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Term Rewriting Systems (TRS): definitions and properties

» A Signature ¥ is a finite set of symbols f each having a fixed
arity.
» The set Ter(X,X) of terms is the smallest set satisfying:
» X C Ter(%, X), and
> f(t1,...,t,) € Ter(X, X) if f € ¥ with arity n and
Vit € Ter(X, X).
> A term rewriting system (TRS) over X, X is a finite set R of
pairs (¢, r) € Ter(X,X), called rewrite rules usually written as
¢ — r for which
» the left-hand side £ is not a variable (¢ £ X)

» all variables in the right-hand side r occur in ¢
(Var(r) C Var(¥)).



Term Rewriting Systems (TRS): definitions and properties

For terms s, t € Ter(X, X') we write s —g t if there exists a rule
¢ — r € R, a substitution o and a context ('term with a hole’) C
such that s = C[lo] and t = C|[ro]

— R is the rewrite relation induced by R,

g denotes the symmetric, reflexive closure of —g.

—>JR§ denotes the transitive closure of —g.
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—» denotes the reflexive, transitive closure of —g.



Basic TRS properties

» R is strongly normalizing (or terminating) on t, denoted
SNR(t),
if every rewrite sequence starting from t is finite.

» R is confluent (or Church-Rosser) on t, denoted CRg(t),
if every pair of finite coinitial reductions starting from t can
be extended to a common reduct, that is,

Vi, . t1 <"t =" tp = 3Ad. t; > d <" to.

» R is weakly confluent (or weakly Church-Rosser) on t,
denoted WCRRg(t), if every pair of coinitial rewrite steps
starting from t can be joined, that is,

Vi, . t1 «— t — th = 3d. t; > d «* .

R is strongly normalizing (SNg), confluent (CRg) or weakly
confluent (WCRR) if the respective property holds on all terms
t € Ter(X, X).



TRS properties

Church-Rosser and Weak Church-Rosser are usually also considered
on the ground terms only (ground = closed; no free variables).
» R is ground Church-Rosser, denoted grCRpg,
if every pair of finite coinitial reductions starting from any
ground t can be extended to a common reduct, that is,
Vt,t1,t ground. t; «<* t =% th = 3dd. t; =% d «* .
» R is ground weakly Church-Rosser, denoted grWCRp, if every
pair of coinitial rewrite steps starting from a ground t can be

joined, that is,
Vt,t1,tr ground. t; «— t — tp = 3d. t; —* d «* .



Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how
undecidable?



Undecidability of TRS properties

All interesting properties about TRSs are undecidable, but how

undecidable?

SN | WN | CR | grCR | WCR | grWCR | DP | DP™i"
uniform Hg Hg 113 Hg 9 Hg Ik 119
single term | X9 | X9 [ I3 | M3 | X9 2 o -

Existing work: Huet and Lankford (1978)
Independent (but published earlier): J.G Simonsen (2009)

New Contributions in red
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The Arithmetic Hierarchy

/\/\

REC = A9

\/\/

REC = class of decidable problems (over the natural numbers),
79 .= IREC, N? := VREC, ¥9 := IYREC, MY := VIREC, etc.
AO — zO ﬂ |—|0

{A\Ael‘lo} Nl ={A|Aecxl}



Examples

We leave encodings implicit, so we say e.g.
>t —*g:=3(s1,...,5n)(t —RSI—R..-. —RSh=24q)
is in Z(l).
> T(M,(X),u,v) = mis a Turing Machine M, u is the
computation of M on X whose end result is v
is in REC. Kleene's T-predicate.

» TOTAL(M) := Vx3u, vT(m, (x), u,v)
is in 9.



Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form

> Qx(p) ® Qy (¥) <= QxQy (p ® ¥), for ® € {A,V},
Q e {v,3}.
> Qx(p) = Qy (¥) = QxQy (¢ — ), for Q € {V,3}.
— Qy Qx (¢ — v).



Properties of the classes in the Arithmetic Hierarchy

Any formula is equivalent to a formula in prenex normal form
> Qx(p) ® Qy (¥) <= QxQy (p ® ¥), for ® € {A,V},
Qe {v,3}.
> Qx(p) = Qy (¥) = QxQy (¢ — ), for Q € {V,3}.
= Qv Qx(p — ).
Compression of quantifiers of the same type. Symbolically:
» VWi Vand 33— 3
VxVy(P(x,y)) <= Vz(P((2)1,(2)2))
A bounded quantifier is no quantifier:
» Vx < nREC = REC,
» dx < nREC = REC



The Arithmetic Hierarchy

NN

SN

Theorem ZO - Al

0
I+1CZH+1 and M9 CA,+1C|'|

n+1



The Arithmetic Hierarchy

NN

SN

Theorem ZO - A?_H C Zn+1 and H - A?+1 C I'I?,Jrl
BIankTape(l\/I) =Ju,v T(M (>, u,v) € 29\ MY

TOTAL(M) := Vx3u, v T(M, (x),u,v) € HS \ 28



Above the arithmetical hierarchy: analytical hierarchy

All properties definable in first order arithmetic reside in the
arithmetical hierarchy.
If we want to quantify over functions from N to N (infinite
sequences of numbers), we end up in the analytical hierarchy.
Function variables are usually «, £, etc.
Example:

davVi(a(i) —r (i + 1))



The Analytic Hierarchy

/\/\
\/\/

¥} := JaVxREC, N} := Va3IxREC, ¥} := HﬁVoﬂxREC, etc.
Al =3lNnk.



The Analytic Hierarchy

/\/\
\/\/

Z% = JaVxREC, I_I1 = VadxREC, Z2 = HﬁVOBXREC, etc.
AL:=TiOML,
21 =3}, ML, =385}
{A|A€ﬂ b, Nl = {A|A€Z}
Theorem SICAL,CYr and T C AL, C I

i+1 = i+1 = n+1
WF(M) := “M defines a weII founded relation >" € N1\ £}



Properties of the classes in the Analytic Hierarchy

We have quantifiers over numbers V, 3 and over functions v, 3!,
A number of quantifiers of the same type can be compressed into
one.

» ViVl vl and 3131 - 3t
V! subsumes V.
» V1V i— V! and 313 — 31
V! moves outside over 3 and 3! moves outside over V.
» vt — V13 and V3 — Flv
» The standard form of an element of the analytic hierarchy is

QL Q... QLQ with swopping quantifiers and Q opposite to
QL



Proving that a property is essentially M (and not “lower")

A total recursive function f many-one reduces problem A to
problem B if
A(x) <= B(f(x)), for all x

So "if we want to decide A(x), we only have to decide B(x)

A <m B ( Ais many-one reducible to B)

in case such an f exists.
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Proving that a property is essentially M (and not “lower")
A total recursive function f many-one reduces problem A to
problem B if

A(x) <= B(f(x)), for all x
So "if we want to decide A(x), we only have to decide B(x)

A <m B ( Ais many-one reducible to B)

in case such an f exists.

Definition
B is called M3-complete if B € MY and forall A€ N3, A<, B.
If Bis I'Ig—complete, it can’t be lower in the hierarchy.

Theorem

BlankTape(M) is ©9-complete,
TOTAL(M) is M9-complete,
WF(M) is Mi-complete.

To prove that WCR is £9-complete:
Reduce it to BlankTape



From Turing Machines to TRSs

Translating a Turing machine M = (Q, %, go,0) to a TRS Ry
Function symbols:

acy — unary function a(—)
geR +— binary function g(—, —)
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From Turing Machines to TRSs

Translating a Turing machine M = (Q, %, go,0) to a TRS Ry
Function symbols:

acy — unary function a(—)
geq — binary function g(—, —)
extra: constant > (representing “infinitely many” blanks)

Configurations:

Right of the reading head: abaaO O ... translates to
a(b(a(a(>))))

Left of the reading head: ... OO abaa translates to a(a(b(a(>))))
Tape content ... OwavO ... in state g becomes q(wR, a(v))

(g is reading a, the first symbol of av)



Encoding a Turing Machine M as a TRS Ry,

Translating the transition function 4:

qa(x, f(y)) — q'(f'(x),y if d(q,f)

) (¢, R)
a(g(x),f(y)) — d'(x&(f'(y))) if &(q,f)

(¢',f, L)



Encoding a Turing Machine M as a TRS Ry,

Translating the transition function 4:

aix, f(y)) — d(f'(x),y) if d(q,f) (d,f,R)
q(g(x),f(y)) — d'(x.g(f'(y))) if d(q,f) (q',f', L)

And special rewrite rules for dealing with the left-/rightmost
blank:

q>,f(y)) — q(,0(f(y) if &q,f) = (q.f,L)
a(x,») — 4q'(f'(x)» if 6(q,0) = (q.f,R)
a(g(x),») — d'(xg(f'(*))) if 4(q,0) = (d',f,L)
q>,>) — 4'(>,0(f() if 4(q,0) = (¢.f,L)



> %-completeness of WCR

WCR is in Z(l): By the Critical Pairs Lemma, WCRg holds if and
only if all critical pairs of R are convergent.

A Turing machine can compute on the input of a TRS R all
(finitely many) critical pairs, and on the input of a TRS R and a
term t all (finitely many) one step reducts of t.



> %-completeness of WCR

WCR is in Z(l): By the Critical Pairs Lemma, WCRg holds if and
only if all critical pairs of R are convergent.

A Turing machine can compute on the input of a TRS R all
(finitely many) critical pairs, and on the input of a TRS R and a
term t all (finitely many) one step reducts of t.

So it suffices to show that the following is in E(l):

Decide on the input of a TRS S, n € N and terms
t1,S1,...,tn, Sp whether for every i =1,...,n the terms
t; and s; have a common reduct.

This property can easily be described by a 2(1) formula.



> %-completeness of WCR

WCR is ¥9-hard: We define TRS S to consist of the rules of Ry
extended by the following:

run — T run — qo(>,>)
q(x,f(y)) = T for every f €I such that d(q,f) is undefined .

The only critical pairis T < run — qo(>,>). We have:
qo(>,>) —% T if and only if M halts on the blank tape.

So:
WCR(S) if and only if M halts on the blank tape.



M3-completeness of CR

CRis in MY:

CRr < VteN.Vrn,neN. 3, eN.
(((t is a term) and (ry, rp are reductions)
and t = first(r) = first(r2))
= ((r{ and ry are reductions)
and (last(r) = first(r})) and (last(ry) = first(r})) .
and (last(r]) = last(r}))))



M3-hardness of CR

We change the TRS Ry, in such a way that

M halts on all inputs < Ry, is CR
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CR(Ry,) <= the Turing machine M halts on all configurations.



M3-hardness of CR

We change the TRS Ry, in such a way that
M halts on all inputs < Ry, is CR
Idea: use an extension of Ry with the following rules:

run(x,y) — T

run(Xay) - qO(Xa}/)
q(x,f(y) —T for every f € I with (g, f) undefined

Then it seems that
CR(Ry,) <= the Turing machine M halts on all configurations.

However, we only have =>. With <= a problem arises if s and t
contain variables.



M3-hardness of CR

For a Turing machines M we define the TRS Sy as Ry extended
with

run(x,>) — T (1)
run(>, y) — qo(>, y) (2)
q(x,f(y)) =T if (g, f) undefined  (3)
run(x, S(y)) — run(S(x), y) (4)
run(S(x), y) — run(x,S(y)) . (5)



M3-hardness of CR

For a Turing machines M we define the TRS Sy as Ry extended

with

— run(S(x), y)

)
)
)—T if 6(q, f) undefined
)
) — run(x,S(y)) .

(1
(2
(3
(
(

N
N’ N N N N

5

Then the only cause for non-confluence can be (ti, t, are ground

terms)

qo(>, 51) —(2) run(si,>) (g run(t, t2) =z run(si,>) —a) T

Thus we can prove

CR(Sp) < the Turing machine M halts on all inputs.



Dependency Pair problems for TRSs

» For relations —g, —s we write =g / —s for =5 - —g.
» —pg . denotes R-reduction,but only at the top of a term.
> Write SN(Rop/S) instead of SN(—g./—5).
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So SN(Riop/S) means that every infinite —g . U —s reduction,
contains only finitely many —g . steps.



Dependency Pair problems for TRSs

» For relations —g, —s we write =g / —s for =5 - —g.
» —pg . denotes R-reduction,but only at the top of a term.
> Write SN(Rop/S) instead of SN(—g./—5).

SN(Rtop/S) is the finiteness of the dependency pair problem for
{R,S}.

So SN(Riop/S) means that every infinite —g . U —s reduction,
contains only finitely many —g . steps.

Motivation: There a simple syntactic construction DP such that
for any TRS S we have

SN(DP(S)top/S) <= SN(S).



Dependency pair problems

The dependency pair problem {R, S} is finite if SN(Riop/S).

SN(Riop/S) = —%5 - —Rr. is SN

This seems a “standard” SN-for-TRS problem, so should be M3 ...



Dependency pair problems

The dependency pair problem {R, S} is finite if SN(Riop/S).

SN(Riop/S) = —%5 - —Rr. is SN

This seems a “standard” SN-for-TRS problem, so should be M3 ...

But: —% - — g is not finitely branching.
S ; y g

Example

f(x) —s g(f(x))

g(X) —R a

Finite DP problem, but —5 - —g is not finitely branching:
f(x) =5 g"((f(x)) —re a



SN for non-finitely branching systems (ARSs)

SNg(a) :=Va : N-=N(«(0) = a = FJi =(a(i) —r a(i +1)))

“There is no infinite reduction starting from a".
This is a Mi-statement, so finiteness of DP problems is in the class
Mi.

1



SN for non-finitely branching systems (ARSs)

SNg(a) :=Va : N-=N(«(0) = a = FJi =(a(i) —r a(i +1)))

“There is no infinite reduction starting from a".
This is a Mi-statement, so finiteness of DP problems is in the class
ne.
Is it M}-complete?
Yes: we prove
WF(>p) <= SN(S,/SM)

for a suitable Sy constructed from M. This reduces WF(>p) to
SN(S{¢,/SM), thus showing M{-hardness of dependency pair
problems.



DP is Mi-complete

We now reduce well-foundedness of > to SN(St’Z’p/SM) and thus
obtain that DP is Mi-complete.
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DP is Mi-complete

We now reduce well-foundedness of > to SN(St’g’p/SM) and thus
obtain that DP is Mi-complete.
IDEA: We define a TRS SM such that

SM has an infinite reduction iff “WF(>,),

and this reduction “keeps coming back to the top level”.
We want to mimick a computation that
1. arbitrarily picks a number n;
2. arbitrarily picks a number n;
3. checks if n; >y n, if “no” stops, if “yes” replaces ni by n, and
continues with (2)

Notation: we write 11 to denote 5"(0(>))



DP is Mi-complete
First we add

q(x,0(y)) — T if d(q,0) = undefined

so that we have
n>py piff o(7,p) = T



DP is Mi-complete
First we add

q(x,0(y)) — T if d(q,0) = undefined

so that we have
n>um piff go(n,p) =r T

Then (but this is too simple ...): to pick arbitrary numbers we
introduce the following TRS

pick — S(pick)
pick — 0(>)

and we add

try(T, x,y) — try(q(x, y), y, pick)



DP is Mi-complete
The intention is to have

try(T, pick, pick) —*
try(T, 1, m2) —*  try(qo(n1, n2), M2, pick) —
¥

try(T, m2, 7i3) try(qo(n2, n3), 13, pick) — ...

only if there is an infinite descending sequence ny >p no >p N3 ...



DP is Mi-complete
The intention is to have
try(T, pick, pick) —*
try(T, A1, m2) —*  try(qo(f1, M2), Az, pick) —
try(T,ﬁ2,ﬁ3) —* try(qo(ﬁ27ﬁ3)7ﬁ3, piCk) —_— ...

only if there is an infinite descending sequence ny >p no >p N3 ...
However we also have:

try(T, pick, pick) —*

try(qo(pick, pick), pick, pick) —* try(qo(71, Mi2), pick, pick) —*
try(T, pick, pick) —*

if ng >p no



DP is Mi-complete
The intention is to have

try(T, pick, pick) —*
try(T, 1, m2) —*  try(qo(n1, n2), M2, pick) —
try(T,ﬁ2,ﬁ3) —* try(qo(ﬁz, ﬁ3)7ﬁ3, piCk) —_— ...

only if there is an infinite descending sequence ny >p no >p N3 ...
However we also have:

try(T, pick, pick) —*
try(qo(pick, pick), pick, pick) —* try(qo(71, Mi2), pick, pick) —*
try(T, pick, pick) —*

if ng >p no
Problem: try(T, u,s) should only reduce if u and s represent a
number.



DP is Mi-complete

To pick arbitrary numbers we introduce the following TRS

pick — c¢(pick)
pick — ok(0(r))
c(ok(x)) — ok(S(x))

Then pick —* ¢"(pick) — ¢"(ok(0(>))) — ok(S"(0(>))) =7n



DP is Mi-complete

To pick arbitrary numbers we introduce the following TRS
pick — c¢(pick)
pick — ok(0(>))
c(ok(x)) — ok(5(x))

Then pick —* ¢"(pick) — ¢"(ok(0(>))) — ok(S"(0(>)))
Lemma pick —* ok(t) <= dn(t = S"(0(>)))

Il
]



DP is Mi-complete

Finally we add the following rewrite rule

try(T, ok(x),ok(y)) — try(qo(x; y), ok(y), pick)

Then: the term try(T, pick, pick) is SN(Riop/S) iff >p is
well-founded.
Proof: The only infinite reduction that is possible is of the form

try(T, pick, pick) —*
try(T,ok(n1),0k(m2)) —* try(qo(A1,n2), ok(mz), pick) —
try(T,ok(72),0k(73)) —* try(qo(72, Mi3), ok(73), pick) —

ifng >y n>yns...



Remarks / Conclusions / Future work

Remarks

>

>

In DI_:’mi”, we restrict —% - —pg . to terms that are SN(S).
DP™" is M3-complete (see paper).
SN¥(R) is Mi-complete (see paper).

Future work:

>

Characterize “all” properties of TRSs, distinguishing between
“ground terms” and “all terms”: UN, ....

Characterize WN¥(R).

WN¥(R) := VtJa(...) <= Javt(...) € Ni.

Extend to infinite terms. SN (R) := VgVa(...) € N}
WN<(R) :=V33a(...) € Z1.

Make the generalizations to SN, WN® precise, for reduction
of all countable ordinal length.

Study the proof-theoretic complexity of productivity



