
Verification of Hybrid Systems in Coq

H. Geuvers, A. Koprowski, D. Synek, E. van der Weegen
BRICKS AFM4

Advancing the Real use of Proof Assistants

Foundations group, Intelligent Systems, ICIS
Radboud University Nijmegen

The Netherlands

Dutch Model Checking Day
April 2, 2009,

University of Twente

Overview

I What is Coq?

I What is a Hybrid System?

I Example: Thermostat

I Semantics: Transitions and traces

I Proving properties of Hybrid Systems by the Abstraction
method

I What we have done in Coq and what we plan to do.

What is Coq?

Coq is a proof assistant based on type theory

I Definitions, Lemmas, Proofs

I A proof p of a formula A is a term p : A.
proof-checking = type checking

I Small kernel (the type checker) + Proof engine on top (to
interactively create terms)

I One can define (inductive and abstract) data types
Define executable functions over these in Coq

I Program extraction to OCaml / Haskell
p : ∀x : A.∃y : B.R(x , y) extract f : A→ B satisfying the
specification.

What is a Hybrid System?

Alur, Henziger et al.: Hybrid Automaton, Hybrid System
Locations, Invariants,
Jumps, Guards, Reset functions,
Continuous behaviour (Flow),
Thermostat example

What is a Linear Hybrid System?

〈L,X ,X0, I,F , T 〉
I L finite set of locations

I X ⊂ Rn continuous state space

I X := L×X state space, X0 ⊂ X , initial states

I I assigns to l ∈ L a set of linear predicates I(l) ⊂ X , the
invariant at l .

I F assigns to l ∈ L a continuous vector field
F(l) : X × R→ Rn. At location l , ~̇x = F(l)(~x , 1).

I T assigns to a pair of locations 〈l , l ′〉 a pair 〈g , r〉, where g is
a predicate, the guard condition, and r is a linear map, the
reset function.

Non-determinism

Thermostat example

Invariant T ≤ 10 ∧ t ≤ 3 says when it is allowed to be in Heat
Guard T ≥ 9 says when it is allowed to move to Cool

Hybrid Systems as Specifications

Hybrid System = Specification
to be met by
the controller.

Spec usually allows a lot of freedom (non-determinism) for the
controller.

Goal = Prove that a controller that satisfies the spec,
keeps the system out of bad states

Reachability Problem

Hybrid Systems as Specifications

Hybrid System = Specification
to be met by
the controller.

Spec usually allows a lot of freedom (non-determinism) for the
controller.

Goal = Prove that a controller that satisfies the spec,
keeps the system out of bad states

Reachability Problem

Why do this in Coq?

I Verification of Hybrid systems involves discretization, floating
point arithmetic approximations, . . . , is this all correct?

I We have a library of (constructive) exact real arithmetic in
Coq: CoRN,

I real number functions as computable functions (exp, log, sin,
cos, . . .)

I arbitrarily close approximations of real numbers (real number
expressions)

I numerical approximations to solutions of differential equations

Can CoRN be used for these type of applications?

Why do this in Coq?

I Verification of Hybrid systems involves discretization, floating
point arithmetic approximations, . . . , is this all correct?

I We have a library of (constructive) exact real arithmetic in
Coq: CoRN,

I real number functions as computable functions (exp, log, sin,
cos, . . .)

I arbitrarily close approximations of real numbers (real number
expressions)

I numerical approximations to solutions of differential equations

Can CoRN be used for these type of applications?

Semantics of a Hybrid System

There are two types of transitions

Continuous transition
(l ,~x)→C (l , ~y)

One location, elapse of time t, continuous variables progress
according to the flow F(l)

Discrete transition
(l ,~x)→D(l ′, ~y)

From location l to l ′, no elapse of time, guard conditions,
continuous variables ~x reset to ~y := r~x .

Semantics of a Hybrid System

A trace is a sequence of continuous and discrete steps:

(l1,~x1)→C (l2,~x2)→D (l3,~x3)→C (l4,~x4)→C (l5,~x5) . . .

A Hybrid System specifies a collection of traces. We want to prove
properties about these.
Thermostat example: Prove that T ≥ 4.5 always in all possible
traces.
(= Correctness proof of the Thermostat controller)

Semantics of a Hybrid System

A trace is a sequence of continuous and discrete steps:

(l1,~x1)→C (l2,~x2)→D (l3,~x3)→C (l4,~x4)→C (l5,~x5) . . .

A Hybrid System specifies a collection of traces. We want to prove
properties about these.
Thermostat example: Prove that T ≥ 4.5 always in all possible
traces.
(= Correctness proof of the Thermostat controller)

Semantics of a Hybrid System

Solving differential equations??

Assume for every location l a solution Φ(~x0, t) to the differential

equation ~̇x(t) = F(l)(~x(t), 1), with begin value ~x(0) = ~x0.
So Φ is a flow function:

Φ(~x , 0) = ~x

Φ(~x , t + q) = Φ(Φ(~x , t)), q)

For the Thermostat:
Cool: Φ((x , y), t) = (x e−t , y + t)

Check: Φ((x , y), t) = (x e−t/2, y + t)
Heat: Φ((x , y), t) = (x + 2t, y + t)

Semantics of a Hybrid System

Assume for every location l a solution Φ(~x0, t) to the differential

equation ~̇x(t) = F(l)(~x(t), 1), with begin value ~x(0) = ~x0.
So Φ is a flow function:

Φ(~x , 0) = ~x

Φ(~x , t + q) = Φ(Φ(~x , t)), q)

For the Thermostat:
Cool: Φ((x , y), t) = (x e−t , y + t)

Check: Φ((x , y), t) = (x e−t/2, y + t)
Heat: Φ((x , y), t) = (x + 2t, y + t)

Semantics of a Hybrid System

Assume for every location l a solution Φ(~x0, t) to the differential

equation ~̇x(t) = F(l)(~x(t), 1), with begin value ~x(0) = ~x0.
So Φ is a flow function:

Φ(~x , 0) = ~x

Φ(~x , t + q) = Φ(Φ(~x , t)), q)

For the Thermostat:
Cool: Φ((x , y), t) = (x e−t , y + t)

Check: Φ((x , y), t) = (x e−t/2, y + t)
Heat: Φ((x , y), t) = (x + 2t, y + t)

Characterization of continuous and discrete steps

(l ,~x)→C (l , ~y) := ∃t ≥ 0(Φl(~x , t) = ~y ∧ ∀s ∈ [0, t] : Il(Φl(~x , s)))

(l ,~x)→D(l ′, ~y) := T 〈l , l ′〉 = 〈g , r〉 ∧ g(l ,~x) ∧ ~y = r(~x) ∧ I(l ′)(~y)

Trace: Combination of Continuous steps and Discrete steps.
Goal: Verify a property for all traces.

Characterization of continuous and discrete steps

(l ,~x)→C (l , ~y) := ∃t ≥ 0(Φl(~x , t) = ~y ∧ ∀s ∈ [0, t] : Il(Φl(~x , s)))

(l ,~x)→D(l ′, ~y) := T 〈l , l ′〉 = 〈g , r〉 ∧ g(l ,~x) ∧ ~y = r(~x) ∧ I(l ′)(~y)

Trace: Combination of Continuous steps and Discrete steps.
Goal: Verify a property for all traces.

Proving Correctness via the Abstraction method

I Hybrid Transition System: (State,→C ,→D ,State0)

I Abstract System (Finite Automaton): (AState,→A, a0)

I Abstraction function Abs : State→ AState with
Abs(t0) = a0 for t0 ∈ State0.

I Lemma Correctness:

t →DC t ′ in HS
⇓

Abs(t)→A Abs(t ′) in AHS

So: Reachability in HS ⇒ Reachability in AHS

So: Safety of AHS ⇒ Safety of HS
[Checked by Model Checker]

Proving Correctness via the Abstraction method

I Lemma Correctness:

t →DC t ′ in HS
⇓

Abs(t)→A Abs(t ′) in AHS

So: Reachability in HS ⇒ Reachability in AHS

So: Safety of AHS ⇒ Safety of HS
[Checked by Model Checker]

Abstraction via predicates: Thermostat example

The basic predicates are:
T ≥ 4.5,T ≥ 5,T ≥ 6,T ≤ 9,T ≤ 10
c ≥ 0.5, c ≤ 1, c ≥ 2, c ≤ 3.
This gives rise to the following abstract state space
(for location Heat).
Some transitions are indicated.

Beware of transitivity

Which abstract traces do we consider?

If we just take the transitive closure of Abs(s0)→ Abs(s1) we get
far too many traces. (Still correct, but you can’t prove anything!)
Solution: Restrict the Abstract traces to

Abs(s0)→C Abs(s1)→D Abs(s2)→C Abs(s3) . . .

Beware of transitivity

Which abstract traces do we consider?

If we just take the transitive closure of Abs(s0)→ Abs(s1) we get
far too many traces. (Still correct, but you can’t prove anything!)

Solution: Restrict the Abstract traces to

Abs(s0)→C Abs(s1)→D Abs(s2)→C Abs(s3) . . .

Beware of transitivity

Which abstract traces do we consider?

If we just take the transitive closure of Abs(s0)→ Abs(s1) we get
far too many traces. (Still correct, but you can’t prove anything!)
Solution: Restrict the Abstract traces to

Abs(s0)→C Abs(s1)→D Abs(s2)→C Abs(s3) . . .

Moving from the HS to the AHS

A→ B in AHS if ∃(x , y) ∈ A∃t ≥ 0(Φ(x , y , t) ∈ B)

This is complicated, in general undecidable ...

But in concrete situations, we have:

I “independency of variables”:

Φ(x , y , t) = (φ1(x , t), φ2(y , t))

I monotonicity of φ1(x ,−) and φ2(y ,−).

I concrete inverses to φ1(x ,−) and φ2(y ,−).

Moving from the HS to the AHS

A→ B in AHS if ∃(x , y) ∈ A∃t ≥ 0(Φ(x , y , t) ∈ B)

This is complicated, in general undecidable ...
But in concrete situations, we have:

I “independency of variables”:

Φ(x , y , t) = (φ1(x , t), φ2(y , t))

I monotonicity of φ1(x ,−) and φ2(y ,−).

I concrete inverses to φ1(x ,−) and φ2(y ,−).

Moving from the HS to the AHS

A→ B in AHS if ∃(x , y) ∈ A∃t ≥ 0((φ1(x , t), φ2(y , t)) ∈ B)

∃(x , y) ∈ A∃t ≥ 0((φ1(x , t), φ2(y , t)) ∈ B)

if and only if

φ−1
1 (c1, b1) < φ−1

2 (a2, d2) ∧ φ−1
1 (d1, a1) > φ−1

2 (b2, c2)

where φ−1
i is the inverse of φi :

φi (x , φ
−1
i (x , z)) = z

φ−1
i (x , φi (x , t)) = t

Moving from the HS to the AHS

For the Check location:
φ−1

1 (x , z) = log x2 − log z2 and φ−1
2 (y , z) = z − y .

So:
∃(x , y) ∈ A∃t ≥ 0((φ1(x , t), φ2(y , t)) ∈ B)

if and only if

log c2
1 − log b2

1 < d2 − a2 ∧ log d2
1 − log a2

1 > c2 − b2

How do we solve this?

Moving from the HS to the AHS

For the Check location:
φ−1

1 (x , z) = log x2 − log z2 and φ−1
2 (y , z) = z − y .

So:
∃(x , y) ∈ A∃t ≥ 0((φ1(x , t), φ2(y , t)) ∈ B)

if and only if

log c2
1 − log b2

1 < d2 − a2 ∧ log d2
1 − log a2

1 > c2 − b2

How do we solve this?

Solving inequalities in Coq

For concrete values a, b, c, d ∈ R,

log c2 − log b2 < d − a

can be “decided” by

I fixing an ε,

I approximate log c2 − log b2 and d − a “upto ε”, obtaining
rational intervals I1 and I2,

I If I1 > I2, return ‘no’, otherwise, return ‘yes’

So, if we are undecisive, we do put an arrow between the abstract
states . . . an abstraction should be an over-approximation.

Solving inequalities in Coq

For concrete values a, b, c, d ∈ R,

log c2 − log b2 < d − a

can be “decided” by

I fixing an ε,

I approximate log c2 − log b2 and d − a “upto ε”, obtaining
rational intervals I1 and I2,

I If I1 > I2, return ‘no’, otherwise, return ‘yes’

So, if we are undecisive, we do put an arrow between the abstract
states . . . an abstraction should be an over-approximation.

Solving inequalities in Coq

For concrete values a, b, c, d ∈ R,

log c2 − log b2 < d − a

can be “decided” by

I fixing an ε,

I approximate log c2 − log b2 and d − a “upto ε”, obtaining
rational intervals I1 and I2,

I If I1 > I2, return ‘no’, otherwise, return ‘yes’

So, if we are undecisive, we do put an arrow between the abstract
states . . . an abstraction should be an over-approximation.

The rotator example

The rotator example: State space

Blue: next step is a “discrete” step
Red: next step is a “continuous” step

The rotator example: All edges

The rotator example: Reachable states and edges

The middle state is unreachable.

How does this actually work in Coq?

1. Specify a concrete Hybrid System,

2. Specify the Abstract states (rectangles)

3. Specify the Safety condition

4. Give the inverses to the flow functions and prove they are
inverses.

5. Coq generates the AHS, the abstraction function and its
correctness proof.

6. Coq generates a proof of “Reach(AHS) = Safe ⇒ HS is safe”.

7. Computing Reach(AHS) (in Coq) proves the safety
(automatic)

What we plan to do / problems

1. Generate AHS + Abs function from the Specification
NB Abstraction predicates can be derived from the Spec.

2. Support for generating inverses and proving they are inverses
NB Many function are partial or partially monotone

3. Extract fast model checking to OCaml: “certified reachability
algorithm”.

4. Deal with flow functions where variables are not independent
or not locally monotone

5. Use numeric approximations to solutions of differential
equations.

Thank you!

