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Abstract. We develop a general method for deriving natural deduction
rules from the truth table for a connective. The method applies to both
constructive and classical logic. This implies we can derive “construc-
tively valid” rules for any classical connective. We show this constructive
validity by giving a general Kripke semantics, that is shown to be sound
and complete for the constructive rules. For the well-known connectives
(∨, ∧, →, ¬) the constructive rules we derive are equivalent to the nat-
ural deduction rules we know from Gentzen and Prawitz. However, they
have a different shape, because we want all our rules to have a standard
“format”, to make it easier to define the notions of cut and to study proof
reductions. In style they are close to the “general elimination rules” stud-
ied by Von Plato [13] and others. The rules also shed some new light on
the classical connectives: e.g. the classical rules we derive for → allow to
prove Peirce’s law. Our method also allows to derive rules for connectives
that are usually not treated in natural deduction textbooks, like the “if-
then-else”, whose truth table is clear but whose constructive deduction
rules are not. We prove that ”if-then-else”, in combination with ⊥ and
>, is functionally complete (all other constructive connectives can be de-
fined from it). We define the notion of cut, generally for any constructive
connective and we describe the process of “cut-elimination”.

1 Introduction

Natural deduction rules come in various forms, where one either uses formulas
A, or sequents Γ ` A (where Γ is a sequence or a finite set of formulas). Other
formalisms use a linear format, using flags or boxes to explicitly manage the
open and discharged assumptions.

We use a tree format with sequents, where all rules have a special form:

Γ ` A1 . . . Γ ` An Γ,B1 ` D . . . Γ,Bm ` D

Γ ` D

So if the conclusion of a rule is Γ ` D, then the hypotheses of the rule can be
of one of two forms:

1. Γ ` A: instead of proving D from Γ , we now need to prove A from Γ . We
call A a Lemma.



2. Γ,B ` D: we still need to prove D from Γ , but we are now also allowed to
use B as additional assumption. We call B a Casus.

One obvious advantage is that we don’t have to give the Γ explicitly, as it
can be retrieved from the other information in a deduction. So, we will present
the deduction rules without the Γ in the format

` A1 . . . ` An B1 ` D . . . Bm ` D

` D

For every connective we have elimination rules and introduction rules. The elim-
ination rules have the following form, where ϕ is the formula that is eliminated
and Ai, Bj are direct subformulas of ϕ.

` ϕ ` A1 . . . ` An B1 ` D . . . Bm ` D
el

` D

The introduction rules have a classical and an intuitionistic form; the follow-
ing form is the classical one. (ϕ is the formula that is “introduced” and Ai, Bj
are direct subformulas of ϕ.) The classical duality between elimination and in-
troduction is clearly visible from these rules.

ϕ ` D ` A1 . . . ` An B1 ` D . . . Bm ` D
inc

` D

The intuitionistic introduction rules have the following form

` A1 . . . ` An B1 ` ϕ . . . Bm ` ϕ
ini

` ϕ

We see that, compared to the classical rule, the D has been replaced by ϕ,
the formula we introduce, and we have omitted the first premise, which is ϕ `
ϕ, because it is trivial. For each connective, we extract the introduction and
elimination rules from a truth table as described in the following Definition.

Definition 1 Suppose we have an n-ary connective c with a truth table tc (with
2n rows). We write ϕ = c(A1, . . . , An) for a formula with c as main connec-
tive and A1, . . . , An as immediate subformulas. Each row of tc gives rise to an
elimination rule or an introduction rule for c in the following way.

A1 . . . An ϕ
p1 . . . pn 0

7→
` ϕ . . . ` Aj (if pj = 1) . . . . . . Ai ` D (if pi = 0) . . .

el
` D

A1 . . . An ϕ
q1 . . . qn 1

7→
. . . ` Aj (if qj = 1) . . . . . . Ai ` ϕ (if qi = 0) . . .

ini

` ϕ

A1 . . . An ϕ
r1 . . . rn 1

7→
ϕ ` D . . . ` Aj (if rj = 1) . . . . . . Ai ` D (if ri = 0) . . .

inc

` D
If pj = 1 in tc, then Aj occurs as a Lemma in the rule; if pi = 0 in tc, then
Ai occurs as a Casus. The rules are given in abbreviated form and it should be



understood that all judgments can be used with an extended hypotheses set Γ . So
the elimination rule in full reads as follows (where Γ is a set of formulas).

Γ ` ϕ . . . Γ ` Aj (if pj = 1) . . . . . . Γ,Ai ` D (if pi = 0) . . .
el

Γ ` D

Definition 2 Given a set of connectives C := {c1, . . . , cn}, we define the in-
tuitionistic and classical natural deduction systems for C, IPCC and CPCC as
follows.

– Both IPCC and CPCC have an axiom rule

axiom( if A ∈ Γ )
Γ ` A

– IPCC has the elimination rules for the connectives in C and the intuitionistic
introduction rules for the connectives in C, as defined in Definition 1.

– CPCC has the elimination rules for the connectives in C and the classical
introduction rules for the connectives in C, as defined in Definition 1.

Example 3 From the truth table we derive the following intuitionistic rules for
∧, 3 elimination rules and one introduction rule:

` A ∧B A ` D B ` D
∧-ela

` D

` A ∧B A ` D ` B
∧-elb

` D

` A ∧B ` A B ` D
∧-elc

` D

` A ` B
∧-in

` A ∧B

These rules are all intuitionistically correct, as one can observe by inspection.
We will show that these are equivalent to the well-known intuitionistic rules. We
will also show how these rules can be optimized and be reduced to 2 elimination
rules and 1 introduction rule.

From the truth table we also derive the following rules for ¬, 1 elimination
rule and 1 introduction rule, a classical and an intuitionistic one.

` ¬A ` A
¬-el

` D

A ` ¬A
¬-ini

` ¬A

¬A ` D A ` D
¬-inc

` D

As an example of the classical derivation rules we show that ¬¬A ` A is deriv-
able:

¬¬A,¬A ` ¬¬A ¬¬A,¬A ` ¬A
¬-el

¬¬A,¬A ` A ¬¬A,A ` A
¬-inc

¬¬A ` A
It can be proven that ¬¬A ` A is not derivable with the intuitionistic rules.

As an example of the intuitionistic derivation rules we show that A ` ¬¬A is
derivable:

A,¬A ` ¬A A,¬A ` A
¬-el

A,¬A ` ¬¬A
¬-ini

A ` ¬¬A



In the intuitionistic case, there is an obvious notion of cut: an intro of ϕ
immediately followed by an elimination of ϕ. In such case there is at least one
k for which pk 6= qk. In case pk = 0, qk = 1, we have a sub-derivation Σ of ` Ak
and a sub-derivation Θ of Ak ` D and we can “plug” Σ on top of Θ to obtain a
derivation of ` D. In case pk = 1, qk = 0, we have a sub-derivation Σ of Ak ` ϕ
and a sub-derivation Θ of ` Ak and we can “plug” Θ on top of Σ to obtain
a derivation of ` ϕ. This is then used as a hypothesis for the elimination rule
(that remains in this case) instead of the original one that was a consequence of
the introduction rule (that now disappears). Note that in general there are more
such k, so the cut-elimination procedure is non-deterministic. We view this non-
determinism as a natural feature in natural deduction; the fact that for some
connectives (or combination of connectives), cut-elimination is deterministic is
an “emerging” property.

1.1 Contribution of the paper and related work

The main contributions of the paper are:

– A general construction of natural deduction rules for a logical connective
from its truth table semantics, yielding natural deduction rules in a fixed
structured format.

– The method applies to both a classical and a constructive (!) reading of the
connectives, and applies to connectives of any arity.

– Soundness and completeness of the constructive connectives with respect to
a general Kripke semantics that we define.

– Example of the if-then-else connective, which is shown to be constructively
functionally complete, once the constants > and ⊥ have been added.

– A general definition of “direct cut” and “elimination of a direct cut” for the
generalized constructive connectives.

Natural deduction has been studied extensively, since the original work by
Gentzen, both for classical and intuitionistic logic. Overviews can be found in
[12] and [7]. Also the generalization of natural deduction to include other connec-
tives or allow different derivation rules has been studied by various researchers.
Notably, there is the work of Schroeder-Heister [10], Von Plato [13], Milne [6] and
Francez and Dyckhoff [4, 3] is related to ours. Schroeder-Heister studies general
formats of natural deduction where also rules may be discharged (as opposed
to the normal situation where only formulas may be discharged). He also stud-
ies a general rule format for intuitionistic logic and shows that the connectives
∧,∨,→,⊥ are complete for it. Von Plato, Milne, Francez and Dyckhoff study
“generalized elimination rules”, where the idea is that elimination rules arise
naturally from the introduction rules, following Prawitz’s [9] inversion principle:
“the conclusion obtained by an elimination does not state anything more than
what must have already been obtained if the major premiss of the elimination
was inferred by an introduction”.

A difference is that we focus not so much on the rules but on the fact that
we can define different and new connectives constructively. In our work, we do



not take the introduction rules as primary, with the elimination rules defined
from them, but we derive elimination and introduction rules directly from the
truth table. Then we optimize them, which can be done in various ways, where
we adhere to a fixed format for the rules. Many of the generalized elimination
rules, for example for ∧, appear naturally as a consequence of our approach of
deriving the rules from the truth table.

The idea of deriving deduction rules from the truth table also occurs in the
work of Milne [6], for the classical case: from the introduction rules, a truth table
is derived and then the elimination rules are derived from the truth table. For
the if-then-else connective, this amounts to classical rules equivalent to ours (see
Section 2.1), but less optimized. We start from the truth table and also derive
rules for constructive logic.

In Section 3 we give a complete Kripke semantics for the constructive con-
nectives. This is reminiscent of the Lindenbaum construction used in [6] to prove
classical completeness. The Kripke semantics also allows us to prove some meta
properties about the rules. For example, we give a generalization of the disjunc-
tion property in intuitionistic logic. In Section 4 we define cuts precisely, for the
intuitionistic case.

2 Simple properties and examples

We first define precisely how the “plugging one derivation in another” works.

Lemma 4 If Γ ` ϕ and ∆,ϕ ` ψ, then Γ,∆ ` ψ

Proof. By a simple induction on the derivation of ∆,ϕ ` ψ, using the fact that,
in general (for all Γ , Γ ′ and ϕ): If Γ ` ϕ and Γ ⊆ Γ ′, then Γ ′ ` ϕ. ut

We can be a bit more precise about what is happening in the proof of Lemma
4. If Π is the derivation of ∆,ϕ ` ψ, due to the format of our rules, the only
place in Π where the hypothesis ϕ can be used is at a leaf of Π, in an instance
of the (axiom) rule. These leaves are of the shape ∆′, ϕ ` ϕ for some ∆′ ⊇ ∆.

If Σ is the derivation of Γ ` ϕ, then Σ is also a derivation of ∆′, Γ ` ϕ
(for any ∆). So, we can replace each leaf of Π that is an instance of an axiom
∆′, ϕ ` ϕ by a derivation Σ of ∆′, Γ ` ϕ, to obtain a derivation of Γ,∆ ` ψ. We
introduce some notation to support this.

Notation 5 If Σ is a derivation of Γ ` ϕ and Π is a derivation of ∆,ϕ ` ψ,
then we have a derivation of Γ,∆ ` ψ that looks like this:

····
Σ

Γ,∆1 ` ϕ . . .

····
Σ

Γ,∆n ` ϕ····
Π

Γ,∆ ` ψ

So in Π, every application of an (axiom) rule at a leaf, deriving ∆′ ` ϕ for
some ∆′ ⊇ ∆ is replaced by a copy of a derivation Σ, which is also a derivation
of ∆′, Γ ` ϕ.



In Definitions 1 and 2, we have given the precise rules for our logic, in in-
tuitionistic and classical format. We can freely reuse formulas and weaken the
context, so the structural rules of contraction and weakening are wired into the
system. To reduce the number of rules, we can take a number of rules together
and drop one or more hypotheses. We illustrate this by again looking at the
example of the rules for ∧ (Example 3).

Example 6 From the truth table we have derived the 3 intuitionistic elimination
rules of Example 3. These rules can be reduced to the following 2 equivalent
elimination rules:

` A ∧B A ` D
∧-el1

` D

` A ∧B B ` D
∧-el2

` D

The general method is that we can replace two rules that only differ in one
hypothesis, which in one rule occurs as a Lemma and in the other as a Casus, by
one rule where the hypothesis is removed. It will be clear that the Γ ’s above are
not relevant for the argument, so we will not write these.

Lemma 7 A system with two derivation rules of the form

` A1 . . . ` An B1 ` D . . . Bm ` D C ` D

` D

` A1 . . . ` An ` C B1 ` D . . . Bm ` D

` D

is equivalent to the system with these two rules replaced by

` A1 . . . ` An B1 ` D . . . Bm ` D

` D

Proof. The implication from bottom to top is immediate. From top to bottom,
suppose we have the two given rules. We now derive the bottom one. Assume
we have derivations of ` A1, . . . ,` An, B1 ` D, . . . , Bm ` D. We now have the
following derivation of ` D.

` A1 . . . ` An B1 ` D . . . Bm ` D

C ` A1 . . . C ` An C ` C C,B1 ` D . . . C,Bm ` D

C ` D

` D

Similarly, we can replace a rule which has only one Casus by a rule where the
Casus is the conclusion. To illustrate this: the simplified elimination rules for ∧,
∧-el1 and ∧-el2 have only one Casus. The rule ∧-el1 (left) can thus be replaced
by the rule ∧-el′1 (right), which is the usual projection rule.

` A ∧B A ` D
∧-el1

` D

` A ∧B
∧-el′1

` A

There is a general Lemma stating this simplification is correct. The proof is
similar to the proof of Lemma 4.



Lemma 8 A system with a derivation rule of the form to the left is equivalent
to the system with this rule replaced by the rule on the right.

` A1 . . . ` An ψ ` D

` D

` A1 . . . ` An

` ψ

Definition 9 The derivation rules for the standard intuitionistic connectives
are the following. These rules are derived from the truth tables and optimized
following Lemmas 7 and 8. The rules for ∧ are the intro rule of Example 3 and
the elimination rules of Example 6. The rules for ¬ are given in Example 3. The
rules for ∨ and → and > and ⊥ are:

` A ∨B A ` D B ` D
∨-el

` D

` A
∨-in1

` A ∨B

` B
∨-in2

` A ∨B
>-in

` >

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` A→ B
→ -in2

` A→ B

` ⊥
⊥-el

` D

Example 10 As our only example for classical logic, we give the classical rules
for implication. The elimination rule is the same (→ -el above) and we also have
the first introduction rule → -in1, but in addition we have the rule → -inc2. We
observe that this rule is classical in the sense that one can derive Peirce’s law,
without using negation. See the derivation below, of Peirce’s law.

A ` D A→ B ` D
→ -inc

2
` D

A ` A

A ` ((A→ B)→ A)→ A

(A→ B)→ A ` (A→ B)→ A A→ B ` A→ B

A→ B, (A→ B)→ A ` A

A→ B, (A→ B)→ A ` ((A→ B)→ A)→ A

A→ B ` ((A→ B)→ A)→ A
→ -inc

2
` ((A→ B)→ A)→ A

2.1 If then else

We now give two examples of ternary connectives that we can treat by our
method: if-then-else and most, which have the obvious (classical) truth table
semantics given below. We look into if-then-else in further detail and we will say
something about most in Section 3.

A B C most(A,B,C) A→B/C
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1



Example 11 The constructive rules for if-then-else we obtain, after optimiza-
tion are the following four.

` A→B/C ` A
then-el

` B

` A→B/C A ` D C ` D
else-el

` D
` A ` B

then-in
` A→B/C

A ` A→B/C ` C
else-in

` A→B/C

We now show in some detail that we can obtain these four optimized rules.
(NB. other optimizations are possible, yielding a different set of rules.) From the
lines in the truth table of A→B/C with a 0 we get the following four elimination
rules:

` A→B/C A ` D B ` D C ` D

` D

` A→B/C A ` D ` B C ` D

` D
` A→B/C ` A B ` D C ` D

` D

` A→B/C ` A B ` D ` C

` D

Using Lemmas 7 and 8, these can be reduced. The two rules on the first line
reduce to else-el, the two rules on the second line reduce to then-el.

Similarly, from the lines in the truth table of A→B/C with a 1 we get four
introduction rules, which can consequently be reduced to else-in and then-in.

Example 12 From the lines in the truth table of A→B/C with a 1 we get the
following four classical introduction rules:

A→B/C ` D A ` D B ` D ` C

` D

A→B/C ` D A ` D ` B ` C

` D
A→B/C ` D ` A ` B C ` D

` D

A→B/C ` D ` A ` B ` C

` D

Using Lemmas 7 and 8 these can be reduced to the following two. (The two
rules on the first line reduce to else-in, the two rules on the second line reduce
to then-in.)

A→B/C ` D A ` D ` C
else-inc

` D

` A ` B
then-in

` A→B/C

These are the classical rules for if-then-else. Only the rule else-inc is different
from the constructive one, as given in Example 11.

Constructively, A→B/C is equivalent to (A→ B)∧ (A∨C). It can be shown
that A→B/C is “in between” other constructive renderings of if-then-else:

(A ∧B) ∨ (¬A ∧ C)
6a
` A→B/C

6a
` (A→ B) ∧ (¬A→ C)



The left-to-right can easily be derived, for the non-derivability of the reverse, we
need a Kripke model (see Section 3).

If we compare with well-known classical rules for if-then-else, we observe that
two of them hold, while the other fails.

Fact 13 1. if A thenB elseB ` B and B ` if A thenB elseB,
2. if (if A thenB elseC) thenD elseE 6` if A then (if B thenD elseE) else (if C thenD elseE)

3. if A then (if B thenD elseE) else (if C thenD elseE) 6` if (if A thenB elseC) thenD elseE.
As a matter of fact, either one of the last two rules renders the connective

if-then-else classical.

An important property is that (just as in classical logic), the constructive
if-then-else, together with > and ⊥ is functionally complete: all other connectives
can be defined in terms of it. We prove this for ∧, ∨, → and ¬. A result from
Schroeder-Heister [10] implies that all constructive connectives can be defined
in terms of if-then-else.

Definition 14 We define the usual intuitionistic connectives in terms of >, ⊥
and if-then-else, as follows: A ∨̇ B := A→A/B, A ∧̇ B := A→B/A,
A →̇ B := A→B/>, ¬̇A := A→⊥/>.

Lemma 15 The defined connectives in Definition 14 satisfy the derivation rules
for these same connectives as given in Definition 9. As an immediate conse-
quence, the intuitionistic connective if-then-else, together with > and ⊥, is func-
tionally complete.

Proof. Lemma 15 shows that the well-known intuitionistic connectives can all be
defined in terms of if-then-else, > and ⊥. In [10], it is shown that all connectives
can be defined in terms of ∨, ∧, → and ¬. ut

3 Kripke semantics

We now define a Kripke semantics for the intuitionistic rules and prove that it is
complete. We follow standard methods, given e.g. in [11, 12], which we generalize
to arbitrary connectives. Formulas are built from atoms using existing or defined
connectives of any arity, so for each n-ary connective c, we assume a truth table
tc : {0, 1}n → {0, 1} and we have inductively defined derivability ` as a relation
between a sets of formulas and a formula above.

Definition 16 We define a Kripke model as a triple (W,≤, at) where W is a
set of worlds with a reflexive, transitive relation ≤ on it and a function at : W →
℘(At) satisfying w ≤ w′ ⇒ at(w) ⊆ at(w′).

In a Kripke model we want to define the relation w  ϕ between worlds and
formulas (ϕ is true in world w). We do this by defining [[ϕ]]w ∈ {0, 1}, with the
meaning that [[ϕ]]w = 1 if w  ϕ and [[ϕ]]w = 0 if w 6 ϕ.



Definition 17 Given a Kripke model (W,≤, at) we define [[ϕ]]w ∈ {0, 1}, by
induction on ϕ as follows.

– If ϕ is atomic, we define [[ϕ]]w := 1 if ϕ ∈ at(w).
– If ϕ = c(ϕ1, . . . , ϕn), we define [[ϕ]]w := 1 if tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1 for

each w′ ≥ w, where tc is the truth table of c.

We define Γ |= ψ (ψ is a consequence of Γ ) as: for each Kripke model and each
world w, if for each ϕ in Γ , [[ϕ]]w = 1, then [[ψ]]w = 1.

An immediate consequence of this definition is that for all worlds w,w′, if
[[ϕ]]w = 1 and w′ ≥ w, then [[ϕ]]w′ = 1.

Lemma 18 (Soundness) If Γ ` ψ, then Γ |= ψ

Proof. By induction on the derivation of Γ ` ψ. We treat the case for the last
rule being an introduction: ψ = c(ψ1, . . . , ψn) and we have a line p1, . . . , pn|1 in
the truth table for c. The introduction rule then is as follows.

Γ ` ψj (for ψj with pj = 1) . . . . . . Γ, ψi ` ψ (for ψi with pi = 0) . . .
in

Γ ` ψ

Given a Kripke model and a world w in this model with [[ϕ]]w = 1 for all ϕ ∈ Γ ,
we need to prove that [[ψ]]w = 1. The induction hypothesis says that [[ψj ]]w = 1 for
all j with pj = 1. Let w′ ≥ w. There are two cases: (1) [[ψi]]w′ = 1 for some i with
pi = 0. Then by induction hypothesis: [[ψ]]w′ = 1, so tc([[ψ1]]w′ , . . . , [[ψn]]w′) = 1.
(2) [[ψi]]w′ = 0 for all i with pi = 0. Then tc([[ψ1]]w′ , . . . , [[ψn]]w′) = 1. So, for all
w′ ≥ w: tc([[ψ1]]w′ , . . . , [[ψn]]w′) = 1. So [[ψ]]w = 1. ut

Now we prove completeness: if Γ |= ψ, then Γ ` ψ. We prove this by con-
structing a special, universal Kripke model.

Definition 19 For ψ a formula and Γ a set of formulas, we say that Γ is ψ-
maximal if Γ 6` ψ and for every formula ϕ /∈ Γ we have: Γ, ϕ ` ψ.

If Γ 6` ψ, we can extend Γ to a ψ-maximal set Γ ′ that contains Γ as follows.
Take an enumeration of the formulas as ϕ1, ϕ2, . . . and define recursively Γ0 := Γ
and Γi+1 := Γi if Γi, ϕi+1 ` ψ and Γi+1 := Γi, ϕi+1 if Γi, ϕi+1 6` ψ. Then take
Γ ′ :=

⋃
i∈N Γi. (NB. as always, Γi, ϕi+1 denotes Γi ∪ {ϕi+1}.)

Fact 20 We list a couple of simple important facts about ψ-maximal sets Γ .

1. For every ϕ, we have ϕ ∈ Γ or Γ, ϕ ` ψ.
2. So, for every ϕ, if ϕ /∈ Γ then Γ, ϕ ` ψ.
3. For every ϕ, if Γ ` ϕ, then ϕ ∈ Γ .

Definition 21 We define the Kripke model U = (W,≤, at) as follows:

– A world w ∈W is a pair (Γ, ψ) where Γ is a ψ-maximal set of formulas.
– (Γ, ψ) ≤ (Γ ′, ψ′) := Γ ⊆ Γ ′.



– at(Γ, ψ) := Γ ∩ At.

Lemma 22 In the model U we have, for all worlds (Γ, ψ) ∈W :

∀ϕ,ϕ ∈ Γ ⇔ [[ϕ]](Γ,ψ) = 1.

Proof. The proof is by induction on ϕ. If ϕ ∈ At, the result is immediate, so
suppose that ϕ = c(ϕ1, . . . , ϕn) where c has truth table tc. We prove the two
directions separately.

(⇒): Assume ϕ ∈ Γ .
We have [[ϕ]](Γ,ψ) = 1 iff for all Γ ′ ⊇ Γ and for all ψ′, writing w′ = (Γ ′, ψ′),

we have tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1.
So let Γ ′ ⊇ Γ and let ψ′ be a formula such that Γ ′ is ψ′-maximal. For the

sub-formulas of ϕ we have the following possibilities

– [[ϕj ]]w′ = 1, and then by induction hypothesis: ϕj ∈ Γ ′ and so Γ ′ ` ϕj .
– [[ϕi]]w′ = 0, and then by induction hypothesis: ϕi /∈ Γ ′ and so Γ ′, ϕi ` ψ′.

This corresponds to an entry in the truth table tc for the connective c.
Suppose tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 0. Then this row in the truth table yields

an elimination rule that allows us to prove ψ′:

Γ ′ ` ϕ . . . Γ ′ ` ϕj (for ϕj with [[ϕj ]]w′ = 1) . . . . . . Γ ′, ϕi ` ψ′ (for ϕi with [[ϕi]]w′ = 0) . . .
el

Γ ′ ` ψ′

Note that all hypotheses of the rule are derivable, because ϕ ∈ Γ ′ and the other
hypotheses are derivable by induction. So we have Γ ′ ` ψ′. Contradiction! So:
tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1, what we needed to prove.

(⇐): Assume [[ϕ]](Γ,ψ) = 1 and suppose (towards a contradiction) ϕ /∈ Γ .
Then Γ 6` ϕ (because if Γ ` ϕ, then ϕ ∈ Γ by the facts we remarked about

Kripke model U .) So there is a ϕ-maximal theory Γ ′ ⊇ Γ with Γ ′ 6` ϕ. So (Γ,′ ϕ)
is a world in U with (Γ, ψ) ≤ (Γ ′, ϕ). We write w′ := (Γ ′, ϕ) and we have

tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1.

We consider the different sub-formulas of ϕ:

– the ϕj with [[ϕj ]]w′ = 1, and so (by induction hypothesis) ϕj ∈ Γ ′ and so
Γ ′ ` ϕj ;

– the ϕi with [[ϕi]]w′ = 0, and so (by induction hypothesis) ϕi /∈ Γ ′ and so
Γ ′, ϕi ` ϕ.

Now, using an introduction rule for connective c, we can derive ϕ:

Γ ′ ` ϕj (for ϕj with [[ϕj ]]w′ = 1) . . . . . . Γ ′, ϕi ` ϕ (for ϕi with [[ϕi]]w′ = 0) . . .
in

Γ ′ ` ϕ

So we have Γ ′ ` ϕ, because the hypotheses of the rule are all derivable. Contra-
diction! So ϕ ∈ Γ ′. ut



Theorem 23 If Γ |= ψ, then Γ ` ψ.

Proof. Suppose Γ |= ψ and Γ 6` ψ. We can find a ψ-maximal superset Γ ′ of
Γ such that Γ ′ 6` ψ. In particular: ψ /∈ Γ ′. So (Γ ′, ψ) is a world in the Kripke
model U in which each member of Γ is true: [[ϕ]](Γ ′,ψ) = 1 for ϕ ∈ Γ , by Lemma
22. However, ψ is not true in (Γ ′, ψ): [[ψ]](Γ ′,ψ) = 0. So Γ 6|= ψ. Contradiction,
so Γ ` ψ. ut

In intuitionistic logic, the connective ∨ has a special property that does not
hold for classical logic, called the disjunction property: If ` A ∨ B, then ` A
or ` B. This implies that the disjunction is “strong”: if one has a proof of a
disjunction, one has a proof of one of the disjoints. (Which is classically not the
case, viz. ` A∨¬A.) The disjunction property can easily be proved using Kripke
semantics, relying on the completeness theorem. We want to generalize this to
other connectives and we introduce the notion of a splitting connective.

Definition 24 Let c be an n-ary connective, 1 ≤ i, j ≤ n. We say that c is
i, j-splitting in case the truth table for c has the following shape

A1 . . . Ai . . . Aj . . . An c(A1, . . . , An)

− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0
...

...
...

...
...

...
...

...
− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0

So, in all rows where pi = pj = 0 we have c(p1, . . . , pn) = 0. Phrased purely in
terms of tc, that is: tc(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , pn) = 0 for all
p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn ∈ {0, 1}.

A connective can be i, j-splitting for more than one i, j-pair. Examples are
the ternary connectives most and if-then-else. We now state and prove our gen-
eralization of the disjunction property.

Lemma 25 Let c be an i, j-splitting connective and suppose ` c(A1, . . . , An).
Then ` Ai or ` Aj.

Proof. Let c be an i, j-splitting connective and let ϕ = c(A1, . . . , An) be a for-
mula with ` ϕ.

Suppose 6` Ai and 6` Aj . Then there are Kripke models K1 and K2 such that
K1 6 Ai and K2 6 Aj . We may assume that the sets of worlds of K1 and K2 are
disjoint so we can construct a Kripke model K as the union of K1 and K2 where
we add a special “root world” w0 that is below all worlds of K1 and K2, with
at(w0) = ∅. It is easily verified that K is a Kripke model and we have w0 6 Ai,
because w0 is below some world w in K1 with w 6 Ai; similarly w0 6 Aj . So,
[[Ai]]w0 = [[Aj ]]w0 = 0. But then w0 6 ϕ, because [[ϕ]]w0 = [[c(A1, . . . , An)]]w0 = 1
iff for all w ≥ w0: tc([[A1]]w, . . . , [[An]]w) = 1. However, for w := w0, whatever the
values of [[Ak]]w are for k 6= i, j, tc([[A1]]w, . . . , [[An]]w) = 0. On the other hand,
w0  ϕ, because ` ϕ, so we have a contradiction. We conclude that ` Ai or
` Aj . ut



Example 26 Looking at the truth tables in Section 2.1, we see that most is i, j-
splitting for every i, j. Indeed, if ` most(A,B,C), we can derive ` A or ` B but
also ` A or ` C and also ` B or ` C.

The connective if-then-else is not 1, 2-splitting but it is 1, 3-splitting and 2, 3-
splitting: if ` A→B/C, then we have ` A or ` C and also ` B or ` C.

4 Cuts and cut-elimination

The idea of a cut in intuitionistic logic is an introduction of a formula ϕ imme-
diately followed by an elimination of ϕ. We will call this a direct intuitionistic
cut. In general in between the intro rule for ϕ and the elim rule for ϕ, there may
be other auxiliary rules, so occasionally we may have to first permute the elim
rule with these auxiliary rules to obtain a direct cut that can be contracted. We
leave that for future research and now just define the notion of direct cut and
contraction of a direct cut.

Definition 27 Let c be a connective of arity n, with an elim rule and an intu-
itionistic intro rule derived from the truth table, as in Definition 1. So suppose
we have the following rules in the truth table tc.

A1 . . . An c(A1, . . . , An)

p1 . . . pn 0
q1 . . . qn 1

An intuitionistic direct cut in a derivation is a pattern of the following form,
where ϕ = c(A1, . . . , An) and: (1) Aj ranges over all formulas where qj = 1, Ai
ranges over all formulas where qi = 0; (2) Ak ranges over all formulas where
pk = 1, A` over all formulas where p` = 0,

. . .

····
Σj

Γ ` Aj . . . . . .

····
Σi

Γ,Ai ` ϕ . . .

Γ ` ϕ . . .

····
Πk

Γ ` Ak . . . . . .

····
Π`

Γ,A` ` D . . .

Γ ` D

The elimination of a direct cut is defined by replacing the derivation pattern
above by

1. If ` = j (for some `, j):
····
Σj

Γ ` Aj . . .

····
Σj

Γ ` Aj
····
Π`

Γ ` D



2. If k = i (for some k, i):

····
Πk

Γ ` Ai . . .

····
Πk

Γ ` Ai····
Σi

Γ ` ϕ . . .

····
Πk

Γ ` Ai . . . . . .

····
Π`

Γ,A` ` D . . .

Γ ` D

There may be several choices for the i and j in the previous definition, so
cut-elimination is non-deterministic in general. As an example, we give the cut-
elimination rules for if-then-else with optimized deduction rules.

Example 28 The intuitionistic cut-elimination rules for if-then-else are the fol-
lowing.

(then-then)

Γ ` A

····
Σ

Γ ` B

Γ ` A→B/C Γ ` A

Γ ` B

7→
····
Σ

Γ ` B

(else-then)

····
Σ

Γ,A ` A→B/C Γ ` C

Γ ` A→B/C

····
Π

Γ ` A

Γ ` B

7→

····
Π

Γ ` A . . .

····
Π

Γ ` A····
Σ

Γ ` A→B/C

····
Π

Γ ` A

Γ ` B

(then-else)
····
Σ

Γ ` A Γ ` B

Γ ` A→B/C

····
Π

Γ,A ` D Γ,C ` D

Γ ` D

7→

····
Σ

Γ ` A . . .

····
Σ

Γ ` A····
Π

Γ ` D

(else-else)

Γ,A ` A→B/C

····
Σ

Γ ` C

Γ ` A→B/C Γ,A ` D

····
Π

Γ,C ` D

Γ ` D

7→

····
Σ

Γ ` C . . .

····
Σ

Γ ` C····
Π

Γ ` D



5 Conclusion and Further work

We have introduced a general procedure for deriving natural deduction rules
from truth tables that applies both to classical and intuitionistic logic. Our de-
duction rules obey a specific format, making it easier to study. To show that
the intuitionistic rules are truly constructive we have defined a complete Kripke
semantics for the intuitionistic rules. We have defined cut-elimination for in-
tuitionistic logic in general. In an extended version of the paper [5] we have
described a Curry-Howard proofs-as-terms isomorphism for the deriavtions in
constructive logic. We have studied it in more detail for if-then-else.

The work described here raises many new research questions that we will
pursue further: Is cut-elimination normalizing in general for an arbitrary set of
connectives? How to define cut-elimination for the classical case, and what is its
connection with a term calculus for classical logic as studied e.g. in [8, 1, 2]?

Another issue is the possibility of “hidden cuts” that need to be made explicit
via a permuting conversion operation on the derivation (or on the proof-term).
These already occur in the fragment with just if-then-else and we describe these
permuting conversions in [5]. The question is if we can describe and study these
permuting conversions in general.
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