Degrees of undecidability of in Term Rewriting

Jörg Endrullis, Herman Geuvers, Hans Zantema
Radboud University Nijmegen, Technical University Eindhoven, Free University Amsterdam, The Netherlands

CSL 2009
7-11 September 2009
Coimbra, Portugal

Overview

- Term Rewriting Systems (TRS): definitions and properties
- Overview of results
- The arithmetic and analytical hierarchy
- Technical details
- Relating Turing Machines to TRSs
- Classification of properties of Turing Machines
- Weak Church-Rosser
- Church-Rosser
- Dependency Pair Problems

Term Rewriting Systems (TRS): definitions and properties

- A Signature Σ is a finite set of symbols f each having a fixed arity.
- The set $\operatorname{Ter}(\Sigma, \mathcal{X})$ of terms is the smallest set satisfying:
- $\mathcal{X} \subseteq \operatorname{Ter}(\Sigma, \mathcal{X})$, and
- $f\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Ter}(\Sigma, \mathcal{X})$ if $f \in \Sigma$ with arity n and $\forall i: t_{i} \in \operatorname{Ter}(\Sigma, \mathcal{X})$.
- A term rewriting system (TRS) over Σ, \mathcal{X} is a finite set R of pairs $\langle\ell, r\rangle \in \operatorname{Ter}(\Sigma, \mathcal{X})$, called rewrite rules usually written as $\ell \rightarrow r$ for which
- the left-hand side ℓ is not a variable ($\ell \notin \mathcal{X}$)
- all variables in the right-hand side r occur in ℓ $(\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell))$.

Term Rewriting Systems (TRS): definitions and properties

For terms $s, t \in \operatorname{Ter}(\Sigma, \mathcal{X})$ we write $s \rightarrow_{R} t$ if there exists a rule $\ell \rightarrow r \in R$, a substitution σ and a context ('term with a hole') C such that $s \equiv C[\ell \sigma]$ and $t \equiv C[r \sigma]$
$\rightarrow \rightarrow_{R}$ is the rewrite relation induced by R,
$\downarrow \leftrightarrow_{R}$ denotes the symmetric, reflexive closure of \rightarrow_{R}.
$\checkmark \rightarrow_{R}^{+}$denotes the transitive closure of \rightarrow_{R}.

- \rightarrow_{R}^{*} denotes the reflexive, transitive closure of \rightarrow_{R}.

Basic TRS properties

- R is strongly normalizing (or terminating) on t, denoted $\mathrm{SN}_{R}(t)$, if every rewrite sequence starting from t is finite.
- R is confluent (or Church-Rosser) on t, denoted $\mathrm{CR}_{R}(t)$, if every pair of finite coinitial reductions starting from t can be extended to a common reduct, that is, $\forall t_{1}, t_{2} . t_{1} \leftarrow^{*} t \rightarrow^{*} t_{2} \Rightarrow \exists d . t_{1} \rightarrow^{*} d \leftarrow^{*} t_{2}$.
- R is weakly confluent (or weakly Church-Rosser) on t, denoted $\mathrm{WCR}_{R}(t)$, if every pair of coinitial rewrite steps starting from t can be joined, that is,

$$
\forall t_{1}, t_{2} . t_{1} \leftarrow t \longrightarrow t_{2} \Rightarrow \exists d . t_{1} \rightarrow^{*} d \leftarrow^{*} t_{2} .
$$

R is strongly normalizing $\left(\mathrm{SN}_{R}\right)$, confluent $\left(\mathrm{CR}_{R}\right)$ or weakly confluent $\left(\mathrm{WCR}_{R}\right)$ if the respective property holds on all terms $t \in \operatorname{Ter}(\Sigma, \mathcal{X})$.

TRS properties

Church-Rosser and Weak Church-Rosser are usually also considered on the ground terms only (ground = closed; no free variables).

- R is ground Church-Rosser, denoted grCR_{R}, if every pair of finite coinitial reductions starting from any ground t can be extended to a common reduct, that is, $\forall t, t_{1}, t_{2}$ ground. $t_{1} \leftarrow^{*} t \rightarrow^{*} t_{2} \Rightarrow \exists d . t_{1} \rightarrow^{*} d \leftarrow^{*} t_{2}$.
- R is ground weakly Church-Rosser, denoted $\operatorname{grWCR} R$, if every pair of coinitial rewrite steps starting from a ground t can be joined, that is,
$\forall t, t_{1}, t_{2}$ ground. $t_{1} \leftarrow t \longrightarrow t_{2} \Rightarrow \exists d . t_{1} \rightarrow^{*} d \leftarrow^{*} t_{2}$.

Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how undecidable?

Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how undecidable?

	SN	WN	CR	grCR	WCR	grWCR	DP	DP ${ }^{\text {min }}$
uniform	Π_{2}^{0}	Π_{2}^{0}	Π_{2}^{0}	Π_{2}^{0}	Σ_{1}^{0}	Π_{2}^{0}	Π_{1}^{1}	Π_{2}^{0}
single term	Σ_{1}^{0}	Σ_{1}^{0}	Π_{2}^{0}	Π_{2}^{0}	Σ_{1}^{0}	Σ_{1}^{0}	Π_{1}^{1}	-

Existing work: Huet and Lankford (1978)
Independent (but published earlier): J.G Simonsen (2009)
New Contributions in red

The Arithmetic Hierarchy

REC $=$ class of decidable problems (over the natural numbers), $\Sigma_{1}^{0}:=\exists \mathrm{REC}, \Pi_{1}^{0}:=\forall \mathrm{REC}, \Sigma_{2}^{0}:=\exists \forall$ REC, $\Pi_{2}^{0}:=\forall \exists$ REC, etc.

The Arithmetic Hierarchy

REC = class of decidable problems (over the natural numbers), $\Sigma_{1}^{0}:=\exists$ REC, $\Pi_{1}^{0}:=\forall$ REC, $\Sigma_{2}^{0}:=\exists \forall$ REC, $\Pi_{2}^{0}:=\forall \exists$ REC, etc.
$\Delta_{n}^{0}:=\Sigma_{n}^{0} \bigcap \Pi_{n}^{0}$.
$\Sigma_{n}^{0}=\left\{A \mid \bar{A} \in \Pi_{n}^{0}\right\}, \Pi_{n}^{0}=\left\{A \mid \bar{A} \in \Sigma_{n}^{0}\right\}$

Examples

We leave encodings implicit, so we say e.g.

- $t \rightarrow^{*} q:=\exists\left\langle s_{1}, \ldots, s_{n}\right\rangle\left(t \longrightarrow_{R} s_{1} \longrightarrow_{R} \ldots \longrightarrow_{R} s_{n}=q\right)$ is in Σ_{0}^{1}.
- $T(M,\langle\vec{x}\rangle, u, v):=m$ is a Turing Machine M, u is the computation of M on \vec{x} whose end result is v is in REC. Kleene's T-predicate.
- TOTAL $(M):=\forall x \exists u, v T(m,\langle x\rangle, u, v)$ is in Π_{2}^{0}.

Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form

- $\mathrm{Q} x(\varphi) \otimes \mathrm{Qy}(\psi) \Longleftrightarrow \mathrm{Q} x \mathrm{Q} y(\varphi \otimes \psi)$, for $\otimes \in\{\wedge, \vee\}$, $\mathrm{Q} \in\{\forall, \exists\}$.
- $\mathrm{Q} x(\varphi) \rightarrow \mathrm{Q} y(\psi) \Longleftrightarrow \overline{\mathrm{Q}} \times \mathrm{Q} y(\varphi \rightarrow \psi)$, for $\mathrm{Q} \in\{\forall, \exists\}$.

$$
\Longleftrightarrow \mathrm{Q} y \overline{\mathrm{Q}} \times(\varphi \rightarrow \psi) .
$$

Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form

- $\mathrm{Q} x(\varphi) \otimes \mathrm{Qy}(\psi) \Longleftrightarrow \mathrm{Q} \times \mathrm{Q} y(\varphi \otimes \psi)$, for $\otimes \in\{\wedge, \vee\}$, $\mathrm{Q} \in\{\forall, \exists\}$.
- $\mathrm{Q} x(\varphi) \rightarrow \mathrm{Q} y(\psi) \Longleftrightarrow \overline{\mathrm{Q}} \times \mathrm{Q} y(\varphi \rightarrow \psi)$, for $\mathrm{Q} \in\{\forall, \exists\}$.

$$
\Longleftrightarrow \mathrm{Q} y \overline{\mathrm{Q}} \times(\varphi \rightarrow \psi) .
$$

Compression of quantifiers of the same type. Symbolically:

- $\forall \forall \mapsto \forall$ and $\exists \exists \mapsto \exists$ $\forall x \forall y(P(x, y)) \Longleftrightarrow \forall z\left(P\left((z)_{1},(z)_{2}\right)\right)$
A bounded quantifier is no quantifier:
- $\forall x<n$ REC $=$ REC,
- $\exists x<n$ REC $=$ REC

The Arithmetic Hierarchy

Theorem $\Sigma_{i}^{0} \subsetneq \Delta_{i+1}^{0} \subsetneq \Sigma_{n+1}^{0}$ and $\Pi_{i}^{0} \subsetneq \Delta_{i+1}^{0} \subsetneq \Pi_{n+1}^{0}$

The Arithmetic Hierarchy

Theorem $\Sigma_{i}^{0} \subsetneq \Delta_{i+1}^{0} \subsetneq \Sigma_{n+1}^{0}$ and $\Pi_{i}^{0} \subsetneq \Delta_{i+1}^{0} \subsetneq \Pi_{n+1}^{0}$

$$
\begin{aligned}
& \operatorname{BlankTape}(M):=\exists u, v T(M,\langle \rangle, u, v) \in \Sigma_{1}^{0} \backslash \Pi_{1}^{0} \\
& \operatorname{TOTAL}(M):=\forall x \exists u, v T(M,\langle x\rangle, u, v) \in \Pi_{2}^{0} \backslash \Sigma_{2}^{0}
\end{aligned}
$$

Above the arithmetical hierarchy: analytical hierarchy

All properties definable in first order arithmetic reside in the arithmetical hierarchy.
If we want to quantify over functions from \mathbb{N} to \mathbb{N} (infinite sequences of numbers), we end up in the analytical hierarchy.
Function variables are usually α, β, etc.
Example:

$$
\exists \alpha \forall i\left(\alpha(i) \rightarrow_{R} \alpha(i+1)\right)
$$

The Analytic Hierarchy

$\Sigma_{1}^{1}:=\exists \alpha \forall x$ REC, $\Pi_{1}^{1}:=\forall \alpha \exists x$ REC, $\Sigma_{2}^{1}:=\exists \beta \forall \alpha \exists x$ REC, etc.
$\Delta_{n}^{1}:=\Sigma_{n}^{1} \bigcap \Pi_{n}^{1}$.

The Analytic Hierarchy

$\Sigma_{1}^{1}:=\exists \alpha \forall x$ REC, $\Pi_{1}^{1}:=\forall \alpha \exists x$ REC, $\Sigma_{2}^{1}:=\exists \beta \forall \alpha \exists x$ REC, etc.
$\Delta_{n}^{1}:=\Sigma_{n}^{1} \bigcap \Pi_{n}^{1}$.
$\Sigma_{n+1}^{1}=\exists^{1} \alpha \Pi_{n}^{1}, \Pi_{n+1}^{1}=\exists \beta \Sigma_{n}^{1}$
$\Sigma_{n}^{1}=\left\{A \mid \bar{A} \in \Pi_{n}^{1}\right\}, \Pi_{n}^{1}=\left\{A \mid \bar{A} \in \Sigma_{n}^{1}\right\}$.
Theorem $\Sigma_{i}^{1} \subsetneq \Delta_{i+1}^{1} \subsetneq \Sigma_{n+1}^{1}$ and $\Pi_{i}^{1} \subsetneq \Delta_{i+1}^{1} \subsetneq \Pi_{n+1}^{1}$
WF $(M):=$ " M defines a well-founded relation $>_{M}$ " $\in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$

Properties of the classes in the Analytic Hierarchy

We have quantifiers over numbers \forall, \exists and over functions \forall^{1}, \exists^{1}. A number of quantifiers of the same type can be compressed into one.

- $\forall^{1} \forall^{1} \mapsto \forall^{1}$ and $\exists^{1} \exists^{1} \mapsto \exists^{1}$
$\forall 1$ subsumes \forall.
- $\forall^{1} \forall \mapsto \forall^{1}$ and $\exists^{1} \exists \mapsto \exists^{1}$
\forall^{1} moves outside over \exists and \exists^{1} moves outside over \forall.
- $\exists \forall^{1} \mapsto \forall^{1} \exists$ and $\forall \exists^{1} \mapsto \exists^{1} \forall$
- The standard form of an element of the analytic hierarchy is $Q_{1}^{1} Q_{2}^{1} \ldots Q_{n}^{1} Q$ with swopping quantifiers and Q opposite to Q_{n}^{1}.

Proving that a property is essentially Π_{2}^{0} (and not "lower")

A total recursive function f many-one reduces problem A to problem B if

$$
A(x) \Longleftrightarrow B(f(x)), \text { for all } x
$$

So "if we want to decide $A(x)$, we only have to decide $B(x)$ ".
$A \ll_{m} B \quad(A$ is many-one reducible to $B)$
in case such an f exists.

Proving that a property is essentially Π_{2}^{0} (and not "lower")

 A total recursive function f many-one reduces problem A to problem B if$$
A(x) \Longleftrightarrow B(f(x)), \text { for all } x
$$

So "if we want to decide $A(x)$, we only have to decide $B(x)$ ".

$$
A<_{m} B \quad(A \text { is many-one reducible to } B)
$$

in case such an f exists.
Definition
B is called Π_{2}^{0}-complete if $B \in \Pi_{2}^{0}$ and forall $A \in \Pi_{2}^{0}, A \ll_{m} B$.
If B is Π_{2}^{0}-complete, it can't be lower in the hierarchy.

Proving that a property is essentially Π_{2}^{0} (and not "lower")

 A total recursive function f many-one reduces problem A to problem B if$$
A(x) \Longleftrightarrow B(f(x)), \text { for all } x
$$

So "if we want to decide $A(x)$, we only have to decide $B(x)$ ".

$$
A \ll_{m} B \quad(A \text { is many-one reducible to } B)
$$

in case such an f exists.
Definition
B is called Π_{2}^{0}-complete if $B \in \Pi_{2}^{0}$ and forall $A \in \Pi_{2}^{0}, A \ll_{m} B$.
If B is Π_{2}^{0}-complete, it can't be lower in the hierarchy.
Theorem
BlankTape (M) is Σ_{1}^{0}-complete,
$\operatorname{TOTAL}(M)$ is Π_{2}^{0}-complete,
WF (M) is Π_{1}^{1}-complete.
To prove that WCR is Σ_{1}^{0}-complete:
Reduce it to BlankTape

From Turing Machines to TRSs

Translating a Turing machine $M=\left(Q, \Sigma, q_{0}, \delta\right)$ to a $\operatorname{TRS} R_{M}$ Function symbols:
$\begin{array}{lll}a \in \Sigma & \mapsto & \text { unary function } a(-) \\ q \in Q & \mapsto & \text { binary function } q(-,-)\end{array}$

From Turing Machines to TRSs

Translating a Turing machine $M=\left(Q, \Sigma, q_{0}, \delta\right)$ to a TRS R_{M} Function symbols:

```
a\in\Sigma \mapsto unary function a(-)
q\inQ \mapsto binary function q(-,-)
    extra:
    constant }\triangleright\mathrm{ (representing "infinitely many" blanks)
```


From Turing Machines to TRSs

Translating a Turing machine $M=\left(Q, \Sigma, q_{0}, \delta\right)$ to a $\operatorname{TRS} R_{M}$ Function symbols:

```
\(a \in \Sigma \quad \mapsto \quad\) unary function \(a(-)\)
\(q \in Q \quad \mapsto \quad\) binary function \(q(-,-)\)
    extra:
    constant \(\triangleright\) (representing "infinitely many" blanks)
```

Configurations:
Right of the reading head: $a b a a \square \square \ldots$ translates to $a(b(a(a(\triangleright))))$
Left of the reading head: . . $\square \square a b a a$ translates to $a(a(b(a(\triangleright))))$

From Turing Machines to TRSs

Translating a Turing machine $M=\left(Q, \Sigma, q_{0}, \delta\right)$ to a $\operatorname{TRS} R_{M}$ Function symbols:
$a \in \Sigma \quad \mapsto \quad$ unary function $a(-)$
$q \in Q \quad \mapsto \quad$ binary function $q(-,-)$
extra:
constant \triangleright (representing "infinitely many" blanks)
Configurations:
Right of the reading head: $a b a a \square \square \ldots$ translates to $a(b(a(a(\triangleright))))$
Left of the reading head: . . $\square \square a b a a$ translates to $a(a(b(a(\triangleright))))$ Tape content $\ldots \square w \underline{a} v \square \ldots$ in state q becomes $q\left(w^{R}, a(v)\right)$ (q is reading a, the first symbol of $a v$)

Encoding a Turing Machine M as a $\operatorname{TRS} R_{M}$

Translating the transition function δ :

$$
\begin{array}{rll}
q(x, f(y)) & \longrightarrow q^{\prime}\left(f^{\prime}(x), y\right) & \text { if } \delta(q, f)=\left(q^{\prime}, f^{\prime}, R\right) \\
q(g(x), f(y)) & \longrightarrow q^{\prime}\left(x, g\left(f^{\prime}(y)\right)\right) & \text { if } \delta(q, f)=\left(q^{\prime}, f^{\prime}, L\right)
\end{array}
$$

Encoding a Turing Machine M as a $\operatorname{TRS} R_{M}$

Translating the transition function δ :

$$
\begin{array}{rll}
q(x, f(y)) & \longrightarrow q^{\prime}\left(f^{\prime}(x), y\right) & \text { if } \delta(q, f)=\left(q^{\prime}, f^{\prime}, R\right) \\
q(g(x), f(y)) & \longrightarrow q^{\prime}\left(x, g\left(f^{\prime}(y)\right)\right) & \text { if } \delta(q, f)=\left(q^{\prime}, f^{\prime}, L\right)
\end{array}
$$

And special rewrite rules for dealing with the left-/rightmost blank:

$$
\begin{array}{rlll}
q(\triangleright, f(y)) & \longrightarrow q^{\prime}\left(\triangleright, \square\left(f^{\prime}(y)\right)\right) & \text { if } \delta(q, f)=\left(q^{\prime}, f^{\prime}, L\right) \\
q(x, \triangleright) & \longrightarrow q^{\prime}\left(f^{\prime}(x), \triangleright\right) & \text { if } \delta(q, \square)=\left(q^{\prime}, f^{\prime}, R\right) \\
q(g(x), \triangleright) & \longrightarrow q^{\prime}\left(x, g\left(f^{\prime}(\triangleright)\right)\right) & \text { if } \delta(q, \square)=\left(q^{\prime}, f^{\prime}, L\right) \\
q(\triangleright, \triangleright) & \longrightarrow q^{\prime}\left(\triangleright, \square\left(f^{\prime}(\triangleright)\right)\right) & \text { if } \delta(q, \square)=\left(q^{\prime}, f^{\prime}, L\right)
\end{array}
$$

Σ_{1}^{0}-completeness of WCR

WCR is in Σ_{1}^{0} : By the Critical Pairs Lemma, WCR_{R} holds if and only if all critical pairs of R are convergent.
A Turing machine can compute on the input of a TRS R all (finitely many) critical pairs, and on the input of a TRS R and a term t all (finitely many) one step reducts of t.

Σ_{1}^{0}-completeness of WCR

WCR is in Σ_{1}^{0} : By the Critical Pairs Lemma, WCR_{R} holds if and only if all critical pairs of R are convergent.
A Turing machine can compute on the input of a TRS R all (finitely many) critical pairs, and on the input of a TRS R and a term t all (finitely many) one step reducts of t.
So it suffices to show that the following is in Σ_{1}^{0} :
Decide on the input of a TRS $S, n \in \mathbb{N}$ and terms $t_{1}, s_{1}, \ldots, t_{n}, s_{n}$ whether for every $i=1, \ldots, n$ the terms t_{i} and s_{i} have a common reduct.

This property can easily be described by a Σ_{1}^{0} formula.

Σ_{1}^{0}-completeness of WCR

WCR is Σ_{1}^{0}-hard: We define TRS S to consist of the rules of R_{M} extended by the following:

$$
\text { run } \rightarrow \mathrm{T} \quad \text { run } \rightarrow q_{0}(\triangleright, \triangleright)
$$

$q(x, f(y)) \rightarrow \mathrm{T} \quad$ for every $f \in \Gamma$ such that $\delta(q, f)$ is undefined.
The only critical pair is $T \leftarrow$ run $\rightarrow q_{0}(\triangleright, \triangleright)$. We have:

$$
q_{0}(\triangleright, \triangleright) \rightarrow_{S}^{*} \mathrm{~T} \text { if and only if } \mathrm{M} \text { halts on the blank tape. }
$$

So:
$\mathrm{WCR}(S)$ if and only if M halts on the blank tape.

Π_{2}^{0}-completeness of CR

CR is in Π_{2}^{0} :
$\mathrm{CR}_{R} \Longleftrightarrow \forall t \in \mathbb{N} . \forall r_{1}, r_{2} \in \mathbb{N} . \exists r_{1}^{\prime}, r_{2}^{\prime} \in \mathbb{N}$.
($\left(\left(t\right.\right.$ is a term) and (r_{1}, r_{2} are reductions)

$$
\text { and } \left.t \equiv \operatorname{first}\left(r_{1}\right) \equiv \operatorname{first}\left(r_{2}\right)\right)
$$

$\Rightarrow\left(\left(r_{1}^{\prime}\right.\right.$ and r_{2}^{\prime} are reductions $)$
and $\left(\operatorname{last}\left(r_{1}\right) \equiv \operatorname{first}\left(r_{1}^{\prime}\right)\right)$ and $\left(\operatorname{last}\left(r_{2}\right) \equiv \operatorname{first}\left(r_{2}^{\prime}\right)\right)$.
and $\left.\left.\left(\operatorname{last}\left(r_{1}^{\prime}\right) \equiv \operatorname{last}\left(r_{2}^{\prime}\right)\right)\right)\right)$

Π_{2}^{0}-hardness of CR

We change the TRS R_{M} in such a way that
M halts on all inputs $\Longleftrightarrow R_{M}$ is CR

Π_{2}^{0}-hardness of $C R$

We change the TRS R_{M} in such a way that

$$
M \text { halts on all inputs } \Longleftrightarrow R_{M} \text { is } \mathrm{CR}
$$

Idea: use an extension of R_{M} with the following rules:

$$
\begin{aligned}
\operatorname{run}(x, y) & \rightarrow \mathrm{T} \\
\operatorname{run}(x, y) & \rightarrow q_{0}(x, y)
\end{aligned}
$$

$$
q(x, f(y)) \rightarrow \mathrm{T} \quad \text { for every } f \in \Gamma \text { with } \delta(q, f) \text { undefined }
$$

Then it seems that
$\mathrm{CR}\left(R_{M}^{+}\right) \Longleftrightarrow$ the Turing machine M halts on all configurations.

Π_{2}^{0}-hardness of $C R$

We change the TRS R_{M} in such a way that
M halts on all inputs $\Longleftrightarrow R_{M}$ is CR
Idea: use an extension of R_{M} with the following rules:

$$
\begin{aligned}
\operatorname{run}(x, y) & \rightarrow \mathrm{T} \\
\operatorname{run}(x, y) & \rightarrow q_{0}(x, y)
\end{aligned}
$$

$$
q(x, f(y)) \rightarrow \mathrm{T} \quad \text { for every } f \in \Gamma \text { with } \delta(q, f) \text { undefined }
$$

Then it seems that
$\mathrm{CR}\left(R_{M}^{+}\right) \Longleftrightarrow$ the Turing machine M halts on all configurations.
However, we only have \Longrightarrow. With \Longleftarrow a problem arises if s and t contain variables.

Π_{2}^{0}-hardness of $C R$

For a Turing machines M we define the $\operatorname{TRS} S_{\mathrm{M}}$ as R_{M} extended with

$$
\begin{align*}
\operatorname{run}(x, \triangleright) & \rightarrow \mathrm{T} \tag{1}\\
\operatorname{run}(\triangleright, y) & \rightarrow q_{0}(\triangleright, y) \tag{2}\\
q(x, f(y)) & \rightarrow \mathrm{T} \\
\operatorname{run}(x, S(y)) & \rightarrow \operatorname{run}(S(x), y) \\
\operatorname{run}(S(x), y) & \rightarrow \operatorname{run}(x, S(y)) .
\end{align*}
$$

Π_{2}^{0}-hardness of $C R$

For a Turing machines M we define the $\operatorname{TRS} S_{M}$ as R_{M} extended with

$$
\begin{align*}
\operatorname{run}(x, \triangleright) & \rightarrow \mathrm{T} \tag{1}\\
\operatorname{run}(\triangleright, y) & \rightarrow q_{0}(\triangleright, y) \tag{2}\\
q(x, f(y)) & \rightarrow \mathrm{T} \\
\operatorname{run}(x, S(y)) & \rightarrow \operatorname{run}(S(x), y) \quad \text { if } \delta(q, f) \text { undefined } \\
\operatorname{run}(S(x), y) & \rightarrow \operatorname{run}(x, S(y)) .
\end{align*}
$$

Then the only cause for non-confluence can be (t_{1}, t_{2} are ground terms)

$$
q_{0}\left(\triangleright, s_{1}\right) \leftarrow_{(2)} \operatorname{run}\left(s_{1}, \triangleright\right) \leftarrow_{(4)}^{*} \operatorname{run}\left(t_{1}, t_{2}\right) \rightarrow_{(5)}^{*} \operatorname{run}\left(s_{1}, \triangleright\right) \rightarrow_{(1)} \top
$$

Thus we can prove
$\mathrm{CR}\left(S_{M}\right) \Longleftrightarrow$ the Turing machine M halts on all inputs.

Dependency Pair problems for TRSs

- For relations $\rightarrow_{R}, \rightarrow_{S}$ we write $\rightarrow_{R} / \rightarrow_{S}$ for $\rightarrow_{S}^{*} \cdot \rightarrow_{R}$.
- $\rightarrow_{R, \epsilon}$ denotes R-reduction, but only at the top of a term.
- Write $\operatorname{SN}\left(R_{\text {top }} / S\right)$ instead of $\operatorname{SN}\left(\rightarrow_{R, \epsilon} / \rightarrow s\right)$.

Dependency Pair problems for TRSs

- For relations $\rightarrow_{R}, \rightarrow_{S}$ we write $\rightarrow_{R} / \rightarrow_{S}$ for $\rightarrow_{S}^{*} \cdot \rightarrow_{R}$.
- $\rightarrow_{R, \epsilon}$ denotes R-reduction, but only at the top of a term.
- Write $\operatorname{SN}\left(R_{\text {top }} / S\right)$ instead of $\operatorname{SN}\left(\rightarrow_{R, \epsilon} / \rightarrow s\right)$.
$\mathrm{SN}\left(R_{\mathrm{top}} / S\right)$ is the finiteness of the dependency pair problem for $\{R, S\}$.
So $\operatorname{SN}\left(R_{\text {top }} / S\right)$ means that every infinite $\rightarrow_{R, \epsilon} \cup \rightarrow_{S}$ reduction, contains only finitely many $\rightarrow_{R, \epsilon}$ steps.

Dependency Pair problems for TRSs

- For relations $\rightarrow_{R}, \rightarrow_{S}$ we write $\rightarrow_{R} / \rightarrow_{S}$ for $\rightarrow_{S}^{*} \cdot \rightarrow_{R}$.
- $\rightarrow_{R, \epsilon}$ denotes R-reduction, but only at the top of a term.
- Write $\operatorname{SN}\left(R_{\text {top }} / S\right)$ instead of $\operatorname{SN}\left(\rightarrow_{R, \epsilon} / \rightarrow s\right)$.
$\mathrm{SN}\left(R_{\mathrm{top}} / S\right)$ is the finiteness of the dependency pair problem for $\{R, S\}$.
So $\mathrm{SN}\left(R_{\text {top }} / S\right)$ means that every infinite $\rightarrow_{R, \epsilon} \cup \rightarrow_{S}$ reduction, contains only finitely many $\rightarrow_{R, \epsilon}$ steps. Motivation: There a simple syntactic construction DP such that for any TRS S we have

$$
\mathrm{SN}\left(\mathrm{DP}(S)_{\mathrm{top}} / S\right) \Longleftrightarrow \mathrm{SN}(S)
$$

Dependency pair problems

The dependency pair problem $\{R, S\}$ is finite if $\mathrm{SN}\left(R_{\text {top }} / S\right)$.

$$
\mathrm{SN}\left(R_{\mathrm{top}} / S\right):=\rightarrow_{S}^{*} \cdot \rightarrow_{R, \epsilon} \text { is } \mathrm{SN}
$$

This seems a "standard" SN-for-TRS problem, so should be $\Pi_{2}^{0} \ldots$

Dependency pair problems

The dependency pair problem $\{R, S\}$ is finite if $\operatorname{SN}\left(R_{\text {top }} / S\right)$.

$$
\mathrm{SN}\left(R_{\mathrm{top}} / S\right):=\rightarrow_{S}^{*} \cdot \rightarrow_{R, \epsilon} \text { is } \mathrm{SN}
$$

This seems a "standard" SN-for-TRS problem, so should be $\Pi_{2}^{0} \ldots$ But: $\rightarrow_{S}^{*} \cdot \rightarrow_{R, \epsilon}$ is not finitely branching.

Example

$f(x) \longrightarrow s g(f(x))$
$g(x) \longrightarrow_{R}$ a
Finite DP problem, but $\rightarrow_{S}^{*} \cdot \rightarrow_{R, \epsilon}$ is not finitely branching:
$f(x) \rightarrow_{S}^{*} g^{n}\left((f(x)) \rightarrow_{R, \epsilon}\right.$ a.

SN for non-finitely branching systems (ARSs)

$$
\mathrm{SN}_{R}(a):=\forall \alpha: \mathbb{N} \rightarrow \mathbb{N}\left(\alpha(0)=a \Longrightarrow \exists i \neg\left(\alpha(i) \longrightarrow_{R} \alpha(i+1)\right)\right)
$$

"There is no infinite reduction starting from a ". This is a Π_{1}^{1}-statement, so finiteness of DP problems is in the class Π_{1}^{1}.

SN for non-finitely branching systems (ARSs)

$$
\mathrm{SN}_{R}(a):=\forall \alpha: \mathbb{N} \rightarrow \mathbb{N}\left(\alpha(0)=a \Longrightarrow \exists i \neg\left(\alpha(i) \longrightarrow_{R} \alpha(i+1)\right)\right)
$$

"There is no infinite reduction starting from a ".
This is a Π_{1}^{1}-statement, so finiteness of DP problems is in the class Π_{1}^{1}.
Is it Π_{1}^{1}-complete?
Yes: we prove

$$
\mathrm{WF}\left(>_{M}\right) \Longleftrightarrow \mathrm{SN}\left(S_{\mathrm{top}}^{M} / S^{M}\right)
$$

for a suitable S_{M} constructed from M. This reduces $\operatorname{WF}\left(>_{M}\right)$ to $\operatorname{SN}\left(S_{\text {top }}^{M} / S^{M}\right)$, thus showing Π_{1}^{1}-hardness of dependency pair problems.

DP is Π_{1}^{1}-complete

We now reduce well-foundedness of $>_{M}$ to $\operatorname{SN}\left(S_{\text {top }}^{M} / S^{M}\right)$ and thus obtain that DP is Π_{1}^{1}-complete.

DP is Π_{1}^{1}-complete

We now reduce well-foundedness of $>_{M}$ to $\operatorname{SN}\left(S_{\text {top }}^{M} / S^{M}\right)$ and thus obtain that DP is Π_{1}^{1}-complete.
IDEA: We define a TRS S^{M} such that
S^{M} has an infinite reduction iff $\neg \mathrm{WF}\left(>_{M}\right)$, and this reduction "keeps coming back to the top level".

DP is Π_{1}^{1}-complete

We now reduce well-foundedness of $>_{M}$ to $\operatorname{SN}\left(S_{\text {top }}^{M} / S^{M}\right)$ and thus obtain that DP is Π_{1}^{1}-complete.
IDEA: We define a TRS S^{M} such that
S^{M} has an infinite reduction iff $\neg \mathrm{WF}\left(>_{M}\right)$,
and this reduction "keeps coming back to the top level".
We want to mimick a computation that

1. arbitrarily picks a number n_{1}
2. arbitrarily picks a number n_{2}
3. checks if $n_{1}>_{M} n_{2}$, if "no" stops, if "yes" replaces n_{1} by n_{2} and continues with (2)
Notation: we write \bar{n} to denote $S^{n}(0(\triangleright))$

DP is Π_{1}^{1}-complete

First we add

$$
q(x, 0(y)) \longrightarrow \mathrm{T} \text { if } \delta(q, 0)=\text { undefined }
$$

so that we have

$$
n>_{M} p \text { iff } q_{0}(\bar{n}, \bar{p}) \rightarrow_{R}^{*} T
$$

DP is Π_{1}^{1}-complete

First we add

$$
q(x, 0(y)) \longrightarrow \mathrm{T} \text { if } \delta(q, 0)=\text { undefined }
$$

so that we have

$$
n>_{M} p \text { iff } q_{0}(\bar{n}, \bar{p}) \rightarrow_{R}^{*} T
$$

Then (but this is too simple ...): to pick arbitrary numbers we introduce the following TRS

$$
\begin{aligned}
& \text { pick } \longrightarrow S(\text { pick }) \\
& \text { pick } \longrightarrow 0(\triangleright)
\end{aligned}
$$

and we add

$$
\operatorname{try}(\mathrm{T}, x, y) \longrightarrow \operatorname{try}(q(x, y), y, \text { pick })
$$

DP is Π_{1}^{1}-complete

The intention is to have

$$
\begin{aligned}
\operatorname{try}(\mathrm{T}, \text { pick, pick }) & \rightarrow^{*} \\
\operatorname{try}\left(\mathrm{~T}, \bar{n}_{1}, \bar{n}_{2}\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{1}, \bar{n}_{2}\right), \bar{n}_{2}, \text { pick }\right) \longrightarrow \\
\operatorname{try}\left(\mathrm{T}, \bar{n}_{2}, \bar{n}_{3}\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{2}, \bar{n}_{3}\right), \bar{n}_{3}, \text { pick }\right) \longrightarrow \ldots
\end{aligned}
$$

only if there is an infinite descending sequence $n_{1}>_{M} n_{2}>_{M} n_{3} \ldots$

DP is Π_{1}^{1}-complete

The intention is to have

$$
\begin{aligned}
\operatorname{try}(\mathrm{T}, \text { pick, pick }) & \rightarrow^{*} \\
\operatorname{try}\left(\mathrm{~T}, \bar{n}_{1}, \bar{n}_{2}\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{1}, \bar{n}_{2}\right), \bar{n}_{2}, \text { pick }\right) \longrightarrow \\
\operatorname{try}\left(\mathrm{T}, \bar{n}_{2}, \bar{n}_{3}\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{2}, \bar{n}_{3}\right), \bar{n}_{3}, \text { pick }\right) \longrightarrow \ldots
\end{aligned}
$$

only if there is an infinite descending sequence $n_{1}>_{M} n_{2}>_{M} n_{3} \ldots$ However we also have:

$$
\begin{aligned}
\operatorname{try}(\mathrm{T}, \text { pick, pick }) & \rightarrow^{*} \\
\operatorname{try}\left(q_{0}(\text { pick, pick }), \text { pick, pick }\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{1}, \bar{n}_{2}\right), \text { pick, pick }\right) \rightarrow^{*} \\
\operatorname{try}(\mathrm{~T}, \text { pick, pick }) & \rightarrow^{*} \ldots
\end{aligned}
$$

if $n_{1}>_{M} n_{2}$

DP is Π_{1}^{1}-complete

The intention is to have

$$
\begin{aligned}
\operatorname{try}(\mathrm{T}, \text { pick, pick }) & \rightarrow^{*} \\
\operatorname{try}\left(\mathrm{~T}, \bar{n}_{1}, \bar{n}_{2}\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{1}, \bar{n}_{2}\right), \bar{n}_{2}, \text { pick }\right) \longrightarrow \\
\operatorname{try}\left(\mathrm{T}, \bar{n}_{2}, \bar{n}_{3}\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{2}, \bar{n}_{3}\right), \bar{n}_{3}, \text { pick }\right) \longrightarrow \ldots
\end{aligned}
$$

only if there is an infinite descending sequence $n_{1}>_{M} n_{2}>_{M} n_{3} \ldots$ However we also have:

$$
\begin{aligned}
\operatorname{try}(\mathrm{T}, \text { pick, pick }) & \rightarrow^{*} \\
\operatorname{try}\left(q_{0}(\text { pick, pick }), \text { pick, pick }\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{1}, \bar{n}_{2}\right), \text { pick, pick }\right) \rightarrow^{*} \\
\operatorname{try}(\mathrm{~T}, \text { pick, pick }) & \rightarrow^{*} \ldots
\end{aligned}
$$

if $n_{1}>_{M} n_{2}$
Problem: $\operatorname{try}(\mathrm{T}, u, s)$ should only reduce if u and s represent a number.

DP is Π_{1}^{1}-complete

To pick arbitrary numbers we introduce the following TRS

$$
\begin{aligned}
\text { pick } & \longrightarrow c(\text { pick }) \\
\text { pick } & \longrightarrow \text { ok }(0(\triangleright)) \\
c(\operatorname{ok}(x)) & \longrightarrow o k(S(x))
\end{aligned}
$$

Then pick $\rightarrow^{*} c^{n}($ pick $) \longrightarrow c^{n}(\operatorname{ok}(0(\triangleright))) \longrightarrow \operatorname{ok}\left(\mathrm{S}^{n}(0(\triangleright))\right) \equiv \bar{n}$

DP is Π_{1}^{1}-complete

To pick arbitrary numbers we introduce the following TRS

$$
\begin{aligned}
\text { pick } & \longrightarrow c(\text { pick }) \\
\text { pick } & \longrightarrow \text { ok }(0(\triangleright)) \\
c(\operatorname{ok}(x)) & \longrightarrow \text { ok }(\mathrm{S}(x))
\end{aligned}
$$

Then pick $\rightarrow^{*} c^{n}($ pick $) \longrightarrow c^{n}(\operatorname{ok}(0(\triangleright))) \longrightarrow \operatorname{ok}\left(\mathrm{S}^{n}(0(\triangleright))\right) \equiv \bar{n}$ Lemma pick \rightarrow^{*} ok $(t) \Longleftrightarrow \exists n\left(t=\mathrm{S}^{n}(0(\triangleright))\right)$

DP is Π_{1}^{1}-complete

Finally we add the following rewrite rule

$$
\operatorname{try}(\mathrm{T}, \mathrm{ok}(x), \operatorname{ok}(y)) \longrightarrow \operatorname{try}\left(q_{0}(x, y), \text { ok }(y), \text { pick }\right)
$$

Then: the term $\operatorname{try}(T$, pick, pick $)$ is $\operatorname{SN}\left(R_{\text {top }} / S\right)$ iff $>_{M}$ is well-founded.
Proof: The only infinite reduction that is possible is of the form

$$
\begin{aligned}
\operatorname{try}(\mathrm{T}, \text { pick, pick }) & \rightarrow^{*} \\
\operatorname{try}\left(\mathrm{~T}, \text { ok }\left(\bar{n}_{1}\right), \text { ok }\left(\bar{n}_{2}\right)\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{1}, \bar{n}_{2}\right), \text { ok }\left(\bar{n}_{2}\right), \text { pick }\right) \longrightarrow \\
\operatorname{try}\left(\mathrm{T}, \text { ok }\left(\bar{n}_{2}\right), \text { ok }\left(\bar{n}_{3}\right)\right) & \rightarrow^{*} \operatorname{try}\left(q_{0}\left(\bar{n}_{2}, \bar{n}_{3}\right), \text { ok }\left(\bar{n}_{3}\right), \text { pick }\right) \longrightarrow
\end{aligned}
$$

if $n_{1}>_{M} n_{2}>_{M} n_{3} \ldots$

Remarks / Conclusions / Future work

Remarks

- In DP ${ }^{\text {min }}$, we restrict $\rightarrow_{S}^{*} \cdot \rightarrow_{R, \epsilon}$ to terms that are $\mathrm{SN}(S)$.
$\mathrm{DP}^{\mathrm{min}}$ is Π_{2}^{0}-complete (see paper).
- $\mathrm{SN}^{\omega}(R)$ is Π_{1}^{1}-complete (see paper).

Future work:

- Characterize "all" properties of TRSs, distinguishing between "ground terms" and "all terms": UN,
- Characterize $\mathrm{WN}^{\omega}(R)$.
$\mathrm{WN}^{\omega}(R):=\forall t \exists \alpha(\ldots) \Longleftrightarrow \exists \alpha \forall t(\ldots) \in \Pi_{1}^{1}$.
- Extend to infinite terms. $\mathrm{SN}_{\infty}^{\omega}(R):=\forall \beta \forall \alpha(\ldots) \in \Pi_{1}^{1}$. $\mathrm{WN}_{\infty}^{\omega}(R):=\forall \beta \exists \alpha(\ldots) \in \Sigma_{2}^{1}$.
- Make the generalizations to $\mathrm{SN}^{\infty}, \mathrm{WN}^{\infty}$ precise, for reduction of all countable ordinal length.
- Study the proof-theoretic complexity of productivity

