Degrees of undecidability of in Term Rewriting

Jörg Endrullis, Herman Geuvers, Hans Zantema

Radboud University Nijmegen, Technical University Eindhoven, Free University Amsterdam, The Netherlands

> CSL 2009 7-11 September 2009 Coimbra, Portugal

Overview

- Term Rewriting Systems (TRS): definitions and properties
- Overview of results
- The arithmetic and analytical hierarchy
- Technical details
 - Relating Turing Machines to TRSs
 - Classification of properties of Turing Machines

- Weak Church-Rosser
- Church-Rosser
- Dependency Pair Problems

Term Rewriting Systems (TRS): definitions and properties

- A Signature Σ is a finite set of symbols f each having a fixed arity.
- The set $Ter(\Sigma, \mathcal{X})$ of terms is the smallest set satisfying:
 - $\mathcal{X} \subseteq Ter(\Sigma, \mathcal{X})$, and
 - $f(t_1,...,t_n) \in Ter(\Sigma, \mathcal{X})$ if $f \in \Sigma$ with arity *n* and $\forall i : t_i \in Ter(\Sigma, \mathcal{X})$.
- A term rewriting system (TRS) over Σ, X is a finite set R of pairs (ℓ, r) ∈ Ter(Σ, X), called rewrite rules usually written as ℓ → r for which

- the left-hand side ℓ is not a variable ($\ell \notin \mathcal{X}$)
- ▶ all variables in the right-hand side r occur in ℓ ($Var(r) \subseteq Var(\ell)$).

Term Rewriting Systems (TRS): definitions and properties

For terms $s, t \in Ter(\Sigma, \mathcal{X})$ we write $s \to_R t$ if there exists a rule $\ell \to r \in R$, a substitution σ and a context ('term with a hole') C such that $s \equiv C[\ell\sigma]$ and $t \equiv C[r\sigma]$

- \rightarrow_R is the rewrite relation induced by R,
- \leftrightarrow_R denotes the symmetric, reflexive closure of \rightarrow_R .
- \rightarrow^+_R denotes the transitive closure of \rightarrow_R .
- ▶ \rightarrow^*_R denotes the reflexive, transitive closure of \rightarrow_R .

Basic TRS properties

- R is strongly normalizing (or terminating) on t, denoted SN_R(t),
 if every rewrite sequence starting from t is finite.
- R is confluent (or Church-Rosser) on t, denoted CR_R(t), if every pair of finite coinitial reductions starting from t can be extended to a common reduct, that is, ∀t₁, t₂. t₁ ←* t →* t₂ ⇒ ∃d. t₁ →* d ←* t₂.
- *R* is weakly confluent (or weakly Church-Rosser) on *t*, denoted WCR_R(*t*), if every pair of coinitial rewrite steps starting from *t* can be joined, that is, ∀*t*₁, *t*₂. *t*₁ ← *t* → *t*₂ ⇒ ∃*d*. *t*₁ →* *d* ←* *t*₂.

R is strongly normalizing (SN_R) , confluent (CR_R) or weakly confluent (WCR_R) if the respective property holds on all terms $t \in Ter(\Sigma, \mathcal{X})$.

TRS properties

Church-Rosser and Weak Church-Rosser are usually also considered on the ground terms only (ground = closed; no free variables).

- *R* is ground Church-Rosser, denoted grCR_R, if every pair of finite coinitial reductions starting from any ground t can be extended to a common reduct, that is, ∀t, t₁, t₂ ground. t₁ ←^{*} t →^{*} t₂ ⇒ ∃d. t₁ →^{*} d ←^{*} t₂.
- R is ground weakly Church-Rosser, denoted grWCR_R, if every pair of coinitial rewrite steps starting from a ground t can be joined, that is,

 $\forall t, t_1, t_2 \text{ ground. } t_1 \leftarrow t \longrightarrow t_2 \Rightarrow \exists d. t_1 \rightarrow^* d \leftarrow^* t_2.$

Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how undecidable?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

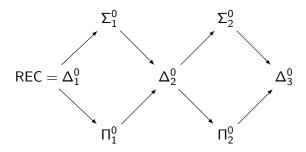
Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how undecidable?

	SN	WN	CR	grCR	WCR	grWCR	DP	DP ^{min}
uniform	Π_2^0	Π_2^0	Π_2^0	П2	Σ_1^0	Π_2^0	Π^1_1	П2
single term	Σ_1^0	Σ_1^0	Π_2^0	Π_2^0	Σ_1^0	Σ_1^0	Π^1_1	_

Existing work: Huet and Lankford (1978) Independent (but published earlier): J.G Simonsen (2009) New Contributions in red

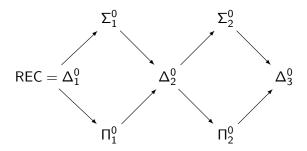
The Arithmetic Hierarchy



REC = class of decidable problems (over the natural numbers), $\Sigma_1^0 := \exists REC, \Pi_1^0 := \forall REC, \Sigma_2^0 := \exists \forall REC, \Pi_2^0 := \forall \exists REC, etc.$

(日)、

The Arithmetic Hierarchy



$$\begin{split} \mathsf{REC} &= \mathsf{class} \text{ of decidable problems (over the natural numbers),} \\ \Sigma_1^0 &:= \exists \mathsf{REC}, \ \Pi_1^0 := \forall \mathsf{REC}, \ \Sigma_2^0 := \exists \forall \mathsf{REC}, \ \Pi_2^0 := \forall \exists \mathsf{REC}, \ \mathsf{etc.} \\ \Delta_n^0 &:= \Sigma_n^0 \bigcap \Pi_n^0. \\ \Sigma_n^0 &= \{A \mid \overline{A} \in \Pi_n^0\}, \ \Pi_n^0 = \{A \mid \overline{A} \in \Sigma_n^0\} \end{split}$$

イロト 不得下 イヨト イヨト

Examples

We leave encodings implicit, so we say e.g.

- $t \to^* q := \exists \langle s_1, \ldots, s_n \rangle (t \longrightarrow_R s_1 \longrightarrow_R \ldots \longrightarrow_R s_n = q)$ is in Σ_0^1 .
- ► T(M, ⟨x̄⟩, u, v) := m is a Turing Machine M, u is the computation of M on x̄ whose end result is v is in REC. Kleene's T-predicate.

► TOTAL(M) := $\forall x \exists u, vT(m, \langle x \rangle, u, v)$ is in Π_2^0 . Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form

- ▶ $\mathbf{Q} \times (\varphi) \otimes \mathbf{Q} y (\psi) \iff \mathbf{Q} \times \mathbf{Q} y (\varphi \otimes \psi)$, for $\otimes \in \{\land, \lor\}$, $\mathbf{Q} \in \{\forall, \exists\}$.
- ▶ $\mathbf{Q}_{\mathbf{X}}(\varphi) \rightarrow \mathbf{Q}_{\mathbf{Y}}(\psi) \iff \overline{\mathbf{Q}}_{\mathbf{X}} \mathbf{Q}_{\mathbf{Y}}(\varphi \rightarrow \psi), \text{ for } \mathbf{Q} \in \{\forall, \exists\}.$ $\iff \mathbf{Q}_{\mathbf{Y}} \overline{\mathbf{Q}}_{\mathbf{X}}(\varphi \rightarrow \psi).$

Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form

▶ $\mathbf{Q} \times (\varphi) \otimes \mathbf{Q} y (\psi) \iff \mathbf{Q} \times \mathbf{Q} y (\varphi \otimes \psi)$, for $\otimes \in \{\land, \lor\}$, $\mathbf{Q} \in \{\forall, \exists\}$.

▶
$$\mathbf{Q}_{\mathbf{X}}(\varphi) \rightarrow \mathbf{Q}_{\mathbf{Y}}(\psi) \iff \overline{\mathbf{Q}}_{\mathbf{X}} \mathbf{Q}_{\mathbf{Y}}(\varphi \rightarrow \psi), \text{ for } \mathbf{Q} \in \{\forall, \exists\}.$$

$$\iff \mathbf{Q}_{\mathbf{Y}} \overline{\mathbf{Q}}_{\mathbf{X}}(\varphi \rightarrow \psi).$$

Compression of quantifiers of the same type. Symbolically:

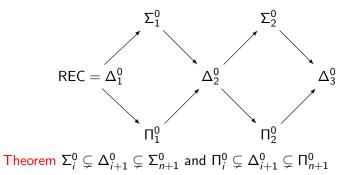
$$\forall \forall \mapsto \forall \text{ and } \exists \exists \mapsto \exists \\ \forall x \forall y (P(x, y)) \iff \forall z (P((z)_1, (z)_2))$$

A bounded quantifier is no quantifier:

$$\forall x < n \operatorname{REC} = \operatorname{REC},$$

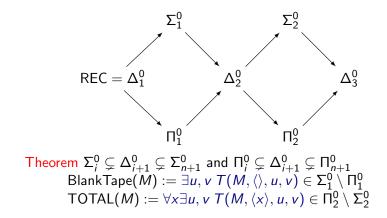
► $\exists x < n \text{ REC} = \text{REC}$

The Arithmetic Hierarchy



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The Arithmetic Hierarchy



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

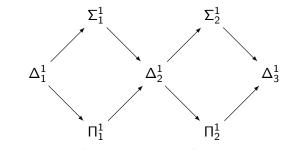
Above the arithmetical hierarchy: analytical hierarchy

All properties definable in first order arithmetic reside in the arithmetical hierarchy.

If we want to quantify over functions from \mathbb{N} to \mathbb{N} (infinite sequences of numbers), we end up in the analytical hierarchy. Function variables are usually α , β , etc. Example:

$$\exists \alpha \forall i (\alpha(i) \rightarrow_R \alpha(i+1))$$

The Analytic Hierarchy

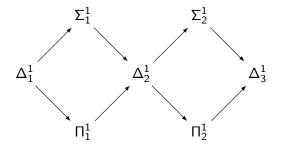


$$\begin{split} \Sigma_1^1 &:= \exists \alpha \forall x \mathsf{REC}, \ \Pi_1^1 := \forall \alpha \exists x \mathsf{REC}, \ \Sigma_2^1 := \exists \beta \forall \alpha \exists x \mathsf{REC}, \ \mathsf{etc}. \\ \Delta_n^1 &:= \Sigma_n^1 \bigcap \Pi_n^1. \end{split}$$

イロト イポト イヨト イヨト

э

The Analytic Hierarchy



$$\begin{split} \Sigma_{1}^{1} &:= \exists \alpha \forall x \mathsf{REC}, \ \Pi_{1}^{1} := \forall \alpha \exists x \mathsf{REC}, \ \Sigma_{2}^{1} := \exists \beta \forall \alpha \exists x \mathsf{REC}, \ \mathsf{etc.} \\ \Delta_{n}^{1} &:= \Sigma_{n}^{1} \bigcap \Pi_{n}^{1}, \\ \Sigma_{n+1}^{1} &= \exists^{1} \alpha \Pi_{n}^{1}, \ \Pi_{n+1}^{1} = \exists \beta \Sigma_{n}^{1} \\ \Sigma_{n}^{1} &= \{A \mid \overline{A} \in \Pi_{n}^{1}\}, \ \Pi_{n}^{1} &= \{A \mid \overline{A} \in \Sigma_{n}^{1}\}. \\ \\ \mathsf{Theorem} \ \Sigma_{i}^{1} &\subseteq \Delta_{i+1}^{1} \subseteq \Sigma_{n+1}^{1} \ \mathsf{and} \ \Pi_{i}^{1} \subseteq \Delta_{i+1}^{1} \subseteq \Pi_{n+1}^{1} \\ \mathsf{WF}(M) &:= "M \ \mathsf{defines} \ \mathsf{a} \ \mathsf{well-founded} \ \mathsf{relation} >_{M}" \in \Pi_{1}^{1} \setminus \Sigma_{1}^{1} \end{split}$$

Properties of the classes in the Analytic Hierarchy

We have quantifiers over numbers \forall, \exists and over functions \forall^1, \exists^1 . A number of quantifiers of the same type can be compressed into one.

- $\blacktriangleright \ \forall^1\forall^1 \mapsto \forall^1 \text{ and } \exists^1\exists^1 \mapsto \exists^1$
- $\forall^1 \text{ subsumes } \forall.$
 - $\blacktriangleright \ \forall^1 \forall \mapsto \forall^1 \text{ and } \exists^1 \exists \mapsto \exists^1$
- $\forall^1 \text{ moves outside over } \exists \text{ and } \exists^1 \text{ moves outside over } \forall.$
 - $\blacktriangleright \exists \forall^1 \mapsto \forall^1 \exists \text{ and } \forall \exists^1 \mapsto \exists^1 \forall$
 - The standard form of an element of the analytic hierarchy is $Q_1^1 Q_2^1 \dots Q_n^1 Q$ with swopping quantifiers and Q opposite to Q_n^1 .

Proving that a property is essentially Π_2^0 (and not "lower")

A total recursive function f many-one reduces problem A to problem B if

$$A(x) \iff B(f(x)), \text{ for all } x$$

So "if we want to decide A(x), we only have to decide B(x)".

 $A \ll_m B$ (A is many-one reducible to B)

in case such an f exists.

Proving that a property is essentially Π_2^0 (and not "lower")

A total recursive function f many-one reduces problem A to problem B if

$$A(x) \iff B(f(x)), \text{ for all } x$$

So "if we want to decide A(x), we only have to decide B(x)".

 $A \ll_m B$ (A is many-one reducible to B)

in case such an f exists.

Definition

B is called Π_2^0 -complete if $B \in \Pi_2^0$ and forall $A \in \Pi_2^0$, $A \ll_m B$. If *B* is Π_2^0 -complete, it can't be lower in the hierarchy.

Proving that a property is essentially Π_2^0 (and not "lower")

A total recursive function f many-one reduces problem A to problem B if

$$A(x) \iff B(f(x)), \text{ for all } x$$

So "if we want to decide A(x), we only have to decide B(x)".

 $A \ll_m B$ (A is many-one reducible to B)

in case such an f exists.

Definition

B is called Π_2^0 -complete if $B \in \Pi_2^0$ and forall $A \in \Pi_2^0$, $A \ll_m B$. If *B* is Π_2^0 -complete, it can't be lower in the hierarchy.

Theorem

BlankTape(M) is Σ_1^0 -complete, TOTAL(M) is Π_2^0 -complete, WF(M) is Π_1^1 -complete.

To prove that WCR is Σ_1^0 -complete: Reduce it to BlankTape

Translating a Turing machine $M = (Q, \Sigma, q_0, \delta)$ to a TRS R_M Function symbols:

 $a \in \Sigma \quad \mapsto \quad \text{unary function } a(-)$ $q \in Q \quad \mapsto \quad \text{binary function } q(-,-)$

Translating a Turing machine $M = (Q, \Sigma, q_0, \delta)$ to a TRS R_M Function symbols:

- $a\in\Sigma$ \mapsto unary function a(-)
- $q \in Q \quad \mapsto \quad ext{ binary function } q(-,-)$
- extra: constant ▷ (representing "infinitely many" blanks)

Translating a Turing machine $M = (Q, \Sigma, q_0, \delta)$ to a TRS R_M Function symbols:

$a\in\Sigma$	\mapsto	unary function $a(-)$
$q\in Q$	\mapsto	binary function $q(-,-)$
extra:		constant ▷ (representing "infinitely many" blanks)

Configurations:

Right of the reading head: $a b a a \Box \Box \dots$ translates to $a(b(a(a(\triangleright))))$ Left of the reading head: $\dots \Box \Box a b a a$ translates to $a(a(b(a(\triangleright))))$

Translating a Turing machine $M = (Q, \Sigma, q_0, \delta)$ to a TRS R_M Function symbols:

$a\in\Sigma$	\mapsto	unary function $a(-)$
$q\in Q$	\mapsto	binary function $q(-,-)$
extra:		constant ▷ (representing "infinitely many" blanks)

Configurations:

Right of the reading head: $a b a a \Box \Box \dots$ translates to $a(b(a(a(\triangleright))))$ Left of the reading head: $\dots \Box \Box a b a a$ translates to $a(a(b(a(\triangleright))))$ Tape content $\dots \Box w \underline{a} v \Box \dots$ in state q becomes $q(w^R, a(v))$ (q is reading a, the first symbol of a v)

Encoding a Turing Machine M as a TRS R_M

Translating the transition function δ :

$$\begin{array}{rcl} q(x,f(y)) & \longrightarrow & q'(f'(x),y) & \text{if } \delta(q,f) &= & (q',f',R) \\ q(g(x),f(y)) & \longrightarrow & q'(x,g(f'(y))) & \text{if } \delta(q,f) &= & (q',f',L) \end{array}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Encoding a Turing Machine M as a TRS R_M

Translating the transition function δ :

$$\begin{array}{rcl} q(x,f(y)) & \longrightarrow & q'(f'(x),y) & \text{if} & \delta(q,f) &= & (q',f',R) \\ q(g(x),f(y)) & \longrightarrow & q'(x,g(f'(y))) & \text{if} & \delta(q,f) &= & (q',f',L) \end{array}$$

And special rewrite rules for dealing with the left-/rightmost blank:

$$\begin{array}{rcl} q(\triangleright, f(y)) & \longrightarrow & q'(\triangleright, \Box(f'(y))) & \text{if} & \delta(q, f) & = & (q', f', L) \\ q(x, \triangleright) & \longrightarrow & q'(f'(x), \triangleright) & \text{if} & \delta(q, \Box) & = & (q', f', R) \\ q(g(x), \triangleright) & \longrightarrow & q'(x, g(f'(\triangleright))) & \text{if} & \delta(q, \Box) & = & (q', f', L) \\ q(\triangleright, \triangleright) & \longrightarrow & q'(\triangleright, \Box(f'(\triangleright))) & \text{if} & \delta(q, \Box) & = & (q', f', L) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Σ_1^0 -completeness of WCR

WCR is in Σ_1^0 : By the Critical Pairs Lemma, WCR_R holds if and only if all critical pairs of R are convergent.

A Turing machine can compute on the input of a TRS R all (finitely many) critical pairs, and on the input of a TRS R and a term t all (finitely many) one step reducts of t.

Σ_1^0 -completeness of WCR

WCR is in Σ_1^0 : By the Critical Pairs Lemma, WCR_R holds if and only if all critical pairs of R are convergent.

A Turing machine can compute on the input of a TRS R all (finitely many) critical pairs, and on the input of a TRS R and a term t all (finitely many) one step reducts of t. So it suffices to show that the following is in Σ_1^0 :

Decide on the input of a TRS S, $n \in \mathbb{N}$ and terms $t_1, s_1, \ldots, t_n, s_n$ whether for every $i = 1, \ldots, n$ the terms t_i and s_i have a common reduct.

This property can easily be described by a Σ_1^0 formula.

Σ_1^0 -completeness of WCR

WCR is Σ_1^0 -hard: We define TRS *S* to consist of the rules of R_M extended by the following:

 $\begin{aligned} &\operatorname{run} \to \mathsf{T} \quad \operatorname{run} \to q_0(\triangleright, \triangleright) \\ &q(x, f(y)) \to \mathsf{T} \quad \text{for every } f \in \mathsf{\Gamma} \text{ such that } \delta(q, f) \text{ is undefined }. \end{aligned}$ The only critical pair is $\mathsf{T} \leftarrow \operatorname{run} \to q_0(\triangleright, \triangleright)$. We have: $&q_0(\triangleright, \triangleright) \to_S^* \mathsf{T} \text{ if and only if } \mathsf{M} \text{ halts on the blank tape.} \end{aligned}$

So:

WCR(S) if and only if M halts on the blank tape.

Π_2^0 -completeness of CR

CR is in Π_2^0 :

$$CR_R \iff \forall t \in \mathbb{N}. \ \forall r_1, r_2 \in \mathbb{N}. \ \exists r'_1, r'_2 \in \mathbb{N}.$$

$$(((t \text{ is a term}) \text{ and } (r_1, r_2 \text{ are reductions})$$

$$and \ t \equiv first(r_1) \equiv first(r_2))$$

$$\Rightarrow ((r'_1 \text{ and } r'_2 \text{ are reductions})$$

$$and \ (last(r_1) \equiv first(r'_1)) \text{ and } (last(r_2) \equiv first(r'_2)).$$

$$and \ (last(r'_1) \equiv last(r'_2))))$$

We change the TRS R_M in such a way that

M halts on all inputs $\iff R_M$ is CR

We change the TRS R_M in such a way that

M halts on all inputs $\iff R_M$ is CR

Idea: use an extension of $R_{\rm M}$ with the following rules:

$$egin{aligned} &\operatorname{run}(x,y) o \mathsf{T} \ &\operatorname{run}(x,y) o q_0(x,y) \ &q(x,f(y)) o \mathsf{T} \ & ext{ for every } f \in \mathsf{\Gamma} ext{ with } \delta(q,f) ext{ undefined} \end{aligned}$$

Then it seems that

 $CR(R_M^+) \iff$ the Turing machine M halts on all configurations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We change the TRS R_M in such a way that

M halts on all inputs $\iff R_M$ is CR

Idea: use an extension of $R_{\rm M}$ with the following rules:

$$egin{aligned} &\operatorname{run}(x,y) o \mathsf{T} \ &\operatorname{run}(x,y) o q_0(x,y) \ &q(x,f(y)) o \mathsf{T} \ & ext{ for every } f \in \mathsf{\Gamma} ext{ with } \delta(q,f) ext{ undefined} \end{aligned}$$

Then it seems that

 $CR(R_M^+) \iff$ the Turing machine M halts on all configurations.

However, we only have \implies . With \iff a problem arises if *s* and *t* contain variables.

For a Turing machines M we define the TRS $S_{\rm M}$ as R_M extended with

$$\operatorname{run}(x,\triangleright) \to \mathsf{T} \tag{1}$$

$$\operatorname{run}(\triangleright, y) \to q_0(\triangleright, y) \tag{2}$$

$$\begin{array}{ll} q(x,f(y)) \to \mathsf{T} & \text{if } \delta(q,f) \text{ undefined} & (3) \\ \operatorname{run}(x,\mathsf{S}(y)) \to \operatorname{run}(\mathsf{S}(x),y) & (4) \\ \operatorname{run}(\mathsf{S}(x),y) \to \operatorname{run}(x,\mathsf{S}(y)) \,. & (5) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Π_2^0 -hardness of CR

For a Turing machines M we define the TRS $S_{\rm M}$ as R_M extended with

$$\operatorname{run}(x, \triangleright) \to \mathsf{T}$$
 (1)

$$\operatorname{run}(\triangleright, y) \to q_0(\triangleright, y) \tag{2}$$

$$q(x, f(y)) \rightarrow \mathsf{T}$$
 if $\delta(q, f)$ undefined (3)

$$\operatorname{run}(x,\mathsf{S}(y)) \to \operatorname{run}(\mathsf{S}(x),y) \tag{4}$$

$$\operatorname{run}(\mathsf{S}(x),y) \to \operatorname{run}(x,\mathsf{S}(y)) \,. \tag{5}$$

Then the only cause for non-confluence can be $(t_1, t_2 \text{ are ground terms})$

$$q_0(\triangleright, s_1) \leftarrow_{(2)} \mathsf{run}(s_1, \triangleright) \leftarrow^*_{(4)} \mathsf{run}(t_1, t_2) \rightarrow^*_{(5)} \mathsf{run}(s_1, \triangleright) \rightarrow_{(1)} \mathsf{T}$$

Thus we can prove

 $CR(S_M) \iff$ the Turing machine M halts on all inputs.

Dependency Pair problems for TRSs

- ▶ For relations \rightarrow_R , \rightarrow_S we write $\rightarrow_R / \rightarrow_S$ for $\rightarrow_S^* \cdot \rightarrow_R$.
- ▶ $\rightarrow_{R,\epsilon}$ denotes *R*-reduction, but only at the top of a term.

• Write $SN(R_{top}/S)$ instead of $SN(\rightarrow_{R,\epsilon}/\rightarrow_S)$.

Dependency Pair problems for TRSs

▶ For relations \rightarrow_R , \rightarrow_S we write $\rightarrow_R / \rightarrow_S$ for $\rightarrow_S^* \cdot \rightarrow_R$.

- ▶ $\rightarrow_{R,\epsilon}$ denotes *R*-reduction, but only at the top of a term.
- Write $SN(R_{top}/S)$ instead of $SN(\rightarrow_{R,\epsilon}/\rightarrow_S)$.

 $SN(R_{top}/S)$ is the finiteness of the dependency pair problem for $\{R, S\}$. So $SN(R_{top}/S)$ means that every infinite $\rightarrow_{R,\epsilon} \cup \rightarrow_S$ reduction, contains only finitely many $\rightarrow_{R,\epsilon}$ steps.

Dependency Pair problems for TRSs

▶ For relations \rightarrow_R , \rightarrow_S we write $\rightarrow_R / \rightarrow_S$ for $\rightarrow_S^* \cdot \rightarrow_R$.

- ▶ $\rightarrow_{R,\epsilon}$ denotes *R*-reduction, but only at the top of a term.
- Write $SN(R_{top}/S)$ instead of $SN(\rightarrow_{R,\epsilon}/\rightarrow_S)$.

 $SN(R_{top}/S)$ is the finiteness of the dependency pair problem for $\{R, S\}$. So $SN(R_{top}/S)$ means that every infinite $\rightarrow_{R,\epsilon} \cup \rightarrow_S$ reduction, contains only finitely many $\rightarrow_{R,\epsilon}$ steps. Motivation: There a simple syntactic construction DP such that for any TRS *S* we have

$$SN(DP(S)_{top}/S) \iff SN(S).$$

Dependency pair problems

The dependency pair problem $\{R, S\}$ is finite if $SN(R_{top}/S)$.

$$\mathsf{SN}(R_{\mathsf{top}}/S) \; := \, o_S^* \cdot o_{R,\epsilon} \; \; \mathsf{is} \; \mathsf{SN}$$

This seems a "standard" SN-for-TRS problem, so should be $\Pi_2^0 \dots$

Dependency pair problems

The dependency pair problem $\{R, S\}$ is finite if $SN(R_{top}/S)$.

$$\mathsf{SN}(R_{\mathsf{top}}/S) \ := o_S^* \cdot o_{R,\epsilon}$$
 is SN

This seems a "standard" SN-for-TRS problem, so should be $\Pi_2^0 \dots$ But: $\rightarrow_S^* \cdot \rightarrow_{R,\epsilon}$ is not finitely branching.

Example

$$f(x) \longrightarrow_{S} g(f(x))$$

$$g(x) \longrightarrow_{R} a$$

Finite DP problem, but $\rightarrow_{S}^{*} \cdot \rightarrow_{R,\epsilon}$ is not finitely branching:

$$f(x) \rightarrow_{S}^{*} g^{n}((f(x))) \rightarrow_{R,\epsilon} a.$$

SN for non-finitely branching systems (ARSs)

$$\mathsf{SN}_R(\mathsf{a}) := \forall \alpha : \mathbb{N} \to \mathbb{N} \ (\alpha(\mathsf{0}) = \mathsf{a} \Longrightarrow \exists i \neg (\alpha(i) \longrightarrow_R \alpha(i+1)))$$

"There is no infinite reduction starting from *a*". This is a Π_1^1 -statement, so finiteness of DP problems is in the class Π_1^1 .

SN for non-finitely branching systems (ARSs)

$$\mathsf{SN}_R(\mathsf{a}) := \forall \alpha : \mathbb{N} \to \mathbb{N} \ (\alpha(\mathsf{0}) = \mathsf{a} \Longrightarrow \exists i \neg (\alpha(i) \longrightarrow_R \alpha(i+1)))$$

"There is no infinite reduction starting from a".

This is a Π_1^1 -statement, so finiteness of DP problems is in the class Π_1^1 .

```
Is it \Pi_1^1-complete?
```

Yes: we prove

$$\mathsf{WF}(>_M) \iff \mathsf{SN}(S^M_{\operatorname{top}}/S^M)$$

for a suitable S_M constructed from M. This reduces WF(>_M) to SN(S_{top}^M/S^M), thus showing Π_1^1 -hardness of dependency pair problems.

We now reduce well-foundedness of $>_M$ to $SN(S_{top}^M/S^M)$ and thus obtain that DP is Π_1^1 -complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We now reduce well-foundedness of $>_M$ to $SN(S^M_{top}/S^M)$ and thus obtain that DP is Π^1_1 -complete. IDEA: We define a TRS S^M such that S^M has an infinite reduction iff $\neg WF(>_M)$, and this reduction "keeps coming back to the top level".

We now reduce well-foundedness of $>_M$ to $SN(S^M_{top}/S^M)$ and thus obtain that DP is Π^1_1 -complete.

IDEA: We define a TRS S^M such that

 S^M has an infinite reduction iff $\neg WF(>_M)$,

and this reduction "keeps coming back to the top level".

We want to mimick a computation that

- 1. arbitrarily picks a number n_1
- 2. arbitrarily picks a number n_2

3. checks if $n_1 >_M n_2$, if "no" stops, if "yes" replaces n_1 by n_2 and continues with (2)

Notation: we write \overline{n} to denote $S^n(0(\triangleright))$

First we add

$$q(x,0(y)) \longrightarrow T$$
 if $\delta(q,0) =$ undefined

so that we have

 $n >_M p$ iff $q_0(\overline{n}, \overline{p}) \rightarrow^*_R T$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First we add

$$q(x,0(y)) \longrightarrow T$$
 if $\delta(q,0) =$ undefined

so that we have

 $n >_M p$ iff $q_0(\overline{n}, \overline{p}) \rightarrow^*_R T$

Then (but this is too simple \dots): to pick arbitrary numbers we introduce the following TRS

$$\mathsf{pick} \longrightarrow \mathsf{S}(\mathsf{pick})$$

 $\mathsf{pick} \longrightarrow \mathsf{O}(\triangleright)$

and we add

$$try(T, x, y) \longrightarrow try(q(x, y), y, pick)$$

The intention is to have

$$\begin{array}{rcl} \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* \\ \operatorname{try}(\mathsf{T},\overline{n}_1,\overline{n}_2) & \to^* & \operatorname{try}(q_0(\overline{n}_1,\overline{n}_2),\overline{n}_2,\operatorname{pick}) \longrightarrow \\ \operatorname{try}(\mathsf{T},\overline{n}_2,\overline{n}_3) & \to^* & \operatorname{try}(q_0(\overline{n}_2,\overline{n}_3),\overline{n}_3,\operatorname{pick}) \longrightarrow \dots \end{array}$$

only if there is an infinite descending sequence $n_1 >_M n_2 >_M n_3 \dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The intention is to have

$$\begin{array}{ll} \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* \\ \operatorname{try}(\mathsf{T},\overline{n}_1,\overline{n}_2) & \to^* & \operatorname{try}(q_0(\overline{n}_1,\overline{n}_2),\overline{n}_2,\operatorname{pick}) \longrightarrow \\ \operatorname{try}(\mathsf{T},\overline{n}_2,\overline{n}_3) & \to^* & \operatorname{try}(q_0(\overline{n}_2,\overline{n}_3),\overline{n}_3,\operatorname{pick}) \longrightarrow \dots \end{array}$$

only if there is an infinite descending sequence $n_1 >_M n_2 >_M n_3 \dots$ However we also have:

 $\begin{array}{rl} \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* \\ \operatorname{try}(q_0(\operatorname{pick},\operatorname{pick}),\operatorname{pick},\operatorname{pick}) & \to^* & \operatorname{try}(q_0(\overline{n}_1,\overline{n}_2),\operatorname{pick},\operatorname{pick}) \to^* \\ & \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* & \dots \end{array}$

if $n_1 >_M n_2$

The intention is to have

$$\begin{array}{ll} \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* \\ \operatorname{try}(\mathsf{T},\overline{n}_1,\overline{n}_2) & \to^* & \operatorname{try}(q_0(\overline{n}_1,\overline{n}_2),\overline{n}_2,\operatorname{pick}) \longrightarrow \\ \operatorname{try}(\mathsf{T},\overline{n}_2,\overline{n}_3) & \to^* & \operatorname{try}(q_0(\overline{n}_2,\overline{n}_3),\overline{n}_3,\operatorname{pick}) \longrightarrow \dots \end{array}$$

only if there is an infinite descending sequence $n_1 >_M n_2 >_M n_3 \dots$ However we also have:

 $\begin{array}{rl} \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* \\ \operatorname{try}(q_0(\operatorname{pick},\operatorname{pick}),\operatorname{pick},\operatorname{pick}) & \to^* & \operatorname{try}(q_0(\overline{n}_1,\overline{n}_2),\operatorname{pick},\operatorname{pick}) \to^* \\ \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* & \dots \end{array}$

if $n_1 >_M n_2$ Problem: try(T, u, s) should only reduce if u and s represent a number.

To pick arbitrary numbers we introduce the following TRS

$$pick \longrightarrow c(pick)$$

 $pick \longrightarrow ok(0(\triangleright))$
 $c(ok(x)) \longrightarrow ok(S(x))$

Then pick $\rightarrow^* c^n(\text{pick}) \longrightarrow c^n(\text{ok}(0(\triangleright))) \longrightarrow \text{ok}(S^n(0(\triangleright))) \equiv \overline{n}$

To pick arbitrary numbers we introduce the following TRS

$$pick \longrightarrow c(pick)$$

 $pick \longrightarrow ok(0(\triangleright))$
 $c(ok(x)) \longrightarrow ok(S(x))$

Then pick $\rightarrow^* c^n(\text{pick}) \longrightarrow c^n(\text{ok}(0(\triangleright))) \longrightarrow \text{ok}(S^n(0(\triangleright))) \equiv \overline{n}$ Lemma pick $\rightarrow^* \text{ok}(t) \iff \exists n(t = S^n(0(\triangleright)))$

Finally we add the following rewrite rule

 $try(T, ok(x), ok(y)) \longrightarrow try(q_0(x, y), ok(y), pick)$

Then: the term try(T, pick, pick) is $SN(R_{top}/S)$ iff $>_M$ is well-founded.

. . .

Proof: The only infinite reduction that is possible is of the form

$$\begin{array}{rcl} \operatorname{try}(\mathsf{T},\operatorname{pick},\operatorname{pick}) & \to^* \\ \operatorname{try}(\mathsf{T},\operatorname{ok}(\overline{n}_1),\operatorname{ok}(\overline{n}_2)) & \to^* & \operatorname{try}(q_0(\overline{n}_1,\overline{n}_2),\operatorname{ok}(\overline{n}_2),\operatorname{pick}) \longrightarrow \\ \operatorname{try}(\mathsf{T},\operatorname{ok}(\overline{n}_2),\operatorname{ok}(\overline{n}_3)) & \to^* & \operatorname{try}(q_0(\overline{n}_2,\overline{n}_3),\operatorname{ok}(\overline{n}_3),\operatorname{pick}) \longrightarrow \end{array}$$

if $n_1 >_M n_2 >_M n_3 \dots$

Remarks / Conclusions / Future work

Remarks

- ▶ In DP^{min}, we restrict $\rightarrow_{S}^{*} \cdot \rightarrow_{R,\epsilon}$ to terms that are SN(S). DP^{min} is Π_{2}^{0} -complete (see paper).
- $SN^{\omega}(R)$ is Π^1_1 -complete (see paper).

Future work:

- Characterize "all" properties of TRSs, distinguishing between "ground terms" and "all terms": UN,
- ► Characterize $WN^{\omega}(R)$. $WN^{\omega}(R) := \forall t \exists \alpha(...) \iff \exists \alpha \forall t(...) \in \Pi_1^1.$
- ► Extend to infinite terms. $SN^{\omega}_{\infty}(R) := \forall \beta \forall \alpha(...) \in \Pi^{1}_{1}$. $WN^{\omega}_{\infty}(R) := \forall \beta \exists \alpha(...) \in \Sigma^{1}_{2}$.
- ► Make the generalizations to SN[∞], WN[∞] precise, for reduction of all countable ordinal length.

Study the proof-theoretic complexity of productivity