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when can one trust a proof assistant?



Randy Pollack and how to believe a machine-checked proof

How to Believe a Machine-Checked Proof

Robert Pollack
2 Computer Science Dept., Aarhus University
DK-8000 Aarhus C, Denmark

1 TIntroduction

Suppase T say “Here is a machine checked proof of Fermat's last theorem (FLT)”

How can you use my putative machine-checked proof as evidence for belief in
FLT? T start from the position that you must have some personal experience of
understanding to attain belief, and to have this experience you must engage your
intuition and other mental processes which are impossible to formalise.

By machine checked proof 1 mean a formal derivation in some given formal
system: T am talking abont derivability, not about truth. Further, T want to
talk abont m‘hm”y believing an actual formal proof, not ahout l()rm.\l pr(mfﬂ
in principle; to be interesting, any approach to this problem must be ble
You might u, to read my proof, Just as you would a proof in Jullu\.
ever, with the current state of the art, this proof will surely be tao long cm yon
to have confidence that you have understood it. This paper presents a tech-
nological approach for reducing the problem of helieving a formal proof to the
same and isstues as believing a proof in
a mathematics journal. The approach s not entirely suceessful philosophically
as there seems to be a fundamental difference between machine checked math-
ematics, which depends on empirical knowledge about the physical world, and
informal mathematics, which needs no snch knowledge (seo section 3.2.2

In the rest of this introduction T outline the approach and mention related
work. In following sections I discuss what we expect from a praof, add details to
the approach, pointing out problems that arise, and concentrate on what 1 believe
s the primary technical problem: expressiveness and feasibility for checking of
formal systems and representations of mathematical notions

1.1 Outline of the approach
The problem is how to believe FLT when given only a putative proof formalised in
& given logic. Assume it is a logie that yon helieve is consistent, and appropriate
for FLT. The *thing” 1 give you is some computer files. There may be questions
abont the physical and abstract, representations of the files (how to physically

2 verion o s papee appears in Sambin and Smih (editon) Toenty Fie Yeus of
Copiricies Tupe Theom, Oxkord
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formal proof versus correctness

the computer has checked a formalization without finding errors
is it now certain that there are no errors?

» philosophical issues

‘certainty without any doubt is impossible’

» software issues

‘all programs have bugs’

» the real problem

certain that the proofs are correct
not certain that the definitions are ‘correct’
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a proof assistant for propositional logic

course proof assistants at Radboud University Nijmegen

» implement small proof assistant

LCF-style proof assistant
minimal propositional logic (= only implication)

r-B [FA—B AFA
{(AfZFA T—{AJFA=B TUAFB

student Marc Schoolderman:

» let's add the other propositional connectives ...
. in the parser and pretty-printer!

parser and pretty-printer have to know about logic
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proof assistant that best satisfies the de Bruijn criterion:
HOL Light, John Harrison, 1998—today
proof checking kernel = fusion.ml

671 lines ~ 10 printed pages ~ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

let rec type_of tm =
match tm with
Var(_,ty) -> ty
| Const(_,ty) -> ty
| Comb(s,_) -> hd(tl(snd(dest_type(type_of s))))
| Abs(Var(_,ty),t) -> Tyapp("fun", [ty;type_of tl)



the kernel of HOL Light

proof assistant that best satisfies the de Bruijn criterion:
HOL Light, John Harrison, 1998—today
proof checking kernel = fusion.ml

671 lines ~ 10 printed pages ~ 0.2 % of the system
only 395 lines of actual code

self-verification of HOL Light: John Harrison, 2006

let typeof = define
‘(typeof (Var n ty) = ty) /\
(typeof (Equal ty) = Fun ty (Fun ty Bool)) /\
(typeof (Select ty) = Fun (Fun ty Bool) ty) /\
(typeof (Comb s t) = codomain (typeof s)) /\
(typeof (Abs n ty t) = Fun ty (typeof t))‘;;
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# 1+ 1°;

val it : term = ‘1 + 1°¢

# NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

# rhs (concl it);;

val it : term = ‘2°¢

# #remove_printer print_qgterm;;

# it;;

val it : term =
Comb (Const ("NUMERAL", ¢:num->num‘),
Comb (Const ("BITO", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

# #install_printer print_qterm;;
# ‘NUMERAL (BITO (BIT1 _0))°‘;;
val it : term = ‘2°

#



numerical calculations in HOL Light

# 1+ 1,

val it : term = ‘1 + 1°¢

# NUM_REDUCE_CONV it;;

val it : thm = |- 1 + 1 = 2

# rhs (concl it);;

val it : term = ‘2°¢

# #remove_printer print_qgterm;;

# it;;

val it : term =
Comb (Const ("NUMERAL", ¢:num->num‘),
Comb (Const ("BITO", ‘:num->num‘),

Comb (Const ("BIT1", ‘:num->num‘), Const ("_0", ‘:num‘))))

# #install_printer print_qterm;;
# ‘NUMERAL (BITO (BIT1 _0))°‘;;
val it : term = ‘2°

# rhs (concl (NUM_REDUCE_CONV ‘FACT 100¢));;
val it : term =
€93326215443944152681699238856266700490715968264381621468592963895217
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the structure of a proof assistant

interface
formula parser editor «—
proof
checking
kernel .
formula printer >

remainder of the system:
theorem database, basic reasoning,
rewriting, back-chaining,
proof search, decision procedures,
etc.

proof assistant
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is parsing the left inverse of pretty-printing?

formula parser and pretty-printer:

parse; : string — formula

print; : formula — string

generally print¢ is total while parse; is not

‘well-behaved': parses(printe(9)) = ¢

in practice well-behavedness occasionally breaks

print¢(parses(s)) # s
parses("1 + 1 = 2") = parseg("1+1=2") = parse("(1 + 1) = 2")
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Pollack-axioms and Pollack-inconsistency

Pollack-inconsistency:
‘L is provable from Pollack-axioms’

Pollack-axioms:
‘01 < ¢2" when printe(¢1) = printe(¢2)
‘t1 =t  when print,(t1) = print.(t2)
» default printer with default settings

» default equality
Coq: ‘Leibniz equality’

» only t; and t, for which t; = t is well-typed



weak versus strong Pollack-inconsistency

strong Pollack-inconsistency =
. without adding definitions

weak Pollack-inconsistency =
. extra definitions allowed

» ... on top of the standard library of the system

» only conservative definitions

same provable formulas not involving the new definition

» notations considered a form of definition

Coq: coercions
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Pollack-super-inconsistency

Pollack-super-inconsistency =

¢ is provable with print¢(¢) = print¢(.L)

where
F HOL
False Isabelle
1=
False Coq

contradiction Mizar

not only does the system appear inconsistent
it even looks like one has proved a trivial false in the system



some of the best proof assistants are Pollack-inconsistent
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HOL Light (and Isabelle)

# ‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
# ‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

# mk_eq(mk_var("0",“:1¢) ,mk_var("1",“:1¢));;

val it : term = ‘0 = 1°

# prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

# override_interface("F",‘T‘);;
val it : unit = ()
#
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# ‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
# ‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

# mk_eq(mk_var("0",“:1¢) ,mk_var("1",“:1¢));;

val it : term = ‘0 = 1°

# prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

# override_interface("F",‘T‘);;
val it : unit = (O

# mk_const("F",[1);;

val it : term = ‘F¢

# ‘T;;
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#
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HOL Light (and Isabelle)

# ‘?1x:1. T¢;;

val it : term = ‘?!x. T¢
# ‘?lx:bool. T ;;

val it : term = ‘?!x. T¢

# mk_eq(mk_var("0",“:1¢) ,mk_var("1",“:1¢));;

val it : term = ‘0 = 1°

# prove(it, ONCE_REWRITE_TAC([one] THEN REFL_TAC);;
val it : thm = |- 0 = 1

# override_interface("F",‘T‘);;
val it : unit = ()
# mk_const ("F",[1);;

val it : term = ‘F¢

# (T(..

val it : term = ‘F¢

# prove(‘F‘, ACCEPT_TAC TRUTH);;
val it : thm = |- F

#
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Coq

Coq < Coercion S : nat >-> nat.
S is now a coercion

Coq < Check 0.
0
: nat

Coq < Check 1.
0
! nat

Coq < Definition _Prop := Prop.
_Prop is defined

Coq < Definition _not : _Prop -> Prop := not.
_not is defined

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq <
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Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq < Lemma _I : _not False.
1 subgoal

False

_I < exact (fun x => x).
Proof completed.

_I < Qed.
exact (fun x => x).

_I is defined

Coq <

14



Coq (continued)

Coq < Coercion _not : _Prop >-> Sortclass.
_not is now a coercion

Coq < Lemma _I : _not False.
1 subgoal

False

_I < exact (fun x => x).
Proof completed.

_I < Qed.
exact (fun x => x).

_I is defined

Coq < Check _I.
I

: False

Coq <

14
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definition let x be real number;
func [x] equals 1; coherence; 806
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end;
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Mizar

definition let x be real number;
func [x] equals 1; coherence;
end;

definition let x be natural number;
func [x] equals 0; coherence;
end;

theorem [0] <> [0 qua real number];

theorem :: POLLACK:1
[01 <> [01 ;
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: POLLACK semantic presentation

begin
definition

let x be real number ;

func [x] => set equals :: POLLACK:def 1
1;

coherence ;
end;

: deftheorem defines | POLLACK:def 1 :

definition

let x be natural number ;

fune [x] -> set equals :: POLLACK:def 2
0 ;

coherence ;

end;

:: deftheorem defines | POLLACK:def 2 :

theorem :: POLLACK:1
[07] <= (0] ;
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checking the pretty-printer at runtime

‘hack’ for making it easier to prove Pollack-consistency

> prmtnormal

l

good, complicated

S i= printnormal (d))

> prmtfailsafe

. - es
failsafe, trivial Y

combine into print ., pined: return s

parse( pl’i Ntfailsafe (¢))
\

parse(s) = ¢?

no

return printe;c.c. (@)

=¢

parse(printcombined(d))) =9
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the attitude of the proof assistants community

computer algebra users

a little inconsistency does not matter much . ..

> int(1/(1-x),x) = int(simplify(1/(1-x)),x)
—In(1 —x) = —In(—1+x)
> evalf (subs(x=-1, %));

—0.6931471806 = —0.6931471806 — 3.141592654i

proof assistant users
apart from principled people like Randy Pollack and Mark Adams

consistency is very important!
a little Pollack-inconsistency does not matter much . ..
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