ProofWeb: logic education through the web

Cezary Kaliszyk, Freek Wiedijk, Femke van Raamsdonk Radboud University Nijmegen & Free University Amsterdam SURF Foundation

FORMED

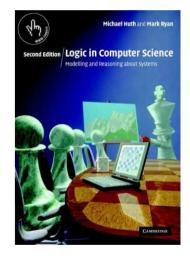
ETAPS 2008, Budapest, Hungary 2008 03 29, 15:20

logic course for math/computer science students :

propositional logic predicate logic predicate logic with equality

practising natural deduction proofs

• on paper


students does not learn to be precise

• with the computer

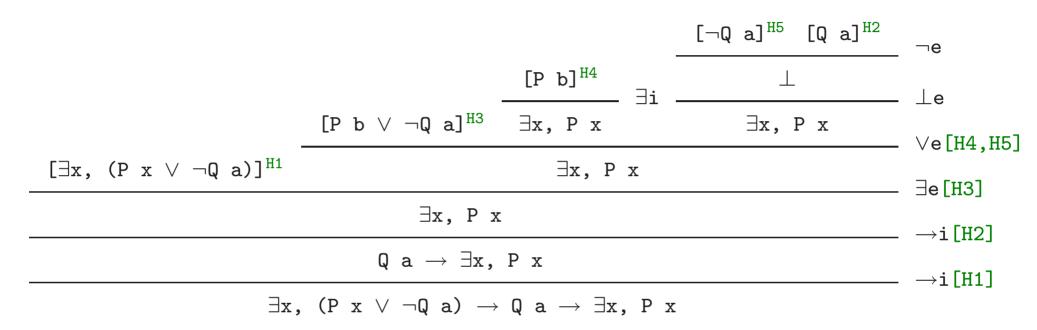
student does not learn to do it all himself

both necessary: complement each other

- built on top of serious proof system: Coq
 - $-\,$ students work with an industrial strength system
 - proofs look exactly like in a traditional textbook
 compatible with: Huth & Ryan, Login in Computer Science
- web-based
 - students don't need to install anything
 - students can access their work from anywhere
 - teacher has at all times full info on student's work
- comes with a manual explaining the system
- comes with a set of graded exercises

proof assistant based on constructive logic developed at INRIA, France 1984 until today

used for impressive proofs:


- four color theorem, Georges Gonthier
- verified C compiler, Xavier Leroy

power of Coq also makes ProofWeb attractive for education

natural deduction (Fitch style)

	_				
1			H1:	$\exists x$, (P x $\lor \neg Q$ a)	assumption
2			H2:	Qa	assumption
			b		
3			H3:	P b $\vee \neg Q$ a	assumption
4			H4:	Рb	assumption
5				∃x, P x	∃i 4
6			H5:	¬Q a	assumption
7				\perp	¬e 6,2
8				∃x, P x	\perp e 7
9		-		∃x, P x	∨e 3,4-5,6-8
10				∃x, P x	∃e 1,3-9
11				Q a $\rightarrow \exists x, P x$	→i 2-10
12				$\exists x$, (P x $\lor \neg Q$ a) \rightarrow Q a \rightarrow $\exists x$, P x	→i 1-11

natural deduction (Gentzen style)


```
Require Import ProofWeb.
Variable P Q : D -> Prop.
Variable a : D.
Theorem example : exi x, (P(x) \setminus (Q(a)) \rightarrow Q(a) \rightarrow exi x, P(x)).
Proof.
imp_i H1.
imp_i H2.
f_exi_e H1 b H3.
f_dis_e H3 H4 H5.
f_exi_i H4.
fls_e.
f_neg_e H5 H2.
Qed.
```

possibilities for an exercise :

- Not touched
- Incomplete
- Correct
- Solved

http://proofweb.cs.ru.nl/

three possibilities:

http://proofweb.cs.ru.nl/

- 1. guest access (no registration needed)
- 2. host course in Nijmegen (free)
- 3. download (open source) and host course on your own system

- other proof display styles
- other logics
 - modal logics
 - temporal logics
 - logic in Dijkstra style
- MathWiki