
Pollack-inconsistency

Freek Wiedijk

Radboud University Nijmegen

2010 07 15 , 12 : 00

UITP 2010

Pollack-inconsistency

Freek Wiedijk

Radboud University Nijmegen

2010 07 15 , 12 : 00

UITP 2010

I

when can one trust a proof assistant?

1
Randy Pollack and how to believe a machine-checked proof

How to Believe a Machine-Checked Proof1Robert PollackBRICS, 2 Computer Science Dept., Aarhus UniversityDK-8000 Aarhus C, Denmark1 IntroductionSuppose I say \Here is a machine-checked proof of Fermat's last theorem (FLT)".How can you use my putative machine-checked proof as evidence for belief inFLT? I start from the position that you must have some personal experience ofunderstanding to attain belief, and to have this experience you must engage yourintuition and other mental processes which are impossible to formalise.By machine-checked proof I mean a formal derivation in some given formalsystem; I am talking about derivability, not about truth. Further, I want totalk about actually believing an actual formal proof, not about formal proofsin principle; to be interesting, any approach to this problem must be feasible.You might try to read my proof, just as you would a proof in a journal; how-ever, with the current state of the art, this proof will surely be too long for youto have con�dence that you have understood it. This paper presents a tech-nological approach for reducing the problem of believing a formal proof to thesame psychological and philosophical issues as believing a conventional proof ina mathematics journal. The approach is not entirely successful philosophicallyas there seems to be a fundamental di�erence between machine checked math-ematics, which depends on empirical knowledge about the physical world, andinformal mathematics, which needs no such knowledge (see section 3.2.2).In the rest of this introduction I outline the approach and mention relatedwork. In following sections I discuss what we expect from a proof, add details tothe approach, pointing out problems that arise, and concentrate on what I believeis the primary technical problem: expressiveness and feasibility for checking offormal systems and representations of mathematical notions.1.1 Outline of the approachThe problem is how to believe FLT when given only a putative proof formalised ina given logic. Assume it is a logic that you believe is consistent, and appropriatefor FLT. The \thing" I give you is some computer �les. There may be questionsabout the physical and abstract representations of the �les (how to physically1A version of this paper appears in Sambin and Smith (editors) Twenty Five Years ofConstructive Type Theory, Oxford University Press.2Basic Research in Computer Science, Centre of the Danish National Research Foundation.The author also thanks Edinburgh University and Chalmers University.1

1
Randy Pollack and how to believe a machine-checked proof

How to Believe a Machine-Checked Proof1Robert PollackBRICS, 2 Computer Science Dept., Aarhus UniversityDK-8000 Aarhus C, Denmark1 IntroductionSuppose I say \Here is a machine-checked proof of Fermat's last theorem (FLT)".How can you use my putative machine-checked proof as evidence for belief inFLT? I start from the position that you must have some personal experience ofunderstanding to attain belief, and to have this experience you must engage yourintuition and other mental processes which are impossible to formalise.By machine-checked proof I mean a formal derivation in some given formalsystem; I am talking about derivability, not about truth. Further, I want totalk about actually believing an actual formal proof, not about formal proofsin principle; to be interesting, any approach to this problem must be feasible.You might try to read my proof, just as you would a proof in a journal; how-ever, with the current state of the art, this proof will surely be too long for youto have con�dence that you have understood it. This paper presents a tech-nological approach for reducing the problem of believing a formal proof to thesame psychological and philosophical issues as believing a conventional proof ina mathematics journal. The approach is not entirely successful philosophicallyas there seems to be a fundamental di�erence between machine checked math-ematics, which depends on empirical knowledge about the physical world, andinformal mathematics, which needs no such knowledge (see section 3.2.2).In the rest of this introduction I outline the approach and mention relatedwork. In following sections I discuss what we expect from a proof, add details tothe approach, pointing out problems that arise, and concentrate on what I believeis the primary technical problem: expressiveness and feasibility for checking offormal systems and representations of mathematical notions.1.1 Outline of the approachThe problem is how to believe FLT when given only a putative proof formalised ina given logic. Assume it is a logic that you believe is consistent, and appropriatefor FLT. The \thing" I give you is some computer �les. There may be questionsabout the physical and abstract representations of the �les (how to physically1A version of this paper appears in Sambin and Smith (editors) Twenty Five Years ofConstructive Type Theory, Oxford University Press.2Basic Research in Computer Science, Centre of the Danish National Research Foundation.The author also thanks Edinburgh University and Chalmers University.1

2
formal proof versus correctness

the computer has checked a formalization without finding errors

2
formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

2
formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

◮ philosophical issues

‘certainty without any doubt is impossible’

2
formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

◮ philosophical issues

‘certainty without any doubt is impossible’

◮ software issues

‘all programs have bugs’

2
formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

◮ philosophical issues

‘certainty without any doubt is impossible’

◮ software issues

‘all programs have bugs’

◮ the real problem

certain that the proofs are correct
not certain that the definitions are ‘correct’

3
the de Bruijn criterion

proof assistant

3
the de Bruijn criterion

proof assistant

independent
proof checker

6
proof object

3
the de Bruijn criterion

proof assistant

independent
proof checker

3
the de Bruijn criterion

proof assistant

proof checking
kernel

3
the de Bruijn criterion

proof assistant

proof checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

3
the de Bruijn criterion

proof assistant

proof checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

II

a student’s remark

4
a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

4
a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

◮ implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

Γ ∪ {A} ⊢ A

Γ ∪ {A} ⊢ B

Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A

Γ ⊢ B

4
a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

◮ implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

{A} ⊢ A

Γ ⊢ B

Γ − {A} ⊢ A → B

Γ ⊢ A → B ∆ ⊢ A

Γ ∪ ∆ ⊢ B

4
a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

◮ implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

{A} ⊢ A

Γ ⊢ B

Γ − {A} ⊢ A → B

Γ ⊢ A → B ∆ ⊢ A

Γ ∪ ∆ ⊢ B

student Marc Schoolderman:

◮ let’s add the other propositional connectives

4
a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

◮ implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

{A} ⊢ A

Γ ⊢ B

Γ − {A} ⊢ A → B

Γ ⊢ A → B ∆ ⊢ A

Γ ∪ ∆ ⊢ B

student Marc Schoolderman:

◮ let’s add the other propositional connectives . . .
. . . in the parser and pretty-printer!

4
a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

◮ implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

{A} ⊢ A

Γ ⊢ B

Γ − {A} ⊢ A → B

Γ ⊢ A → B ∆ ⊢ A

Γ ∪ ∆ ⊢ B

student Marc Schoolderman:

◮ let’s add the other propositional connectives . . .
. . . in the parser and pretty-printer!

parser and pretty-printer have to know about logic

III

the digits of hundred factorial

5
the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:

HOL Light, John Harrison, 1998–today

5
the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:

HOL Light, John Harrison, 1998–today

proof checking kernel = fusion.ml

671 lines ≈ 10 printed pages ≈ 0.2 % of the system
only 395 lines of actual code

5
the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:

HOL Light, John Harrison, 1998–today

proof checking kernel = fusion.ml

671 lines ≈ 10 printed pages ≈ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

5
the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:

HOL Light, John Harrison, 1998–today

proof checking kernel = fusion.ml

671 lines ≈ 10 printed pages ≈ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

let rec type_of tm =

match tm with

Var(_,ty) -> ty

| Const(_,ty) -> ty

| Comb(s,_) -> hd(tl(snd(dest_type(type_of s))))

| Abs(Var(_,ty),t) -> Tyapp("fun",[ty;type_of t])

5
the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:

HOL Light, John Harrison, 1998–today

proof checking kernel = fusion.ml

671 lines ≈ 10 printed pages ≈ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

let typeof = define

‘(typeof (Var n ty) = ty) /\

(typeof (Equal ty) = Fun ty (Fun ty Bool)) /\

(typeof (Select ty) = Fun (Fun ty Bool) ty) /\

(typeof (Comb s t) = codomain (typeof s)) /\

(typeof (Abs n ty t) = Fun ty (typeof t))‘;;

6
numerical calculations in HOL Light

#

6
numerical calculations in HOL Light

‘1 + 1‘;;

6
numerical calculations in HOL Light

‘1 + 1‘;;

val it : term = ‘1 + 1‘

#

6
numerical calculations in HOL Light

‘1 + 1‘;;

val it : term = ‘1 + 1‘

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

#

6
numerical calculations in HOL Light

‘1 + 1‘;;

val it : term = ‘1 + 1‘

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2‘

#

6
numerical calculations in HOL Light

‘1 + 1‘;;

val it : term = ‘1 + 1‘

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2‘

#remove_printer print_qterm;;

it;;

val it : term =

Comb (Const ("NUMERAL", ‘:num->num‘),

Comb (Const ("BIT0", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

#

6
numerical calculations in HOL Light

‘1 + 1‘;;

val it : term = ‘1 + 1‘

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2‘

#remove_printer print_qterm;;

it;;

val it : term =

Comb (Const ("NUMERAL", ‘:num->num‘),

Comb (Const ("BIT0", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

#install_printer print_qterm;;

‘NUMERAL (BIT0 (BIT1 _0))‘;;

val it : term = ‘2‘

#

6
numerical calculations in HOL Light

‘1 + 1‘;;

val it : term = ‘1 + 1‘

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2‘

#remove_printer print_qterm;;

it;;

val it : term =

Comb (Const ("NUMERAL", ‘:num->num‘),

Comb (Const ("BIT0", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

#install_printer print_qterm;;

‘NUMERAL (BIT0 (BIT1 _0))‘;;

val it : term = ‘2‘

rhs (concl (NUM_REDUCE_CONV ‘FACT 100‘));;

val it : term =

‘9332621544394415268169923885626670049071596826438162146859296389521759999322991560894146397615651828625369792082722375825118521091686

#

IV

Pollack-inconsistency

7
the structure of a proof assistant

proof assistant

proof
checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

7
the structure of a proof assistant

interface

6

�

-�

proof assistant

proof
checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

7
the structure of a proof assistant

interface

6

�

proof assistant

proof
checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

parser

printer

editor� ��

- -

7
the structure of a proof assistant

interface

6

�

proof assistant

proof
checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

formula parser

formula printer

editor� ��

- -

7
the structure of a proof assistant

interface

6

�

proof assistant

proof
checking
kernel

remainder of the system:

theorem database, basic reasoning,
rewriting, back-chaining,

proof search, decision procedures,
etc.

6

?

formula parser

formula printer

editor� ��

- -

8
is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parsef : string → formula

printf : formula → string

8
is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parsef : string → formula

printf : formula → string

generally printf is total while parsef is not

8
is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parsef : string → formula

printf : formula → string

generally printf is total while parsef is not

‘well-behaved’: parsef(printf(φ)) = φ

8
is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parsef : string → formula

printf : formula → string

generally printf is total while parsef is not

‘well-behaved’: parsef(printf(φ)) = φ

in practice well-behavedness occasionally breaks

8
is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parsef : string → formula

printf : formula → string

generally printf is total while parsef is not

‘well-behaved’: parsef(printf(φ)) = φ

in practice well-behavedness occasionally breaks

printf(parsef(s)) 6= s

parsef("1 + 1 = 2") = parsef("1+1=2") = parsef("(1 + 1) = 2")

9
Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:

‘⊥ is provable from Pollack-axioms’

9
Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:

‘⊥ is provable from Pollack-axioms’

Pollack-axioms:

‘φ1 ⇔ φ2’ when printf(φ1) = printf(φ2)

9
Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:

‘⊥ is provable from Pollack-axioms’

Pollack-axioms:

‘φ1 ⇔ φ2’ when printf(φ1) = printf(φ2)
‘t1 = t2’ when printt(t1) = printt(t2)

9
Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:

‘⊥ is provable from Pollack-axioms’

Pollack-axioms:

‘φ1 ⇔ φ2’ when printf(φ1) = printf(φ2)
‘t1 = t2’ when printt(t1) = printt(t2)

◮ default printer with default settings

◮ default equality

Coq: ‘Leibniz equality’

◮ only t1 and t2 for which t1 = t2 is well-typed

10
weak versus strong Pollack-inconsistency

strong Pollack-inconsistency =
. . . without adding definitions

weak Pollack-inconsistency =
. . . extra definitions allowed

◮ . . . on top of the standard library of the system

◮ only conservative definitions

same provable formulas not involving the new definition

◮ notations considered a form of definition

Coq: coercions

11
Pollack-super-inconsistency

Pollack-super-inconsistency =

φ is provable with printf(φ) = printf(⊥)

where

⊥ =















F HOL
False Isabelle
False Coq
contradiction Mizar















11
Pollack-super-inconsistency

Pollack-super-inconsistency =

φ is provable with printf(φ) = printf(⊥)

where

⊥ =















F HOL
False Isabelle
False Coq
contradiction Mizar















not only does the system appear inconsistent
it even looks like one has proved a trivial false in the system

V

some of the best proof assistants are Pollack-inconsistent

12
HOL Light

#

12
HOL Light (and Isabelle)

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

val it : term = ‘0 = 1‘

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

val it : term = ‘0 = 1‘

prove(it, ONCE_REWRITE_TAC[one] THEN REFL_TAC);;

val it : thm = |- 0 = 1

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

val it : term = ‘0 = 1‘

prove(it, ONCE_REWRITE_TAC[one] THEN REFL_TAC);;

val it : thm = |- 0 = 1

override_interface("F",‘T‘);;

val it : unit = ()

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

val it : term = ‘0 = 1‘

prove(it, ONCE_REWRITE_TAC[one] THEN REFL_TAC);;

val it : thm = |- 0 = 1

override_interface("F",‘T‘);;

val it : unit = ()

mk_const("F",[]);;

val it : term = ‘F‘

‘T‘;;

val it : term = ‘F‘

#

12
HOL Light (and Isabelle)

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

val it : term = ‘0 = 1‘

prove(it, ONCE_REWRITE_TAC[one] THEN REFL_TAC);;

val it : thm = |- 0 = 1

override_interface("F",‘T‘);;

val it : unit = ()

mk_const("F",[]);;

val it : term = ‘F‘

‘T‘;;

val it : term = ‘F‘

prove(‘F‘, ACCEPT_TAC TRUTH);;

val it : thm = |- F

#

13
Coq

Coq <

13
Coq

Coq < Coercion S : nat >-> nat.

S is now a coercion

Coq <

13
Coq

Coq < Coercion S : nat >-> nat.

S is now a coercion

Coq < Check 0.

0

: nat

Coq <

13
Coq

Coq < Coercion S : nat >-> nat.

S is now a coercion

Coq < Check 0.

0

: nat

Coq < Check 1.

0

: nat

Coq <

13
Coq

Coq < Coercion S : nat >-> nat.

S is now a coercion

Coq < Check 0.

0

: nat

Coq < Check 1.

0

: nat

Coq < Definition _Prop := Prop.

_Prop is defined

Coq < Definition _not : _Prop -> Prop := not.

_not is defined

Coq < Coercion _not : _Prop >-> Sortclass.

_not is now a coercion

Coq <

14
Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.

_not is now a coercion

Coq < Lemma _I : _not False.

1 subgoal

============================

False

_I <

14
Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.

_not is now a coercion

Coq < Lemma _I : _not False.

1 subgoal

============================

False

_I < exact (fun x => x).

Proof completed.

_I < Qed.

exact (fun x => x).

_I is defined

Coq <

14
Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.

_not is now a coercion

Coq < Lemma _I : _not False.

1 subgoal

============================

False

_I < exact (fun x => x).

Proof completed.

_I < Qed.

exact (fun x => x).

_I is defined

Coq < Check _I.

_I

: False

Coq <

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

theoremtheorem :: POLLACK:1

[0] <> [0] ;
-

15
Mizar

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

theoremtheorem :: POLLACK:1

[0] <> [0] ;
-

VI

Pollack-consistency on the cheap

16
checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

16
checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

◮ printnormal

good, complicated

◮ printfailsafe

failsafe, trivial

16
checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

◮ printnormal

good, complicated

◮ printfailsafe

failsafe, trivial

combine into printcombined:

?
s := printnormal(φ)

?

parse(s) = φ?�����
XXXXX

XXXXX
�����

no

?

yes

?
return s return printfailsafe(φ)

16
checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

◮ printnormal

good, complicated

◮ printfailsafe

failsafe, trivial

combine into printcombined:

?
s := printnormal(φ)

?

parse(s) = φ?�����
XXXXX

XXXXX
�����

no

?

yes

?
return s return printfailsafe(φ)

parse(printfailsafe(φ)) = φ

⇓
parse(printcombined(φ)) = φ

VII

does Pollack-inconsistency matter?

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

> 1/(1-x) = simplify(1/(1-x))

1

1 − x
= −

1

−1 + x

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)

− ln(1 − x) = − ln(−1 + x)

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)

− ln(1 − x) = − ln(−1 + x)

> evalf(subs(x=-1, %));

−0.6931471806 = −0.6931471806 − 3.141592654i

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)

− ln(1 − x) = − ln(−1 + x)

> evalf(subs(x=-1, %));

−0.6931471806 = −0.6931471806 − 3.141592654i

proof assistant users

consistency is very important!

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)

− ln(1 − x) = − ln(−1 + x)

> evalf(subs(x=-1, %));

−0.6931471806 = −0.6931471806 − 3.141592654i

proof assistant users

consistency is very important!

a little Pollack-inconsistency does not matter much . . .

17
the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . . .

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)

− ln(1 − x) = − ln(−1 + x)

> evalf(subs(x=-1, %));

−0.6931471806 = −0.6931471806 − 3.141592654i

proof assistant users

apart from principled people like Randy Pollack and Mark Adams

consistency is very important!

a little Pollack-inconsistency does not matter much . . .

	Pollack-inconsistency
	when can one trust a proof assistant?
	1. Randy Pollack and how to believe a machine-checked proof
	2. formal proof versus correctness
	3. the de Bruijn criterion

	a student's remark
	4. a proof assistant for propositional logic

	the digits of hundred factorial
	5. the kernel of HOL Light
	6. numerical calculations in HOL Light

	Pollack-inconsistency
	7. the structure of a proof assistant
	8. is parsing the left inverse of pretty-printing?
	9. Pollack-axioms and Pollack-inconsistency
	10. weak versus strong Pollack-inconsistency
	11. Pollack-super-inconsistency

	some of the best proof assistants are Pollack-inconsistent
	12. HOL Light (and Isabelle)
	13. Coq
	14. Coq (continued)
	15. Mizar

	Pollack-consistency on the cheap
	16. checking the pretty-printer at runtime

	does Pollack-inconsistency matter?
	17. the attitude of the proof assistants community

