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Term Rewriting Systems (TRS): definitions and properties

I A Signature Σ is a finite set of symbols f each having a fixed
arity.

I The set Ter(Σ,X ) of terms is the smallest set satisfying:
I X ⊆ Ter(Σ,X ), and
I f (t1, . . . , tn) ∈ Ter(Σ,X ) if f ∈ Σ with arity n and
∀i : ti ∈ Ter(Σ,X ).

I A term rewriting system (TRS) over Σ, X is a finite set R of
pairs 〈`, r〉 ∈ Ter(Σ,X ), called rewrite rules usually written as
`→ r for which

I the left-hand side ` is not a variable (` 6∈ X )
I all variables in the right-hand side r occur in `

(Var(r) ⊆ Var(`)).



Term Rewriting Systems (TRS): definitions and properties

For terms s, t ∈ Ter(Σ,X ) we write s →R t if there exists a rule
`→ r ∈ R, a substitution σ and a context (’term with a hole’) C
such that s ≡ C [`σ] and t ≡ C [rσ]

I →R is the rewrite relation induced by R,

I ↔R denotes the symmetric, reflexive closure of →R .

I →+
R denotes the transitive closure of →R .

I →∗R denotes the reflexive, transitive closure of →R .



Basic TRS properties

I R is strongly normalizing (or terminating) on t, denoted
SNR(t),
if every rewrite sequence starting from t is finite.

I R is confluent (or Church-Rosser) on t, denoted CRR(t),
if every pair of finite coinitial reductions starting from t can
be extended to a common reduct, that is,
∀t1, t2. t1 ←∗ t →∗ t2 ⇒ ∃d . t1 →∗ d ←∗ t2.

I R is weakly confluent (or weakly Church-Rosser) on t,
denoted WCRR(t), if every pair of coinitial rewrite steps
starting from t can be joined, that is,
∀t1, t2. t1 ← t −→ t2 ⇒ ∃d . t1 →∗ d ←∗ t2.

R is strongly normalizing (SNR), confluent (CRR) or weakly
confluent (WCRR) if the respective property holds on all terms
t ∈ Ter(Σ,X ).



TRS properties

Church-Rosser and Weak Church-Rosser are usually also considered
on the ground terms only (ground = closed; no free variables).

I R is ground Church-Rosser, denoted grCRR ,
if every pair of finite coinitial reductions starting from any
ground t can be extended to a common reduct, that is,
∀t, t1, t2 ground. t1 ←∗ t →∗ t2 ⇒ ∃d . t1 →∗ d ←∗ t2.

I R is ground weakly Church-Rosser, denoted grWCRR , if every
pair of coinitial rewrite steps starting from a ground t can be
joined, that is,
∀t, t1, t2 ground. t1 ← t −→ t2 ⇒ ∃d . t1 →∗ d ←∗ t2.



Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how
undecidable?
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Independent (but published earlier): J.G Simonsen (2009)
New Contributions in red
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Examples

We leave encodings implicit, so we say e.g.

I t →∗ q := ∃〈s1, . . . , sn〉(t −→R s1 −→R . . . −→R sn = q)
is in Σ1

0.

I T (M, 〈~x〉, u, v) := m is a Turing Machine M, u is the
computation of M on ~x whose end result is v

is in REC. Kleene’s T -predicate.

I TOTAL(M) := ∀x∃u, vT (m, 〈x〉, u, v)
is in Π0

2.



Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form

I Qx (ϕ)⊗ Qy (ψ)⇐⇒ Qx Q y (ϕ⊗ ψ), for ⊗ ∈ {∧,∨},
Q ∈ {∀, ∃}.

I Qx (ϕ)→ Qy (ψ)⇐⇒ Qx Qy (ϕ→ ψ), for Q ∈ {∀, ∃}.
⇐⇒ Qy Qx (ϕ→ ψ).

Compression of quantifiers of the same type. Symbolically:

I ∀∀ 7→ ∀ and ∃∃ 7→ ∃
∀x∀y(P(x , y))⇐⇒ ∀z(P((z)1, (z)2))

A bounded quantifier is no quantifier:

I ∀x < n REC = REC,

I ∃x < n REC = REC
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Above the arithmetical hierarchy: analytical hierarchy

All properties definable in first order arithmetic reside in the
arithmetical hierarchy.
If we want to quantify over functions from N to N (infinite
sequences of numbers), we end up in the analytical hierarchy.
Function variables are usually α, β, etc.
Example:

∃α∀i(α(i)→R α(i + 1))
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Properties of the classes in the Analytic Hierarchy

We have quantifiers over numbers ∀, ∃ and over functions ∀1, ∃1.
A number of quantifiers of the same type can be compressed into
one.

I ∀1∀1 7→ ∀1 and ∃1∃1 7→ ∃1

∀1 subsumes ∀.

I ∀1∀ 7→ ∀1 and ∃1∃ 7→ ∃1

∀1 moves outside over ∃ and ∃1 moves outside over ∀.

I ∃∀1 7→ ∀1∃ and ∀∃1 7→ ∃1∀
I The standard form of an element of the analytic hierarchy is

Q1
1Q1

2 . . .Q
1
nQ with swopping quantifiers and Q opposite to

Q1
n .



Proving that a property is essentially Π0
2 (and not “lower”)

A total recursive function f many-one reduces problem A to
problem B if

A(x)⇐⇒ B(f (x)), for all x

So “if we want to decide A(x), we only have to decide B(x)”.

A�m B ( A is many-one reducible to B)

in case such an f exists.

Definition
B is called Π0

2-complete if B ∈ Π0
2 and forall A ∈ Π0

2, A�m B.
If B is Π0

2-complete, it can’t be lower in the hierarchy.

Theorem
BlankTape(M) is Σ0

1-complete,
TOTAL(M) is Π0

2-complete,
WF(M) is Π1

1-complete.

To prove that WCR is Σ0
1-complete:

Reduce it to BlankTape
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From Turing Machines to TRSs

Translating a Turing machine M = (Q,Σ, q0, δ) to a TRS RM

Function symbols:

a ∈ Σ 7→ unary function a(−)
q ∈ Q 7→ binary function q(−,−)

extra: constant . (representing “infinitely many” blanks)

Configurations:
Right of the reading head: a b a a 2 2 . . . translates to
a(b(a(a(.))))
Left of the reading head: . . . 2 2 a b a a translates to a(a(b(a(.))))
Tape content . . . 2 w a v2 . . . in state q becomes q(wR , a(v))
(q is reading a, the first symbol of a v)
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Encoding a Turing Machine M as a TRS RM

Translating the transition function δ:

q(x , f (y)) −→ q′(f ′(x), y) if δ(q, f ) = (q′, f ′,R)
q(g(x), f (y)) −→ q′(x , g(f ′(y))) if δ(q, f ) = (q′, f ′, L)

And special rewrite rules for dealing with the left-/rightmost
blank:

q(., f (y)) −→ q′(.,2(f ′(y))) if δ(q, f ) = (q′, f ′, L)
q(x , .) −→ q′(f ′(x), .) if δ(q,2) = (q′, f ′,R)

q(g(x), .) −→ q′(x , g(f ′(.))) if δ(q,2) = (q′, f ′, L)
q(., .) −→ q′(.,2(f ′(.))) if δ(q,2) = (q′, f ′, L)
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Σ0
1-completeness of WCR

WCR is in Σ0
1: By the Critical Pairs Lemma, WCRR holds if and

only if all critical pairs of R are convergent.
A Turing machine can compute on the input of a TRS R all
(finitely many) critical pairs, and on the input of a TRS R and a
term t all (finitely many) one step reducts of t.

So it suffices to show that the following is in Σ0
1:

Decide on the input of a TRS S, n ∈ N and terms
t1, s1, . . . , tn, sn whether for every i = 1, . . . , n the terms
ti and si have a common reduct.

This property can easily be described by a Σ0
1 formula.
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Σ0
1-completeness of WCR

WCR is Σ0
1-hard: We define TRS S to consist of the rules of RM

extended by the following:

run→ T run→ q0(., .)

q(x , f (y))→ T for every f ∈ Γ such that δ(q, f ) is undefined .

The only critical pair is T← run→ q0(., .). We have:

q0(., .)→∗S T if and only if M halts on the blank tape.

So:
WCR(S) if and only if M halts on the blank tape.



Π0
2-completeness of CR

CR is in Π0
2:

CRR ⇐⇒ ∀t ∈ N. ∀r1, r2 ∈ N. ∃r ′1, r
′
2 ∈ N.

(((t is a term) and (r1, r2 are reductions)

and t ≡ first(r1) ≡ first(r2))

⇒ ((r ′1 and r ′2 are reductions)

and (last(r1) ≡ first(r ′1)) and (last(r2) ≡ first(r ′2))

and (last(r ′1) ≡ last(r ′2))))

.



Π0
2-hardness of CR

We change the TRS RM in such a way that

M halts on all inputs ⇐⇒ RM is CR

Idea: use an extension of RM with the following rules:

run(x , y)→ T

run(x , y)→ q0(x , y)

q(x , f (y))→ T for every f ∈ Γ with δ(q, f ) undefined

Then it seems that

CR(R+
M)⇐⇒ the Turing machine M halts on all configurations.

However, we only have =⇒. With ⇐= a problem arises if s and t
contain variables.
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Π0
2-hardness of CR

For a Turing machines M we define the TRS SM as RM extended
with

run(x , .)→ T (1)

run(., y)→ q0(., y) (2)

q(x , f (y))→ T if δ(q, f ) undefined (3)

run(x , S(y))→ run(S(x), y) (4)

run(S(x), y)→ run(x ,S(y)) . (5)

Then the only cause for non-confluence can be (t1, t2 are ground
terms)

q0(., s1)←(2) run(s1, .)←∗(4) run(t1, t2)→∗(5) run(s1, .)→(1) T

Thus we can prove

CR(SM)⇐⇒ the Turing machine M halts on all inputs.
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Dependency Pair problems for TRSs

I For relations →R ,→S we write →R /→S for →∗S · →R .

I →R,ε denotes R-reduction,but only at the top of a term.

I Write SN(Rtop/S) instead of SN(→R,ε/→S).

SN(Rtop/S) is the finiteness of the dependency pair problem for
{R, S}.
So SN(Rtop/S) means that every infinite →R,ε ∪ →S reduction,
contains only finitely many →R,ε steps.
Motivation: There a simple syntactic construction DP such that
for any TRS S we have

SN(DP(S)top/S)⇐⇒ SN(S).
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Dependency pair problems

The dependency pair problem {R,S} is finite if SN(Rtop/S).

SN(Rtop/S) := →∗S · →R,ε is SN

This seems a “standard” SN-for-TRS problem, so should be Π0
2 . . .

But: →∗S · →R,ε is not finitely branching.

Example
f (x) −→S g(f (x))
g(x) −→R a
Finite DP problem, but →∗S · →R,ε is not finitely branching:
f (x)→∗S gn((f (x))→R,ε a.
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SN for non-finitely branching systems (ARSs)

SNR(a) := ∀α : N→N (α(0) = a =⇒ ∃i ¬(α(i) −→R α(i + 1)))

“There is no infinite reduction starting from a”.
This is a Π1

1-statement, so finiteness of DP problems is in the class
Π1

1.

Is it Π1
1-complete?

Yes: we prove
WF(>M)⇐⇒ SN(SM

top/SM)

for a suitable SM constructed from M. This reduces WF(>M) to
SN(SM

top/SM), thus showing Π1
1-hardness of dependency pair

problems.
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DP is Π1
1-complete

We now reduce well-foundedness of >M to SN(SM
top/SM) and thus

obtain that DP is Π1
1-complete.

IDEA: We define a TRS SM such that
SM has an infinite reduction iff ¬WF(>M),
and this reduction “keeps coming back to the top level”.

We want to mimick a computation that
1. arbitrarily picks a number n1

2. arbitrarily picks a number n2

3. checks if n1 >M n2, if “no” stops, if “yes” replaces n1 by n2 and
continues with (2)

Notation: we write n to denote Sn(0(.))
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DP is Π1
1-complete

First we add

q(x , 0(y)) −→ T if δ(q, 0) = undefined

so that we have
n >M p iff q0(n, p)→∗R T

Then (but this is too simple . . . ): to pick arbitrary numbers we
introduce the following TRS

pick −→ S(pick)

pick −→ 0(.)

and we add

try(T, x , y) −→ try(q(x , y), y , pick)
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DP is Π1
1-complete

The intention is to have

try(T, pick, pick) →∗

try(T, n1, n2) →∗ try(q0(n1, n2), n2, pick) −→
try(T, n2, n3) →∗ try(q0(n2, n3), n3, pick) −→ . . .

only if there is an infinite descending sequence n1 >M n2 >M n3 . . .

However we also have:

try(T, pick, pick) →∗

try(q0(pick, pick), pick, pick) →∗ try(q0(n1, n2), pick, pick)→∗

try(T, pick, pick) →∗ . . .

if n1 >M n2

Problem: try(T, u, s) should only reduce if u and s represent a
number.
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DP is Π1
1-complete

To pick arbitrary numbers we introduce the following TRS

pick −→ c(pick)

pick −→ ok(0(.))

c(ok(x)) −→ ok(S(x))

Then pick→∗ cn(pick) −→ cn(ok(0(.))) −→ ok(Sn(0(.))) ≡ n

Lemma pick→∗ ok(t)⇐⇒ ∃n(t = Sn(0(.)))
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DP is Π1
1-complete

Finally we add the following rewrite rule

try(T, ok(x), ok(y)) −→ try(q0(x , y), ok(y), pick)

Then: the term try(T, pick, pick) is SN(Rtop/S) iff >M is
well-founded.
Proof: The only infinite reduction that is possible is of the form

try(T, pick, pick) →∗

try(T, ok(n1), ok(n2)) →∗ try(q0(n1, n2), ok(n2), pick) −→
try(T, ok(n2), ok(n3)) →∗ try(q0(n2, n3), ok(n3), pick) −→

. . .

if n1 >M n2 >M n3 . . .



Remarks / Conclusions / Future work

Remarks

I In DPmin, we restrict →∗S · →R,ε to terms that are SN(S).
DPmin is Π0

2-complete (see paper).

I SNω(R) is Π1
1-complete (see paper).

Future work:

I Characterize “all” properties of TRSs, distinguishing between
“ground terms” and “all terms”: UN, . . . .

I Characterize WNω(R).
WNω(R) := ∀t∃α(. . .)⇐⇒ ∃α∀t(. . .) ∈ Π1

1.

I Extend to infinite terms. SNω
∞(R) := ∀β∀α(. . .) ∈ Π1

1.
WNω

∞(R) := ∀β∃α(. . .) ∈ Σ1
2.

I Make the generalizations to SN∞, WN∞ precise, for reduction
of all countable ordinal length.

I Study the proof-theoretic complexity of productivity


