
avoiding state with infinite contexts

Freek Wiedijk

Radboud University Nijmegen

The Netherlands

10th Asian Logic Conference

special session: model theory and proof theory

Kobe, Japan

2008 09 05, 15: 40

0



trusting a proof checker

proof checking of mathematics

fully verified for correctness by a computer:

• Gödel’s first incompleteness theorem

nqthm (1986), Coq (2003), HOL Light (2005)

• Jordan curve theorem

HOL Light (2005), Mizar (2005)

• prime number theorem

Isabelle (2004), HOL Light (2008)

• four color theorem

Coq (2004)

1



the de Bruijn criterion

all software has bugs . . .

why trust a proof checker?

N.G. de Bruijn, 1968:

[ . . . ] This is one of the reasons for keeping AUTOMATH as

primitive as possible. [ . . . ]

two approaches:

• small independent checker(s)

e.g.: Ivy system for Otter/Prover9

• small proof checking kernel inside the system

LCF architecture

Robin Milner, 1972

2



systems and kernels

source sizes in 103 lines of code

kernel system thms

HOL Light ocaml 0.7 30 69

Isabelle sml 5 160 40

Twelf sml 6 70 —

ProofPower sml 7 90 42

Coq ocaml 14 180 39

Mizar pascal 80 45

ACL2 lisp 170 12

PVS lisp 280 15

3



proving the kernel correct

• Coq in Coq

Bruno Barras, 1997–1999

executable Coq model of the Coq logic

two different systems (the real system versus the extracted code)

extracted code not yet used for serious proof development

• HOL in HOL

John Harrison, 2006

HOL model of the actual HOL Light kernel source

not yet the full code (no type polymorphism, no definitions)

no systematic relation between HOL model and executable code

4



kernels and state

to make proving a kernel feasible:

• code should be as ‘mathematical’ as possible

• for current technology:

kernel should be programmed in a purely functional language

Lisp, ML, Haskell, Coq

current practice:

• kernels always have a state:

definitions from the formalization that already have been processed

• corresponds to a context in the formal treatment of the logic

Γ ⊢ M : A

5



undo for HOL

abstract datatypes of the HOL Light kernel

type hol_type = private

| Tyvar of string

| Tyapp of string * hol_type list

type term = private

| Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term

type thm = private

| Sequent of term list * term

# ‘pi‘;;

val it : term = ‘pi‘

#

Const q q

?

?

q

"pi"
?

q

Tyapp q q

?

q

"real"
?

q

[]

6



the problem with undoing definitions

hypothetical HOL Light session:

# let X0 = new_definition ‘X = 0‘;;

val ( X0 ) : thm = |- X = 0

# undo_definition "X";;

val it : unit = ()

# let X1 = new_definition ‘X = 1‘;;

val ( X1 ) : thm = |- X = 1

# TRANS (SYM X0) X1;;

val it : thm = |- 0 = 1

#

undoing definitions can change the meaning of existing thms

inconsistent!

⇒ HOL Light does not support ‘undo’

7



putting the definitions in the names

• current HOL Light

names of constants: stringpair of a string and a type

• stateless HOL Light

names of constants: pair of the traditional name and the definition

comparing equal definitions by pointer comparison is cheap

?

Const

?

"X"
?

‘:num‘

q q

?

q

‘X = 0‘ ‘Const

?

"0"
?

?

q q q

definition of ‘O‘

8



nested kernels

current HOL Light stateless HOL Light

system

kernel
r state

system

kernel

r state

about 10 % slower

9



type theory without explicit contexts

first order logic and contexts

first order logic type theory

A ⊢ P (x)

A ⊢ ∀xP (x)
∀I

⊢ A→ ∀xP (x)
→I

H : A , x : D ⊢M1 : P (x)

H : A ⊢M2 : Πx : D. P (x)
λ

⊢M3 : A→ Πx : D. P (x)
λ

‘sea’ of free variables ‘free’ variables in the context

A ⊢{x} P (x)

A ⊢{} ∀xP (x)
∀I

⊢{} A→ ∀xP (x)
→I

⊢{}
(

∀xP (x)
)

→
(

∃xP (x)
)

?

10



merging all contexts into an infinite context

category of contexts for a given type theory

• objects:

Γ

Γ is a finite or countably infinite context

• morphisms:

Γ
f
−→ Γ′

f is an injection mapping the variables from Γ to variables from Γ′

this category has pushouts:

every two contexts can be combined into a bigger context

direct limit of all contexts:

Γ∞

11



the system Γ∞

Γ∞: system equivalent to the PTS rules but without explicit contexts

(we reuse the name of the infinite context for the system)

PTS = Pure Type System

we write

M : A

to morally mean

Γ∞ ⊢M : A

Γ∞ preterms:

A ::= s | xA
i | xi | AA | λxi:A.A | Πxi:A.A

two kind of variables: free variables xA
i and bound variables xi

superscript A of xA
i may be any preterm

12



two of the six Γ∞ rules

PTS rules equivalent Γ∞ rules

Γ ⊢ A : s

Γ, xi : A ⊢ xi : A

A : s

xA
i : A

Γ ⊢ A : s1 Γ, xi : A ⊢ B : s2

Γ ⊢ Πxi:A.B : s3

A : s1 B : s2

Πxi:A.B[xA
j := xi] : s3

binding a variable in Γ∞: replace a free variable by a bound variable

13



correspondence theorems

derivable PTS judgment ←→ derivable Γ∞ judgment

from left to right:

alpha convert the judgement to separate free from bound variables

then: remove the context

from right to left:

topological sort of the free variables in the Γ∞ judgement

then: put them in that order in the context

14



implementing Γ∞ for LF

the datatypes of the kernel

type preterm =

| Star

| Ref of int

| Var of string * preterm

| Const of string * preterm * preterm list axioms used

| App of preterm * preterm

| Bind of int * preterm * preterm 0 = λ, 1 = Π

type term = private

| Box

| In of preterm * term

type red = private

| Red of preterm * preterm

15



difference of this approach with other kernels

most purely functional kernels:

App : preterm * preterm -> preterm

typecheck : state -> (preterm -> term)

extend_state : string * preterm -> state -> state

mutually inconsistent terms (from mutually inconsistent states) possible

internally inconsistent state not possible

our approach:

function application in LCF style

app : term * term -> term

mutually inconsistent terms not possible

16



comparing kernel sizes

current HOL Light all lines content

kernel fusion.ml 669 394

stateless HOL Light

kernel core.ml 404 330

state state.ml 95 71

Γ∞ for LF

kernel 214 166

convertibility 64 49

typechecker 29 25

17



outlook

future work

but does this scale?

experiment:

?

?

Γ∞ for LF

HOL Light

kernel

kernel

LF context for HOL

how much slower than current HOL Light? 100 times? ∞ times?

18


