Pollack-inconsistency

Freek Wiedijk

Radboud University Nijmegen

2010 07 15, 12:00

UITP 2010

Pollack-inconsistency

Freek Wiedijk

Radboud University Nijmegen

2010 07 15, 12:00

UITP 2010

when can one trust a proof assistant?

Randy Pollack and how to believe a machine-checked proof

How to Believe a Machine-Checked Proof

Robert Pollack
2 Computer Science Dept., Aarhus University
DK-8000 Aarhus C, Denmark

1 TIntroduction

Suppase T say “Here is a machine checked proof of Fermat's last theorem (FLT)”

How can you use my putative machine-checked proof as evidence for belief in
FLT? T start from the position that you must have some personal experience of
understanding to attain belief, and to have this experience you must engage your
intuition and other mental processes which are impossible to formalise.

By machine checked proof 1 mean a formal derivation in some given formal
system: T am talking abont derivability, not about truth. Further, T want to
talk abont m‘hm”y believing an actual formal proof, not ahout l()rm.\l pr(mfﬂ
in principle; to be interesting, any approach to this problem must be ble
You might u, to read my proof, Just as you would a proof in Jullu\.
ever, with the current state of the art, this proof will surely be tao long cm yon
to have confidence that you have understood it. This paper presents a tech-
nological approach for reducing the problem of helieving a formal proof to the
same and isstues as believing a proof in
a mathematics journal. The approach s not entirely suceessful philosophically
as there seems to be a fundamental difference between machine checked math-
ematics, which depends on empirical knowledge about the physical world, and
informal mathematics, which needs no snch knowledge (seo section 3.2.2

In the rest of this introduction T outline the approach and mention related
work. In following sections I discuss what we expect from a praof, add details to
the approach, pointing out problems that arise, and concentrate on what 1 believe
s the primary technical problem: expressiveness and feasibility for checking of
formal systems and representations of mathematical notions

1.1 Outline of the approach
The problem is how to believe FLT when given only a putative proof formalised in
& given logic. Assume it is a logie that yon helieve is consistent, and appropriate
for FLT. The *thing” 1 give you is some computer files. There may be questions
abont the physical and abstract, representations of the files (how to physically

2 verion o s papee appears in Sambin and Smih (editon) Toenty Fie Yeus of
Copiricies Tupe Theom, Oxkord

2Basic Rescarch in c‘,,.., v Scienes, Conte of tho Do ational Rsarch Foundatian
e o s s Falsnrgh Shiven o o Chnens Unsocriis

Randy Pollack and how to believe a machine-checked proof

How to Believe a Machine-Checked Proof

Robert Pollack
BRICS, * Computer Science nml Aarhus University
DK-8000 Aarhus C, Denmark

1 TIntroduction

Suppase T say “Here is a machine checked proof of Fermat's last theorem (FLT)”

How can you use my putative machine-checked proof as evidence for belief in
FLT? T start from the position that you must have some personal experience of
understanding to attain belief, and to have this experience you must engage your
intuition and other mental processes which are impossible to formalise.

By machine checked proof 1 mean a formal derivation in some given formal
system: T am talking abont derivability, not about truth. Further, T want to
talk abont actually believing an actual formal proof, not abant. formal proofs
in principle; o be interesting, any approach to this problem must be feasible.
You might try to read my proof, just as you would a proof in a journa
vre, with the crrent state of the-art, thi prond il el b o long for son
to have confidence that you have understood it. This paper presents a tech-
nological approach for reducing the problem of helieving a formal proof to the
same and isstues as believing a proof in
a mathematics journal. The approach s not entirely suceessful philosophically
as there seems to be a fundamental difference between machine checked math-
ematics, which depends on empirical knowledge about the physical world, and
informal mathematics, which needs no such knowledge (see section 3.2.2

In the rest of this introduction T outline the approach and mention related
work. In following sections I discuss what we expect from a praof, add details to
the approach, pointing out problems that arise, and concentrate on what 1 believe
s the primary technical problem: expressiveness and feasibility for checking of
formal systems and representations of mathematical notions

how

1.1 Outline of the approach
The problem is how to believe FLT when given only a putative proof formalised in
& given logic. Assume it is a logie that yon helieve is consistent, and appropriate
for FLT. The " 1 give you is some computer files. There may be questions
abont the physical and abstract representations of the files (how to physically

1 s, f i pope appeurs i Sambin an Smith (i) Tuenty B Yers of
Coptrucies Type Theom, O

i Resareh n Comprass Seione, Conte f she Dasinh National Rescarch Foundation
e o s s Falsnrgh Shiven o o Chnens Unsocriis

formal proof versus correctness

the computer has checked a formalization without finding errors

formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

formal proof versus correctness
the computer has checked a formalization without finding errors
is it now certain that there are no errors?

» philosophical issues

‘certainty without any doubt is impossible’

formal proof versus correctness
the computer has checked a formalization without finding errors
is it now certain that there are no errors?

» philosophical issues

‘certainty without any doubt is impossible’

» software issues

‘all programs have bugs’

formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

» philosophical issues

‘certainty without any doubt is impossible’

» software issues

‘all programs have bugs’

» the real problem

certain that the proofs are correct
not certain that the definitions are ‘correct’

the de Bruijn criterion

proof assistant

the de Bruijn criterion

independent
proof checker

proof object

proof assistant

the de Bruijn criterion

independent
proof checker

proof assistant

the de Bruijn criterion

proof checking
kernel

proof assistant

the de Bruijn criterion

proof checking
kernel

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

the de Bruijn criterion

proof checking
kernel

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

» implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

rU{A}-B THA—B THA
rU{AJFA TFA—=B reB

a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

» implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

r-B [FA—B AFA
{(AfZFA T—{AJFA=B TUAFB

a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

» implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

r-B [FA—B AFA
{(AfZFA T—{AJFA=B TUAFB

student Marc Schoolderman:

» let's add the other propositional connectives

a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

» implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

r-B [FA—B AFA
{(AfZFA T—{AJFA=B TUAFB

student Marc Schoolderman:

» let's add the other propositional connectives ...
. in the parser and pretty-printer!

a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

» implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

r-B [FA—B AFA
{(AfZFA T—{AJFA=B TUAFB

student Marc Schoolderman:

» let's add the other propositional connectives ...
. in the parser and pretty-printer!

parser and pretty-printer have to know about logic

the digits of hundred factorial

the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:

HOL Light, John Harrison, 1998—today

the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:
HOL Light, John Harrison, 1998—today
proof checking kernel = fusion.ml

671 lines &~ 10 printed pages ~ 0.2 % of the system
only 395 lines of actual code

the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:
HOL Light, John Harrison, 1998—today
proof checking kernel = fusion.ml

671 lines &~ 10 printed pages ~ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:
HOL Light, John Harrison, 1998—today
proof checking kernel = fusion.ml

671 lines ~ 10 printed pages ~ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

let rec type_of tm =
match tm with
Var(_,ty) -> ty
| Const(_,ty) -> ty
| Comb(s,_) -> hd(tl(snd(dest_type(type_of s))))
| Abs(Var(_,ty),t) -> Tyapp("fun", [ty;type_of tl)

the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:
HOL Light, John Harrison, 1998—today
proof checking kernel = fusion.ml

671 lines ~ 10 printed pages ~ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

let typeof = define
‘(typeof (Var n ty) = ty) /\
(typeof (Equal ty) = Fun ty (Fun ty Bool)) /\
(typeof (Select ty) = Fun (Fun ty Bool) ty) /\
(typeof (Comb s t) = codomain (typeof s)) /\
(typeof (Abs n ty t) = Fun ty (typeof t))‘;;

numerical calculations in HOL Light

numerical calculations in HOL Light

1+ 1,

numerical calculations in HOL Light

1+ 1,
val it : term = ‘1 + 1°¢
#

numerical calculations in HOL Light

1+ 1°;

val it : term = ‘1 + 1°¢

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

#

numerical calculations in HOL Light

1+ 1°;

val it : term = ‘1 + 1°¢

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2
rhs (concl it);;

val it : term = ‘2°¢

#

numerical calculations in HOL Light

1+ 1°;

val it : term = ‘1 + 1€

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2°¢

#remove_printer print_qterm;;
it;;

val it : term =

Comb (Const ("NUMERAL", ¢:num->num‘),

Comb (Const ("BITO", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Comnst ("_0",

“inum))))

numerical calculations in HOL Light

1+ 1°;

val it : term = ‘1 + 1°¢

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2°¢

#remove_printer print_qgterm;;

it;;

val it : term =
Comb (Const ("NUMERAL", ¢:num->num‘),
Comb (Const ("BITO", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

#install_printer print_qterm;;
‘NUMERAL (BITO (BIT1 _0))°‘;;
val it : term = ‘2°

#

numerical calculations in HOL Light

1+ 1,

val it : term = ‘1 + 1°¢

NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

rhs (concl it);;

val it : term = ‘2°¢

#remove_printer print_qgterm;;

it;;

val it : term =
Comb (Const ("NUMERAL", ¢:num->num‘),
Comb (Const ("BITO", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

#install_printer print_qterm;;
‘NUMERAL (BITO (BIT1 _0))°‘;;
val it : term = ‘2°

rhs (concl (NUM_REDUCE_CONV ‘FACT 100¢));;
val it : term =
€93326215443944152681699238856266700490715968264381621468592963895217

the structure of a proof assistant

proof
checking
kernel

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

the structure of a proof assistant

interface

proof
checking
kernel

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

the structure of a proof assistant

interface
parser editor «—
proof
checking
kernel .
printer >

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

the structure of a proof assistant

interface
formula parser editor |
proof
checking
kernel .
formula printer >

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

the structure of a proof assistant

interface
formula parser editor «—
proof
checking
kernel .
formula printer >

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant

is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parse; : string — formula

printy : formula — string

is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parse; : string — formula

print; : formula — string

generally print¢ is total while parse; is not

is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parse; : string — formula

printy : formula — string

generally print¢ is total while parse; is not

‘well-behaved': parsec(printe(¢)) = ¢

is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parse; : string — formula

print; : formula — string

generally print¢ is total while parse; is not

‘well-behaved': parse¢(printe(¢)) = ¢

in practice well-behavedness occasionally breaks

is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parse; : string — formula

print; : formula — string

generally print¢ is total while parse; is not

‘well-behaved': parses(printe(9)) = ¢

in practice well-behavedness occasionally breaks

print¢(parses(s)) # s
parses("1 + 1 = 2") = parseg("1+1=2") = parse("(1 + 1) = 2")

Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:

‘L is provable from Pollack-axioms’

Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:
‘L is provable from Pollack-axioms’
Pollack-axioms:

‘p1 < ¢2' when printe(¢1) = print¢(¢2)

Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:
‘L is provable from Pollack-axioms’
Pollack-axioms:

‘01 < ¢2" when printe(¢1) = printe(¢2)
‘t1 =t when print,(t1) = print.(t2)

Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:
‘L is provable from Pollack-axioms’

Pollack-axioms:
‘01 < ¢2" when printe(¢1) = printe(¢2)
‘t1 =t when print,(t1) = print.(t2)
» default printer with default settings

» default equality
Coq: ‘Leibniz equality’

» only t; and t, for which t; = t is well-typed

weak versus strong Pollack-inconsistency

strong Pollack-inconsistency =
. without adding definitions

weak Pollack-inconsistency =
. extra definitions allowed

» ... on top of the standard library of the system

» only conservative definitions

same provable formulas not involving the new definition

» notations considered a form of definition

Coq: coercions

Pollack-super-inconsistency

Pollack-super-inconsistency =

¢ is provable with print¢(¢) = print¢(.L)

where
F HOL
False Isabelle
1=
False Coq

contradiction Mizar

Pollack-super-inconsistency

Pollack-super-inconsistency =

¢ is provable with print¢(¢) = print¢(.L)

where
F HOL
False Isabelle
1=
False Coq

contradiction Mizar

not only does the system appear inconsistent
it even looks like one has proved a trivial false in the system

some of the best proof assistants are Pollack-inconsistent

HOL Light (and Isabelle)

HOL Light (and Isabelle)

‘?lx:1. T,

HOL Light (and Isabelle)

‘?lx:1. T,
val it : term = ‘?!x. T¢
#

HOL Light (and Isabelle)

‘?lx:1. T,

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

#

HOL Light (and Isabelle)

‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

mk_eq(mk_var("0",“:19) ,mk_var("1",:1));;

HOL Light (and Isabelle)

‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

mk_eq(mk_var("0",“:19) ,mk_var("1",:1));;
val it : term = ‘0 = 1°
#

HOL Light (and Isabelle)

‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

mk_eq(mk_var("0",“:19) ,mk_var("1",:1));;

val it : term = ‘0 = 1°

prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

#

HOL Light (and Isabelle)

‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

mk_eq(mk_var("0",“:1¢) ,mk_var("1",“:1¢));;

val it : term = ‘0 = 1°

prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

override_interface("F",‘T‘);;
val it : unit = ()
#

HOL Light (and Isabelle)

‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

mk_eq(mk_var("0",“:1¢) ,mk_var("1",“:1¢));;

val it : term = ‘0 = 1°

prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

override_interface("F",‘T‘);;
val it : unit = (O

mk_const("F",[1);;

val it : term = ‘F¢

‘T;;

val it : term
#

(Fe¢

HOL Light (and Isabelle)

‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

mk_eq(mk_var("0",“:1¢) ,mk_var("1",“:1¢));;

val it : term = ‘0 = 1°

prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

override_interface("F",‘T‘);;
val it : unit = ()
mk_const ("F",[1);;

val it : term = ‘F¢

(T(..

val it : term = ‘F¢

prove(‘F‘, ACCEPT_TAC TRUTH);;
val it : thm = |- F

#

Coq <

Coq

Coq < Coercion S : nat >-> nat.
S is now a coercion

Coq <

Coq

Coq < Coercion S : nat >-> nat.
S is now a coercion

Coq < Check 0.
0
: nat

Coq <

Coq

Coq < Coercion S : nat >-> nat.
S is now a coercion

Coq < Check 0.
0
: nat

Coq < Check 1.
0
! nat

Coq <

Coq

Coq < Coercion S : nat >-> nat.
S is now a coercion

Coq < Check 0.
0
: nat

Coq < Check 1.
0
! nat

Coq < Definition _Prop := Prop.
_Prop is defined

Coq < Definition _not : _Prop -> Prop := not.
_not is defined

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq <

Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq < Lemma _I : _not False.
1 subgoal

False

IK<

14

Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq < Lemma _I : _not False.
1 subgoal

False

_I < exact (fun x => x).
Proof completed.

_I < Qed.
exact (fun x => x).

_I is defined

Coq <

14

Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq < Lemma _I : _not False.
1 subgoal

False

_I < exact (fun x => x).
Proof completed.

_I < Qed.
exact (fun x => x).

_I is defined

Coq < Check _I.
I

: False

Coq <

14

Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

Mizar

definition let x be real number;
func [x] equals 1; coherence; 806

[.4 ‘ 3 J [+ ‘[;\ﬁ\e:J‘Hlmpf{exﬂpuila(k.xml

end;

:: POLLACK semantic presentation

definition let x be natural number;

begin
func [x] equals 0; coherence;
definition
end; let x be real number ;
func [x] => set equals :: POLLACK:def 1

1;
coherence ;
end;

theorem [0] <> [0 qua real number];

: deftheorem defines | POLLACK:def 1 :

definition

let x be natural number ;

fune [x] -> set equals :: POLLACK:def 2
0 ;

coherence ;

end;

:: deftheorem defines | POLLACK:def 2

theorem :: POLLACK:1
[07] <= (0] ;

Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

theorem :: POLLACK:1
[0]1 <> [01 ;

8006

[5] ‘ 3 J [+ ‘[;\ﬁ\e:J‘Hlmpf{exﬂpuila(k.xml

: POLLACK semantic presentation

begin
definition

let x be real number ;

func [x] => set equals :: POLLACK:def 1
1;

coherence ;
end;

: deftheorem defines | POLLACK:def 1 :

definition

let x be natural number ;

fune [x] -> set equals :: POLLACK:def 2
0 ;

coherence ;

end;

:: deftheorem defines | POLLACK:def 2 :

theorem :: POLLACK:1
[07] <= (0] ;

Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

theorem :: POLLACK:1
[01 <> [01 ;

8006

[.4 ‘ > J [+ [\ﬁ\e:J‘Hlmpf{exﬂpuila(k.xml

: POLLACK semantic presentation

begin
definition

let x be real number ;

func [x] => set equals :: POLLACK:def 1
1;

coherence ;
end;

: deftheorem defines | POLLACK:def 1 :

definition

let x be natural number ;

fune [x] -> set equals :: POLLACK:def 2
0 ;

coherence ;

end;

:: deftheorem defines | POLLACK:def 2 :

theorem :: POLLACK:1
[07] <= (0] ;

Pollack-consistency on the cheap

checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

> prmtnormal

good, complicated

> prmtfailsafe

failsafe, trivial

checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

> printnormal l

good, complicated s = print,. (&)

> prmtfailsafe

failsafe, trivial

combine into print.,bined: return s return printe; e (@)

checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

> prmtnormal

l

good, complicated

S i= printnormal (d))

> prmtfailsafe

. - es
failsafe, trivial Y

combine into print ., pined: return s

parse(pl’i Ntfailsafe (¢))
\

parse(s) = ¢?

no

return printe;c.c. (@)

=¢

parse(printcombined(d))) =9

does Pollack-inconsistency matter?

the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

> 1/(1-x) = simplify(1/(1-x))

1 1

1—x 7—1+x

the attitude of the proof assistants community

computer algebra users
a little inconsistency does not matter much . ..
> int(1/(1-x) ,x) = int(simplify(1/(1-x)),x)

—In(1 —x)=—In(—1+ x)

the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)
—In(1 —x) = —In(—1+x)
> evalf (subs(x=-1, %));

—0.6931471806 = —0.6931471806 — 3.141592654i

the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)
—In(1 —x)=—In(—1+ x)
> evalf (subs(x=-1, %));
—0.6931471806 = —0.6931471806 — 3.141592654
proof assistant users

consistency is very important!

the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)
—In(1 —x)=—In(—1+ x)
> evalf (subs(x=-1, %));
—0.6931471806 = —0.6931471806 — 3.141592654
proof assistant users

consistency is very important!
a little Pollack-inconsistency does not matter much . ..

the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)
—In(1 —x) = —In(—1+x)
> evalf (subs(x=-1, %));

—0.6931471806 = —0.6931471806 — 3.141592654i

proof assistant users
apart from principled people like Randy Pollack and Mark Adams

consistency is very important!
a little Pollack-inconsistency does not matter much . ..

	Pollack-inconsistency
	when can one trust a proof assistant?
	1. Randy Pollack and how to believe a machine-checked proof
	2. formal proof versus correctness
	3. the de Bruijn criterion

	a student's remark
	4. a proof assistant for propositional logic

	the digits of hundred factorial
	5. the kernel of HOL Light
	6. numerical calculations in HOL Light

	Pollack-inconsistency
	7. the structure of a proof assistant
	8. is parsing the left inverse of pretty-printing?
	9. Pollack-axioms and Pollack-inconsistency
	10. weak versus strong Pollack-inconsistency
	11. Pollack-super-inconsistency

	some of the best proof assistants are Pollack-inconsistent
	12. HOL Light (and Isabelle)
	13. Coq
	14. Coq (continued)
	15. Mizar

	Pollack-consistency on the cheap
	16. checking the pretty-printer at runtime

	does Pollack-inconsistency matter?
	17. the attitude of the proof assistants community

