simply typed A-calculus

logical verification
week 2
2004 09 15

newsflash

prime number theorem formalized

write 7m(n) for the number of primes below n, then

m(n)

im =1

n—oo n/In(n)

http://www.andrew.cmu.edu/user/avigad/isabelle/
e Jeremy Avigad
e Kevin Donelly

e David Gray

overview

last week

logic type theory
proofs A-terms

on paper

in Coqg

why typed \-calculus?

C program

#include <math.h>

double findzero(double (*f) (double), double z) {
double x, y;
while (x =z, vy = (x£)(x), z = x - y/((xf)(x + y) - y)x*y,
fabs(z/x - 1) >= le-15) ;
return z;

+

double sqrminus2(double x) { return x*x - 2; }

main() {
printf ("%.15g\n", findzero(&sqrminus2, 1));

+

programming styles

e Imperative programming
C
e object-oriented programming
C++
java
e logic programming
prolog

e functional programming
lisp
ML ‘typed’

haskell ‘lazy’ calculations with infinite data structures

functional programming

functional values become first class objects

no need to name functions anymore

findzero(&sqrminus2 , ...

l

findzero(A\x. x*x - 2 , ...

functions also can return functional values
‘higher order’ functions

currying

f:AxB—C

partial evaluation

f(a7'):B_>C

curried version of the function:
f:A— (B—C(C)

f:A—-B—C

the type of findzero

(double — double) X double — double

curried:

(double — double) — double — double
1 1

atomic type function type

types

simply typed \-calculus

e atomic types
ABC ...

e function types
A— B

terms

e variables

e lambda abstraction
Ax At
the function that maps the variable = of type A to ¢

e function application
tu

the result of applying the function ¢ to the argument u

parentheses

e function types associate to the right

e application associates to the left

these conventions are natural for curried functions:

f:A— (B—C)
(fa)b

l

f:A—-B—C
fab

10

simplest example

identity function on A

term Az A.x

type A— A

11

example in the real numbers

term Mz :R. 22 —2

type R —R
A :R.22-2)1 = 12-2 = -1
Mz:R.22-2)2 = 22-9 = 2

1
[3-step

12

bigger example

tebm Ar:(A—B)—=C—->D.Xy:C. A z:B.x(Aw:A.2)y
type (A—B)— (C—D))—-C—B—D

13

judgments

type derivations

xll_Al,:t22142,...,3%1214n = t114

I'

context

list of variable declarations

14

the three typing rules

variable rule
Dz ATV Fa: A

x does not occur in I

abstraction rule
I'hx:AFt:B

' (\z:At): (A— B)

application rule
I'H¢t:A— B I'Fu:A

I'tu: B

15

type derivation for the example

FAX:(A—B)—>C—-DXy:C. A z:Bx(Aw:A.2)y:
(A—-B)—(C—-D))—-C—-B—D

16

the Curry-Howard-de Bruijn isomorphism

recap minimal logic

e formulas
propositional variables
implication A — B

e rules

implication introduction

implication elimination

17

recap example natural deduction

(A—-B)—(C—-D))—-C—-B—D

18

implication introduction & the abstraction rule

B bx:AFt:B

A— B ' (Ax:At): (A— B)

19

implication elimination & the application rule

A— B A 't:A— B I'Fu:A

B I' -tu:B

20

iIsomorphism

propositional variable
the connective —

formula

assumption
implication introduction
implication elimination

proof

provability
proof checking

type variable

the type constructor —

type

variable
lambda abstraction
function application

term

‘Inhabitation’

type checking

21

BHK-interpretation

Brouwer, Heyting, Kolmogorov

intuitionistic logic

proof of A— B ~ function that maps proofs of A to proofs B
proof of L does not exist

proof of AANB ~ pair of a proof of A and a proof of B

proof of AV B~ either a proof of A or a proof of B

22

propositions as types

M A x: A— A

the function type A — A represents a proposition
the term Az : A. x represents a proof of that proposition

A-terms are proof objects

23

term syntax

Coq

® X

e fun x :

e t u

A

>

24

commands

e Check
prints a term with its type

e Print

print the term for a symbol with its type

25

example

fun x : A => x

Coq as proof checker
'=>" represents implication

Coq as functional programming language
‘=>" represents function type

A > A

26

proof objects

Lemma I

Qed.

Print I.

: A > A.

27

example

((A->B) > (€ ->D)) >C->B ->0D

28

this week

summary

logic type theory
proofs terms

on paper

in Coqg

29

