
Newman’s Typability Algorithm

Herman Geuvers1

Radboud University Nijmegen
and

Eindhoven University of Technology
The Netherlands

Computing 2011
Symposium on 75 Years of Turing Machine and

Lambda-Calculus
Karlsruhe, October 2011

1Joint work with Robbert Krebbers, RU Nijmegen

First half of the 20th century

Questions:

I What can be computed? What can be decided?

I What is a good foundation for logic and mathematics?
. . . higher-order logic, set theory, . . . without inconsistencies

Begriffschrift (Frege), Principia Mathematica (Whitehead, Russell),
Axiomatic Set theory (Zermelo, Fraenkel), Theory of simple types
(Church), New Foundations (Quine), . . .

I Which “objects” exist? ({x | x /∈ x} does not . . .)

I Which “terms” are well-formed? (F (F), for F a property?)

Distinction between syntax and semantics?

First half of the 20th century

Questions:

I What can be computed? What can be decided?

I What is a good foundation for logic and mathematics?
. . . higher-order logic, set theory, . . . without inconsistencies

Begriffschrift (Frege), Principia Mathematica (Whitehead, Russell),
Axiomatic Set theory (Zermelo, Fraenkel), Theory of simple types
(Church), New Foundations (Quine), . . .

I Which “objects” exist? ({x | x /∈ x} does not . . .)

I Which “terms” are well-formed? (F (F), for F a property?)

Distinction between syntax and semantics?

First half of the 20th century

Questions:

I What can be computed? What can be decided?

I What is a good foundation for logic and mathematics?
. . . higher-order logic, set theory, . . . without inconsistencies

Begriffschrift (Frege), Principia Mathematica (Whitehead, Russell),
Axiomatic Set theory (Zermelo, Fraenkel), Theory of simple types
(Church), New Foundations (Quine), . . .

I Which “objects” exist? ({x | x /∈ x} does not . . .)

I Which “terms” are well-formed? (F (F), for F a property?)

Distinction between syntax and semantics?

Newman’s article 1943

M.H.A. Newman, 1897 – 1984

I English topologist with side-interest in logic and foundations
of mathematics

I Newman’s Lemma
“On theories with a combinatorial definition of equivalence”.
Annals of Mathematics, 1942.

If the binary relation R is weakly confluent and
terminating, then R is confluent.

M.H.A. Newman, 1897 – 1984

Wrote “Stratified Systems of Logic” in 1943

I Abstract algorithm to decide typability

I Quine’s “New Foundation” was his starting point

I Also works on a variant of simple type theory λ→ of Church
[1940].

I Returns true or false instead of a principal type

I At first sight very different from the standard algorithm

M.H.A. Newman, Relation with Turing and computability

I Taught and inspired Turing at Cambridge (1930s)

I Worked in Bletchley Park, on Colossus (1942 onwards), the
first “real” computer

I Appointed Turing at math. dept. in Manchester

I His original name was “Neumann” . . .

Roger Hindley

I J.R. Hindley: M.H. Newman’s typability algorithm for
lambda-calculus, J. Logic and Computation 18(2): 229-238
(2008) 17.
(Talk at Jan Willem Klop’s 60th Birthday, 2005)

I Question: How does Newman’s algorithm compare to the
standard typability algorithm?

I The correctness of Newman’s typability algorithm and some of
its extensions, H. G., Robbert Krebbers TCS 412, 2011.

Roger Hindley

I J.R. Hindley: M.H. Newman’s typability algorithm for
lambda-calculus, J. Logic and Computation 18(2): 229-238
(2008) 17.
(Talk at Jan Willem Klop’s 60th Birthday, 2005)

I Question: How does Newman’s algorithm compare to the
standard typability algorithm?

I The correctness of Newman’s typability algorithm and some of
its extensions, H. G., Robbert Krebbers TCS 412, 2011.

Newman was ahead of his time

In 1944 Church reviewed Newman’s paper in JSL, concluding:

The reader’s first impression of Newman’s paper may be
that the machinery introduced is heavy in comparison
with the results obtained. The value of the paper is in
fact difficult to estimate at present, as this will depend
on the extent to which results obtained in the future by
Newman’s methods justify the weight of machinery.

Simple Type Theory à la Curry

Assign types to untyped λ-terms.

Λ ::= V | (Λ Λ) | (λV .Λ)

T ::= TypeVar | T → T

Contexts: Γ = x1 : σ1, . . . , xn : σn (xi ∈ V , σi ∈ T)

(var) Γ ` x : σ if x : σ ∈ Γ

(app)
Γ ` M : σ → τ Γ ` P : σ

Γ ` M P : τ

(abs)
Γ, x : σ ` N : τ

Γ ` λx .N : σ → τ

Simple Type Theory à la Newman

Λ ::= V | (Λ Λ) | (λV .Λ)

Only terms that satisfy the Barendregt convention: So, in a term:

I all bound variables are different from the free ones

I all bound variables are different.

Example

Not x (λx .x)
Not (λx .x) (λx .x)

Simple Type Theory à la Newman

Λ ::= V | (Λ Λ) | (λV .Λ)

Only terms that satisfy the Barendregt convention: So, in a term:

I all bound variables are different from the free ones

I all bound variables are different.

Example

Not x (λx .x)
Not (λx .x) (λx .x)

Newman’s algorithm: Schemes

Newman’s algorithm is a system for rewriting the scheme of a
term. A scheme over a domain A and set of operation symbols Φ
consists of

A finite list of equations of the form.

X l ϕX1X2 . . .Xar(ϕ) where X ,Xi ∈ A and ϕ ∈ Φ

The (finitely many) operation symbols in Φ have a fixed arity
ar : Φ→ N.

Newman’s algorithm: Scheme of a λ-term

The domain is
Name ::= TermName | Var

Equations are of the form

Name l app Name Name Name l λ Name Name

As notation, we of course just use

Name l Name Name Name l λName.Name

S(M) generates a list of equation of this form from M

Example

The scheme S(M) of M ≡ λfx .f (fx) is

U l λf .V V l λx .W W l fZ Z l fx

Newman’s algorithm: Scheme of a λ-term

The domain is
Name ::= TermName | Var

Equations are of the form

Name l app Name Name Name l λ Name Name

As notation, we of course just use

Name l Name Name Name l λName.Name

S(M) generates a list of equation of this form from M

Example

The scheme S(M) of M ≡ λfx .f (fx) is

U l λf .V V l λx .W W l fZ Z l fx

Newman’s algorithm: Reduction of a scheme

M → S1 = S(M) → binary relations η and γ

↓ if X η Y

S2 = S1[X := Y]

→ binary relations η and γ

...
↓

Sf

Sf is the η-normal form (no more η-reduction exists)

(NB: This is something completely different from the well-known
η-reduction in λ-calculus.)

Newman’s algorithm: Reduction of a scheme

M → S1 = S(M) → binary relations η and γ

↓ if X η Y

S2 = S1[X := Y] → binary relations η and γ

...
↓

Sf

Sf is the η-normal form (no more η-reduction exists)

(NB: This is something completely different from the well-known
η-reduction in λ-calculus.)

Newman’s algorithm: Stratification

Definition
A scheme S is stratified iff no cycles in the γ-relation exist.

Newman’s result:
Let M ∈ Λ and S(M)→η Sf (in normal form).

Then Sf is stratified iff M is typable.

Newman’s algorithm: Properties

I Reduction is strongly normalizing

I Reduction is locally confluent up to renaming of letters

I Thus the result is unique up to renaming of letters

I Whether Sf is stratified is independent of the order of
reduction

From Lambda Trees to “Newman Graphs”
A Modern presentation of Newman’s algorithm

U
d→ V : the type of V is the domain of the type of U.

U
r→ V : the type of V is the range of the type of U.

λ λx

x x

x

r

x x

d

d

@

d

@

r

From Lambda Trees to “Newman Graphs”
A Modern presentation of Newman’s algorithm

U
d→ V : the type of V is the domain of the type of U.

U
r→ V : the type of V is the range of the type of U.

λ λx

x x

x

r

x x

d

d

@

d

@

r

From Lambda Trees to “Newman Graphs”
A Modern presentation of Newman’s algorithm

U
d→ V : the type of V is the domain of the type of U.

U
r→ V : the type of V is the range of the type of U.

λ λx

x x

x

r

x x

d

d

@

d

@

r

Example

λx . (λy . y x) (x (λz . z))

λ

λ

λ

x

@

y

@

@

z

z

x

xy

λ

λ

λ

x

@

y

@

@

zx

xy

d

d

d

r

r r

r

r

d

d

d

d r

z

Equivalence Relation on Nodes '

X

U

d -

Y
d

-
=⇒ X ' Y (A)

X

U

r -

Yr
-

=⇒ X ' Y (A)

X

U

r
-

Y r
-

and

X

V

d
-

Y d
-

=⇒ X ' Y (B)

Example: Joining Equivalent Nodes

λ

λ

λ

x

@

y

@

@

zx

xy

d

d

d

r

r r

r

r

d

d

d

d r

z

λ

λ

λ z

d r

z

x

@

y

@

@

x

y

d

d

r

r r

r

r

d
d

d

Example: Joining Equivalent Nodes

λ

λ

λ

x

@

y

@

@

zx

xy

d

d

d

r

r r

r

r

d

d

d

d r

z

λ

λ

λ z

d r

z

x

@

y

@

@

x

y

d

d

r

r r

r

r

d
d

d

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

@

y

@

@

x

y

d

d

r

r r

r

r

d
d

d

λ

λ

λ z

d r

z

x

@

y

@ x

y

d

r

r

r

r

d

d

d

r

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

@

y

@

@

x

y

d

d

r

r r

r

r

d
d

d

λ

λ

λ z

d r

z

x

@

y

@ x

y

d

r

r

r

r

d

d

d

r

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

@

y

@ x

y

d

r

r

r

r

d

d

d

r

λ

λ

λ z

d r

z

x

y

x

y

d

d

d

d

r

@

r

r

r

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

@

y

@ x

y

d

r

r

r

r

d

d

d

r

λ

λ

λ z

d r

z

x

y

x

y

d

d

d

d

r

@

r

r

r

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

y

x

y

d

d

d

d

r

@

r

r

r

λ

λ z

d r

z

y

x

y

dd

d

r

@

r

r

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

y

x

y

d

d

d

d

r

@

r

r

r

λ

λ z

d r

z

y

x

y

dd

d

r

@

r

r

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

y

x

y

d

d

d

d

r

@

r

r

r

λ

λ z

d r

z

y

x

y

dd

d

r

@

r

r

The graph is in normal form.
It contains a cycle, so the term is not typable.

Example: Joining Equivalent Nodes

λ

λ

λ z

d r

z

x

y

x

y

d

d

d

d

r

@

r

r

r

λ

λ z

d r

z

y

x

y

dd

d

r

@

r

r

The graph is in normal form.
It contains a cycle, so the term is not typable (Theorem).

Newman’s algorithm: original form

Definition
Given a scheme S of a λ-term, define the relations γd and γr over
Name as follows.

Z l MN =⇒ M γd N ∧M γr Z

Z l λx .P =⇒ Z γd x ∧ Z γr P

Definition
Given a scheme S , define the binary relation η as follows.
X η Y iff one of the following conditions hold:

1. ∃U∈A∃γi [U γ i X ∧ U γ i Y]

2. ∀γi∃U∈A[X γi U ∧ Y γi U]

X γ Y iff ∃γi [X γ i Y]

Newman’s algorithm: original form

Definition
Given a scheme S of a λ-term, define the relations γd and γr over
Name as follows.

Z l MN =⇒ M γd N ∧M γr Z

Z l λx .P =⇒ Z γd x ∧ Z γr P

Definition
Given a scheme S , define the binary relation η as follows.
X η Y iff one of the following conditions hold:

1. ∃U∈A∃γi [U γ i X ∧ U γ i Y]

2. ∀γi∃U∈A[X γ i U ∧ Y γ i U]

X γ Y iff ∃γi [X γ i Y]

Newman’s algorithm: η-reduction

Definition
An η-reduction in a scheme S replaces X in all equations by Y if
X 6= Y and X η Y ∈ S .

Notation: S
X :=Y→η S ′, multiple steps are denoted by S

ν
�η S ′ where

ν is a substitution.

Lemma
η-reduction is strongly normalising.

Definition
A scheme S is stratified iff no cycles in the γ-relations of S exist.

Theorem
The η-normal form of S(()M) is stratified iff M is typable.

Newman’s algorithm: η-reduction

Example

Take the scheme S = S(M) of the λ-term M ≡ f (fx).

W l fZ Z l fx

f γd Z f γr W f γd x f γr Z

After one step of η-reduction, S
Z :=x→η S ′, the scheme S ′ is

obtained.

W l fx x l fx

f γd x f γr W f γr x

Finally an η-irreducible scheme Sf is obtained by S ′
W :=x→η Sf .

x l fx x l fx

f γd x f γr x

There are no cycles, thus we conclude that Sf is stratified.

Newman’s algorithm: η-reduction

Example

Take the scheme S = S(M) of the λ-term M ≡ f (fx).

W l fZ Z l fx

f γd Z f γr W f γd x f γr Z

After one step of η-reduction, S
Z :=x→η S ′, the scheme S ′ is

obtained.

W l fx x l fx

f γd x f γr W f γr x

Finally an η-irreducible scheme Sf is obtained by S ′
W :=x→η Sf .

x l fx x l fx

f γd x f γr x

There are no cycles, thus we conclude that Sf is stratified.

Newman’s algorithm: η-reduction

Example

Take the scheme S = S(M) of the λ-term M ≡ f (fx).

W l fZ Z l fx

f γd Z f γr W f γd x f γr Z

After one step of η-reduction, S
Z :=x→η S ′, the scheme S ′ is

obtained.

W l fx x l fx

f γd x f γr W f γr x

Finally an η-irreducible scheme Sf is obtained by S ′
W :=x→η Sf .

x l fx x l fx

f γd x f γr x

There are no cycles, thus we conclude that Sf is stratified.

Relation to the standard typing algorithm: Wand

Wand’s algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ,M, σ)
EQ: set of equations: σ = τ

Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ,P, α) ∅

“Newman’s idea”: Adapt Wand’s algorithm to generate a scheme
of equations of the following (simpler) form

TVar l TVar→ TVar

Relation to the standard typing algorithm: Wand

Wand’s algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ,M, σ)
EQ: set of equations: σ = τ
Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ,P, α) ∅

“Newman’s idea”: Adapt Wand’s algorithm to generate a scheme
of equations of the following (simpler) form

TVar l TVar→ TVar

Relation to the standard typing algorithm: Wand

Wand’s algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ,M, σ)
EQ: set of equations: σ = τ
Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ,P, α) ∅

“Newman’s idea”: Adapt Wand’s algorithm to generate a scheme
of equations of the following (simpler) form

TVar l TVar→ TVar

Relation to the standard algorithm: Wand
Wand’s original algorithm:
Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ,P, α) ∅

Adapted Wand’s algorithm
Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α1), (Γ,P, α2) α1 = α2 → τ

After substituting equations of the form τ1 = τ2 we obtain a
scheme of equations of the form

TVar l TVar→ TVar

Relation to the standard algorithm

I Scheme of type equations (à la Wand)
∼=

Scheme of λ-term (à la Newman)

I Computation of most general unifier ∼= reduction of schemes

Corollary

I Newman’s algorithm can be extended to compute a principal
type / principal pair

I Newman’s algorithm is correct

Relation to the standard algorithm

I Scheme of type equations (à la Wand)
∼=

Scheme of λ-term (à la Newman)

I Computation of most general unifier ∼= reduction of schemes

Corollary

I Newman’s algorithm can be extended to compute a principal
type / principal pair

I Newman’s algorithm is correct

Further remarks and Conclusion

I Newman’s method can be extended to incorporate contexts
and other type constructions, like sum types, product types
and weak polymorphism.

I Basically, Newman gives an efficient unification algorithm:

All equations are of the form

X l Y

X l f (Y1, . . . ,Yn)

where X and Y1, . . . ,Yn are variables.

