simply typed λ -calculus

logical verification

week 2

2004 09 15

newsflash

prime number theorem formalized

write $\pi(n)$ for the number of primes below n, then

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln(n)} = 1$$

http://www.andrew.cmu.edu/user/avigad/isabelle/

- Jeremy Avigad
- Kevin Donelly
- David Gray

overview

last week

	logic proofs	type theory λ -terms
on paper		
in Coq		

why typed λ -calculus?

C program

```
#include <math.h>
double findzero(double (*f)(double), double z) {
  double x, y;
  while (x = z, y = (*f)(x), z = x - y/((*f)(x + y) - y)*y,
    fabs(z/x - 1) >= 1e-15);
  return z;
}
double sqrminus2(double x) { return x*x - 2; }
main() {
 printf("%.15g\n", findzero(&sqrminus2, 1));
```

programming styles

• imperative programming

(

• object-oriented programming

```
C++
```

java

logic programming prolog

functional programming

lisp

ML 'typed'

haskell 'lazy' calculations with infinite data structures

functional programming

functional values become first class objects

no need to name functions anymore

```
findzero( &sqrminus2 , ...)

\downarrow
findzero( \lambda x \cdot x \times x - 2 , ...)
```

functions also can **return** functional values 'higher order' functions

currying

$$f: A \times B \to C$$

partial evaluation

$$f(a,\cdot):B\to C$$

curried version of the function:

$$f:A \to (B \to C)$$

$$f:A \to B \to C$$

$$f:A\to B\to C$$

the type of findzero

$$(\texttt{double} \to \texttt{double}) \times \texttt{double} \to \texttt{double}$$
 curried:
$$\begin{array}{c} (\texttt{double} \to \texttt{double}) \to \texttt{double} \to \texttt{double} \\ \uparrow & \uparrow \\ \texttt{atomic type} & \texttt{function type} \end{array}$$

simply typed λ -calculus

types

• atomic types

$$A B C \dots$$

• function types

$$A \rightarrow B$$

terms

variables

```
x y z \dots
```

• lambda abstraction

 $\lambda x : A.t$

the function that maps the variable x of type A to t

• function application

tu

the result of applying the function t to the argument \boldsymbol{u}

parentheses

- function types associate to the right
- application associates to the left

these conventions are natural for curried functions:

$$f: A \to (B \to C)$$
 $(f a) b$

$$\downarrow$$

$$f: A \to B \to C$$
 $f a b$

simplest example

identity function on ${\cal A}$

term $\lambda x : A.x$

type $A \rightarrow A$

example in the real numbers

term
$$\lambda x:\mathbb{R}.\ x^2-2$$
 type $\mathbb{R}\to\mathbb{R}$
$$(\lambda x:\mathbb{R}.\ x^2-2)\ 1=1^2-2=-1$$

$$(\lambda x:\mathbb{R}.\ x^2-2)\ 2=2^2-2=2$$

$$\uparrow \beta\text{-step}$$

bigger example

term
$$\lambda x:(A\to B)\to C\to D.\ \lambda y:C.\ \lambda z:B.\ x\left(\lambda w:A.\ z\right)y$$
 type
$$((A\to B)\to (C\to D))\to C\to B\to D$$

type derivations

judgments

$$\underbrace{x_1:A_1,\ x_2:A_2,\ \dots,\ x_n:A_n}_{\Gamma} \vdash t:A$$

list of variable declarations

the three typing rules

variable rule

$$\Gamma, x: A, \Gamma' \vdash x: A$$

x does not occur in Γ'

abstraction rule

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash (\lambda x : A. t) : (A \to B)}$$

application rule

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \, u : B}$$

type derivation for the example

$$\vdash \lambda x: (A \to B) \to C \to D. \ \lambda y: C. \ \lambda z: B. \ x \ (\lambda w: A. \ z) \ y: \\ ((A \to B) \to (C \to D)) \to C \to B \to D$$

the Curry-Howard-de Bruijn isomorphism

recap minimal logic

• formulas

propositional variables implication $A \rightarrow B$

• rules

implication introduction implication elimination

recap example natural deduction

$$((A \to B) \to (C \to D)) \to C \to B \to D$$

implication introduction & the abstraction rule

$$[A^{x}]$$

$$\vdots$$

$$\frac{B}{A \to B} I[x] \to \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash (\lambda x : A \cdot t) : (A \to B)}$$

implication elimination & the application rule

isomorphism

```
propositional variable ~ type variable
     the connective \rightarrow \sim the type constructor \rightarrow
               formula ∼ type
           assumption ∼ variable
implication introduction ∼ lambda abstraction
 implication elimination ∼ function application
                 proof ∼ term
            provability ~ 'inhabitation'
        proof checking ∼ type checking
```

BHK-interpretation

Brouwer, Heyting, Kolmogorov

intuitionistic logic

```
proof of A \to B \sim function that maps proofs of A to proofs B proof of \bot does not exist proof of A \land B \sim pair of a proof of A and a proof of B proof of A \lor B \sim either a proof of A or a proof of B
```

propositions as types

$$\lambda x : A.x : A \rightarrow A$$

the function type $A \to A$ represents a proposition the term $\lambda x : A. x$ represents a proof of that proposition

 λ -terms are **proof objects**

Coq

term syntax

- X
- fun x : A => t
- t u

commands

- Checkprints a term with its type
- Printprint the term for a symbol with its type

example

fun $x : A \Rightarrow x : A \rightarrow A$

Coq as proof checker

'->' represents implication

Coq as functional programming language

'->' represents function type

proof objects

```
Lemma I : A -> A.
...
Qed.
Print I.
```

example

$$((A \rightarrow B) \rightarrow (C \rightarrow D)) \rightarrow C \rightarrow B \rightarrow D$$

summary

this week

