
Statistics on digital libraries of mathematics

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. We present statistics on the standard libraries of four major
proof assistants for mathematics: HOL Light, Isabelle/HOL, Coq and
Mizar.

1 Introduction

1.1 Problem

The advent of digital computers has introduced a new way of doing mathematics
called ‘formalized mathematics’. In this style of doing mathematics one encodes
the mathematics in the computer in sufficient detail that the computer can fully
check the correctness according to a small number of logical rules. This style of
doing mathematics is much more precise and trustable than the traditional way
of first understanding the mathematics in one’s head and then just writing it on
a blackboard or on paper. Also it is a very pleasurable experience to write down
one’s mathematics in a way that all the details are there, knowing that there is
nothing left implicit.

However, these positive aspects of formalized mathematics have to be paid
for. Generally it takes much longer to turn mathematics into formalized form
than it takes to just understand it, or even than to write it down in a traditional
way. (A rough estimate might be that it takes about ten times as long to formalize
something than it takes to write it down in meticulous traditional ‘textbook
style’.) One might wonder where this time is going, i.e., how much it is spent
on the various aspects of formalization. For instance there are the aspects of
formalizing the definitions, choosing good notation for the defined notions, then
stating the appropriate formal statements to be proved, and finally writing the
formal proofs themselves.

Another question that might be posed is whether there are significant differ-
ences in the time needed for these activities between the different systems for
formalization of mathematics.

In this paper we will study these questions. We will not do this by focusing on
the activity of formalization, but rather by studying the results of this activity,
the libraries of formalized mathematics that have been created by the various
research communities that work on this subject. These libraries have grown into
quite large human ‘artifacts’, which – we claim – deserve study in their own right.
In this paper we will do this by collecting various statistics on these libraries.



2 Freek Wiedijk

One might compare our work here to that of a biologist who just makes an
inventarization of the different species that are out there in the world. In this
paper we mainly just collect data.

The question that we will address here is what are the different aspects of
formalization that one can find in the formalized libraries that are out there,
how much of those libraries is spent on which of these aspects, and whether the
different systems for formalization are more or less similar in these aspects or
whether they have significant differences.

1.2 Approach

The way that we count the libraries of formalized mathematics is as follows. First
we concatenate all the files for a system into one huge file. Then we tag each line
of this file with the category of that line, and then we count the different types
of lines that we find.

We will explain this procedure with a small example. Here is a very small
formalization of the irrationality of the square root of two by John Harrison in
the HOL Light system (taken from The Seventeen Provers of the World [5], a
collection of formalizations of this irrationality proof in various systems):

(* ------------------------------------------------------------------------- *)
(* Definition of rationality (& = natural injection N->R). *)
(* ------------------------------------------------------------------------- *)

let rational = new_definition
‘rational(r) = ?p q. ~(q = 0) /\ abs(r) = &p / &q‘;;

(* ------------------------------------------------------------------------- *)
(* The main lemma, purely in terms of natural numbers. *)
(* ------------------------------------------------------------------------- *)

let NSQRT_2 = prove
(‘!p q. p * p = 2 * q * q ==> q = 0‘,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;

(* ------------------------------------------------------------------------- *)
(* Hence the irrationality of sqrt(2). *)
(* ------------------------------------------------------------------------- *)

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS; NOT_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;

REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;

Now for each system studied in this paper, which includes the HOL Light sys-
tem, we wrote a small perl script that tags each line in a formalization with its



Statistics on digital libraries of mathematics 3

category. In our investigation we applied it to the full HOL Light library, but
this is what we get when we tag just this example formalization with it:

C (* ------------------------------------------------------------------------- *)
C (* Definition of rationality (& = natural injection N->R). *)
C (* ------------------------------------------------------------------------- *)
B
D let rational = new_definition
D ‘rational(r) = ?p q. ~(q = 0) /\ abs(r) = &p / &q‘;;
B
C (* ------------------------------------------------------------------------- *)
C (* The main lemma, purely in terms of natural numbers. *)
C (* ------------------------------------------------------------------------- *)
B
T let NSQRT_2 = prove
T (‘!p q. p * p = 2 * q * q ==> q = 0‘,
P MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
P REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN
P REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
P DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN
P FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
P POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;
B
C (* ------------------------------------------------------------------------- *)
C (* Hence the irrationality of sqrt(2). *)
C (* ------------------------------------------------------------------------- *)
B
T let SQRT_2_IRRATIONAL = prove
T (‘~rational(sqrt(&2))‘,
P SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS; NOT_EXISTS_THM] THEN
P REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
P DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN
P ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;
P REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN
P ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;
B

The lines with a ‘C’ are comment lines, the ones with a ‘B’ are blank, and so on.
The perl script is ad hoc in the sense that occasionally it will tag a line wrong.
However, by inspecting its output we improved it until it was sufficiently good
for our purposes. We claim that our perl scripts will tag less than 1% of the lines
in a formalization with the wrong tag.

Finally we count the lines in this ‘tagged’ file for the various tags, and present
the results in tabular format. For this small example that table then becomes:

lines bytes

B blank lines 6 65 18%
C comment lines 9 720 27%

D definitions 2 85 6%
T theorem statements 4 114 12%
P proof lines 12 746 36%

total 33 1,730 100%



4 Freek Wiedijk

Of course for a very small example like this, the percentages are not very mean-
ingful. For instance, the number of blank and comment lines is quite a bit higher
than it is in a more extensive HOL Light formalization.

The percentages in this table are in terms of line counts, and not in terms of
bytes. We believe that line counts is the more interesting measure. It indicates
how much one can oversee behind a computer screen without scrolling. (This
means that a formalization style where multiple steps are put together on a
single line – a formalization style that both John Harrison and Georges Gonthier
use – is superior to a more ‘programming’ like style in which each step gets a
line of its own. Georges Gonthier convinced us in a personal communication that
line counts is the better way to measure formalizations.)

Finally, we also present the table as a pie chart, as a graphical summary of
the results. For these charts the different kinds of lines are grouped together into
only seven categories. (In the example two of these categories are missing.) The
pie chart for the example is:

blank lines

comments
proofs

statements

definitions

Example

1.3 Related work

We are not aware of already existing research into the statistics of formalizations.
In the field of programming, counting lines of source code is one of the meth-

ods in the subject called software metrics. However, there generally the focus is
not on the different kinds of source code lines and their function in the program-
ming languages, but more on programmer productivity.

1.4 Contribution

The investigation presented here is a snapshot in time. Also there is not too
much ‘depth’ in our results: really all we did was count. However getting the
software that tagged the formalizations reasonably accurate took quite an effort,
so obtaining the numbers in this paper was significant work.

The main value of the research described in this paper is showing that all
systems for formalizations are quite similar despite their large differences both
in foundations and in interaction styles.



Statistics on digital libraries of mathematics 5

The observations in this paper might be a guide for people who design systems
for formalizations, by pointing out from the start which elements will need to
be part of their formalization language. That way, these elements can all be
designed in from the start and will not have to appear as an afterthought later.

Finally this paper can be used as a guide for people who are interested in
formalization of mathematics and want to get an impression of the current state
of some important libraries.

1.5 Outline

The structure of this paper is as follows. In Section 2 we present an overview
of our results. Then in Section 3 we give the statistics in detail. In Section 4
we discuss the different types of lines that we distinguished, and relate them
between systems. Finally, in Section 5 we draw some conclusions from our data
and indicate possible future work.

2 Overview

The four systems that we selected for this investigation were:

– HOL Light [1]
– Isabelle/HOL [3]
– Coq [4]
– Mizar [2]

Other systems that we considered were HOL4, ProofPower and PVS. The first
two are rather similar to HOL Light, so we did expect them to get quite similar
statistics. In the HOL family of systems HOL Light is the system that has been
used most for formalization of mathematics. For this reason we selected HOL
Light from that group, and left the other two systems out.

The PVS system is one of the most popular systems for formal methods in
computer science. It has a very interesting way of dealing with partial functions
(called ‘predicate sub-types’), and it has strong automation. However it has not
been used as much for formalization of mathematics as the other systems that
we looked at. For this reason we left PVS out of our comparison as well.

The four systems that we study here have mathematical libraries of quite
different sizes. The sizes of these libraries is shown in the bar diagram on the
next page. In this diagram the left bars represent the libraries that are distributed
with the system. If you install the system, you will have these source files as part
of the distribution.



6 Freek Wiedijk

HOL Light Isabelle/HOL Coq Mizar

In these bars the gray parts are the parts of the library that can be considered to
be the library of the ‘core’ system. It is that part of the library of the system that
is available without doing anything special. In the bar for the HOL Light system
the rest of the library (the white part of the bar) has been divided into two sub-
parts: the part written by John Harrison, and the part written by other people
(which is mostly the formalization of the Jordan Curve Theorem by Tom Hales.)
In the gray bar of the Isabelle system the small part at the top corresponds to
the sub-directory of the contribution called ‘HOLCF’, while in the Coq system it
corresponds to the sub-directory ‘contrib’.

The right bars represent libraries that are distributed separately from the
system itself. These are collections of formalizations by users of the system that
have not (yet) been integrated into the standard library of the system itself. In
the case of Coq this is called the Coq contribs (short for ‘contributions’), while
in the Isabelle community it is called the AFP (Archive of Formal Proofs). The
Mizar system also has a library of user formalizations called MML (= Mizar
Mathematical Library), but in the case of Mizar those formalizations are inte-
grated into the standard library of the system.

We now show a summary of the statistics from this paper in the shape of
four pie charts:



Statistics on digital libraries of mathematics 7

blank lines

comments

proofs

statements

definitions

automation

HOL Light

blank lines

comments

proofs

statements

definitions
modules

automation

Isabelle/HOL

blank lines

comments

proofs

statements

definitions

modules
automation

Coq

blank lines
comments

proofs

statements
definitions

modules

Mizar

For most people the bar chart on the previous page and these pie charts will be
the most interesting part of this paper.

In the HOL Light pie chart there is a tiny sliver between ‘automation’ and
‘definitions’ for the very few lines related to ‘modules’, but it was too narrow to
be labeled. In the Mizar pie chart the ‘registration’ lines have been included in
the ‘statements’ part, although we gave them category ‘H’ (which in Section 4 is
in the sub-section about automation; we will discuss this there in more detail.)

3 Line counts

We now present the detailed statistics of the four systems, and discuss which
files were counted and which were not.



8 Freek Wiedijk

3.1 HOL Light

The statistics in this paper are on version 2.20 of the HOL Light system.
HOL Light input files have suffix ‘.ml’. These files both contain the imple-

mentation of the system as well as the mathematical library, all mixed together.
We divided the files that were primarily implementing the system from files that
were primarily proving the library in the following way:

The basic HOL Light system consists of a file called make.ml, which loads
the main file hol.ml, which then loads 44 more .ml files. (Apart from these 46
files there are in the top level directory 14 more .ml files with names of the form
‘pa_j_. . . .ml’ related to the input processing of the ocaml system that reads
the HOL Light files.)

Now the hol.ml file is divided into sections. One of these sections has the
header ‘Mathematical theories and additional proof tools.’ We decided that the
19 files in that section were the ‘mathematical library’ while the 25 files in the
other six sections contained the ‘implementation of the system’.

Apart from these 19 files we also counted the ‘auxiliary library’ consisting
of 169 .ml files in 11 sub-directories. (There were 11 more .ml files in another
sub-directory named Proofrecording. However that is an alternative implemen-
tation of the core system, and therefore was left out of this investigation.)

Altogether the number of files counted were:

19 files from *.ml

169 files */*.ml

188 files

And the statistics about these files were:

lines bytes

B blank lines 16,438 21,371 8.4%
C comments 19,044 864,913 9.7%

S imports 182 5,459 0.1%
D definitions 2,547 107,835 1.3%
N interfaces 486 19,525 0.2%
X automation: program code 19,979 833,040 10.2%
T theorem statements 25,493 1,073,208 13.0%
P proof lines 112,088 4,356,332 57.1%

total 196,257 7,281,683 100.0%

3.2 Isabelle/HOL

The statistics in this paper are on the Isabelle2007 version of the Isabelle/HOL
system.

Isabelle has two kinds of files, with suffixes ‘.ML’ and ‘.thy’. We decided that
the .ML files primarily contained the implementation of the system, while the



Statistics on digital libraries of mathematics 9

.thy files primarily contained the mathematical library. Now the Isabelle system
can be used with different logics. The HOL logic is the dominant logic that is used
by almost all Isabelle users. For this reason we counted the .thy files inside the
HOL directory (together with HOLCF directory, which is closely related). However,
we left out the HOL/Import sub-directory as it does not contain mathematics
but is about importing theories from other systems.

The number of files counted were (here ** stands for zero or more sub-
directory levels in between):

649 files most of src/HOL/**/*.thy

88 files src/HOLCF/**/*.thy

737 files

And the statistics about these files were:

lines bytes

B blank lines 51,610 80,304 15.9%
C source comments 18,941 829,132 5.8%
E document markup 15,488 713,503 4.8%

S imports & sectioning 2,838 43,584 0.9%
L locales 1,394 58,862 0.4%
D definitions 23,386 1,165,813 7.2%
N notation 2,736 129,089 0.8%
H automation: directives 4,022 191,544 1.2%
X automation: program code 5,714 225,786 1.8%
T theorem statements 58,659 3,136,976 18.0%
P proof lines 140,596 5,024,717 43.2%

total 325,384 11,599,310 100.0%

3.3 Coq

The statistics in this paper are about version 8.1 of the Coq system.
Coq files have the suffix ‘.v’. (The implementation of the system is in files

with suffixes ‘.mli’ and ‘.ml’, but unlike HOL Light and Isabelle these are
in a different part of the distribution, and are not mixed together with the
mathematical library.)

The main library is in the sub-directory theories. There is a supplementary
library in the sub-directory contrib, which mostly contains the supporting the-
ory for several automated proof procedures. (In this second directory the .v files
and the .mli and .ml files are together. However we also only looked at the .v

files there.)
Altogether the number of files counted were:

252 files theories/*/*.v

57 files contrib/*/*.v

309 files



10 Freek Wiedijk

And the statistics about these files were:

lines bytes

B blank lines 13,531 22,456 12.4%
C non-coqdoc comments 5,661 300,850 5.2%
E coqdoc comments 2,910 137,401 2.7%

S imports & sectioning 2,073 49,377 1.9%
L context 1,329 50,686 1.2%
D definitions 8,778 308,858 8.0%
N notation 1,047 40,293 1.0%
H automation: directives 1,157 45,680 1.1%
X automation: program code 2,648 94,556 2.4%
T theorem statements 11,781 541,836 10.8%
P proof lines 58,157 1,981,655 53.3%

total 109,072 3,573,648 100.0%

3.4 Mizar

The statistics in this paper are on version 7.8.05 of the Mizar system, which is
distributed with version 4.87.985 of the MML mathematical library.

Mizar files have the suffix ‘.miz’. (There also are files with suffix ‘.abs’ that
are ‘abstracts’ to the formalizations, but they are derived from the first kind of
files and do not contain any independent information.) As the version number
of the MML library already shows, there are 985 .miz files distributed with the
system.

Therefore the number of files counted were:

985 files mml/*.miz

And the statistics about these files were:

lines bytes

B blank lines 84,609 87,744 4.3%
C comments 10,857 488,821 0.6%

S environments, cancellations 23,655 1,118,819 1.2%
L reservations 5,396 194,693 0.3%
D definitions 56,738 1,847,161 2.9%
N notation 1,634 45,598 0.1%
H registrations 26,016 749,427 1.3%
T theorem statements 177,829 6,625,141 9.0%
P proof lines 1,582,831 61,096,949 80.4%

total 1,969,575 72,254,353 100.0%



Statistics on digital libraries of mathematics 11

4 Categories of lines in a formalization

In the previous section we tagged lines in different systems that had similar
functions with the same letter. Here we identify how these letters should be
interpreted.

For most of the categories we list the main keywords that are associated
with the lines of that category. For a user of the system this makes it quite clear
how we divided the lines among the categories. (In Mizar there was the clearest
bijection between keywords starting a part of a formalization and categories in
our statistics. In the other systems the correspondence was a bit less obvious.)

4.1 Non-content lines

B – blank lines. Lines tagged ‘B’ are blank lines. These amount to a surprising
large part of the total line count of a formalization. In the byte counts of this
category we also included the white space at the end of other kinds of lines. Also
sometimes some care had to be taken with files that did not end in a newline
character. (For such files one newline byte was added.)

C – comments. The following table shows the comment styles found in the
four systems:

HOL Light: (* comment *)

Isabelle/HOL: (* comment *)

Coq: (* comment *)

Mizar: :: comment

E – documentation Isabelle and Coq generate documentation for the for-
malizations by having text inside special comments. In Isabelle these comments
come in two styles, and are always prefixed with a keyword or a double dash.
At first we included some of these lines in the sectioning category below, but
Makarius Wenzel convinced us in private communication that they really belong
in this category.

Isabelle/HOL: header section subsection subsubsection text txt --

{* text *} "text"
Coq: (** text *)

4.2 Modules

Imports, sectioning and modules seem closely related, but there is a gray area
with the notion of definitions. For instance in Isabelle a ‘locale’ might be con-
sidered to group related definitions together, but it also might be considered to
consist of definitions. (We chose the second interpretation.) Similarly Coq mod-
ules seem rather close to Coq structures. (We chose to consider the first to be
about modularization and the second to be a data-type definition.)



12 Freek Wiedijk

S – imports and sectioning. We did not distinguish between lines that group
parts of a formalization together into a section or module, and lines that open
or import these sections or modules.

The main keywords for this category of lines in the four systems were:

HOL Light: needs loadt

Isabelle/HOL: theory imports begin use uses

Coq: Require Section Module Import

Mizar: environ begin canceled

One could also consider Isabelle’s use and uses to belong to the automation
category below, but we decided to consider them to be import lines.

4.3 Definitions

L – contexts. The ‘L’ lines build ‘contexts’ in which a definition can be made.
We considered these lines to be part of those definitions. In the Isabelle system
these contexts are named entities. In Coq they just are implicit through the
position in the section or module. In Mizar we used this letter for lines that
introduce variable conventions.

Isabelle/HOL: class locale context

instance interpret interpretation

Coq: Variable Variables Hypothesis Parameter Axiom

Mizar: reserve

D – definitions. The systems all have numerous constructions for defining
functions, predicates and types. Here are the main keywords for these construc-
tions:

HOL Light: new_definition new_recursive_definition define

new_inductive_definition new_specification

new_type_definition

Isabelle/HOL: abbreviation axclass coinductive constdefs consts

datatype definition defs fun function inductive

inductive_set nominal_datatype nominal_inductive

nominal_primrec primrec recdef record specification

typedecl typedef types

Coq: Definition Fixpoint Inductive CoFixpoint CoInductive

Record Function

Mizar: definition

N – notation. These are the lines that direct the parser and pretty-printer of
the system. These lines do not define the notions themselves, but introduce the
syntax for the defined notions.



Statistics on digital libraries of mathematics 13

HOL Light: parse_as_infix unparse_as_infix parse_as_binder

make_overloadable overload_interface

override_interface reduce_interface

prioritize_num prioritize_real

Isabelle/HOL: syntax translations notation nonterminals

parse_translation print_translation

Coq: Infix Notation ‘Reserved Notation’ ‘Tactic Notation’
Coercion ‘Implicit Arguments’ ‘Set Implicit Arguments’
‘Unset Implicit Arguments’ ‘Set Strict Implicit’
‘Unset Strict Implicit’ ‘Open Scope’ ‘Open Local Scope’

Mizar: notation

4.4 Automation

The automation of a system has two kinds of lines. First there are the lines that
set parameters for the automated decision procedures and proof search proce-
dures. Second there are the implementations of these automated procedures.

Most of the automation is implemented outside of the formalizations and
is not counted here, but procedures that are specific to the subject are often
implemented inside the formalization.

H – automation: directives. The automation ‘directives’ often are mixed
with statements. For instance, in Isabelle theorem statements can be annotated
with ‘[simp]’. This really is an automation directive, but it does not have a line
of its own, so it will not be reflected in the statistics for this category of lines.
Similarly, the Mizar ‘registrations’ (which direct the automation of the Mizar
type system) also can be read as statements. For this reason in the Mizar pie
chart on page 7 this category was included in the group about statements, and
not in a group about automation.

Isabelle/HOL: declare lemmas theorems

Coq: Hint Add Opaque Transparent Scheme

Mizar: registration

X – automation: program code. These lines are implementations of proof
procedures. In the HOL Light system really all lines are in some sense in this
category, as a HOL Light formalization really just is an OCaml program. There-
fore in the case of HOL Light the lines of this category are what remains when
the other categories are removed.

The Mizar system does not have this kind of line as Mizar does not support
user level proof automation.

HOL Light: let

Isabelle/HOL: ML ML_setup declaration method_setup oracle setup

simproc_setup

Coq: Ltac



14 Freek Wiedijk

4.5 Theorems

A formalization mainly consists of a long chain of ‘lemmas’. These lemmas gen-
erally consist of a label, a statement and a proof.

T – theorem statements. In this category are the lines which state the the-
orem and give its label.

The Mizar system actually distinguishes between two kinds of statements:
theorems and schemes. The first category are the first order statements, while
the second category are the higher order statements. Here we do not distinguish
between these two categories.

HOL Light: prove prove_by_refinement

Isabelle/HOL: lemma theorem inductive_cases axioms axiomatization

corollary subclass termination

Coq: Lemma Theorem Goal

Mizar: theorem scheme

P – proofs. Finally there are the lines of the formalized proofs. As is apparent in
the pie charts in Section 2 these lines amount to about half of the formalizations.
These lines contain many different constructions all with their own keywords.
Here we just give the keywords that bracket the proofs.

Isabelle/HOL: apply by proof qed done oops sorry

Coq: Proof Qed Save Defined

Mizar: proof end

5 Conclusions

5.1 Discussion

The three main conclusions of this study for us are:

– The four systems are quite similar. Despite a large difference in foundations
(the HOL logic, the Calculus of Inductive Constructions and Tarski-Grothen-
dieck set theory are all quite different) and in interaction style (talking to an
OCaml interpreter, interacting with a tactic prover in a Proof General style
interface and using a compiler-like batch checker), the actual formalizations
all share the same elements.

– The HOL Light system has the smallest definition segment in its pie chart.
This seems to suggest that it is the most reliable. Andrzej Trybulec taught
me in private communication that a definition is like a debt, because you do
not know whether what you are defining corresponds to the informal notion
in your head. You gain confidence in this by proving theorems about the
notion later. That way you pay the debt back, and gain trust in that your



Statistics on digital libraries of mathematics 15

formalization actually means what you think it means. In this sense the HOL
Light system is the most trustable of the four.
Another interpretation, proposed by John Harrison in a private communi-
cation, is that the low percentage of the definitions does not so much reflect
the quality of the formalization but rather the fact that the HOL Light li-
brary primarily contains pure mathematics. This seems to be collaborated
by the observation that the percentage of the definitions in John Harrison’s
verification work at Intel, also using the HOL Light system, is 3.7% instead
of 1.3%.

– The Mizar system has the largest proof segment in its pie chart. This suggests
that its proof language might be less efficient. (It is very natural and pleasant
to use, though.) This might be related to Mizar’s declarative proof style, or
the fact that the Mizar system does not have much automation.

5.2 Future work

It might be interesting to delve into the ‘fine structure’ of the largest segment
in the pie charts, the proof lines. However, it probably is hard to systematically
distinguish different kinds of proof steps on a line by line basis. An interesting
question about the proof lines might be how many are straight-forward ‘manual’
reasoning steps, and how many invoke strong automated proof procedures.

Acknowledgments. Thanks to John Harrison, Henk Barendregt and Makarius
Wenzel for helpful comments. Special thanks to John Harrison for sending me
statistics on his Intel verification work. Special thanks to Makarius Wenzel for
sending me a list of categorized Isabelle keywords.

References

1. J.R. Harrison. The HOL Light manual (1.1), 2000. 〈http://www.cl.cam.ac.uk/
users/jrh/hol-light/manual-1.1.ps.gz〉.

2. Micha l Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,
1993. 〈http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz〉.

3. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. 〈http://www.cl.cam.
ac.uk/Research/HVG/Isabelle/dist/Isabelle2004/doc/tutorial.pdf〉.

4. The Coq Development Team. The Coq Proof Assistant Reference Manual, 2006.
〈http://pauillac.inria.fr/coq/doc/main.html〉.

5. Freek Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of LNCS.
Springer, 2006. With a foreword by Dana S. Scott.


