two automation challenges

Freek Wiedijk Radboud University Nijmegen

Dagstuhl seminar: interaction versus automation 2009 10 06, 17:00

automation

program verification versus mathematics

assistant versus word processor

formal proof sketches

textbook proof from Hardy & Wright

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$a^2 = 2b^2$$
 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a^2 is even, and therefore a is even. If a = 2c, then $4c^2 = 2b^2$, $2c^2 = b^2$, and b is also even, contrary to the hypothesis that (a, b) = 1.

theorem Th43: sqrt 2 is irrational :: Pythagoras' theorem

proof assume sqrt 2 is rational; consider a, b such that

4_3_1:
$$a^2 = 2 * b^2$$

and a, b are_relative_prime; a^2 is even; a is even; consider c such that a = 2 * c; $4 * c^2 = 2 * b^2$; $2 * c^2 = b^2$; b is even; thus contradiction; end;

full declarative formalization

theorem Th43: sqrt 2 is irrational proof assume sort 2 is rational: then consider a.b such that A1 \cdot b <> 0 and A2: sqrt 2 = a/b and A3: a, b are_relative_prime by Def1; A4: $b^2 <> 0$ by A1, square 1:73; $2 = (a/b)^2$ by A2, SQUARE_1:def 4 $= a^2/b^2$ by SQUARE_1:69; then 4_3_1: $a^2 = 2 * b^2$ by A4, REAL_1:43; a² is even by 4_3_1, ABIAN: def 1; then A5: a is even by PYTHTRIP:2; :: continue in next column

then consider c such that A6: a = 2 * c by ABIAN: def 1; A7: $4 * c^2 = (2 * 2) * c^2$ $.= 2^2 * c^2$ by SQUARE_1:def 3 .= 2 * b² by A6, 4_3_1, SQUARE_1:68; $2 * (2 * c^2) = (2 * 2) * c^2$ by AXIOMS:16 $.= 2 * b^2 by A7;$ then $2 * c^2 = b^2$ by REAL1:9; then b² is even by ABIAN:def 1; then b is even by PYTHTRIP:2; then 2 divides a & 2 divides b by A5, Def2; then A8: 2 divides a gcd b by INT_2:33; a gcd b = 1 by A3, INT_2:def 4; hence contradiction by A8, INT_2:17; end:

first challenge: automate elementary reasoning steps

- experience with formal proof sketches: *computers routinely proving non-trivial steps is far away*
- focus should be on making manual math formalization efficient

luxury mathmode

procedural proof using tactics

#

```
# g '!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2';;
                                                    val it : goalstack = 1 subgoal (1 total)
                                                    0000000
                                                    00000000
'!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2'
                                                    0000000
                                                    0000000
# e INDUCT TAC;;
val it : goalstack = 2 subgoals (2 total)
 0 ['nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2']
'nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2'
'nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2'
# e (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;
val it : goalstack = 1 subgoal (2 total)
(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2'
```

```
!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2
proof
    nsum(1..0) (\i. i) = 0 by NSUM_CLAUSES_NUMSEG;
    ... = (0*(0 + 1)) DIV 2 [1];
    now let n be num;
    assume nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2 [2];
    1 <= SUC n;
    nsum(1..SUC n) (\i. i) = (n*(n + 1)) DIV 2 + SUC n
        by NSUM_CLAUSES_NUMSEG,2;
    thus ... = ((SUC n)*(SUC n + 1)) DIV 2;
end;
ged by INDUCT_TAC,1;</pre>
```

Mizar Light

- = 'luxury mathmode' (Henk)
- = proof language/interface on top of HOL Light

demo

computer algebra with assumptions

two flavors of computer algebra

the Content MathML signature

147 XML elements, like:

⁻¹
$$\lambda \circ ! \div \max \min - + \cdot \sqrt{\operatorname{gcd}} \wedge \vee \neg \Rightarrow \forall \exists |\cdot| \overleftarrow{} \operatorname{arg}$$

 $\Re \Im [\cdot] [\cdot] = \neq > < \ge \le \Leftrightarrow \approx | \int \frac{d}{dx} \frac{\partial}{\partial x} \nabla \cup \cap \in \subseteq$
 $\subset \setminus \# \times \sum \prod \operatorname{lim} \operatorname{ln} \operatorname{log} \operatorname{sin} \operatorname{cos} \operatorname{tan} \operatorname{sec} \operatorname{csc} \operatorname{cot} \operatorname{sinh} \operatorname{cosh}$
tanh coth arcsin arccos arctan $\mu \sigma \operatorname{det}^{\mathrm{T}} \otimes \mathbb{Z} \mathbb{R} \mathbb{Q} \mathbb{N} \mathbb{C} e i$
 $\top \perp \emptyset \pi \gamma \infty$

	MathML	AT ^E X	HOL
$p \Rightarrow q$	implies	\Rightarrow	==>
$A \times B$	cartesianproduct	\times	$\mathtt{prod},\mathtt{CROSS}$
0	cn		NUMERAL
$\sum_{i=1}^{n} a_i$	sum	\sum	nsum, sum
∞	infinity	∞	

$$x \neq 0 \quad \land \quad \left| \ln(x^2) \right| > 1 \quad \land \quad \int_0^x t \, dt \le 1 \quad \Rightarrow \quad -\frac{1}{\sqrt{e}} < x < \frac{1}{\sqrt{e}}$$

- this is not about first order proof search
 first order proof search cannot easily calculate integrals
 - first order proof search cannot easily do numerical approximations
- *this is not about decision procedures* decision procedures generally work over specific small signatures
- this is not about systems like Maple and Mathematica current computer algebra systems generally do not use assumptions

progress:

- automation of formalized primary school math = 'arithmetic'
- automation of formalized high school math = 'calculus'
- automation of formalized university math

should run in less than a second

should run without any arguments should implicitly use:

- \bullet assumptions in the goal = local labels in the proof
- theorems from the formal library

the plan

creating a collection of mathematical problems

- take proofs from Proofs from The Book -
- create formal proof sketches of those proofs
- calculate the **proof obligations** of the steps in those formal proof sketches
- select proof obligations in the Content MathML signature

benchmark for math automation

the proof obligations for the Hardy & Wright example

$$\begin{split} \sqrt{2} \in \mathbb{Q} \quad \vdash \quad \exists a, b \in \mathbb{Z} \ (a^2 = 2b^2 \land \gcd(a, b) = 1) \\ b \in \mathbb{Z} \land a^2 = 2b^2 \quad \vdash \quad 2 \mid a^2 \\ a \in \mathbb{Z} \land 2 \mid a^2 \quad \vdash \quad 2 \mid a \\ 2 \mid a \quad \vdash \quad \exists c \in \mathbb{Z} \ (a = 2c) \\ a^2 = 2b^2 \land a = 2c \quad \vdash \quad 4c^2 = 2b^2 \\ 4c^2 = 2b^2 \quad \vdash \quad 2c^2 = b^2 \\ b \in \mathbb{Z} \land c \in \mathbb{Z} \land 2c^2 = b^2 \quad \vdash \quad 2 \mid b \\ \gcd(a, b) = 1 \land 2 \mid a \land 2 \mid b \quad \vdash \quad \bot \end{split}$$

Content MathML signature only relevant subset of the assumptions shown here each should be proved automatically in less than a second!

b