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Abstract

We use filters of open sets to provide a semantics justifying the use of
infinity in informal limit calculations in calculus, and in the same kind
of calculations in computer algebra. We compare the behavior of these
filters to the way Mathematica behaves when calculating with infinity.
We stress the need to have a proper semantics for computer algebra

expressions, especially if one wants to use results and methods from com-
puter algebra in theorem provers. The computer algebra method under
discussion in this paper is the use of rewrite rules to evaluate limits in-
volving infinity.

1. Introduction

1.1. Problem

In calculus, when calculating limits, one often first uses the heuristic of ‘calcu-
lating with infinity’ before trying to evaluate the limit in a more formal way. For
instance one ‘calculates’:

lim
x→∞

1

x+ 1
=

1

∞+ 1
=

1

∞ = 0

which indeed gives the correct answer. However, it is not clear what the meaning

of this use of the symbol ‘∞’ is, and why this method works. This problem arises
in calculus textbooks, which usually avoid examples of such calculations for fear
of ‘lack of rigor’, although students are taught these methods at the blackboard.
It arose in the design of the first author’s software, MathXpert (1; 2; 3). This
software, which is designed to assist a student in producing step-by-step solutions
to calculus problems, had to be able to produce ‘ideal’ step-by-step solutions of
limit problems. Are such ‘ideal solutions’ allowed to use calculations involving in-
finity? Or are those calculations just private preliminary considerations intended
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to guide a rigorous proof? MathXpert does allow calculations involving infinity,
but not the full system justified in this paper, since that goes beyond what one
finds in calculus textbooks.

In the Mathematica system (9) the approach of calculating with infinity is
used. Since Mathematica gives answers, rather than step-by-step solutions, one
will not notice the calculations with infinity, in cases where the limit turns out to
exist (and be a finite number). But in fact, in Mathematica there is a complete
‘calculus of infinity’ (and some related symbols):

In[1]:= 1/(Infinity + 1)

Out[1]= 0

In[2]:= Sqrt[Infinity]

Out[2]= Infinity

In[3]:= Infinity - Infinity

Infinity::indet:

Indeterminate expression (-Infinity) + (Infinity) encountered.

Out[3]= Indeterminate

In[4]:= Indeterminate + Infinity

Out[4]= Indeterminate

In[5]:= Sin[Infinity]

Out[5]= Interval[{-1, 1}]

In[6]:= 1/Interval[{-1, 1}]

Out[6]= Interval[{-Infinity, -1}, {1, Infinity}]

In[7]:= Interval[{-1, 1}]*Interval[{-1, 1}]

Out[7]= Interval[{-1, 1}]

In[8]:= Interval[{-1, 1}]^2

Out[8]= Interval[{0, 1}]

In[9]:= 0*Sin[Infinity]

Out[9]= Interval[{0, 0}]

In[10]:= Infinity/Sin[Infinity]

Out[10]= Interval[{-Infinity, -Infinity}, {Infinity, Infinity}]

In[11]:= Infinity/Sin[Infinity]^2

Out[11]= Interval[{Infinity, Infinity}]

Other computer algebra systems implement similar calculi. For instance, the
Maple system (6) uses the symbols infinity and undefined in answers to limit
problems.∗

∗There is also some notion of interval in Maple, written as 1 .. 2, but our attempts to
calculate with these terms led only to error messages. These terms seem primarily to be used
for generating integer sequences, although the answer to limx→∞ sinx comes out as -1 .. 1.



Beeson and Wiedijk: The meaning of infinity 3

It is well known that many computer algebra packages make errors. One of
the reasons for that is that they fail to check the pre-conditions or ‘side con-
ditions’ that must be satisfied for a simplification rule to be applicable. For
example, before applying

√
x2 = x we need to check that x ≥ 0. Systematically

keeping track of such assumptions is difficult. The errors in computer algebra
systems sometimes give the impression that those systems place a higher prior-
ity on performing as many simplifications as possible than on ensuring that only
correct computations are performed. Generally, ‘evaluation errors’ which users
complain about are taken care of on an ad hoc basis only, to get rid of the most
embarrassing ones.

Related to these errors is the fact that these systems have no unified seman-
tics for their expression language. In this paper we focus on the apparatus for
limits and offer a solution: a semantics explaining and supporting the use of in-
finities in limit calculations. We will present a formal semantics of limits, which
not only explains the calculations usually performed with infinities, but offers
some extensions by introducing some other symbols for common ways in which a
function can fail to have a limit. Thus, we will be able to get an answer by calcu-
lation for such a limit as limx→∞ 1/(2 + sin x) which will be ‘oscillations through
the interval [ 1

3
, 1]’. We then compare the resulting semantics to the behavior of

Mathematica as illustrated above. There is a rough general correspondence, and
our semantics agrees with some of the examples above, but in some instances
Mathematica does give incorrect answers, and in some cases we are able to dis-
tinguish between identical Mathematica expressions which are different in our
semantics.

1.2. Approach

We will represent∞ and its cousins indeterminate and interval by filters over some
underlying topological space (which in calculus textbooks and Mathematica is
the space of real numbers, but could also be the complex numbers or more
general spaces). For each point of the space there will be a filter associated with
it, which is called the principal filter of the point. For each function on the space
there will be a lifted version that works on the filters instead of on the points.

Furthermore we will define classes of filters called the interval filters and the
connected filters. It will turn out that those two classes coincide and that con-
nectedness of filters is preserved under continuous mappings. Also we will define
the join and the meet of two filters.

It turns out that the calculus used in Mathematica corresponds directly to the
set of finite joins of interval filters.

1.3. Related work

First, in topology, the two standard approaches for defining limits in topological
spaces make use of nets or filters. There is therefore nothing original in the use
of filters to analyze the notion of limits. However, our focus to use them in an
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applied setting, and identify specific filters associated with ‘extra-mathematical’
symbols such as ∞, seems to be new.

Second, the interval filters are directly related to the active field of interval
arithmetic. We throw a new light on the calculations with intervals by looking
at them as filters.

Third, justifying ‘calculations with infinite objects’ rigorously is close to doing
the same with ‘calculations with infinitesimal objects’, which is the domain of
nonstandard analysis. In nonstandard analysis one also has infinity as a first
class citizen, but in nonstandard analysis there is not one, designated, infinity;
instead there are many infinite nonstandard numbers, without a ‘canonical’ one.
In our case there is a canonical infinity. To illustrate this difference concretely,
let ω be the infinity of nonstandard analysis and let ∞ be the infinity of our
filter calculus. Then we have ω + 1 6= ω, but ∞+ 1 =∞.

The simplest way to get non-standard objects also employs a filter, but this
has to be a special kind of filter called an ultrafilter. Also this filter contains
arbitrary sets instead of only open sets (as is the case for the filters that are
studied in this paper). Another important difference is that, in contrast to our
approach, in this construction there is only one filter involved. The non-standard
objects in this construction are not filters themselves.

Nonstandard analysis has been used in (4) to help in the computation of limits
in a computer algebra system.

2. Filters, lifting, refinement and limits

Definition: Let X be a topological space. Denote the open sets of X by O(X).
A filter on X is a set A ⊆ O(X) that satisfies:

∀U ∈ A.∀V ∈ O(X). U ⊆ V ⇒ V ∈ A
∀U ∈ A.∀V ∈ A.U ∩ V ∈ A

In words: a filter is a set of open sets that is closed under supersets and finite
intersections. The collection of filters on X is written X̄.

A filter that does not contain the empty set is called proper. A filter that does
not contain any set at all is called empty.

Often the property of being proper is made part of the definition of a filter. We
did not do this, because then we would be unable to define the notion of meet

on page 11 below. Sometimes the property of being non-empty is made part of
the definition of a filter too. However the empty filter, which is called domain-

error below, is essential to our application. We found variants of the definition of
filter in the literature, both allowing for improper (5) and for empty (7) filters.
Therefore we feel free to define the concept of filter to suit our purposes.

In the topological literature a filter is generally not defined on a topological
space but on an arbitrary set. In that case the restriction to open sets is not
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present. However, for our application it is more natural to restrict ourselves to
filters of open sets.

Definition: Here are some common filters on the real numbers, where a ∈ R is
an arbitrary real number:

improper ≡ † ≡ O(R)

domain-error ≡ ⊥ ≡ ∅
indeterminate ≡ ↔ ≡ {R}

principal(a) ≡ ā ≡ {U ∈ O(R) | a ∈ U}
= {U ∈ O(R) | ∃ε ∈ R>0. (a− ε, a+ ε) ⊆ U}

left(a) ≡ a− ≡ {U ∈ O(R) | ∃ε ∈ R>0. (a− ε, a) ⊆ U}
right(a) ≡ a+ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (a, a+ ε) ⊆ U}

punctured(a) ≡ a± ≡ {U ∈ O(R) | ∃ε ∈ R>0. (a− ε, a) ∪ (a, a+ ε) ⊆ U}
infinity ≡ ∞ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (1/ε,∞) ⊆ U}

minus-infinity ≡ −∞ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (−∞,−1/ε) ⊆ U}
bi-infinity ≡ ±∞ ≡ {U ∈ O(R) | ∃ε ∈ R>0. (−∞,−1/ε) ∪ (1/ε,∞) ⊆ U}

positive ≡ → ≡ {U ∈ O(R) | (0,∞) ⊆ U}
negative ≡ ← ≡ {U ∈ O(R) | (−∞, 0) ⊆ U}

non-zero ≡ ±→ ≡ {U ∈ O(R) | (−∞, 0) ∪ (0,∞) ⊆ U}
For each of these filters we have a ‘long’ and a ‘short’ notation. The first four
filters can be defined for any topological space. The other filters have analogues
in any order topology.

Definition: Let again X be a topological space. Let A be a collection of subsets
of X (not necessarily open) that satisfies:

∀U ∈ A.∀V ∈ A.∃W ∈ A.W ⊆ U ∩ V (∗)
The filter generated by A is defined to be:

generated-by(A) ≡ {U ∈ O(X) | ∃V ∈ A. V ⊆ U}
The collection of sets A is called the basis of the filter generated-by(A).

Being closed under finite intersections implies (∗). If all elements of A are open
sets, the filter generated by A is the intersection of all filters that contain A as
a subset.

The filters defined on page 5 can be defined more naturally using the notion
of a generated filter. For instance, we have:

improper = generated-by({∅})
principal(a) = generated-by({{a}})

right(a) = generated-by({(a, a+ ε) | ε ∈ R>0}
infinity = generated-by({(1/ε,∞) | ε ∈ R>0}

All other filters that are introduced on page 5 can be defined in a similar way.
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Definition: Let f : X → X be some (possibly partial) function with domain
dom(f). The lift of f is a function f̄ : X̄ → X̄, defined by:

f̄(A) ≡ generated-by({f [U ] |U ⊆ dom(f) ∧ U ∈ A})
This definition can be generalized to arbitrary arities. The function f̄ : X̄× X̄×
. . .× X̄ → X̄ is defined by:

f̄(A1, A2, . . . , An) ≡
generated-by({f [U ] |U ⊆ dom(f) ∧ U = U1 × U2 × . . .× Un ∧

U1 ∈ A1 ∧ U2 ∈ A2 ∧ . . . ∧ Un ∈ An})
Although f can be a partial function, the lift of f is always total. One can get
rid of the problems of partial functions in calculus by lifting the whole theory
to filters. In some sense by going to filters we are adding a ‘bottom element’ ⊥
to the values of the theory. Looked at in this way, we have a strict partial logic,
because a function applied to ⊥ will always give ⊥ again.

Note also that the definitions of ā as a principal filter and as lift of a 0-ary
constant function coincide. This justifies using one notation for both.

From now on we will often write f instead of f̄ when one or more of the
arguments of f are filters. So we will write sin(A) instead of sin(A). This will
allow us to write things like

√
A, and mean the lift of the square root function.

To state this convention more precisely: if t[x1, . . . , xn] is a term that does not
involve filters (so x1, . . . , xn are variables ranging over the ordinary reals) then
t[A1, . . . , An] will mean the lift of the function λx1 · · · xn. t[x1, . . . , xn] applied
to the filters A1, . . . , An. Note that with this convention 1/A means something
different from 1̄/A. The first is the lift of the unary function λx. 1/x applied to
A. The second is the lift of the binary function λx y. x/y applied to 1̄ and A.
Those are not necessarily equal: 1/1+ = 1− but 1̄/1+ = 1̄.

Definition: The filter limit of the function f : X → X when taking the limit to
the filter A is defined to be:

Lim
x→A

f(x) ≡ f̄(A)

We distinguish a filter limit from an ordinary limit by writing ‘Lim’ with a capital
letter L. Note that the filter limit is always defined, even for non-continuous f .
It might seem silly to introduce a new notation for this when we already have
defined lifting, as it is the same operation. However, now we can write:

Lim
x→0+

x/x

which is something different from

0+/ 0+

The first is the lift of the unary function λx. x/x applied to 0+ and has as value
1̄. The second is the lift of the binary function λx y. x/y applied to the pair
(0+, 0+) and has as value →.
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Definition: A filter A refines a filter B, notation A v B when A ⊇ B as collec-
tions of open sets. When the two filters A and B differ we write A @ B.

Here are some refinement relations between the filters defined on page 5. For any
proper and non-empty filter A we have:

† @ A v ↔ @ ⊥

At any real number a ∈ R we have:

a−, a+ @ a± @ ā

and the ‘infinite’ filters are related by:

−∞,∞ @ ±∞ @↔, −∞ @← @ ±→ @↔, ∞ @→ @ ±→ @↔

Note that the filters defined on page 5 are not the only ones. There are many
‘wild’ filters refining ā and ∞. For instance the filter generated by the sets
{2πn |n > N} is a filter which refines∞. It has the property that the filter limit
of sin to this filter is 0̄.

We can now state the first theorem, which lists some of the many calculation
rules that one needs for arithmetic on filters:

Theorem 2.1: Let a ∈ R>0 be some positive real number. Then:

∞+ ā = ∞
∞− ā = ∞
∞+∞ = ∞
∞−∞ = ↔

ā/0̄ = ⊥
ā/0+ = ∞
ā/0± = ±∞

0+/0+ = →

ā/∞ = 0+

ā/±∞ = 0±

ā/→ = →
ā/↔ = ⊥

0̄∞ = ↔
0+∞ = →
0±∞ = ±→
∞∞ = ∞

Proof: We will show only the proof for the next to last calculation rule, 0±∞ =
±→. The other proofs are similar. To prove this rule, we need to show that both
0±∞ ⊆ ±→ and 0±∞ ⊇ ±→.

So suppose that we have V ∈ 0±∞. Then by the definition of lift of the
multiplication function there are U1 ∈ 0± and U2 ∈ ∞ such that U1U2 ⊆ V . By
the definitions of 0± and ∞ we have for some positive ε1 and ε2 that (−ε1, 0) ∪
(0, ε1) ⊆ U1 and (1/ε2,∞) ⊆ U2. Now to show that V ∈ ±→, we need to show
that for any x 6= 0 we have that x ∈ V . Consider some positive ε smaller than
ε1 and ε2/x. Then x ∈ V follows, because we have that ε ∈ U1, and because by
x/ε > x/(ε2/x) = 1/ε2 we have that x/ε ∈ U2.

For the other inclusion, suppose that V ∈ ±→, which by definition means
that (−∞, 0)∪ (0,∞) ⊆ V . Take for U1 and U2 both (−∞, 0)∪ (0,∞) too, then
U1 ∈ 0± and U2 ∈ ∞. Clearly U1U2 = (−∞, 0) ∪ (0,∞) as well, so U1U2 ⊆ V ,
and therefore V ∈ 0±∞. 2
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Note that, although the lift of division is a total function, ‘division by zero’ is
still not allowed in a sense, because the result of ā/0̄ is domain-error. This is
essentially different from the way that Mathematica behaves. We will come back
to this in Section 4

The next theorem tells us how to evaluate the lift of a continuous function in
a point:

Theorem 2.2: Let f be a function that is continuous and monotonically in-

creasing in a neighborhood of a. Then:

f̄(ā) = f(a), f̄(a±) = f(a)±, f̄(a−) = f(a)−, f̄(a+) = f(a)+

Proof: We will show only the proof of the last equality. The other proofs are
similar. To prove that f̄(a+) = f(a)+ we need to show that both f̄(a+) ⊆ f(a)+

and f̄(a+) ⊇ f(a)+.
So suppose that V ∈ f̄(a+). Then there is a U ∈ a+ such that f [U ] ⊆ V , and

because U ∈ a+ there is a positive ε with (a, a+ε) ⊆ U . We may assume that ε is
small enough that f is continuous and monotonically increasing on [a, a+ε], and
this implies f [(a, a + ε)] = (f(a), f(a) + δ) with δ = f(a + ε)− f(a). Therefore
(f(a), f(a) + δ) ⊆ f [U ] ⊆ V , and hence V ∈ f(a)+.

For the other inclusion, suppose that V ∈ f(a)+, so for some positive δ it
holds that (f(a), f(a) + δ) ⊆ V . Because f is continuous in a there is a positive
ε such that f [(a − ε, a + ε)] ⊆ (f(a)− δ, f(a) + δ). Again we may assume that
ε is small enough that f is monotonically increasing on [a − ε, a + ε], which
gives f [(a, a + ε)] ⊆ (f(a), f(a) + δ), and therefore f [(a, a + ε)] ⊆ V . Because
(a, a+ ε) ∈ a+, this implies that V ∈ f̄(a+). 2

Similar theorems hold for decreasing functions and functions at a local maximum
or minimum.

The next theorems show how to evaluate filter limits:

Theorem 2.3: Bringing filter limits inside expressions:

Lim
x→A

f(g1(x), g2(x), . . . , gn(x)) v f̄(Lim
x→A

g1(x),Lim
x→A

g2(x), . . . ,Lim
x→A

gn(x))

Proof: Define h(x) = f(g1(x), . . . , gn(x)). To prove the statement we need to
show that h̄(A) v f̄(ḡ1(A), . . . , ḡn(A)), which amounts to f̄(ḡ1(A), . . . , ḡn(A)) ⊆
h̄(A)

So suppose W ∈ f̄(ḡ1(A), . . . , ḡn(A)). That means that there are Vi ∈ ḡi(A)
with V1 × · · · × Vn ⊆ dom(f) and f [V1 × · · · × Vn] ⊆ W . This implies that there
are Ui ∈ A with Ui ⊆ dom(gi) and gi[Ui] ⊆ Vi. Now define U = U1 ∩ · · · ∩ Un,
then U ∈ A, U ⊆ dom(gi) and gi[U ] ⊆ Vi, which then implies that U ⊆ dom(h)
and h[U ] ⊆ W . Therefore W ∈ h̄(A). 2
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Note that this theorem also holds for non-continuous f .
As an example of the fact that we do not always have equality here, not even

when all functions are continuous, consider:

Limx→∞(x− x) = Limx→∞ 0 = 0̄
(Limx→∞ x)− (Limx→∞ x) =∞−∞ =↔

This agrees with the theorem, since 0̄ v ↔.

Theorem 2.4: Monotonicity with respect to refinement:

A1 v B1, A2 v B2, . . . , An v Bn ⇒ f̄(A1, A2, . . . , An) v f̄(B1, B2, . . . , Bn)

Proof: Let V be given with V ∈ f̄(B1, . . . , Bn). Then there are Ui ∈ Bi with
U1 × · · · × Un ⊆ dom(f) and f [U1 × · · · × Un] ⊆ W . Because Ai v Bi, also
Ui ∈ Ai, which implies that also V ∈ f̄(A1, . . . , An). 2

Together these two theorems allow one to evaluate a filter limit ‘up to refinement’
by substituting the filter inside the expression. Often this refinement does not
hurt, because the right hand side will be a refinement of ā or∞ anyway, allowing
us to apply the next theorem, which gives the relation between filter limits and
the usual kind of limits:

Theorem 2.5: Limit correspondence theorem:

lim
x→a

f(x) = b ⇔ Lim
x→a±

f(x) v b̄

lim
x→a+

f(x) = b ⇔ Lim
x→a+

f(x) v b̄

lim
x→∞

f(x) = b ⇔ Lim
x→∞

f(x) v b̄

Proof: We will show only the proof of the first equivalence. The other proofs are
similar.

(⇒) Let be given that limx→a f(x) = b: we have to show that f̄(a±) v b̄. So
suppose that V ∈ b̄, which means that for some ε > 0 we have that (b−ε, b+ε) ⊆
V . Because of the limit, there is a δ > 0 such that for all x ∈ (a−δ, a)∪ (a, a+δ)
(call this set U) we have that f(x) is defined and f(x) ∈ (b − ε, b + ε), or, in
other words, U ⊆ dom(f) and f [U ] ⊆ (b − ε, b + ε). Clearly U satisfies U ∈ a±

and f [U ] ⊆ V , and therefore V ∈ f̄(a±).
(⇐) Now assume that f̄(a±) v b̄. For a given ε > 0, let V = (b− ε, b+ ε). Then
V ∈ b̄, so V ∈ f̄(a±), and therefore there is some U ∈ a± with U ⊆ dom(f) and
f [U ] ⊆ V . Because U ∈ a±, for some δ > 0 we have that (a−δ, a)∪(a, a+δ) ⊆ U .
Now this implies that if x ∈ (a − δ, a) ∪ (a, a + δ) then f(x) is defined and
f(x) ∈ (b− ε, b+ ε). Because for each ε > 0 there is a δ > 0 with this property,
limx→a f(x) = b. 2
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Similar theorems hold at a− and −∞ and for limits to plus or minus infinity.
In Europe limx→a+ is sometimes written as limx↓a. The ∞ and a+ in the

‘ordinary’ limits on the left are not filters: those are just the customary notations
for limits from the right and to infinity. The a±, a+ and∞ on the right are filters.

Together these theorems now give us a method to rigorously evaluate ordinary
limits using filters:

1. Replace the limit by the corresponding filter limit.

2. ‘Evaluate’ the filter limit using filter calculations, leading to a refinement.

3. If the right hand side of the refinement refines ā, −∞ or ∞ then we have
succeeded and can use Theorem 2.5 (or its analogue for infinite limits) to
find the answer to the original question. If not, the method failed.

As an example, we use this method to evaluate limx→∞ 1/(x+ 1):

Lim
x→∞

1

x+ 1
v 1̄

Limx→∞(x+ 1)
v 1̄

∞+ 1̄
=

1̄

∞ = 0+

(The refinements here are really equalities, but the theorems that we have do
not give that, and in fact we do not need it.) Now 0+ v 0̄ and so from Theorem
2.5 we find that:

lim
x→∞

1

x+ 1
= 0

Here is another example of a limit evaluated using this method:

Lim
x→0±

x sin
1

x
v 0± sin

1

0±
= 0± sin(±∞) = 0±[−1, 1] = 0̄

(in this calculation ‘[−1, 1]’ is the filter generated by the closed interval [−1, 1],
cf. the notation introduced in Section 3 below), which implies that:

lim
x→0

x sin
1

x
= 0

Note that we rigorously established this limit by calculation, and did not need
the ‘squeeze theorem’ which is usually used to evaluate this limit.

3. Interval filters and connected filters

Definition: We will define a class of filters on R called the interval filters. Con-
sider the set:

R = {−∞+} ∪ {a− | a ∈ R} ∪ {a+ | a ∈ R} ∪ {∞−}

For each pair of elements α and β from R for which α ≤ β in the natural order
on R, we will define a filter interval(α, β). We map the elements of R to formulas
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as:
α φl(x, α, ε) φr(x, α, ε)

−∞+ > x < −1/ε
a− a− ε < x x < a
a+ a < x x < a+ ε
∞− 1/ε < x >

and then we define:

interval(α, β) ≡ {U ∈ O(R) | ∃ε ∈ R>0.∀x ∈ R. φl(x, α, ε)∧ φr(x, β, ε)⇒ x ∈ U}

We will write interval filters using interval notation:

[a, b) ≡ interval(a−, b−)
[a, b] ≡ interval(a−, b+)

(a, b) ≡ interval(a+, b−)
(a, b] ≡ interval(a+, b+)

We suppose that it will be clear from the context when we mean an interval as a
set of real numbers and when we mean an interval as an interval filter. Generally,
for finite a and b they are related like:

(a, b] = generated-by({(a, b]})

but not always. If a = b, then the left hand side is a+ but the right hand side is
improper because the set (a, a] is empty.

When we analyze a two-sided limit into two one-sided limits, and then want
to put the results back together, we need the concept of the ‘join’ of two filters,
which we write A ∨ B. For example, 0− ∨ 0+ = 0±. This concept is defined as
follows:

Definition: The operations join and meet on filters are defined by:

A ∨B = A ∩B
A ∧B = {U ∩ V |U ∈ A ∧ V ∈ B}

We can now write the filters defined on page 5 as interval filters or as joins of
interval filters:

ā = [a, a]
a− = [a, a)
a+ = (a, a]
a± = [a, a) ∨ (a, a]

∞ = [∞,∞)
−∞ = (−∞,−∞]
±∞ = (−∞,−∞] ∨ [∞,∞)

↔ = (−∞,∞)
→ = (0,∞)
← = (−∞, 0)
±→ = (−∞, 0) ∨ (0,∞)

Now that we have the class of interval filters, we will define the class of connected
filters. This definition is much simpler:
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Definition: A filter A is called connected when:

∀U ∈ A.∃U ′ ∈ A.U ′ ⊆ U ∧ U ′ is a connected set

Note that each of improper, domain-error and indeterminate is a connected filter.
The next three theorems give the relevant properties of the connected filters.

Together they ‘explain’ why in practice one encounters only joins of interval
filters: the filters one starts with are of that kind, and the operations that one
applies to them conserve the property.

Theorem 3.1: The interval filters are the proper non-empty connected filters.

Proof: It is easy to verify that every interval filter is proper, non-empty and
connected. Therefore all that is needed is to show that if a proper non-empty
filter is connected, then it is an interval filter.

Assume A is a proper non-empty connected filter. Define:

L = {l ∈ {−∞} ∪ R | (l,∞) ∈ A}
R = {r ∈ R ∪ {∞} | (−∞, r) ∈ A}

Both sets are non-empty, because the filter A is non-empty and so (−∞,∞) ∈ A.
The set L will be closed to the left (if l ∈ L and l′ < l then also l′ ∈ L), so L
has to have the form {−∞}, [−∞, a), [−∞, a] or [−∞,∞). Depending on this,
define α to be respectively −∞+, a−, a+ or ∞−. Similarly R will be of the form
(−∞,∞], [b,∞], (b,∞] or {∞}, which gives β being −∞+, b−, b+ or ∞−. We
have that L∩R = ∅ (because else A would be improper), so α ≤ β. We are now
going to show that A = interval(α, β).

(⊆) Suppose that U ∈ A. The filter A is proper and connected, so there is a
non-empty connected U ′ ∈ A with U ′ ⊆ U . A non-empty connected open set U ′

is always an open interval (l, r), and because U ′ ∈ A, we have that l ∈ L and
r ∈ R. With the definitions of φl and φr it then follows that (l, r) ∈ interval(α, β).
Therefore also U ∈ interval(α, β).

(⊇) Suppose that U ∈ interval(α, β). Then from the definition of interval it is
clear that there is an open interval (l, r) with (l, r) ⊆ U and (l, r) ∈ interval(α, β).
With the definitions of φl and φr it then follows that l ∈ L and r ∈ R. Therefore
(l, r) = (l,∞) ∩ (−∞, r) ∈ A, and so also U ∈ A. 2

So all interval filters are connected, and the only connected filters which are not
an interval filter are the ‘error filters’ improper and domain-error.

Theorem 3.2: If f is a function that is continuous on its domain, and A is a

connected filter, then f̄(A) is also connected.
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Proof: Suppose that V ∈ f̄(A), so there is a U ∈ A with U ⊆ dom(f) and
f [U ] ⊆ V . We need to find a connected V ′ ∈ f̄(A) with V ′ ⊆ V .

Because A is connected, there is a connected U ′ ∈ A with U ′ ⊆ U . Take V ′ =
f [U ′]. The image of a connected set under a continuous function is connected, so
V ′ is connected too. Furthermore, V ′ has the required properties: U ′ ⊆ dom(f)
from which follows that V ′ ∈ f̄(A), and V ′ = f [U ′] ⊆ f [U ] ⊆ V . 2

Theorem 3.3:

f̄(A ∨B) = f̄(A) ∨ f̄(B)

Proof: (v) Suppose V ∈ f̄(A) ∨ f̄(B), then both V ∈ f̄(A) and V ∈ f̄(B), so
there are U ∈ A and U ′ ∈ B such that U,U ′ ⊆ dom(f) and f [U ], f [U ′] ⊆ V .
Then U ∪U ′ ∈ A∨B, and furthermore U ∪U ′ ⊆ dom(f) and f [U ∪U ′] ⊆ V , so
V ∈ f̄(A ∨B).

(w) If V ∈ f̄(A ∨ B), there is a U ∈ A ∨ B (and so U ∈ A and U ∈ B) with
U ⊆ dom(f) and f [U ] ⊆ V . This same U shows that V ∈ f̄(A) and V ∈ f̄(A),
which means that V ∈ f̄(A) ∨ f̄(B). 2

Together, these theorems show that if one applies functions that are continuous
on their domain to finite joins of interval filters, one always will end up with
finite joins of interval filters again.

The final theorem is not needed for actual limit calculations, but it is included
for completeness.

Theorem 3.4:

f̄(A ∧B) v f̄(A) ∧ f̄(B)

Proof: Let V ∈ f̄(A) ∧ f̄(B), so there are V ′ ∈ f̄(A) and V ′ ∈ f̄(B) with
V = V ′ ∩ V ′. Then there are U ′ ∈ A and U ′ ∈ B with U ′, U ′ ⊆ dom(f) and
f [U ′] ⊆ V ′, f [U ′] ⊆ V ′. From this U ′ ∩ U ′ ∈ A ∧ B, U ′ ∩ U ′ ⊆ dom(f) and
f [U ′ ∩ U ′] ⊆ V ′ ∩ V ′, and so V ′ ∩ V ′ ∈ f̄(A ∧B). 2

Note that for ∧ the reverse refinement does not hold. If we take f(x) = x2, then
f̄(←∧→) = f̄(†) = †, but f̄(←) ∧ f̄(→) =→∧→ =→, and although † v →,
it is not the case that → v †.

4. Mathematica revisited

Now that we have given a calculus of filters that resembles the way Mathematica
calculates with infinity, we will compare the behavior of our calculus and that of
Mathematica in detail. This is what the calculations in the example Mathematica
from Section 1.1 become when we redo them in our filter calculus:

1/(∞+ 1) = 0+

√∞ = ∞
∞−∞ = ↔
↔+∞ = ↔
sin∞ = [−1, 1]

1/[−1, 1] = ⊥
[−1, 1] · [−1, 1] = [−1, 1]

[−1, 1]2 = [0, 1]
0̄ sin∞ = 0̄
∞/ sin∞ = ∞/(sin∞)2 = ⊥
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Here are some differences with Mathematica:

• Mathematica does not like to give ‘no’ for an answer. So it prefers not to
complain about undefinedness of a function. According to Mathematica:

1

[−1, 1] = (−∞,−1] ∨ [1,∞)

instead of ⊥. Our definitions have different behavior because we want the
correspondence theorem about limits, Theorem 2.5, to hold. As an example
of this difference in attitude consider the limit:

lim
x→0+

x arctan(tan
1

x
)

The graph of x arctan(tan(1/x)) looks like a ‘saw tooth’ converging to 0,
and it is undefined infinitely often in each neighborhood of 0. Still Mathe-
matica says†:

In[12]:= Limit[x*ArcTan[Tan[1/x]], x->0, Direction->-1]

Out[12]= 0

If you ask MathXpert to evaluate this limit, you get the message: This
function is undefined for certain values arbitrarily close to the limit point,

so the limit is undefined.

• Mathematica does not identify as many expressions as it might. For in-
stance, in the example session it might have simplified:

Interval[{0, 0}] = 0

Interval[{Infinity, Infinity}] = Infinity

Interval[{-Infinity, Infinity}] = Indeterminate

• Mathematica does not distinguish between open and closed intervals, nor
does it have the concept of left and right filters to a point. In order to add
this subtlety to its Interval calculus all that would be needed is to mark
all the endpoints of the intervals with a + or a −.

• We have two kinds of ‘undefined’ in our filter calculus: domain-error = ⊥ and
indeterminate =↔. (The third filter, improper = †, only occurs as the meet
of two disjoint interval filters, and never occurs in practice.) Mathematica
only has Indeterminate, and does not distinguish between these two kinds
of undefinedness.

• Mathematica issues a ‘warning’ message like:

Power::infy: Infinite expression
1

0
encountered.

†In version 3.0. In version 4.1 it leaves the expression unevaluated.
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when it gets infinite or indeterminate results. This seems to imply that such
results are errors. However, in our theory those results are not errors at all
but the correct answers, and they should not generate such a message.

• We gave the details of the filter theory for the space of real numbers. How-
ever, the expression language of Mathematica is about the complex num-
bers. This is clear, for example, from the results of applying Sqrt and Log

to negative numbers. It is therefore strange that Mathematica gives answers
involving intervals to limit questions, since such answers are appropriate to
real limits.

In any case, our filter theory can be adapted to the complex numbers. For ex-
ample, complex infinity is represented by the filter generated by the exteriors
of disks centered at 0 (i.e., ‘neighborhoods of infinity’). The ‘one-sided’ filters
a+ and a− are replaced by a wide variety of other filters representing different
ways in which a complex number z can ‘approach’ a limit point a: for example,
in complex analysis it is common to consider a limit restricted to an angular
sector, such as |θ| < π/4. It is easy to define a ‘sector filter’ generated by such a
sector. Our theorems that do not involve interval filters carry over to the complex
setting: pushing filter limits inside functions, the method of limit evaluation by
refinement, etc. We have not given a characterization of the connected filters in
the complex case. For example, there are more than just the sector filters: the
filter generated by |θ| < r2 is not refined by any sector filter.

5. Conclusion and future directions

We have presented the filter approach to evaluating limits involving infinity.
The usual way of calculating with infinities is not rigorous; indeed the central
concept infinity is never defined in calculus textbooks. The issue is skirted by
such statements as: ‘The symbol ∞ does not represent a real number and we
cannot use it in arithmetic in the usual way.’ (8), p. 112.

Consider a student who says that limx→0+ 1/x is ‘undefined’, while the teacher
says that ∞ is a better answer. ‘But’, says the student, ‘you said ∞ is unde-
fined.’ Such dialogues do occur regularly in classrooms and teachers are unable
to answer these questions on any rigorous basis. We have now, at least in prin-
ciple, provided a remedy for this situation, since our theory of infinite limits is
completely rigorous. Questions at the student level in our theory can usually be
proved or refuted.

When computer algebra systems make use of a set of calculation rules, there
should ideally be a semantics according to which these calculation rules are
correct. Even for ordinary algebra, this is not usually the case. But it is usually
the case that the rules are correct except that the system fails to check the pre-
conditions. That is, the semantics of algebra is understood – but systems fail to
implement the rules in a semantically correct way. Up until now, the semantics
of limits has not been properly understood, and so the behavior of computer
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algebra systems did not even have a standard against which implementations
could be measured. In using intervals as answers to limits, Mathematica has
ventured into uncharted territory. We are now providing maps.

Our work, being completely rigorous, and based on simple set theory, is also
completely formal.‡ Therefore computer-checking the theory from this paper
is possible, and the resulting formalization would not only be an interesting
exercise, but also probably could be used to make the prover automatically
evaluate more limits. In another direction, this material is suitable for inclusion
in an undergraduate real-analysis course, and the distinctions between different
types of limits that it makes are suitable for inclusion in calculus books. In
particular, calculus books need no longer steer away from calculations involving
infinity. Simple rules for manipulating infinity can be given and the justifications
omitted, as is usually the case now when the justifications involve epsilon-delta
arguments.
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