chosen dense subset of the reals such as dyadic num-

bers (Weihrauch and Kreitz 1987).

Such representations have not been used for practical implementations but have been

considered for reasoning about real numbers in mechanised reasoning. Again (as was

the case with the näıve Cauchy representation) this is due to the theoretical impor-

tance of these representations and their adaptability for use in formal mathematics.

Examples of use of such representations include the formalisation of real numbers in

the HOL theorem prover (Harrison 1994) and the formalisation of the real numbers

that is used in the formalisation of the 4-colour theorem in the Coq proof assis-

tant (Gonthier 2005).

3 Streams of nested intervals. The most standard way of representing real numbers

is the decimal representation. This is a positional representation that falls under the

more general case of radix representations in which a real number is represented by

a stream of digits. In the base b radix representation (b-ary representation) starting

from the first digit and moving to right, the effect of each digit can be seen as refining

the interval containing the real number represented by the whole stream. Thus the

b-ary representation can be seen as an instance of representing real numbers with a

stream of shrinking nested intervals. Any such stream for which the diameter of the

intervals converges to 0 represents a real number: the one that inhabits the infinite

intersection of the intervals.

If we return to our example, in a stream representation the number x10000 could be
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represented by the infinite stream of intervals:

...

[−10, 10]

[−1, 1]

[0.3, 0.5]

[0.34, 0.36]

[0.353, 0.355]

[0.3544, 0.3546]
...

These intervals correspond to the second functional representation on page 6. The

other representations there also correspond to a (different) stream of intervals.

By considering each interval as the image of the previous interval under a continuous

real function one can encode the whole nested collection as an infinite composition

of real maps applied to a base interval. This can be made formal using the following

definition (Niqui 2004§ 5.3).

Definition 2.1 (Generalised Digit Set) Let I be a closed subinterval of the com-

pactification of the real numbers [−∞, +∞]. A set Φ of continuous functions on I

is a generalised digit set for interval I if there exists a total and surjective map

ρ : Φω −→ I (note that Φω denotes the set of streams of Φ) such that for all streams

f0f1 · · · ∈ Φω we have

{ρ(f0f1 . . . )} =

∞⋂

i=0

f0 ◦ · · · ◦ fi(I) .

In other words, if each element x of I is the solitary element of some infinite compo-

sition of elements of Φ and each infinite composition of elements of Φ is a singleton.

We call each element of Φ a digit.

The various representations of this family are characterised by the different restric-

tions that are put on the choice of the digits. In practice usually a finite set of Möbius

maps satisfying some property is chosen as the set of digits while in literature the

larger class of d-contractions is also studied (Konečný 2000). Möbius maps are maps

of the form

x 7−→
ax + b

cx + d
,

where a, b, c, d ∈ C and ad − bc 6= 0. In the context of stream representation for real

numbers the Möbius maps with integer coefficients — also known as linear fractional

transformations (LFT) or homographic maps— are considered. Taking the Möbius

map with integer coefficients to be I-refining (i.e. mapping the closed interval I to

itself) forms the basis of Edalat and Potts’ approach to lazy exact arithmetic (Edalat

and Potts 1997; Potts 1998; Edalat et al. 1999). Restricting this further by taking

c = 0 one arrives at representations by a finite set of affine maps, a subclass which

includes the standard b-ary representations.
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As stated the standard representation is not computationally suitable but the short-

coming is easily fixed by using one of the variants of radix representation. Different

‘fixes’ include changing the base to a non-integer base (eg. the golden ratio base (Di Gi-

anantonio 1996)) or increasing the set of digits by introducing negative digits (eg.

redundant b-ary representation (Edalat and Potts 1997)). Both these workarounds

have been used long before the advent of computers. For example the introduction of

negative digits is traced back to the number system implicit in the work of the 11th

century mathematician Tabari and even used in mechanical computing devices in the

19th century. A detailed historical survey can be found in (Knuth 1997, pp. 205–208).

Our example number x10000, when using a representation with negative digits, has

many different representations. Next to its normal decimal representation

0.35449383309125298131 . . .

it can for instance also be written as

0.3545(−1)38331(−1)1253(−1)8131 . . .

It is also possible to use an infinite set of digits. The most important example where

the set of digits is infinite is a representation based on continued fractions which we

consider as a separate class of representations.
4 Continued fractions For centuries continued fractions have been used to represent

rational and real numbers and elementary functions (Brezinski 1991). As a result

some implementations of exact real arithmetic are based on continued fraction repre-

sentations. Some of such representation can be considered as a subclass of stream rep-

resentations, but the most standard continued fraction representation (the so called

N-fraction) uses finite lists to represent rational numbers and streams for representing

irrational numbers. The digits of the N-fraction representation can be considered to

be the Möbius maps of the form

x 7−→ n +
1

x
n ∈ N .

Taking finite lists and streams of such digits leads to a representation for real numbers

larger than 1 that can be considered for exact arithmetic (Vuillemin 1990; Ménissier-

Morain 1994). One can allow for negative integers (and disallow 0,1 and −1) obtaining

the Z-fractions (Vuillemin 1990; Ménissier-Morain 1994). In the Z-fractions represen-

tation too, the rational numbers are represented by finite lists.

The above (N-fraction and Z-fraction) continued fraction representations serve well

in the context of exact rational arithmetic; however for representing real numbers

they suffer from the same computational shortcoming that exist for standard decimal

representation. In order to overcome this some modifications of these representations

have been studied and used for implementing exact arithmetic (Vuillemin 1990; Lester

2001)

There are several ways to obtain a representation based on continued fractions which

uses infinite streams for rational and irrational numbers alike and therefore fall un-

der stream representations. One way is to use the redundant Euclidean continued

fractions (Vuillemin 1990) which can be seen as an instance of Möbius maps (Potts
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1998§ 7.3). Another way would be to use the Stern–Brocot representation, again

expressible in terms of Möbius maps (Niqui 2004§ 5.7.1).

One can extend the notion of generalised digit set to include maps

ρ : Φ≤ω −→ I

where Φ≤ω is the set of finite lists and (infinite) streams of elements of Φ to obtain

a class of representations that includes the continued fraction representations. But

since such representations are only considered in the context of continued fractions

we preferred to classify them under a separate class.

The example number x10000 is a rational number, of which the N-fraction starts:

1

2 +
1

1 +
1

4 +
1

1 +
1

1 +
1

2 +
1

2 +
1

7 +
1

1 +
1

1 + . . .

The Z-fraction of this number starts:

1

3 +
1

−6 +
1

2 +
1

2 +
1

2 +
1

8 +
1

−2 +
1

−7 +
1

−3 +
1

16 + . . .

In this case the coefficients come from the set {. . . ,−3,−2, 2, 3, . . .} instead of from

the set {1, 2, 3, . . .}. If one allows both negative numbers as well as the numbers 1

and −1 for the coefficients (this is needed to make the representation admissible),

then this number gets many more representations.

2.2. Implementations

In recent years several approaches to exact real arithmetic have been implemented in

various programming languages. Some of them have been considered for real-world ap-

plications especially in the field of visualisation and computational geometry (Yap and



Herman Geuvers, Milad Niqui, Bas Spitters, Freek Wiedijk 10

Dubé 1995; Du et al. 2002). There have also been studies to enhance the existing hard-

ware architectures in the direction of exact real arithmetic (Kornerup and Matula 1988;

Mencer 2000).

There are three groups of implementations of exact real arithmetic. They are all based

on the ideas that were presented above.

— The first group is an implementation of exact real arithmetic as part of a generic

computer algebra package. Examples of such systems are commercial systems like

Mathematica (Wolfram 1996) and Maple (Monagan et al. 1997). These are generally

very fast at basic computations, but sometimes miss the features that are needed for

involved problems.

— The second group are systems and libraries that have specifically been designed for

exact real arithmetic, and that try to be as fast as possible at it. Examples of this are

MPFR from LORIA (Hanrot et al. 2005), GiNaC/CLN by Kreckel (Kreckel 2005),

iRRAM by Müller (Müller 2001, 2005) and RealLib by Lambov (Lambov 2005).

Programs from this group generally are implemented in C++.

— The third group are system that also have been designed for exact real arithmetic, but

not for speed. Mostly these systems are part of an effort to move toward a provably

correct implementation of exact real arithmetic. Examples of systems like this are

Cr by Filliâtre (Filliâtre 2005) (an ML reimplementation of CR, a Java system by

Boehm (Boehm et al. 1986; Schwarz 1989; Boehm 2005)), ERA by Lester (Lester

2005), Few Digits by O’Connor (O’Connor 2005), Bignum by Guy (Guy 2005) and

ICReals by Edalat e.a. (Potts and Edalat 1997; Potts 1998; Edalat 2005). These

systems generally are implemented in a functional programming language like ML or

Haskell. Like the systems in the first group they generally miss the features that are

needed to do advanced computations.

In practice the first group of systems is the fastest at basic problems, and the second

group of systems are the only ones that are suitable for involved problems.

3. Semantics

3.1. Domain Theory

Domains are used to describe the semantics of programming languages, both the data

types and the programs that are definable over them. They also provide a denotational

model for computability, in the sense that the set of continuous functions from one domain

to another is the mathematical counterpart to the set of computable functions (in some

language or computational model). The basic structure in domain theory is that of a

directed-complete partial order (dcpo), i.e. a partially ordered set in which every directed

subset has a least upper-bound. A set A is directed if it is non-empty and every pair of its

elements has an upper-bound in A; the least upper-bound of A is usually denoted by ⊔A.

Sometimes the notion of ‘domain’ is identified with that of a dcpo, but mostly, authors

reserve ‘domain’ for a specific type of dcpo (with additional structure), depending on the

application one has in mind, see (Abramsky and Jung 1994) for an overview on domain

theory and the various notions of domains.
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The interesting functions on dcpos are the Scott continuous ones: the monotone f :

D1 → D2 such that f(⊔A) = ⊔(f(A)) for every directed set A (where the first ⊔ is in D1

and the second in D2). The definable functions in a programming language (i.e. the com-

putable functions in that language) are Scott continuous when interpreted as functions

over a dcpo. The real ‘power’ of Scott continuity lies in the fact that Scott continuous

functions have a least fixed point. Thus, a recursive definition of a (functional) program

can be given a meaning as the least fixed point of the (Scott continuous) functional it

gives rise to.

The ordering on a dcpo is best viewed as an ‘information ordering’ or a ‘definedness

ordering’. A simple example is the flat dcpo of natural numbers N⊥, i.e. the set N ∪

{⊥} made into a poset by letting ⊥ ≤ n for all n ∈ N. Here, the elements are either

‘totally defined’ (we have full information on them) or they are ‘totally undefined’ (we

have no information on them). A more interesting example is the set [N⊥ → N⊥] of

Scott continuous functions from N⊥ to N⊥ ordered point-wise. The everywhere undefined

function λx.⊥ is the least element of this set and f ≤ g for functions f and g if g is ‘at

least as defined’ as f in every element of N⊥. An important fact is that the set of Scott

continuous functions between two dcpos forms a dcpo again.

The idea of ‘approximation’ is important in dcpos: a approximates b (or a is ‘way

below’ b), notation a << b, if, whenever b ≤ ⊔X , then a ≤ x for some x ∈ X (where X

of course ranges over the directed subsets). An element a is compact (or finite) if a << a.

The compact elements of a dcpo form an important set, which is usually written as K(D).

For f, g ∈ [N⊥ → N⊥], f << g implies that f is defined only on a finite set of elements

(f(x) 6= ⊥ for finitely many x). The collection of the functions with a property like f are

also the compact elements of this dcpo. A dcpo is continuous if there is a basis B: a set

of elements such that x = ⊔{y ∈ B | y << x} for all x. Thus, in a continuous dcpo, all

elements can be written as the lub of the basis elements that approximate it. A dcpo D

is called algebraic if the set of its compact elements forms a basis. The adjective ‘ω’ is

added to say that the basis is countable, as in ω-continuous dcpo and ω-algebraic dcpo. In

(Gunter and Scott 1990), the notion of domain is identified with ω-algebraic dcpo. That

ω-algebraic dcpos are of special interest comes from the fact that a continuous function

f : D → E between two ω-algebraic dcpos can be fully characterised (in a countable

way) by its compact elements as follows.

f(x) =
⊔

{y ∈ K(E) | y ≤ f(x′) for some x′ ∈ K(D) with x′ ≤ x}

In the case of computability over the real numbers, some dcpos are of specific interest.

One is the interval dcpo of nested intervals I(R), consisting of R and the non-empty

closed real intervals, ordered by reverse inclusion: I ≤ J if I ⊇ J . This domain was first

proposed, in a slightly different form, by (Scott 1972). The intervals should be understood

as approximations of real numbers, so a smaller interval gives more information, R is the

⊥-element of the information order and singleton intervals {a} are maximal elements.

For the ‘way below’ relation we have that a << b iff b is a subset of the interior of a.

The rational intervals together with R form a countable basis for I(R). A directed subset

of I(R) is a collection of intervals A such that ∩A 6= ∅; the lub of such a directed set
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A is its intersection: ⊔A := ∩A, which is a closed non-empty interval again. The nice

thing about this dcpo is that it generalizes functions from R to R in a simple way to

incorporate partial functions, in such a way that partiality is not just undefinedness, but

may involve some partial information (an interval approximation). A continuous function

f : R → R extends in the straightforward way to a function f̂ : I(R) → I(R); the other

way around, a function g : I(R) → I(R) represents a partial function ḡ from R to R given

by ḡ(x) := y if g({x}) = {y} and undefined otherwise. See (Edalat and Heckmann 2002;

Edalat and Lieutier 2004) for a more detailed study.

RealPCF, a programming language with real as a basic data type of (Escardó 1996),

was designed in such a way that the nested interval semantics would be its denotational

semantics. An interesting feature of RealPCF is that it contains a parallel ‘if’ construct.

It is shown in (Escardó et al. 2004) that this non-sequentiality is an inherent feature of

the nested interval domain. See (Escardó and Streicher 1999; Edalat and Escardó 1996)

for a further discussion of the expressivity of RealPCF.

A second example of a dcpo of interest in this context is the dcpo of finite and infinite

lists over some given pointed dcpo. Typically, the pointed dcpo is A⊥, the flat dcpo

over some finite set A, where the elements of A are the ‘digits’. The dcpo of finite

and infinite lists is then denoted by [A], and the intuitive understanding of an element

[a1, a2, . . . , an] is that of a finite approximation of a real number. The representations

based on streams of nested intervals are instances of this. The ordering on [A] is the

ordering on A⊥ extended to a prefix ordering. Stated differently, [A] is the solution to

the domain equation X = A⊥ × X in the category of dcpos (Niqui 2004§ 4.5).

The TTE model of computable real valued functions (see Section 3.3) uses as represen-

tation of the reals exactly the data-type [A] (under the proviso that it’s ‘admissible’ – see

Definition 3.1 – which excludes the decimal representation). So in TTE a real number is

a digit stream with digits from A and the TTE-computable functions are all continuous.

Similar to the interval domain, which is used as the semantics for programming in

RealPCF, the domain [A] can also be used as the semantics of programming with real

numbers. This has been shown by (Simpson 1998), who uses PCF (of (Plotkin 1977)) as

a programming language and the data type of streams over {−1, 0, 1} as the type of the

reals. In (Bauer et al. 2002), this approach is compared with the one of RealPCF and

it is shown that the expressivity is the same up to second order types. An interesting

aspect is that the PCF based approach is purely sequential. This is due to the fact that

RealPCF uses real as an abstract primitive data type, so special primitive programming

constructs are required to compare two reals, whereas in the PCF based approach one

programs directly with the representations.

3.2. Markov’s Recursive Analysis

Here we will shortly introduce Markov’s constructive recursive mathematics (CRM). His-

torically, this seems to be the first concrete model for exact real computations. We refer

to (Troelstra and van Dalen 1988b; Bridges and Richman 1987; Beeson 1985; Aberth

1980) for more information. In CRM one represents an object by a certain partial re-

cursive function. In this way most of the representations in section 2.1 may be treated.
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For concreteness let us consider the Cauchy representation of the real numbers. A real

number x is thus represented by a partial recursive function which on input n returns the

nth element of a Cauchy sequence with limit x. One thus computes not with all the real

numbers, but only with the recursive ones. Fortunately, the well-known constants e, π, φ

are recursive and so are, e.g. the trigonometric functions. In this way one can develop

exact real arithmetic in CRM.

Since there are only countably many codes for recursive functions there are only count-

ably many (recursive) real numbers in CRM. This may be counterintuitive at first, how-

ever, given any recursive sequence of real numbers, Cantor’s diagonal construction sup-

plies a new recursive real number which is apart from all of them. Thus the recursive

real numbers are countable, but recursively uncountable! In practice this last fact is more

important and can be restated as ‘the real numbers are uncountable’ in the internal logic

of CRM. We will introduce the internal logic in section 3.5.

In CRM all (recursive) functions between real numbers are continuous (Kreisel et al.

1957a,b; Cĕıtin 1962, 1959).

Theorem 3.1 (Kreisel, Lacombe, Schoenfield, Tsejtin) In CRM: Every (total) map-

ping of a complete separable metric space into a metric space is continuous.

The theorem is stated in the internal logic, meaning that all the objects should be pre-

sented effectively. We will discuss the internal logic more thoroughly in Section 3.5. This

theorem may seem counterintuitive at first, when applied to the real function which is 0

for x < 0 and 1 for x ≥ 0? This is not a total function in CRM — that is, we cannot

recursively decide whether x < 0 or x ≥ 0 for each real number x. Having such a test

would solve the halting problem.

For concrete functions on the real numbers this model behaves as expected. However,

when quantifying over compact spaces there are some surprises. For instance, one can

define an unbounded continuous function on the unit interval. Such a function cannot be

uniformly continuous. This function is defined in the internal logic, however, externally

one sees that such a function is defined on all the recursive points, but not on all points.

To avoid such problems Brouwer introduced his choice sequences (Brouwer 1975; Heyt-

ing, A. 1956; Troelstra 1977). Kleene and Vesley captured much of his theory using a

realisability interpretation. This interpretation was rediscovered by Weihrauch in his

TTE, a theory that we will now discuss.

3.3. TTE

Among the many schools of computable analysis, most of which are known to be equiv-

alent, TTE (Type Two Effectivity) is a theory of computability based on Turing ma-

chines with infinite input and infinite output (Weihrauch 1997, 2000). The TTE notion

of computability is nothing but computability of algorithms on infinite sequences. This

is because both the input and output tape can be thought of as a stream (lazy infinite

sequence), and hence the TTE model will be very similar to the actual computation on

the higher order data structure of streams or functional representations for real numbers
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(see Section 2.1). Therefore we consider computability for algorithms in exact arithmetic

with respect to TTE. This is in contrast to other approaches to computability which

usually involve heavy encoding of streams and finite lists. The intuitive model that TTE

uses not only makes the programmer’s understanding of the complexity of the algorithms

relatively easy but also provides a notion of computability that directly works on the rep-

resentations of real numbers. In fact the notion of representation plays a central rôle in

TTE, providing a good framework to compare the relative theoretical strength of various

representations.

In this sense one can use TTE to give a formal explanation of the shortcomings of

the standard decimal representation which was mentioned in the example in Section 2.1.

There we showed that — informally— the standard decimal representation is not ‘com-

putationally suitable’. In TTE there is a notion of admissibility of representations, which

rigorously defines whether a representation of real numbers is computationally suitable.

In section 3.5.2 we show how the definition of admissible representation was already

hidden in Brouwer’s example.

Definition 3.1 (Admissible Representation) Let I be a closed subinterval of the

compactification of real numbers [−∞, +∞]. Let Φ be a set (finite or infinite) of digits

and Φω be the set of streams of elements of Φ. A map p : Φω −→ I is an admissible

representation of I if the following conditions hold.

1p is continuous with respect to the product topology of the discrete topology on Φ;

2p is surjective;

3p is maximal, i.e., for every (partial) continuous r : Φω −→ I, there is a continuous

f : Φω −→ Φω such that r = p ◦ f .

The notion of admissibility relates the notion of computability on streams with con-

tinuity on real numbers. Intuitively an admissible representation gives rise to functions

which are computable with type two Turing machines. Obviously, the standard decimal

representation turns out to be not admissible. In fact following the example in Section 2.1

one can show that the multiplication by 3 is not a TTE-computable function when using

the standard decimal representation (Weihrauch 1997).

An important property of admissible representations is that they provide a redun-

dant representation for real numbers. This means that every real number has several

representations. Examples of admissible representations include the redundant b-ary rep-

resentation for [0, +∞] used in (Edalat and Potts 1997), the ternary Stern–Brocot rep-

resentation for [0, +∞] (Hughes and Niqui 2006) and the binary Golden ratio notation

for [0, 1] (Di Gianantonio 1996).

As stated before, the TTE notion of computability that is based on the admissible

representations is equivalent to most other models of computability (Weihrauch 2000§ 9).

3.4. Coalgebras

Coalgebras (also called ‘systems’ in (Rutten 2000; Barwise and Moss 1996)) provide a

semantics for structures that can be considered as an infinite process, of which only
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partial observations are available. Examples of such structures are real numbers, labelled

transition systems, object oriented modularity and dynamical systems. A modern survey

of coalgebras and their applications can be found in (Jacobs 2005).

In the category theoretic semantics for computer science, to any functor corresponds

a category of coalgebras of that functor. For certain functors, this category happens to

have a final object. Those functors, or to be more precise, the final coalgebra of those

functors, are used to model infinite processes.

Let C be a category, and F be an endofunctor on C. A F-coalgebra is a pair 〈Y, y〉

in which Y is an object of C and y : Y −→ F(Y ) is a morphism in C. We call the first

element of the pair the carrier of the coalgebra, and the second element of the pair the

structure map of the coalgebra.

Let 〈U, u〉 and 〈V, v〉 be F-coalgebras. Then a coalgebra map from 〈U, u〉 to 〈V, v〉 is

a map f : U −→ V such that v ◦ f = F(f) ◦ u; i.e., the following diagram commutes.

U

u

��

f
// V

v

��

F(U)
F(f)

// F(V )

It can be checked that the identity morphism is a coalgebra map, and that the composite

of two coalgebra maps is again a coalgebra maps. Hence the F-coalgebras form a category.

We are particularly interested whether this category has a final object. If such a final

object exists, we assign some fixed notation to it.

Definition 3.2 (Final Coalgebra, Coiterator) A final F-coalgebra is a coalgebra

〈νF, ν-out〉 such that for every coalgebra 〈U, u〉 there exists a unique coalgebra map

ν-it(u) from 〈U, u〉 to 〈νF, ν-out〉. We shall call ν-it(u) the coiterator of u.

Thus a coalgebra 〈νF, ν-out〉 is final if and only if

∀U : C, ∀u : U→F(U), ∃! ν-it(u) : U→νF, ν-out ◦ ν-it(u) = F(ν-it(u)) ◦ u ;

equivalently if the following diagram commutes.

U

u

��

!ν-it(u)
// νF

ν-out

��

F(U)
F(ν-it(u))

// F(νF)

In an arbitrary category, the question whether a final coalgebra for a given functor

exists is not always easy to answer. However, if a final F-coalgebra exists then it is unique

up to isomorphism. Moreover the structure map of a final coalgebra is an isomorphism;

hence, a final coalgebra is a fixed point for its functor (Jacobs and Rutten 1997). This

fixed point property is the origin of our interest in a final coalgebra, because it makes

it possible to use the theory of final coalgebras as a semantics for data types of infinite

objects.
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Finality of coalgebras provides us with coinductive proof principles, which can be

used to reason about objects residing in a final coalgebra. A well-known example of a

coinductive proof principle is the notion of bisimulation. This can roughly be stated as:

two infinite processes are equal if they are bisimilar, i.e. if the observable parts are equal

and the continuation of the two processes (or the subprocesses) are again bisimilar.

As an example we consider the set of streams. In lazy exact arithmetic, real numbers

are represented by means of lazy infinite sequences of elements of a set, so called streams.

The collection of streams of the elements of the set Φ is the final coalgebra of a simple

polynomial functor, namely F(X) = Φ × X in the category Set. Taking as structure

map the map 〈hd, tl〉 : Φω −→ Φ × Φω one can show that the set of streams is indeed a

final coalgebra for F (Rutten 2000). The constructor of the final coalgebras of streams is

cons : Φω −→ Φω which prepends an element to the beginning of a stream.

The standard decimal representation for real numbers is a stream representation: each

real number is denoted by a stream over the 10-element set of digits. So are the various

admissible representations that are used in exact real arithmetic. In this way one views

the real numbers as a final coalgebra. In this setting the functions on real numbers become

maps in the category of coalgebras, the so called coalgebra maps. This does not capture all

functions on real numbers, but only those for which we have suitable partial observations,

i.e. computable finite approximations. Hence, in order to present a theory of computable

coalgebra maps one has to adhere to domain-theoretic (or equivalent TTE) approaches

for a suitable definition of computability (Pattinson 2003). A more structural solution

would be to interpret coinductive types in a realisability model, as we will present in the

next section.

3.5. Realisability

In this subsection we will describe realisability. For general overviews we refer to (van

Oosten 2002; Troelstra 1998). After a general introduction to realisability we will shortly

describe three realisability interpretations: for recursive analysis, for TTE and for domain

theory. In this way we obtain a nice uniform treatment of the three models previously

discussed. Our presentation of realisability models in this section mostly follows the

presentations by Birkedal (Birkedal 2000) and Bauer (Bauer 2000, 2005) and we refer to

these works and (van Oosten 2002) for historical background.

In order to represent data on a computer we need to find a code, a realization, for it.

This suggests a realisability relation, that is a relation 
 between a set of codes R and

a set X such that each code represents at most one element. Functions are realized via

the following commutative diagram.

R R

X Y
?




-
f ′

?




-

f

It is then said that f ′ tracks f . These representation are connected to the representations

discussed before. There is a one-one correspondence between a realisability relation 
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and a partial function δ defined by

δa = x iff a 
 x.

Yet another equivalent presentation is given by partial equivalence relations. The relation

‘to be a code for the same element’ is a partial equivalence relation.

In order to be able to represent functions by our codes we should be able to interpret

some applicative structure. It turns out to be convenient to require the realizers to have

the structure of a partial combinatory algebra (PCA). A PCA is a structure (X, •,k, s)

which has all the relevant properties of the combinator presentation of recursion theory. In

Kleene’s original realisability interpretation the realizers are the natural number encoding

of the partial recursive functions. This prime example of a PCA is called the first Kleene

algebra and is simply denoted N. In fact, in this way we obtain the computational model

of Markov’s recursive mathematics. However, how do we include a data-type for all, not

only the recursive real numbers? To phrase it differently, how does one make a realisability

model corresponding to, say, TTE? To do this one needs a slightly different picture. The

structures are realized by all streams — that is, elements of Baire space† — but we

only allow recursive functions. To solve this one uses the notion of relative realisability,

where one takes the data from A, but restricts the functions to a sub-PCA A♯. In fact,

this ♯ may be seen as a modal operator on types, assigning to each type its subtype

of ‘computable’ elements, see (Birkedal 2000). A simplified version that suffices for the

present context may be found in (Bauer 2000).

The data types are captured by the notion of a modest set over a PCA A — that is,

a set with a realisability relation 
. The category of modest sets over A with functions

over A♯ is denoted by Mod(A, A♯). When both the sets and the functions are represented

by the same PCA A one simply writes Mod(A). Now given a definition of computability

on real numbers, one may ask how to define computability of lists of real numbers, trees

of reals numbers, streams of real numbers, the positive real numbers. . . Although one can

give concrete answers for each particular model it would be better to have a structural so-

lution that works for all these models at once. In advanced programming languages these

issues are solved by the presence of a strong type system which is closed under certain

type forming constructions, see Section 4.1. Categorical logic and type theory (Lambek

and Scott 1988; Jacobs 1999) allow us to define a very strict and structural connection

between logic and semantics by the use of the internal logic of a (categorical) model.

It is customary to speak about the internal logic when one is really talking about the

internal logic and type theory. We will stick to this custom. It should be noted that the

principles valid in the internal logic in general depend on the principles assumed to hold

in the meta-logic. The internal logic for realisability using modest sets is intuitionistic

logic, the logic of constructive mathematics. The internal type theory supports depen-

dent, inductive and coinductive types. By providing realisability interpretations for all

the models discussed before we show that we can use this type theory in all these mod-

† We have denoted Baire space before as Φω when we choose the alphabet Φ to be the natural numbers.
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els. This means that we have a notion of computability on, say, streams of positive real

numbers in all these models.

To give a flavour of how one realizes logic, we present the abstract realisability interpre-

tation. Here x and y are elements of the PCA. The symbols ‘xrP ’ may be pronounced

as x realizes P .

xrP := P ∧ x ↓ for P atomic; (1)

xr(A ∧ B) := (p0xrA) ∧ (p1xrB); (2)

xr(A → B) := ∀y(yrA → x • yrB) ∧ x ↓; (3)

xr∀yA := ∀y(x • yrA); (4)

xr∃yA := p1xrA[y/p0x]. (5)

Here pi denotes the ith projection of a pair. The symbol ↓ may be read as ‘is defined’.

We say that A is true in the model when A is realized, that is the set of realizers is

inhabited. A similar definition for the realization of types can be given analogous to the

Curry–Howard isomorphism which we will discuss in section 4.1.

We will continue to give the realisability interpretation for the three models presented

before.

3.5.1. Markov’s recursive mathematics Markov’s recursive mathematics can be modelled

by Mod(N) the modest sets over the first Kleene algebra N, that is the realizers in the

PCA N are the ordinary (partial) recursive functions coded by natural numbers.

The internal logic of CRM satisfies not only the usual axioms of intuitionistic logic,

but also Church’s thesis and Markov’s principle. Church’s thesis states that we only work

on recursive sequences. That is, our programming language allows us to access the codes

of the real numbers.

∀n∃mA(n, m) → ∃k∀n∃m[A(n, Um) ∧ Tknm] .

Here T denotes Kleene’s T -predicate and U is the function that returns the result Um

of the computation m. This variant of Church’s thesis may be read as: if for each n we

can find an m such that A(n, m), then we can find a recursive function that finds such

m for us. Markov’s principle allows us unbounded search: if we know that an element

with a decidable property can not fail to exist, we can just start searching until we find

it. Formally, let P be a decidable predicate. Then

¬∀n.¬P (n) → ∃n.P (n) .

As stated before this model behaves somewhat unexpectedly when quantifying over

compact spaces. For instance, a point-wise continuous function on a compact interval may

be unbounded. This is due to the failure of the fan-theorem, the constructive variant of

König’s lemma. In order to remedy this, one introduces choice sequences, a concept which

is captured by Kleene–Vesley’s realisability model which we will discuss now.

3.5.2. TTE TTE is the model Mod(B, B♯), the second Kleene algebra which was ex-

tensively studied by Kleene and Vesley. Thus TTE may be seen as the Kleene–Vesley
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realisability interpretation (Kleene and Vesley 1965). Troelstra (Troelstra 1992) seems to

have been the first to observe the possibility to use realisability to obtain results in TTE.

It may seem surprising that the notion of admissible representation which is so impor-

tant in TTE seems absent in realisability. To understand this let us consider a representa-

tion of the real numbers. First of all, there is no absolute pre-given notion of real number,

thus it seems impossible to state what an admissible representation of ‘the’ real numbers

is. However, one can axiomatically define the real numbers up to isomorphism. Now we

fix any representation, c : B → R, of the real numbers. One defines a representation

r : B → R of the real numbers as a surjective map from Baire space to the real numbers.

Of course, surjective should be interpreted in the internal logic. Thus surjectivity means

∀β ∈ B∃α ∈ B[r(α) = c(β)] .

By applying the axiom of choice for variables over Baire space— denoted C-C in (Troel-

stra and van Dalen 1988b) — we obtain:

∃f : B → B∀β ∈ B[r(f(β)) = c(β)] .

This is precisely the maximality condition in the notion of admissible representation

defined above. Thus one may view admissibility as the external way of stating the sur-

jectivity of a representation. We should mention that the axiom C-C which we used above

holds in the internal logic.‡

It has been crucial in the development of constructive mathematics that complete

separable metric spaces can be represented by a continuous surjective image of Baire

space. This same fact is also heavily used in the context of TTE. This allows us to

directly transfer constructive theorems about such spaces to TTE, see (Lietz 2004) for

details. Similarly, compact metric spaces can be represented by Cantor space and a similar

transfer principle exists.

To sum up, one can now view TTE as the assembly language for exact real compu-

tation. Using categorical logic and realisability, one can compile a dependently typed

functional language with (co)inductive types into this Turing machine model. Thus the

relation between constructive mathematics and TTE is much like the relation between an

advanced programming language and an assembly language. The former provides more

structure, the latter gives finer control over the computation and in particular over the

complexity of such computations.

3.5.3. Domains The theory of effectively presented continuous domains as used by Edalat

and co-workers (Edalat 1997) fits into the model Mod(P, P♯). Here P denotes Scott’s graph

model (Scott 1976), which may be seen as the ‘universal’ countably based T0 topological

space; see (Bauer 2000) for details.

3.5.4. Coinductive types As mentioned before the realisability models support coinduc-

tive types. One way of seeing this is to observe that such models can be extended to a

‡ We have been unable to find this simple remark in the literature.
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topos — a generalised, or local, set theory. This construction is due to Hyland (Hyland

1982) and is called the effective topos. Thus when we define our data-types coinductively

we can directly interpret them in all the realisability models we have described.

As an example consider the coinductive streams of natural numbers. It is straightfor-

ward to prove constructively that this final coalgebra is the function space N → N. Thus

one can directly interpret these streams in all the models above. For instance, in CRM

all these functions would be recursive.

4. Proofs

4.1. Type theory

Type theory provides a syntactic analysis of the notion of computability. In this section

we describe some basic concepts of type theory that are relevant for understanding the

connections with constructive analysis and computation with the reals. For more details

on type theory we refer to (Martin-Löf 1984; Nordström et al. 1990; Luo 1994; Baren-

dregt 1992; Barendregt and Geuvers 2001) (We will not deal with programming language

aspects of type theory, for which we refer to (Pierce 2002), nor shall we discuss logical

frameworks, for which we refer to (Pfenning 2001).) The basic notion of type theory is

obviously that of a type, which describes a collection of terms (the terms of that type)

in a syntactic way: there are rules for constructing terms of a type of a specific form (so

called introduction rules) and there are rules for using terms of a type of a specific form

(so called elimination rules). The crucial point is that it is decidable whether a term is

of a given type, because the type of a term can be computed on the basis of its syntactic

shape. (There are some exceptions, but almost all type theories adhere to this principle.)

This distinguishes type theory from set theory: X := {n ∈ N | ∀x, y, z, xn + yn 6= zn} is

a typical example of a set and not a type (whether n ∈ X is not a matter of syntactic

analysis of n).

Simple examples of types are bool and nat. The type bool contains just true and false

and nat contains 0 and, if x : nat, then S x : nat as well. Apart from construction principles

for terms, there are construction principles for types as well, for example, given the types

σ and τ , we have σ × τ and σ → τ as types, with the associated construction principles

of ‘pairing’ and λ-abstraction. This gives rise to the system λ→× of simple type theory

with products. Exactly how much information one puts in the terms (and in what form)

is a matter of choice. For programming purposes, one usually would want to put as

little information as possible (because the program is what the user writes) and let the

computer (compiler) compute a type (or a set of types) for us. So, for λ→×, one can

have as construction rule that 〈M, N〉 : σ× τ if M : σ and N : τ and that λx.M : σ → τ

if M : τ under the assumption that x:σ.

The construction and elimination principles of type theory give it a strongly construc-

tive flavour, which was first made explicit by Martin-Löf: we describe a collection by

telling how we can construct objects of that collection. Due to the fact that we know the

construction principles, we can define a function from the collection by distinguishing

cases according to the construction rules (and doing a recursive call if needed).
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There are many different type theories, depending on the types one allows and the

functions one allows to define over them. Examples of additional type constructions are:

polymorphic types, higher order polymorphic types, dependent types, inductive types

and recursive types. An important aspect of the definable functions in type theory is

that they are executable, due to the computational model of the λ-calculus that is part

of the system.

4.1.1. Curry–Howard Isomorphism Apart from a computational model, type theory also

incorporates a ‘logical model’. This is due to the Curry–Howard–de Bruijn isomorphism,

that interprets formulas as types and proofs (logical deductions) as terms. The isomor-

phism was first noticed by Curry for minimal propositional logic and simple type theory,

and later extended to the first order case by (Howard 1980) (but the original paper dates

back to 1968). Howard who also treats the case of proofs by induction over the natural

numbers and he has also coined the name ‘formulas-as-types’. Independently of Howard,

De Bruijn noticed the formulas as types analogy in the late 60’s in the context of his logi-

cal framework Automath (Bruijn 1980). In the analogy of De Bruijn, the logic is encoded

in type theory, so his formulas-as-types analogy is slightly different from what we discuss

here. (As a matter of fact, various encodings of logic in type theory were studied, and

some of the later ones are quite close to what we treat here.) The isomorphism can also

be seen as an operationalisation of the so called BHK (Brouwer–Heyting–Kolmogorov)

interpretation of proofs, where e.g. a proof of A → B is interpreted as a method for

producing a proof of B out of a proof of A; see Section 4.3 for details. This was also

the interest of Martin-Löf in the formulas-as-types isomorphism, who took it as the

starting point of his intuitionistic theory of types (Martin-Löf 1984) and extended the

isomorphism to the existential quantifier and inductive types.

Combining the computational and the logical interpretation of type theory, we find

that the basic judgement

Γ ⊢ M : A

can have two ‘readings’:

1 M is a piece of data (or algorithm) of data type A,

2 M is a proof (deduction) of formula A.

To make a (syntactic) distinction between data types and formulas, most type theories

have (at least) two ‘universa’ or ‘sorts’: Set and Prop, where A : Set means that A is a

data type and A : Prop means that A is a formula. The context Γ consists of variable

declarations x : B and definition c := t : B. Variable declarations are read as assumptions

(assuming a hypothetical proof of B) in case B : Prop. A definition is read as a reference

to a proved lemma (with proof t) in case B : Prop.

The correspondence between logic and type theory is so strong that there is an iso-

morphism between logic (e.g. the ∧→-fragment of propositional logic) and type theory

(the system λ→×). The isomorphism maps formulas to types and proofs in natural de-

ductions to terms. In this isomorphism, the logical introduction rules correspond to the

construction principles of the type theory and the logical elimination rules correspond
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to the elimination principles. The isomorphism also maps computations in logic (via

cut-elimination) to computations in type theory (e.g. β-reduction in λ→×).

To extend the Curry–Howard isomorphism to predicate logic, we need ‘formula types’

(types of type Prop) that depend on objects of a ‘data type’ (a type of type Set). A

predicate over the type nat should be a function from nat to Prop and similarly, a binary

relation (like ≤) should be of type nat → nat → Prop. This phenomenon is called type

dependency: the possibility to form type expressions that contain term expressions as

subterms. Type dependency also implies the formation of the dependently typed function

space, usually written as Πx:A.B(x), denoting the type of functions that takes an a : A

and produces a term of type B(a). These dependent function types are typically used

for formalising the ∀ quantifier: a proof of ∀x:A.B(x) is a method that, given an a : A

produces a proof of B(a). Similarly one can also introduce a type dependent product type

Σx:A.B(x). This type consists of pairs 〈a, b〉 where a : A and b : B(a). There are various

choices for the elimination rule for Σ-types, the simplest being: if p : Σx:A.B(x), then

π1 p : A and π2 p : B(π1 p). So π1 : Σx:A.B(x) → A and π2 : Πy:(Σx:A.B(x)).B(π1 y) and

there is the usual computation rule for the projections (π1 and π2) and pairing (〈 , 〉).

4.1.2. Inductive Types Taking the idea of sets defined via construction principles as basis,

a general pattern for defining types by induction emerges. This idea originates from

Scott (Scott 1970) and Martin-Löf (Martin-Löf 1984); the syntax we present below is

loosely based on (Coquand and Paulin 1990; Paulin-Mohring 1993) and the formalisation

of inductive types in the proof assistant Coq (Coq Development Team 2004). Basically,

an inductive type X is completely captured by giving its constructors, constant terms

that have a type of the form

A1 → A2 → . . . An → X

where the type expressions Ai can only contain X in a strictly positive position (i.e. Ai

does not contain X or is of the form B1 → B2 → . . . Bm → X with X not in Bj). In

some applications, the condition of strict positivity may be relaxed to positivity, but in

type theories with dependent types one cannot in general.

The constructors are seen as the (only) ways of constructing terms of the type, so one

is actually describing the free algebra over the terms generated from these constructors,

stated otherwise X is a solution to the domain equation X = σ1 + . . . + σk, if the σi’s

correspond to the types of the constructors in the following way: if A1 → A2 → . . . An →

X is the type of the first constructor, then σ1 = A1 × A2 × . . . An . Such a free algebra

amounts to two properties:

— Coverage: if t : X , then t = c(s1, . . . , sn) for some constructor c.

— No confusion (for terms of type X): c(t1, . . . , tn) = c′(s1, . . . , sm) if and only if c = c′,

n = m and ti = si for all i.

In type theory with inductive types, these properties for X are automatically generated

from the declaration of the constructors for X , and they are automatically enforced.

These properties have both a logical and a computational aspect. ‘Coverage’ is enforced

logically by the induction principle and computationally by the principle of well-founded
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recursion. ‘No confusion’ is enforced logically by the fact that we can prove a property

of elements of X by an (exhaustive) case distinction. It is enforced computationally by

the fact that we can define a function over X by cases.

The terms of an inductive type can be seen as trees, with nodes labelled with construc-

tors. If c : A1 → A2 → . . . An → X , then a node labelled with c has n subtrees that are

either expressions of type Ai (if X does not occur in Ai) or a B1×B2× . . .×Bm-indexed

family of trees (if Ai is of the form B1 → B2 → . . . → Bm → X).

We treat some examples to make these rather abstract ideas concrete. The type of

trees with labels in A and nodes in B is given by two constructors.

leaf : A → Tree

join : B → Tree → Tree → Tree

The intention is that this defines the free algebra of trees over leaf-type A and node type

B. So, we want leaf x 6= join y t1 t2 for all x, y, t1, t2, and we want to be able to define

function over Tree by case distinction and recursing over ‘smaller trees’. Finally we want

to be able to prove properties of elements of Tree by tree-induction. In type theory with

inductive types, this is made possible by allowing to define terms in the following way.

Fixpoint NCnt(x : Tree) : nat :=

match x with

| leaf a ⇒ 1

| join x t1 t2 ⇒ (NCnt t1) + (NCnt t2)

end.

Here we borrow the syntax from Coq; the above can be read as definition of a recursive

function NCnt : Tree → nat where Fixpoint denotes that we are using recursion. This

function counts the numbers of leaves in a tree. In fact, the function NCnt is defined

by structural recursion over the tree type, meaning that in the body of the function

definition, NCnt is only called on arguments that are smaller according to the structure

of the inductive type. All functions defined by structural recursion are terminating, but it

should be noted that structural recursion is a syntactic – and thus decidable – criterion for

a function to be terminating. The pattern for function-definition by structural recursion

can be generated directly from the definition of the inductive type, which makes it possible

for computer systems to support this. See (Paulin-Mohring 1993) for how this is done

in the proof assistant Coq. Structural recursion is quite powerful, but for some functions

there is quite some work to be done to define them. E.g. the gcd function defined in the

following way is not structural recursive.

Fixpoint Gcd(n m : nat) : nat :=

if n < m then Gcd(n, m − n)

else if n = m then n

else Gcd(n − m, m)

The type nat is defined as an inductive type with constructors 0 : nat and S : nat→nat,

so a call of Gcd on m−n is not structurally recursive. To establish termination, we would

first have to prove that the recursive calls of Gcd are only done on smaller arguments,
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according to some well-founded order, and then the function would be defined by recur-

sion over this well-founded order. Note also that the function Gcd is not terminating at

all, because on n = 0 or m = 0 the recursively called argument isn’t smaller, so really

this function would be partial, of type Πn, m : nat.(n 6= 0) → (m 6= 0) → nat. For a

solution to the problem of the restrictiveness of structural recursion, see e.g. (Bove and

Capretta 2005).

The induction principle for an inductive type can also be generated from the definition

of the inductive type. As a matter of fact, the induction principle and the recursion

principle can be seen as instances of the same syntactic schema, but we won’t go into

this here: see (Paulin-Mohring 1993) for details. The induction principle for Tree is the

term Tree ind with the following type.

Tree ind : ∀P :Tree→Prop.

(∀a:A.P (leaf a)) → (∀b:B.∀t1:Tree.P t1 → ∀t2:Tree.P t2 → P (join b t1 t2))

→ ∀t:Tree.P t

The power of inductive types lies to a large extent in the fact that many mathematical

‘objects’ can be defined in an inductive (or recursive) way. Defining them in inductive type

theory then gives the added value that the recursion scheme and the induction principle

come ‘for free’. Examples of mathematical ‘objects’ that can be defined as inductive

types are the following. (1) Logical connectives, like disjunction which has – given two

parameters A, B : Prop – two constructors left : A → A ∨ B and right : B → A ∨ B, or

the existential quantifier which has – given two parameters A : Set and P : A→Prop –

one constructor pair : Πx:A.(P x) → ∃AP ; here we see the use of a dependently typed

constructor in the definition of an inductive type. (2) Inductively defined relations, like

the ‘less or equal’ on natural numbers ≤, which has as constructors

le n : ∀n : nat.le n n

le S : ∀m, n : nat.le n m → le n (Sm)

In the last examples, we see the use of dependently typed constructors. This changes

the scheme of the type of a constructor that we described in the beginning of this section.

Constructors now have a type Πx1:A1. . . . Πxn:An.X t1 · · · tm, where X may occur in the

Ai only in a strictly positive position (i.e. at the end).

Apart from the scheme for inductive types that we describe here, there is also the

possibility to introduce one ‘generic’ well-ordering type, the so called W -type and to

define inductive types as instances of this type. The W -type defines a general type of well-

founded trees that can be instantiated to specific sets of trees by choosing the branching

types in a specific way (Nordström et al. 1990). Dybjer (Dybjer 1997) shows that the

inductive types we describe above can indeed be represented in this way, but then one

has to use an extensional type theory, i.e. where functions are equal if they have the

same graph, which leads to an undecidable typing relation.

4.1.3. Coinductive Types Coinductive types were added to the type theory in order to

make it capable of dealing with infinite objects (Mendler 1991; Geuvers 1992; Mendler
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et al. 1986; Hallnäs 1990; Giménez 1996). This extension was done by Hagino (Hagino

1987) using the categorical semantics. The idea behind using the categorical semantics

is to consider an ambient category for the type theory, and interpret the weakly final

coalgebras (i.e. final Coalgebras with uniqueness property dropped) of this category as

coinductive types. Alternatively Lindström (Lindström 1989) extended Martin-Löf type

theory by coinductive types using the non-well-founded set theoretic semantics; while

Mendler et al. (Mendler et al. 1986) Martin-Löf (Martin-Löf 1990) and Hallnäs (Hallnäs

1990) tried to directly extend Martin-Löf’s constructive type theory by adding extra

typing rules for infinite objects. Mendler (Mendler 1991) and Geuvers (Geuvers 1992)

presented a way to encode coinductive types in type theories altogether simpler than

Martin-Löf’s type theory. Later, Gimenez (Giménez 1996) extended the calculus of in-

ductive construction by a cofixpoint scheme that allows for introducing infinite objects.

Coinductive type theories provide a programming framework for algorithms that deal

with infinite objects, and therefore are suitable for exact real arithmetic. Especially,

since type theories provide a basis for formal verification tools, formalising an algorithm

in type theory paves the way for verification of that algorithm by means of a theorem

prover. Therefore a rigorous analysis of correctness of the algorithms becomes possible

by stating these algorithms in the language of coinductive type theory. This is made

easier if one can devise a coinductive type theory that is specifically suited for working

with real numbers. That is to say, for verification of the algorithms of exact arithmetic,

one does not necessarily need a general theory of coinductive types and the full power of

type theory. In terms of categorical semantics this means that having the (weakly) final

coalgebras of polynomial functors should suffice. However one needs the underlying type

theory to be strong enough to formalise all the computable real functions.

This brings up the notion of productivity of infinite objects in type theory and func-

tional programming which is similar (in fact dual) to the notion of termination for finite

objects (Dijkstra 1980; Sijtsma 1989; Coquand 1994). A function on streams is produc-

tive if it can produce arbitrarily large finite approximations in finite time. The example

of multiplication by 3 in Section 2.1 is not a productive function. In fact productivity

is very similar to the notion of computability (and continuity, and laziness). In TTE

it can be related to the finiteness property of type two Turing machines (Weihrauch

2000§ 2.2). A domain theoretic treatment of productivity for streams can be found

in (Sijtsma 1989) which is expanded and used in the coinductive treatment of lazy exact

arithmetic in (Niqui 2004). For tackling productivity inside the type theory the notion

of guardedness is studied by type theorists (Coquand 1994; Telford and Turner 2000)

and is implemented as the basis for the treatment of coinductive types in Coq proof

assistant (Giménez 1996).

Guardedness condition is a syntactic criterion that can be used to ensure the produc-

tivity much in the same way (in fact in the dual way) as it can be used to ensure the

termination of structurally recursive functions: a recursive function with as recursive ar-

gument a term with an inductive type is terminating if the argument of the recursive calls

is structurally smaller than than the original argument of the function. This structural

order is an inherent order that is inherited from the definition of the inductive type of the

recursive argument. According to this order applying constructors of the inductive type
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generates the successors of a term (recall that inductive types are equivalent to the type

of general trees). Dually an infinite object (i.e. a term that has a coinductive type) is

productive if the calls to itself inside the body of its definition are immediate arguments

of constructors of its coinductive type. The above checks are purely syntactical and hence

can be automatised; this is exactly what is done in the guardedness checker of Coq proof

assistant.

As an example the following definition is a guarded definition for a stream of natural

numbers starting from n.

nats n := cons n (nats n + 1)

This is because the sole occurrence of nats in the right hand side is the immediate

argument of (i.e. guarded by) cons, the constructor of the coinductive type of streams.

But the same way as the structural recursion is not powerful enough to capture all valid

terminating recursive definitions, the guarded-by-constructor approach does not capture

the whole class of productive infinite objects. This is because productivity of streams

can in general be reduced to the question whether a subset of N is infinite, which is an

undecidable question (Niqui 2004§ 4.7).

Example of the infinite objects that are not guarded and whose productivity is not

syntactically detectable are the filter-like functions that are used in functional program-

ming. In order to formalise such infinite objects one option would be to adhere to semantic

approaches, e.g. domain-theoretic methods (Niqui 2005) or topological methods (Di Gi-

anantonio and Miculan 2003). The other option would be to use a very extended setting of

coinductive types that includes polymorphic and dependent coinductive types and adapt

advanced type-theoretic methods that are used for tackling general (non-structural) re-

cursion. This is the approach taken by Bertot (Bertot 2005) and is implementable in Coq

as all the machinery that is necessary (polymorphic and dependent coinductive types)

already exist in Coq.

4.2. Program Extraction

Correctness is an important issue in the implementation of computable analysis (which

in practice currently mostly amounts to the implementation of exact real arithmetic.)

There are two directions in which one can develop correct programs. In one direction

one starts by writing the concrete program and then afterwards tries to establish its

correctness, either using informal reasoning, or by annotating the program with invariants

and then proving correctness conditions generated from that, or by refining the types used

in the program to be more informative, using a programming language that supports

dependent typing. In the other direction, one starts very abstractly and then works

towards a concrete program. The methods of program refinement and program extraction

both fall in this second category.

With program extraction one starts from a formalisation of some mathematical the-

ory, a representation of this theory in the computer that has sufficient detail to allow

the computer to establish the correctness by proof checking. This formalisation then is

automatically transformed into a computer program which implements the constructive
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content of this formalised theory. This is a direct application of the realisability implemen-

tation of constructive logic. Therefore to be able to extract a program from a formalised

theory, in general one needs to formalise the theory using constructive logic. However,

there also has been some work on extracting programs from classical proofs (Berger et al.

2002). Program extraction has been implemented in many systems, like PX (Hayashi

and Nakano 1987), Nuprl (Constable et al. 1986), Coq (Coq Development Team 2004;

Letouzey 2004), Minlog (Benl et al. 1998) and Isabelle (Nipkow et al. 2002).

Note that to be able to do program extraction in a proof assistant, the logic of the

assistant does not need to be constructive: Isabelle/HOL is based on a classical logic,

but it supports program extraction (Berghofer 2003).

Because the Curry–Howard–de Bruijn isomorphism corresponds in a natural way to

a realisability interpretation, program extraction is popular with proof assistants that

implement type theory. In type theory the proofs of a theorem already are lambda terms,

which can be seen as functional programs in a simple programming language. Therefore in

type theory program extraction is hardly more than transforming one functional language

into another functional language. However, because not all computations in these lambda

terms are relevant for the final result of the program, a distinction is made between

informative and non-informative data-types.Then, when extracting the program, all parts

corresponding to non-informative data-types will be removed.

Program extraction is a popular method for establishing the correctness of implemen-

tations of computable analysis. Most proof assistants have a formalisation of the theory

of real numbers, and an implementation of exact real arithmetic and computable analysis

is seen as an easy side product of this.

Program extraction is an attractive method, but it is unclear whether extracted pro-

grams will have a competitive performance. For instance the root finding program ex-

tracted from a Coq formalisation of the intermediate value theorem turned out to be

unusable in practice (Cruz-Filipe et al. 2004; Cruz-Filipe and Spitters 2003; Cruz-Filipe

and Letouzey 2005). Apparently if one wants to extract a reasonable program, then one

already needs to be aware of the extraction process when writing the formalisation.

4.3. Constructive Analysis

Constructive Analysis has had a major impact on various topics described in this paper.

It has its roots in the intuitionistic mathematics of Brouwer (Brouwer 1975; Heyting, A.

1956), which already showed the strong connections between computability and topology

even before these fields were properly developed. Heyting then defined formal rules for

Brouwer’s logic. The interpretation of intuitionistic logic now goes by the name BHK,

after Brouwer, Heyting and Kolmogorov.

When a precise theory of computations became available Kleene developed his real-

isability interpretation to give a formal model for intuitionistic logic. See Section 3.5.

Kleene’s first interpretation did capture Brouwer’s logic nicely, as explained in sec-

tion 3.5.1, but did not capture Brouwer’s theory of choice sequences. This was solved
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To prove one needs to

A ∧ B prove A and prove B

A ∨ B choose one and prove it
A → B provide a method transforming a proof of A into a proof of B

∀xA provide a construction f such that f(x) is a proof of A(x)
∃xA construct t and prove A(t)

Table 1. BHK interpretation

by Kleene and Vesley (Kleene and Vesley 1965), using functions on Baire space. As we

have seen this is the interpretation that also captures TTE.

As is well-known Brouwer contended that all total real functions are continuous (Brouwer

1927). A statement we can now see is provable in many concrete computational inter-

pretations. In 1967 Bishop (Bishop 1967) showed that although Brouwer’s continuity

principle is an important guideline, one can do without this assumption by just studying

the continuous functions and ignoring any other ones, whether they exist or not. In this

way Bishop developed major parts of modern analysis. It turns out that Bishop’s math-

ematics is a convenient generalisation of both recursive and intuitionistic mathematics§.

It can be interpreted in both these computational models described above, see (Troelstra

and van Dalen 1988b; Bridges and Richman 1987).

Bishop’s model of computation is deliberately vague about the precise notion of compu-

tation. It builds on a primitive notion of ‘operation’. Martin-Löf theory of types (Martin-

Löf 1984) can be used as a satisfactory theory of such operations. In fact, the usual way

to treat sets in type theory — that is, using types modulo an equivalence relation, called

setoids (Hofmann 1995) — was motivated by Bishop’s work.

Finally we would like to refer to two recent monographs for more information about

constructive mathematics (Crosilla and Schuster 2005; Bridges and Vita to appear).

Moreover, this story is not complete without mentioning formal topology (Sambin 1987;

Fourman and Grayson 1982). A proper description would take us to far from exact

arithmetic. However, let us just mention that formal topology may be seen as a way to

develop topology or domain theory inside type theory (Sambin 2000; Sambin et al. 1996).

5. Conclusion

We have presented some of the problems and solutions of exact real arithmetic vary-

ing from concrete implementations, representation and algorithms to various models for

real computation. We then put these models in a uniform framework using realisability,

opening the door for the use of type theoretic and coalgebraic constructions both in

computing and reasoning about these computations. We have indicated that it is often

natural to use constructive logic to reason about these computations.

§ and of classical mathematics, but that’s not the issue here.
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A. Edalat and M.H. Escardó. Integration in Real PCF (extended abstract). In Proceedings

of the 11th Annual IEEE Symposium on Logic In Computer Science, pages 382–393,

1996.

Abas Edalat and Reinhold Heckmann. Computing with real numbers: (i) LFT ap-

proach to real computation, (ii) Domain-theoretic model of computational geometry.

In Luis Pinto Gilles Barthe, Peter Dybjer and Joao Saraiva, editors, Applied Semantics,

number 2395 in LNCS, pages 193–267. Springer, 2002.

Abbas Edalat. Domains for computation in mathematics, physics and exact real arith-

metic. Bull. Symbolic Logic, 3(4):401–452, 1997.

Abbas Edalat. Exact Computation – Implementations. http://www.doc.ic.ac.uk/
∼ae/exact-computation/#bm:implementations, 2005.
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Löwe, and Leen Torenvliet, editors, New Computational Paradigms: First Conference

on Computability in Europe, CiE 2005, Amsterdam, The Netherlands, June 8–12,

2005. Proceedings, volume 3526 of Lecture Notes in Computer Science, pages 368–377.

Springer-Verlag, 2005.

B. Nordström, K. Peterson, and J. M. Smith. Programming in Martin-Löf ’s Type Theory:
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