two automation challenges

Freek Wiedijk
Radboud University Nijmegen
Dagstuhl seminar: interaction versus automation
2009 10 06, 17:00

automation

program verification versus mathematics

assistant versus word processor

formal proof sketches

textbook proof from Hardy \& Wright

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{4.3.1}
\end{equation*}
$$

is soluble in integers a, b with $(a, b)=1$. Hence a^{2} is even, and therefore a is even. If $a=2 c$, then $4 c^{2}=2 b^{2}, 2 c^{2}=b^{2}$, and b is also even, contrary to the hypothesis that $(a, b)=1$.
formal proof sketch of the textbook proof
theorem Th43: sqrt 2 is irrational :: Pythagoras' theorem
proof assume sqrt 2 is rational; consider a, b such that
4_3_1: $\quad a^{\wedge} 2=2 * b^{\wedge} 2$
and a, b are_relative_prime; $a^{\wedge} 2$ is even; a is even; consider c such that $a=2 * c ; 4 * c^{\wedge} 2=2 * b^{\wedge} 2 ; 2 * c^{\wedge} 2=b^{\wedge} 2 ; b$ is even; thus contradiction; end;
theorem Th43: sqrt 2 is irrational proof
assume sqrt 2 is rational;
then consider a, b such that
A1: $\mathrm{b}<>0$ and
A2: sqrt $2=a / b$ and
A3: a, b are_relative_prime by Def1;
A4: $b^{\wedge} 2<>0$ by A1, SQUARE_1:73;
$2=(a / b)^{\wedge} 2$ by A2, SQUARE_1:def 4 $=a^{\wedge} 2 / b^{\wedge} 2$ by SQUARE_1:69;
then
4_3_1: $a^{\wedge} 2=2 * b^{\wedge} 2$ by A4, REAL_1:43;
$a^{\wedge} 2$ is even by 4_3_1, ABIAN:def 1 ; then
A5: a is even by PYTHTRIP:2;
:: continue in next column
then consider c such that
A6: $a=2 *$ c by ABIAN:def 1 ;
A7: $4 * c^{\wedge} 2=(2 * 2) * c^{\wedge} 2$
.$=2^{\wedge} 2 * c^{\wedge} 2$ by SQUARE_1:def 3
.$=2 * \mathrm{~b}^{\wedge} 2$ by A6, 4_3_1, SQUARE_1:68;
$2 *\left(2 * c^{\wedge} 2\right)=(2 * 2) * c^{\wedge} 2$ by AXIOMS:16

$$
.=2 * b^{\wedge} 2 \text { by } A 7
$$

then $2 * c^{\wedge} 2=b^{\wedge} 2$ by REAL_1:9;
then $b^{\wedge} 2$ is even by ABIAN:def 1 ;
then b is even by PYTHTRIP:2;
then 2 divides a \& 2 divides b by A5, Def2; then

A8: 2 divides a gcd b by INT_2:33;
a gcd $b=1$ by A3, INT_2: def 4;
hence contradiction by $A 8$, INT_2:17;
end;
first challenge: automate elementary reasoning steps
Larry Wos:

- experience with formal proof sketches:
computers routinely proving non-trivial steps is far away
- focus should be on making manual math formalization efficient

luxury mathmode

procedural proof using tactics

```
# g '!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2';;
val it : goalstack = 1 subgoal (1 total)
'!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2'
# e INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)
        O ['nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2']
'nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2'
'nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2'
# e (ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]); ;
val it : goalstack = 1 subgoal (2 total)
'(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2'
#
```

batch checked declarative proof

```
!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2
proof
    nsum(1..0) (\i. i) = 0 by NSUM_CLAUSES_NUMSEG;
        ... = (0*(0 + 1)) DIV 2 [1];
    now let n be num;
        assume nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2 [2];
        1 <= SUC n;
        nsum(1..SUC n) (\i. i) = (n*(n + 1)) DIV 2 + SUC n
            by NSUM_CLAUSES_NUMSEG,2;
        thus ... = ((SUC n)*(SUC n + 1)) DIV 2;
    end;
qed by INDUCT_TAC,1;
```

integrating the two worlds

Mizar Light

$=$ 'luxury mathmode' (Henk)
$=$ proof language/interface on top of HOL Light

demo

computer algebra with assumptions

two flavors of computer algebra
mathematical computation by computer
numerical computation

symbolic computation

computer algebra

$$
\begin{gathered}
\frac{1}{X} \in \mathbb{C}(X) \\
\frac{X}{X}=1 \text { as algebraic objects }
\end{gathered}
$$

computer calculus

$$
\lambda X \cdot \frac{1}{X} \in \mathbb{C}^{\mathbb{C}_{\neq 0}}
$$

$$
\frac{X}{X} \neq 1 \text { when } X=0
$$

the Content MathML signature

147 XML elements, like:

$$
\begin{aligned}
& -1 \lambda \circ!\div \max \min -+\cdot \sqrt{ } \operatorname{gcd} \wedge \vee \neg \Rightarrow \forall \exists|\cdot| \div \arg \\
& \Re \Im\left\lfloor\cdot\lceil\cdot\rceil=\neq><\geq \leq \Leftrightarrow \approx \left\lvert\, \int \frac{d}{d x} \frac{\partial}{\partial x} \nabla \cup \cap \in \subseteq\right.\right. \\
& \subset \backslash \# \times \sum \prod \lim \ln \log \sin \cos \tan \sec \csc \cot \sinh \cosh \\
& \text { tanh coth arcsin arccos arctan } \mu \sigma \operatorname{det}^{\mathrm{T}} \otimes \mathbb{Z} \mathbb{R} \mathbb{Q} \mathbb{N} \mathbb{C} e i \\
& \top \perp \emptyset \pi \gamma \infty
\end{aligned}
$$

	MathML	价EX	HOL
$p \Rightarrow q$	implies	\backslash Rightarrow	$==>$
$A \times B$	cartesianproduct	\times	prod, CROSS
0	cn		NUMERAL
$\sum_{i=1}^{n} a_{i}$	sum	\sum	nsum, sum
∞	infinity	\infty	

$$
x \neq 0 \wedge\left|\ln \left(x^{2}\right)\right|>1 \wedge \int_{0}^{x} t d t \leq 1 \Rightarrow-\frac{1}{\sqrt{e}}<x<\frac{1}{\sqrt{e}}
$$

- this is not about first order proof search
first order proof search cannot easily calculate integrals first order proof search cannot easily do numerical approximations
- this is not about decision procedures decision procedures generally work over specific small signatures
- this is not about systems like Maple and Mathematica current computer algebra systems generally do not use assumptions
second challenge: take next step in mathematics automation
progress:
- automation of formalized primary school math = 'arithmetic'
- automation of formalized high school math $=$ 'calculus'
- automation of formalized university math
should run in less than a second
should run without any arguments
should implicitly use:
- assumptions in the goal $=$ local labels in the proof
- theorems from the formal library

the plan

creating a collection of mathematical problems

- take proofs from Proofs from The Book
- create formal proof sketches of those proofs
- calculate the proof obligations of the steps in those formal proof sketches
- select proof obligations in the Content MathML signature
benchmark for math automation
the proof obligations for the Hardy \& Wright example

$$
\begin{aligned}
& \sqrt{2} \in \mathbb{Q} \vdash \exists a, b \in \mathbb{Z}\left(a^{2}=2 b^{2} \wedge \operatorname{gcd}(a, b)=1\right) \\
& b \in \mathbb{Z} \wedge a^{2}=2 b^{2} \vdash 2 \mid a^{2} \\
& a \in \mathbb{Z} \wedge 2 \mid a^{2} \vdash 2 \mid a \\
& 2 \mid a \vdash \exists c \in \mathbb{Z}(a=2 c) \\
& a^{2}=2 b^{2} \wedge a=2 c \vdash 4 c^{2}=2 b^{2} \\
& 4 c^{2}=2 b^{2} \vdash 2 c^{2}=b^{2} \\
& b \in \mathbb{Z} \wedge c \in \mathbb{Z} \wedge 2 c^{2}=b^{2} \vdash 2 \mid b \\
& \operatorname{gcd}(a, b)=1 \wedge 2|a \wedge 2| b \vdash \\
& \text { Content MathML signature }
\end{aligned}
$$

