formalization of mathematics

Freek Wiedijk
Radboud University Nijmegen
TYPES Summer School 2005
Göteborg, Sweden
200508 23, 11:10
intro
the best of two worlds
formalization of mathematics is like:

- computer programming
concrete, explicit
a formalization is much like a computer program
- doing mathematics
abstract, non-trivial
a formalization is much like a mathematical textbook
you will like it only if you like both programming and mathematics but in that case you will like it very very much!
table of contents: the two parts of this talk
first hour: an overview of
the current state of the art in formalization of mathematics
in the reader: QED manifesto
second hour: an overview of
Mizar, the most 'mathematical' proof assistant
in the reader: Mizar tutorial
first hour: state of the art in formalization of mathematics

mathematics in the computer

four ways to do mathematics in the computer

- numerical mathematics, experimentation, visualisation
numbers: computer \rightarrow human
- computer algebra
formulas: computer \rightarrow human
- automated theorem provers
proofs: computer \rightarrow human
- proof assistants
proofs: human \rightarrow computer
numerical mathematics: Merten's conjecture
Möbius function:

$$
\mu(n)=\left\{\begin{aligned}
0 & \text { when } n \text { has duplicate prime factors } \\
1 & \text { when } n \text { has an even number of different prime factors } \\
-1 & \text { when } n \text { has an odd number of different prime factors }
\end{aligned}\right.
$$

Mertens, 1897:

$$
\left|\sum_{a n}^{n}(0)\right|<\sqrt{n} ?
$$

Merten's conjecture (continued)

Odlyzko \& te Riele, 1985: Mertens conjecture is false! 50 uur computer time

first n where it fails has tens of digits indirect proof!

2000 zeroes of the Riemann zeta function to 100 decimals precision

$14.1347251417346937904572519835624702707842571156992431756855674601499634298092567649490103931715610127 \ldots$. $21.0220396387715549926284795938969027773343405249027817546295204035875985860688907997136585141801514195 \ldots$. $25.0108575801456887632137909925628218186595496725579966724965420067450920984416442778402382245580624407 \ldots$. $30.4248761258595132103118975305840913201815600237154401809621460369933293893332779202905842939020891106 \ldots$. $32.9350615877391896906623689640749034888127156035170390092800034407848156086305510059388484961353487245 \ldots$ $37.5861781588256712572177634807053328214055973508307932183330011136221490896185372647303291049458238034 \ldots$. $40.9187190121474951873981269146332543957261659627772795361613036672532805287200712829960037198895468755 \ldots$. $43.3270732809149995194961221654068057826456683718368714468788936855210883223050536264563493710631909335 \ldots$. $48.0051508811671597279424727494275160416868440011444251177753125198140902164163082813303353723054009977 .$. $49.7738324776723021819167846785637240577231782996766621007819557504335116115157392787327075074009313300 .$. $52.9703214777144606441472966088809900638250178888212247799007481403175649503041880541375878270943992988 \ldots$. $56.4462476970633948043677594767061275527822644717166318454509698439584752802745056669030113142748523874 \ldots$. 59.3470440026023530796536486749922190310987728064666696981224517547468001526996298118381024870746335484. $60.8317785246098098442599018245240038029100904512191782571013488248084936672949205384308416703943433565 \ldots$ $65.1125440480816066608750542531837050293481492951667224059665010866753432326686853844167747844386594714 \ldots$. 67.0798105294941737144788288965222167701071449517455588741966695516949012189561969835302939750858330343. $69.5464017111739792529268575265547384430124742096025101573245399996633876722749104195333449331783403563 \ldots$. $72.0671576744819075825221079698261683904809066214566970866833061514884073723996083483635253304121745329 \ldots$
computer algebra: symbolic integration of $\int_{0}^{\infty} \frac{e^{-(x-1)^{2}}}{\sqrt{x}} d x$
$>\operatorname{int}\left(\exp \left(-(x-t)^{\wedge}\right) /\right.$ sqrt $(x), x=0 .$. infinity $) ;$

$$
\frac{1}{2} \frac{e^{-t^{2}}\left(-\frac{3\left(t^{2}\right)^{\frac{1}{4}} \pi^{\frac{1}{2}} 2^{\frac{1}{2}} e^{\frac{t^{2}}{2}} K_{\frac{3}{4}}\left(\frac{t^{2}}{2}\right)}{t^{2}}+\left(t^{2}\right)^{\frac{1}{4}} \pi^{\frac{1}{2}} 2^{\frac{1}{2}} e^{\frac{t^{2}}{2}} K_{\frac{7}{4}}\left(\frac{t^{2}}{2}\right)\right)}{\pi^{\frac{1}{2}}}
$$

> subs(t=1,\%);

$$
\frac{1}{2} \frac{e^{-1}\left(-3 \pi^{\frac{1}{2}} 2^{\frac{1}{2}} e^{\frac{1}{2}} K_{\frac{3}{4}}\left(\frac{1}{2}\right)+\pi^{\frac{1}{2}} 2^{\frac{1}{2}} e^{\frac{1}{2}} K_{\frac{7}{4}}\left(\frac{1}{2}\right)\right)}{\pi^{\frac{1}{2}}}
$$

> evalf(\%);
0.4118623312
> evalf(int(exp(-(x-1)^2)/sqrt(x), x=0..infinity));
1.973732150
automated theorem proving: Robbins' conjecture
computers
... can in the near future play chess better than a human
... can in the near future do mathematics better than a human?

Robbins, 1933: is every Robbins algebra a Boolean algebra? EQP, 1996: yes!
eight days of computer time
one of the very few proofs that has first been found by a computer not very conceptual: just searches through very many possibilities
interesting research, but currently not relevant for mathematics

the QED manifesto

let's formalize all of mathematics!
QED manifesto, 1994:
QED is the very tentative title of a project to build a computer system that effectively represents all important mathematical knowledge and techniques.
pamphlet by anonymous group, led by Bob Boyer
utopian vision
proposed many times
never got very far (yet)
the two kinds of computer proof

- correctness of computer software and hardware (serious branch of computer science: 'formal methods')
statements: big
proofs: shallow
computer does the main part of the proof
- correctness of mathematical theorems
(slow and thorough style of doing mathematics, still in its infancy)
statements: small
proofs: deep
human does the main part of the proof
a brief overview of proof assistants for mathematics
four prehistorical systems

1968	Automath Netherlands, de Bruijn
1971	nqthm US, Boyer \& Moore
1972	LCF
	UK, Milner
1973	Mizar Poland, Trybulec

seven current systems for mathematics

a 'top 100' of mathematical theorems

1. The Irrationality of the Square Root of $2 \leftarrow$ all systems
2. Fundamental Theorem of Algebra \leftarrow Mizar, HOL, Coq
3. The Denumerability of the Rational Numbers \leftarrow Mizar, HOL, Isabelle
4. Pythagorean Theorem \leftarrow Mizar, HOL, Coq
5. Prime Number Theorem \leftarrow Isabelle
6. Gödel's Incompleteness Theorem $\leftarrow \mathrm{HOL}$, Coq, nqthm
7. Law of Quadratic Reciprocity \leftarrow Isabelle, nqthm
8. The Impossibility of Trisecting the Angle and Doubling the Cube $\leftarrow \mathrm{HOL}$
9. The Area of a Circle
10. Euler's Generalization of Fermat's Little Theorem \leftarrow Mizar, HOL, Isabelle

$$
\begin{gathered}
\text { 63\% formalized } \\
\text { http://www.cs.ru.nl/~freek/100/ }
\end{gathered}
$$

(advertisement) the seventeen provers of the world
LNAI 3600
one theorem
seventeen formalisations + explanations about the systems

HOL, Mizar, PVS, Coq, Otter, Isabelle, Agda, ACL2, PhoX, IMPS, Metamath, Theorema, Lego, NuPRL, Ω mega, B method, Minlog
http://www.cs.ru.nl/~freek/comparison/

state of the art: recent big formalizations

Prime Number Theorem
Bob Solovay's challenge:
I suspect that fully formalizing the usual proof of the prime number theorem [...] is beyond the current capacities of the [formalization] community. Say within the next ten years.

Jeremy Avigad e.a.:

```
    "pi(x) == real(card(y. y<=x \& y:prime))"
    " (\%x. pi x * ln (real x) / (real x)) ----> 1"
```

1 megabyte $=30,000$ lines $=42$ files of Isabelle $/ \mathrm{HOL}$ the elementary proof by Selberg from 1948

Four Color Theorem

Georges Gonthier:
(m : map) (simple_map m) -> (map_colorable (4) m)
2.5 megabytes $=60,000$ lines $=132$ files of Coq 7.3.1
streamlined proof by Robertson, Sanders, Seymour \& Thomas from 1996

- contains interesting mathematics as well 'planar hypermaps'
- very interesting 'own' proof language on top of Coq

By Congr andb; Congr orb; Rewrite: /eqdf (monic2F_eqd (f_finv (Inode g'))).
- heavily relies on reflection
'this formalization really needs Coq'

Jordan Curve Theorem

Tom Hales:

```
'!C. simple_closed_curve top2 C ==>
(?A B. top2 A / top2 B /
    connected top2 A \(\triangle\) connected top2 B \(/ \backslash\)
\(\sim(A=\) EMPTY \() / \triangle \sim(B=\) EMPTY \() / \triangle\)
    (A INTER B = EMPTY) / (A INTER C = EMPTY) /
        (B INTER C = EMPTY) /
        (A UNION B UNION C = euclid 2))‘
```

2.1 megabytes $=75,000$ lines $=15$ files of HOL Light proof through the Kuratowski characterization of planarity

- 'warming up exercise' for the Flyspeck project
- beat the Mizar project at formalizing this first
- also uses an 'own’ proof style

state of the art: current big projects

the continuous lattices formalization
formalize a complete 'advanced' mathematics textbook

A Compendium of Continuous Lattices

by Gierz, Hofmann, Keimel, Lawson, Mislove \& Scott

> [...] For if not, then $V \subseteq \bigcup\{L \backslash \downarrow v: v \in V\}$; and by quasicompactness and the fact that the $L \backslash \downarrow v$ form a directed family, there would be a $v \in V$ with $V \subseteq L \backslash \downarrow v$, notably $v \notin V$, which is impossible. [...]
project led by Grzegorz Bancerek

$$
\begin{aligned}
& \text { about } 70 \% \text { formalized } \\
& 4.4 \text { megabytes }=127,000 \text { lines }=58 \text { files of Mizar }
\end{aligned}
$$

the Flyspeck project
Kepler in strena sue de nive sexangula, 1661:
is the way one customarily stacks oranges the most efficient way to stack spheres?

Tom Hales, 1998: yes !
proof: depends on computer checking
3 gigabytes programs \& data, couple of months of computer time
referees say to be 99\% certain that everything is correct

FlysPecK project
'Formal Proof of Kepler'
so why did the qed project not take off?
reason one: differences between systems
foundations differ very much

$$
\begin{aligned}
& \text { set theory } \longleftrightarrow \text { type theory } \longleftrightarrow \text { higher order logic } \longleftrightarrow \text { PRA } \\
& \text { classical } \longleftrightarrow \text { constructive } \\
& \text { extensional } \longleftrightarrow \text { intensional } \\
& \text { impredicative } \longleftrightarrow \text { predicative } \\
& \text { choice } \longleftrightarrow \text { only countable choice } \longleftrightarrow \text { no choice }
\end{aligned}
$$

two utopias simultaneously?

- formalization of mathematics
- doing mathematics in weak logics
(advertisement) a questionnaire about intuitionism
http://www.intuitionism.org/
ten questions about intuitionism currently: seventeen sets of answers by various people

3. Do you agree that there are only three infinite cardinalities?
4. Do you agree that for any two statements the first implies the second or the second implies the first?

putting systems together

OMDoc
XML standard for encoding of mathematical documents
developed by Michael Kohlhase
can be used both for natural language documents and for formalizations modularized language architecture
supports both OpenMath and Content MathML encoding of formulas
does not really address semantical differences between systems

Logosphere
converting between the foundations of various systems project led by Carsten Schürmann
formalize foundations of each system in the Twelf logical framework translate all formalizations into Twelf use Twelf to relate those formalizations
systems that are currently supported:

- first order resolution provers
- HOL
- NuPRL
- PVS

> reason two: why mathematicians are not interested (yet)
the cost is too high...

$$
\text { de Bruijn factor }=\frac{\text { size of formalization }}{\text { size of normal text }}
$$

question: is this a constant?
experimental: around 4
de Bruijn factor in time $=\frac{\text { time to formalize }}{\text { time to understand }}$
much larger than 4
formalizing one textbook page ≈ 1 man 2 week $=40$ man•hours
... and the gain is too little
l'art pour l'art

Paul Libbrecht in Saarbrücken: 'mental masturbation'
it's not impossibly expensive formalizing all of undergraduate mathematics ≈ 140 man•years the price of about one Hollywood movie
but: after formalization we just have a big incomprehensible file we don't have a good argument yet for spending that money

certainty that it's fully correct?

is that important enough to pay for 140 man $14 e a r s$?
and it does not look like mathematics
most systems: 'proof' $=$ list of tactics $=$ unreadable computer code even in Mizar and Isar: still looks like code
even formulas: too much 'decoding' needed to understand what it says

Variable J : interval. Hypothesis pJ : proper J.
Variable F, G : PartIR. Hypothesis derG : Derivative J pJ G F.
Let G_inc := Derivative_imp_inc _ _ _ _ derG.
Theorem Barrow : forall a b (H : Continuous_I (Min_leEq_Max a b) F) Ha Hb, let Ha' := G_inc a Ha in let Hb ' := G_inc b Hb in Integral H [=] G b Hb' [-]G a Ha'.

$$
G^{\prime}=F \Rightarrow \int_{a}^{b} F(x) d x=G(b)-G(a)
$$

so what is needed most to promote formalization of mathematics?

- decision procedures
very important, main strength of PVS
- in particular: computer algebra

Macsyma, Maple, Mathematica
(really: computer calculus)
high school mathematics should be trivial!

$$
\begin{gathered}
x=i / n, \quad n=m+1 \quad \vdash \quad n!\cdot x=i \cdot m! \\
\frac{k}{n} \geq 0 \quad \vdash \quad\left|\frac{n-k}{n}-1\right|=\frac{k}{n} \\
n \geq 2, \quad x=\frac{1}{n+1} \quad \vdash \quad \frac{x}{1-x}<1
\end{gathered}
$$

second hour:
a tour of Mizar, a proof assistant for mathematics
why is Mizar interesting?

- a system for mathematicians
- the proof language
only other system with similar language: Isabelle/Isar
- many other interesting ideas
- type system
soft typing
'attributes'
multiple inheritance between structure types
- expression syntax
type directed overloading
bracket-like operators
arbitrary ASCII strings for operators

example formalizations

example: Coq version

```
Definition ge (n m : nat) : Prop :=
    exists x : nat, n = m + x.
Infix ">=" := ge : nat_scope.
Lemma ge_trans :
    forall n m p : nat, n >= m -> m >= p -> n >= p.
Proof.
    unfold ge. intros n m p H HO.
    elim H. clear H. intros x H1.
    elim HO. clear HO. intros xO H2.
    exists (xO + x).
    rewrite plus_assoc. rewrite <- H2. auto.
Qed.
```

example: Mizar version

```
reserve n,m,p,x,x0 for natural number;
definition let n,m;
    pred n >= m means :ge: ex x st n = m + x;
end;
theorem ge_trans: n >= m & m >= p implies n >= p
proof
    assume that H: n >= m and HO: m >= p;
    consider x such that H1: n = m + x by H,ge;
    consider x0 such that H2: m = p + x0 by HO,ge;
    n = p + (x + x0) by H1,H2;
    hence n >= p by ge;
end;
```

procedural versus declarative

- procedural

EESENESSSWWWSEEE
HOL, Isabelle, Coq, NuPRL, PVS

- declarative
$(0,0)(1,0)(2,0)(3,0)(3,1)(2,1)(1,1)(0,1)(0,2)(0,3)(0,4)(1,4)(1,3)(2,3)(2,4)(3,4)(4,4)$
Mizar, Isabelle

If every poor person has a rich father, then there is a rich person with a rich grandfather.
assume that
A1: for x st x is poor holds father (x) is rich and
A2: not ex x st x is rich \& father (father (x)) is rich;
consider p being person;
now let x;
x is poor or father (father (x)) is poor by A2;
hence father(x) is rich by A1;
end;
then father (p) is rich \& father (father (father (p))) is rich; hence contradiction by A2;

Theorem. There are irrational numbers x and y such that x^{y} is rational.
Proof. We have the following calculation

$$
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} \cdot \sqrt{2}}=\sqrt{2}^{2}=2
$$

which is rational. Furthermore Pythagoras showed that $\sqrt{2}$ is irrational. Now there are two cases:

- Either $\sqrt{2}^{\sqrt{2}}$ is rational. Then take $x=y=\sqrt{2}$.
- Or $\sqrt{2}^{\sqrt{2}}$ is irrational. In that case take $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. And by the above calculation then $x^{y}=2$, which is rational.
lemmas used in the proof

AXIOMS: 22
INT_2:44
IRRAT_1:1
POWER:38
SQUARE_1:def 3
SQUARE_1: def 4
SQUARE_1:84
POWER:53

$$
x \leq y \wedge y \leq z \Rightarrow x \leq z
$$

2 is prime
p is prime $\Rightarrow \sqrt{p} \notin \mathbb{Q}$
$a>0 \Rightarrow\left(a^{b}\right)^{c}=a^{b c}$

$$
x^{2}=x \cdot x
$$

$$
0 \leq a \Rightarrow\left(x=\sqrt{a} \Leftrightarrow 0 \leq x \wedge x^{2}=a\right)
$$

$$
1<\sqrt{2}
$$

'a to_power $2=a^{\wedge} \mathbf{2}^{\prime}$

DEMO

reserve x, y for real number;
theorem ex x, y st x is irrational \& y is irrational \&
x to_power y is rational
proof
set $\mathrm{r}=$ sqrt 2;
C: r > 0 by SQUARE_1:84,AXIOMS:22;
B1: r is irrational by INT_2:44,IRRAT_1:1;
B2: (r to_power r) to_power r
$=r$ to_power ($r * r$) by C,POWER:38
. = r to_power $r^{\wedge} 2$ by SQUARE_1:def 3
.= r to_power 2 by SQUARE_1:def 4
. $=r^{\wedge} 2$ by POWER:53
. $=2$ by SQUARE_1:def 4;
per cases;
suppose
A1: r to_power r is rational;
take $\mathrm{x}=\mathrm{r}, \mathrm{y}=\mathrm{r}$;
thus thesis by A1,B1;
end;
suppose
A2: r to_power r is irrational;
take $\mathrm{x}=\mathrm{r}$ to_power $\mathrm{r}, \mathrm{y}=\mathrm{r}$;
thus thesis by A2,B1,B2;
end;
end;
example of how Mizar is like English
Hardy \& Wright, An Introduction to the Theory of Numbers

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{4.3.1}
\end{equation*}
$$

is soluble in integers a, b with $(a, b)=1$. Hence a^{2} is even, and therefore a is even. If $a=2 c$, then $4 c^{2}=2 b^{2}, 2 c^{2}=b^{2}$, and b is also even, contrary to the hypothesis that $(a, b)=1$.

Mizar language approximation of this text
theorem Th43: sqrt 2 is irrational
proof
assume sqrt 2 is rational;
consider a, b such that
4_3_1: $a^{\wedge} 2=2 * b^{\wedge} 2$ and
a,b are_relative_prime;
$a^{\wedge} 2$ is even;
a is even;
consider c such that $\mathrm{a}=2 * \mathrm{c}$;
$4 * c^{\wedge} 2=2 * b^{\wedge} 2$;
$2 * c^{\wedge} 2=b^{\wedge} 2$;
b is even;
thus contradiction;
end;

full Mizar

theorem Th43: sqrt 2 is irrational proof
assume sqrt 2 is rational;
then consider a, b such that
A1: b $<>0$ and
A2: sqrt $2=a / b$ and
A3: a, b are_relative_prime by Def1;
A4: b^2 <> 0 by A1, SQUARE_1:73;
$2=(a / b)^{\wedge} 2$ by A2, SQUARE_1:def 4 $=a^{\wedge} 2 / b^{\wedge} 2$ by SQUARE-1:69;
then
4_3_1: $a^{\wedge} 2=2 * b^{\wedge} 2$ by A4, REAL_1:43;
$a^{\wedge} 2$ is even by 4_3_1, ABIAN:def 1 ; then
A5: a is even by PYTHTRIP:2;
:: continue in next column

then consider c such that

A6: $a=2 *$ c by ABIAN:def 1 ;
A7: $4 * c^{\wedge} 2=(2 * 2) * c^{\wedge} 2$
.$=2^{\wedge} 2 * c^{\wedge} 2$ by SQUARE_1:def 3
. $=2$ * b^2 by A6, 4_3_1, SQUARE_1:68;
$2 *\left(2 * c^{\wedge} 2\right)=(2 * 2) * c^{\wedge} 2$ by AxIOMs:16
.$=2 * b^{\wedge} 2$ by A7;
then $2 * c^{\wedge} 2=b^{\wedge} 2$ by REAL_1:9;
then $b^{\wedge} 2$ is even by ABIAN:def 1 ;
then b is even by PYTHTRIP:2;
then 2 divides $a \& 2$ divides b by A5, Def2;
then
A8: 2 divides a gcd b by int_2:33;
a gcd $b=1$ by A3, INT_2:def 4;
hence contradiction by A8, INT_2:17;
end;

some explanations about Mizar

the proof language
forward reasoning

```
    <statement> by 〈references>
    <statement\rangle proof <steps\rangle end
```

natural deduction

thus \langle statement \rangle	\rightarrow	closes the proof
assume \langle statement \rangle	\rightarrow	\rightarrow－introduction
let \langle variable〉	$\rightarrow \forall$－introduction	
thus \langle statement \rangle	$\rightarrow \wedge$－introduction	
consider \langle variable〉 such that \langle statement \rangle	$\rightarrow \exists$－elimination	
take \langle term	$\rightarrow \exists$－introduction	
per cases；suppose \langle statement $\rangle ; \ldots$	$\rightarrow \vee$－elimination	

'semantics'?
Mizar is just first order predicate logic + set theory
Mizar proofs are just Fitch-style natural deduction

but:

- Mizar variables have types...
... and these types are quite powerful!
- Mizar has 'second-order theorems' called schemes
- Mizar defines function symbols using something like Church's ι operator ('unique choice')

Tarski-Grothendieck set theory

TARSKI:def 3	$X \subseteq Y \Leftrightarrow(\forall x . x \in X \Rightarrow x \in Y)$
TARSKI:def 5	$\langle x, y\rangle=\{\{x, y\},\{x\}\}$
TARSKI:def 6	$\begin{array}{r} X \sim Y \Leftrightarrow \exists Z \cdot(\forall x \cdot x \in X . \Rightarrow \exists y \cdot y \in Y \wedge\langle x, y\rangle \in Z) \wedge \\ (\forall y \cdot y \in Y . \Rightarrow \exists x \cdot x \in X \wedge\langle x, y\rangle \in Z) \wedge \\ (\forall x \forall y \forall z \forall u \cdot\langle x, y\rangle \in Z \wedge\langle z, u\rangle \in Z \Rightarrow(x=z \Leftrightarrow y=u)) \end{array}$
TARSKI:def 1	$x \in\{y\} \Leftrightarrow x=y$
TARSKI:def 2	$x \in\{y, z\} \Leftrightarrow x=y \vee x=z$
TARSKI:def 4	$x \in \bigcup X \Leftrightarrow \exists Y . x \in Y \wedge Y \in X$
TARSKI:2	$(\forall x . x \in X \Leftrightarrow x \in Y) \Rightarrow X=Y$
TARSKI:7	$x \in X \Rightarrow \exists Y . Y \in X \wedge \neg \exists x . x \in X \wedge x \in Y$
TARSKI:sch 1	$\begin{gathered} (\forall x \forall y \forall z . P[x, y] \wedge P[x, z] \Rightarrow y=z) \Rightarrow \\ (\exists X . \forall x \cdot x \in X \Leftrightarrow \exists y \cdot y \in A \wedge P[y, x]) \end{gathered}$
TARSKI:9	$\begin{gathered} \exists M . N \in M \wedge(\forall X \forall Y . X \in M \wedge Y \subseteq X \Rightarrow Y \in M) \wedge \\ (\forall X . X \in M \Rightarrow \exists Z . Z \in M \wedge \forall Y . Y \subseteq X \Rightarrow Y \in Z) \wedge \\ (\forall X . X \subseteq M \Rightarrow X \sim M \vee X \in M) \end{gathered}$

types!

Mizar is based on set theory but it is a typed system
Mizar types are soft types:

$$
M: N\left(t_{1}, \ldots, t_{n}\right)
$$

should really be read as a predicate

$$
N\left(t_{1}, \ldots, t_{n}, M\right)
$$

This means that:

- one Mizar term can have many different types at the same time
- a Mizar typing can be used as a logical formula!

$$
\text { let } \mathrm{x} \text { be Real; } \quad \longleftrightarrow \quad \text { assume not } \mathrm{x} \text { is Nat; }
$$

types! (continued)
think of Mizar types as predicates that the system keeps track of for you
Mizar types are used for three things:

- type based overloading

$$
\begin{array}{ll}
\mathrm{x}+\mathrm{y} & \text { sum of two numbers } \\
\mathrm{X}+\mathrm{Y} & \text { adding the elements of two sets } \\
\mathrm{X}+\mathrm{y} & \text { mixing these two things } \\
\mathrm{v}+\mathrm{w} & \text { sum of two elements of a vector space } \\
\mathrm{I}+\mathrm{J} & \text { sum of two ideals in a ring } \\
\mathrm{x}+\mathrm{y} & \text { 'join' of two elements of a lattice } \\
\mathrm{p}+\mathrm{i} & \text { adding an offset to a pointer }
\end{array}
$$

- inferring implicit arguments
- automatic inference of propositions
- Mizar has dependent types (much like in all the other dependent type systems)
- Mizar has a subtype relation every type except the type 'set' has a supertype
- Mizar has 'type modifiers' called attributes
a type can be prefixed with one or more adjectives an adjective is either an attribute or the negation of an attribute (behaves like intersection types)

notation

any ASCII string can be used for a Mizar operator

```
func ].a,b.] -> Subset of REAL means
:: MEASURE5:def 3
    for x being R_eal holds
        x in it iff (a <' x & x <=' b & x in REAL);
        pred a,b are_convergent<=1_wrt R means
:: REWRITE1:def 9
    ex c being set st ([a,c] in R or a = c) & ([b,c] in R or b = c);
```


Mizar in the world

Mizar Mathematical Library
the biggest library of formalized mathematics

49,588	lemmas
$1,820,879$	lines of 'code'
64	megabytes
165	'authors'
912	'articles'

Mizar, the program

- implemented in Delphi Pascal/Free Pascal
- source not freely available, but

- no small proof checking 'kernel' correctness of Mizar check depends on correctness of whole program
- users can not automate proofs inside the system
publishing formalizations: MML and FM

Mizar Mathematical Library

```
theorem :: RUSUB_2:35
for V being RealUnitarySpace, W being Subspace of V,
    L being Linear_Compl of W holds
    V is_the_direct_sum_of L,W & V is_the_direct_sum_of W,L;
```


Formalized Mathematics

(35) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then V is the direct sum of L and W and the direct sum of W and L.

Mizar versus Isar
some reasons to prefer Mizar over Isar

- the set theory of Mizar is much more powerful and expressive than the HOL logic of Isabelle/HOL
- Mizar is much more able to talk about abstract mathematics, and in particular about algebraic structures, with nice notation
- dependent types are way cool
some reasons to prefer Isar over Mizar
- Isabelle gives you an interactive system
- Isabelle allows you to mix declarative and procedural proof
- Isabelle has much more possibilities of automation
- Isabelle allows you to define binders
is Mizar a difficult system?

no, not difficult at all!

Mizar is about as complex as the Pascal programming language (proof assistants tend to resemble their implementation language)
reasons that people sometimes think Mizar is a complex language

- lack of proper documentation
- natural language-like syntax

extro

gazing into the crystal ball
Henk's futuristic QED questions

- will proof assistants ever become common among mathematicians?
- if so: when will this happen?
- the most optimistic answer: it already is here!
- the experienced user's answer: fifty years
but what do you expect?

