avoiding state with infinite contexts

Freek Wiedijk Radboud University Nijmegen The Netherlands

10th Asian Logic Conference

special session: model theory and proof theory Kobe, Japan

2008 09 05, 15:40

trusting a proof checker

proof checking of mathematics

fully verified for correctness by a computer:

- Gödel's first incompleteness theorem nqthm (1986), Coq (2003), HOL Light (2005)
- Jordan curve theorem HOL Light (2005), Mizar (2005)
- prime number theorem

Isabelle (2004), HOL Light (2008)

• four color theorem

Coq (2004)

the de Bruijn criterion

all software has bugs... why trust a proof checker?

N.G. de Bruijn, 1968:

[...] This is one of the reasons for keeping AUTOMATH as primitive as possible. [...]

two approaches:

- small independent checker(s)
 e.g.: Ivy system for Otter/Prover9
- small proof checking **kernel** inside the system LCF architecture

Robin Milner, 1972

source sizes in $10^3 \ {\rm lines} \ {\rm of} \ {\rm code}$

		kernel	system	thms
HOL Light	ocaml	0.7	30	69
lsabelle	sml	5	160	40
Twelf	sml	6	70	
ProofPower	sml	7	90	42
Coq	ocaml	14	180	39
Mizar	pascal		80	45
ACL2	lisp		170	12
PVS	lisp		280	15

• Coq in Coq

Bruno Barras, 1997–1999

executable Coq model of the Coq logic

two different systems (the real system versus the extracted code) extracted code not yet used for serious proof development

• HOL in HOL

John Harrison, 2006

HOL model of the actual HOL Light kernel source

not yet the full code (no type polymorphism, no definitions) no *systematic* relation between HOL model and executable code

kernels and state

to make proving a kernel feasible:

- code should be as 'mathematical' as possible
- for current technology:

kernel should be programmed in a purely functional language Lisp, ML, Haskell, Coq

current practice:

• kernels always have a **state**:

definitions from the formalization that already have been processed

• corresponds to a context in the formal treatment of the logic

 $\Gamma \vdash M : A$

undo for HOL

abstract datatypes of the HOL Light kernel

"real"

hypothetical HOL Light session:

```
# let X0 = new_definition 'X = 0';;
val ( X0 ) : thm = |- X = 0
# undo_definition "X";;
val it : unit = ()
# let X1 = new_definition 'X = 1';;
val ( X1 ) : thm = |- X = 1
# TRANS (SYM X0) X1;;
val it : thm = |- 0 = 1
#
```

undoing definitions can change the meaning of existing thms inconsistent!

```
\Rightarrow HOL Light does not support 'undo'
```

• current HOL Light

names of constants: pair of a string and a type

• stateless HOL Light

names of constants: pair of the traditional name and the definition

comparing equal definitions by pointer comparison is cheap

about 10 % slower

type theory without explicit contexts

first order logic and contexts

first order logic

$$\frac{A \vdash P(\boldsymbol{x})}{A \vdash \forall x P(x)} \stackrel{\forall I}{\to} I \\ \vdash A \to \forall x P(x)$$

'sea' of free variables

type theory

$$\frac{H:A, \boldsymbol{x}: D \vdash M_1: P(\boldsymbol{x})}{H:A \vdash M_2: \Pi \boldsymbol{x}: D. P(\boldsymbol{x})} \stackrel{\lambda}{} \\ \frac{H:A \vdash M_2: \Pi \boldsymbol{x}: D. P(\boldsymbol{x})}{\vdash M_3: A \rightarrow \Pi \boldsymbol{x}: D. P(\boldsymbol{x})} \stackrel{\lambda}{}$$

'free' variables in the context

$$\frac{A \vdash_{\{x\}} P(x)}{A \vdash_{\{\}} \forall x P(x)} \forall I$$
$$\vdash_{\{\}} A \to \forall x P(x) \to I$$

 $\vdash_{\{\}} (\forall x P(x)) \to (\exists x P(x)) ?$

merging all contexts into an infinite context

category of contexts for a given type theory

• objects:

Γ

 Γ is a finite or countably infinite context

• morphisms:

 $\Gamma \xrightarrow{f} \Gamma'$

f is an injection mapping the variables from Γ to variables from Γ'

this category has pushouts:

every two contexts can be combined into a bigger context

direct limit of all contexts:

Γ_{∞}

the system Γ_∞

 Γ_{∞} : system equivalent to the PTS rules but without explicit contexts (we reuse the name of the infinite context for the system)

PTS = Pure Type System

we write

M:A

to morally mean

 $\Gamma_{\infty} \vdash M : A$

 Γ_{∞} preterms:

 $A ::= s \mid \boldsymbol{x_i^A} \mid x_i \mid AA \mid \lambda x_i : A.A \mid \Pi x_i : A.A$

two kind of variables: free variables x_i^A and bound variables x_i superscript A of x_i^A may be any preterm

PTS rules	equivalent Γ_{∞} rules		
$\Gamma \vdash A : s$	A:s		
$\Gamma, x_i : A \vdash x_i : A$	$x_i^A:A$		
$\Gamma \vdash A : s_1 \Gamma, x_i : A \vdash B : s_2$	$A:s_1 B:s_2$		
$\Gamma \vdash \Pi x_i : A.B : s_3$	$\Pi x_i : A \cdot B[x_j^A := x_i] : s_3$		

binding a variable in Γ_{∞} : replace a free variable by a bound variable

derivable PTS judgment \iff derivable Γ_{∞} judgment

from left to right:

alpha convert the judgement to separate free from bound variables then: remove the context

from right to left:

topological sort of the free variables in the Γ_{∞} judgement then: put them in that order in the context

implementing Γ_∞ for LF

the datatypes of the kernel

```
type preterm =
| Star
| Ref of int
| Var of string * preterm
                                                         axioms used
| Const of string * preterm * preterm list
| App of preterm * preterm
                                                       0 = \lambda, 1 = \Pi
| Bind of int * preterm * preterm
type term = private
| Box
| In of preterm * term
type red = private
| Red of preterm * preterm
```

difference of this approach with other kernels

most purely functional kernels:

App : preterm * preterm -> preterm
typecheck : state -> (preterm -> term)
extend_state : string * preterm -> state -> state

mutually inconsistent terms (from mutually inconsistent states) possible internally inconsistent state *not* possible

our approach: *function application in LCF style*

app : term * term -> term

mutually inconsistent terms not possible

current HOL Light		all lines	content
kernel	fusion.ml	669	394
stateless HOL Light			
kernel	core.ml	404	330
state	state.ml	95	71
Γ_{∞} for LF			
kernel		214	166
convertibility		64	49
typechecker		29	25

outlook

future work

but does this scale?

experiment:

how much slower than current HOL Light? 100 times? ∞ times?