## do not take natural language too seriously

Freek Wiedijk
Radboud University Nijmegen
Seminar Formal Mathematics
University of Bonn
200704 17, 13:00
programming languages
C:
i++;

Cobol: ADD 1 TO i.

## HyperTalk:

```
function delimitedSum theList, listDelimiter
    put the itemDelimiter into storedDelim -- save itemDelimiter for restore
    if listDelim is empty then put comma into listDelimiter -- like 'sum'
    else set the itemDelimiter to char 1 of value(listDelimiter) -- UNlike 'sum'
    put 0 into sum0fItems
    repeat with i = 1 to number of items in theList
    add value(item i of theList) to sumOfItems -- try to convert to a number
    end repeat
    set the itemDelimiter to storedDelim -- restore itemDelimiter
    return sum0fItems
end delimitedSum
```

making a programming language looks like natural language is a silly idea

Deducito tertiam partem numeri rerum ad cubum, cui addes quadratum dimidij̀ numeri æquationis, $\&$ totius accipe radicem, fcili cet quadratam, quam feminabis, uníq dimidium numeri quod iam in fe duxeras, adïjcies, ab altera dimidium idem minues, habebisóp Bi nomium cum fua Apotome, inde detracta rz cubica Apotomæ ex re cubica fui Binomï, refiduü quod ex hoc relinquitur, eft rei eftimatio.

$$
\text { solutions of } x^{3}+p x=q
$$

## modern style:

$$
x=\sqrt[3]{\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}-\sqrt[3]{-\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}
$$

## ancient style (Gerolamo Cardano, Ars magna, Nürnberg, 1545):

Cube the third part of the number of unknowns, to which you add the square of half the number of the equation, and take the root of the whole, that is, the square root, which you will use, in the one case adding the half of the number which you just multiplied by itself, in the other case subtracting the same half, and you will have a binomial and apotome respecitvely; then subtract the cube root of the apotome from the cube root of the binomial, and the remainder from this is the value of the unknown.
formal mathematics
Bertrand's postulate:

## HOL Light:

!n. $\sim(\mathrm{n}=0)==>$ ?p. prime $\mathrm{p} / \backslash \mathrm{n}<=\mathrm{p} / \backslash \mathrm{p}<=2 * \mathrm{n}$

$$
\forall n . n \neq 0 \Rightarrow \exists p . \text { prime } p \wedge n \leq p \wedge p \leq 2 \cdot n
$$

## Mizar:

for $n$ being Element of NAT st $n>=1$ holds ex $p$ being Prime st $n<p$ \& $p<=2 * n$

For all $n$ being an element of the natural numbers such that $n \geq 1$ holds that there exists a $p$ being prime such that $n<p$ and $p \leq 2 n$.

## submarines aren't fishes

The question of whether machines can think is about as relevant as the question of whether submarines can swim.


