Newman's Typability Algorithm

Herman Geuvers (joint work with Robbert Krebbers)
Radboud University Nijmegen
Technical University Eindhoven
The Netherlands

November 30, 2009

Newman's article

PROCEEDINGS OF THE Cambridge Philosophical Society

Vol. $39 \quad$ June $1943 \quad$ PART 2

STRATIFIED SẎSTEMS OF LOGIC

By M. H. A. NEWMAN

Received 2 September 1942
The suffixes used in logic to indicate differences of type may be regarded either as belonging to the formalism itself, or as being part of the machinery for deciding which rows of symbols (without suffixes) are to be admitted as significant. The two different attitudes do not necessarily lead to different formalisms, but when types are regarded as only one way of regulating the calculus it is natural to consider other possible ways, in particular the direct characterization of the significant formulae. Direct criteria for stratification were given by Quine, in his 'New Foundations for Mathematical Logic'(7). In the corresponding typed form of this theory ordinary integers are adequate as type-suffixes, and the direct description is correspondingly simple, but in other theories, including that recently proposed by Church(4), a partially ordered set of types must be used. In the present paper criteria, equivalent to the existence of a correct typing, are given for a general class of formalisms, which includes Church's system, several systems proposed by Quine, and (with some slight modifications, given in the last paragraph) Principia Mathematica. (The discussion has been given this general form rather with a view to clarity than to comprehensiveness.)

About M. H. Newman

- English topologist with side-interest in logic
- Newman's Lemma
"On theories with a combinatorial definition of equivalence".
Annals of Mathematics, 1942.
- Wrote "Stratified Systems of Logic" in 1943
- Abstract algorithm to decide typability
- Quine's "New Foundation" was his starting point
- Also works on a variant of $\lambda \rightarrow$ à la Curry
- Returns true or false instead of a principal type
- At first sight very different from the standard algorithm

Hindley

- J R Hindley: M. H. Newman's typability algorithm for lambda-calculus, J. Logic and Computation 18(2): 229-238 (2008) 17. (Talk at Jan Willem Klop's 60th Birthday, 2005)
- Question: How does Newman's algorithm compare to the standard typability algorithm?

Simple Type Theory à la Curry

$$
\begin{aligned}
& \Lambda::=V|(\wedge \Lambda)|(\lambda V . \Lambda) \\
& T::=\operatorname{TypeVar} \mid T \rightarrow T
\end{aligned}
$$

Contexts: $\Gamma=x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\left(x_{i} \in V, \sigma_{i} \in T\right)$
(var) $\Gamma \vdash x: \sigma \quad$ if $x: \sigma \in \Gamma$
(app) $\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash P: \sigma}{\Gamma \vdash M P: \tau}$
(abs) $\frac{\Gamma, x: \sigma \vdash N: \tau}{\Gamma \vdash \lambda x \cdot N: \sigma \rightarrow \tau}$

Simple Type Theory à la Newman

$$
\wedge::=V|(\Lambda \Lambda)|(\lambda V . \Lambda)
$$

Only terms that satisfy the Barendregt convention: So, in a term:

- all bound variables are different from the free ones
- all bound variables are different.

Not $x(\lambda x . x)$
Not ($\lambda x . x)(\lambda x . x)$

Newman's algorithm: Schemes

Newman's algorithm is a system for rewriting the scheme of a term. A scheme over a domain A and set of operation symbols Φ consists of

A finite list of equations of the form.

$$
X \bumpeq \varphi X_{1} X_{2} \ldots X_{\operatorname{ar}(\varphi)} \quad \text { where } X, X_{i} \in A \text { and } \varphi \in \Phi
$$

The (finitely many) operation symbols in Φ have a fixed arity ar : $\Phi \rightarrow \mathbb{N}$.

Newman's algorithm: Scheme of a λ-term

The domain is

$$
\text { Name }::=\text { TermName | Var }
$$

Equations are of the form
Name \bumpeq app Name Name
Name $\bumpeq \lambda$ Name Name

Newman's algorithm: Scheme of a λ-term

The domain is

$$
\text { Name }::=\text { TermName | Var }
$$

Equations are of the form

$$
\text { Name } \bumpeq \text { app Name Name } \quad \text { Name } \bumpeq \lambda \text { Name Name }
$$

As notation, we of course just use

Name \bumpeq Name Name \quad Name $\bumpeq \lambda$ Name. Name

Newman's algorithm: Scheme of a λ-term

The domain is

$$
\text { Name }::=\text { TermName | Var }
$$

Equations are of the form

$$
\text { Name } \bumpeq \text { app Name Name } \quad \text { Name } \bumpeq \lambda \text { Name Name }
$$

As notation, we of course just use

$$
\text { Name } \bumpeq \text { Name Name } \quad \text { Name } \bumpeq \lambda \text { Name. Name }
$$

$\mathcal{S}(M)$ generates a list of equation of this form from M
Example
The scheme $\mathcal{S}(M)$ of $M \equiv \lambda f x . f(f x)$ is

$$
U \bumpeq \lambda f . V \quad V \bumpeq \lambda x . W \quad W \bumpeq f Z \quad Z \bumpeq f x
$$

Newman's algorithm: Reduction of a scheme

$$
M \rightarrow \quad S_{1}=\mathcal{S}(M) \quad \rightarrow \text { binary relations } \eta \text { and } \gamma
$$

Newman's algorithm: Reduction of a scheme

$$
\begin{array}{cl}
M \rightarrow & S_{1}=\mathcal{S}(M) \\
& \rightarrow \text { binary relations } \eta \text { and } \gamma \\
& \\
& \text { if } X \eta Y \\
& S_{2}=S_{1}[X:=Y]
\end{array}
$$

Newman's algorithm: Reduction of a scheme

$$
\begin{array}{cl}
M \rightarrow & S_{1}=\mathcal{S}(M) \\
\downarrow & \text { if } X \eta Y \\
S_{2}=S_{1}[X:=Y] & \rightarrow \text { binary relations relations } \eta \text { and } \gamma \\
\vdots \\
\downarrow & \\
S_{f} &
\end{array}
$$

S_{f} is the η-normal form (no more η-reduction exists)
(NB: This is something completely different from the well-known η-reduction in λ-calculus.)

Newman's algorithm: Stratification

Definition
A scheme S is stratified iff no cycles in the γ-relation exist.
Newman's claim
Let $M \in \Lambda$ and $\mathcal{S}(M) \rightarrow_{\eta} S_{f}$ (in normal form).
Then S_{f} is stratified iff M is typable.

Newman's algorithm: Properties

- Reduction is strongly normalizing
- Reduction is locally confluent up to renaming of letters
- Thus the result is unique up to renaming of letters
- Whether S_{f} is stratified is independent of the order of reduction

From Lambda Trees to "Newman Graphs"

A Modern presentation of Newman's algorithm

From Lambda Trees to "Newman Graphs"

A Modern presentation of Newman's algorithm

From Lambda Trees to "Newman Graphs"

A Modern presentation of Newman's algorithm

From Lambda Trees to "Newman Graphs"

$U \xrightarrow{d} V$: the type of V is the domain of the type of U. $U \xrightarrow{r} V$: the type of V is the range of the type of U.

Example

$$
\lambda x .(\lambda y \cdot y x)(x(\lambda z . z))
$$

Equivalence Relation on Nodes \simeq

$\Longrightarrow \quad X \simeq Y$

\Longrightarrow
$X \simeq Y$

Equivalence Relation on Nodes \simeq

$$
\Longrightarrow \quad X \simeq Y
$$

$$
\Longrightarrow \quad X \simeq Y
$$

$$
\Longrightarrow
$$

$$
X \simeq Y
$$

Joining Equivalent Nodes

The graph is in normal form.
It contains a cycle, so the term is not typable.

Joining Equivalent Nodes

The graph is in normal form.
It contains a cycle, so the term is not typable (Theorem).

Newman's algorithm: original form

Definition

Given a scheme S of a λ-term, define the relations γ_{d} and γ_{r} over Name as follows.

$$
\begin{aligned}
Z \bumpeq M N & \Longrightarrow M \gamma_{d} N \wedge M \gamma_{r} Z \\
Z \bumpeq \lambda x . P & \Longrightarrow Z \gamma_{d} x \wedge Z \gamma_{r} P
\end{aligned}
$$

Newman's algorithm: original form

Definition

Given a scheme S of a λ-term, define the relations γ_{d} and γ_{r} over Name as follows.

$$
\begin{aligned}
Z \bumpeq M N & \Longrightarrow M \gamma_{d} N \wedge M \gamma_{r} Z \\
Z \bumpeq \lambda x . P & \Longrightarrow Z \gamma_{d} x \wedge Z \gamma_{r} P
\end{aligned}
$$

Definition

Given a scheme S, define the binary relation η as follows.
$X \eta Y$ iff one of the following conditions hold:

1. $\exists U \in A \exists \gamma_{i}\left[U \gamma_{i} X \wedge U \gamma_{i} Y\right]$
2. $\forall_{\gamma_{i}} \exists U_{\in A}\left[X \gamma_{i} U \wedge Y \gamma_{i} U\right]$
$X \gamma Y$ iff $\exists \gamma_{i}\left[X \gamma_{i} Y\right]$

Newman's algorithm: η-reduction

Definition

An η-reduction in a scheme S replaces X in all equations by Y if $X \neq Y$ and $X \eta Y \in S$.
Notation: $S \stackrel{X:=Y}{\rightarrow} S^{\prime}$, multiple steps are denoted by $S \xrightarrow{\nu}{ }_{\eta} S^{\prime}$ where
ν is a substitution.
A scheme S is η-irreducible if no η-reduction steps are possible, the η-irreducible form of S is denoted by S_{f}.

Lemma

η-reduction is strongly normalising.

Definition

A scheme S is stratified iff no cycles in the γ-relations of S exist.

Newman's algorithm: η-reduction

Example

Take the scheme $S=\mathcal{S}(M)$ of the λ-term $M \equiv f(f x)$.

$$
\quad f \gamma_{r} Z
$$

Newman's algorithm: η-reduction

Example

Take the scheme $S=\mathcal{S}(M)$ of the λ-term $M \equiv f(f x)$.

$$
\quad f \gamma_{r} Z
$$

After one step of η-reduction, $S \xrightarrow{Z:=x} S^{\prime}$, the scheme S^{\prime} is obtained.

$$
\begin{gathered}
\text { W } \begin{array}{c}
W \gamma_{d} x \quad x \bumpeq f x \\
f \gamma_{r} W \quad f \gamma_{r} x
\end{array}
\end{gathered}
$$

Newman's algorithm: η-reduction

Example

Take the scheme $S=\mathcal{S}(M)$ of the λ-term $M \equiv f(f x)$.

$$
\quad f \gamma_{r} Z
$$

After one step of η-reduction, $S \xrightarrow{Z:=x} S^{\prime}$, the scheme S^{\prime} is obtained.

$$
\begin{gathered}
W \bumpeq f_{x} \quad x \bumpeq f_{x} \\
f \gamma_{d} x \quad f \gamma_{r} W \quad f \gamma_{r} x
\end{gathered}
$$

Finally an η-irreducible scheme S_{f} is obtained by $S^{\prime} \xrightarrow{W} \rightarrow=x ~ S_{f}$.

$$
\begin{array}{ll}
x \bumpeq f_{x} & x \bumpeq f_{x} \\
f \gamma_{d} x & f \gamma_{r} x
\end{array}
$$

Relation to the standard algorithm: Wand

Wand's algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ, M, σ)
EQ: set of equations: $\sigma=\tau$

Relation to the standard algorithm: Wand

Wand's algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ, M, σ)
EQ: set of equations: $\sigma=\tau$
Action table:

g	$S G(g)$	$E Q(g)$
(Γ, x, τ)	\emptyset	$\tau=\Gamma(x)$
$(\Gamma, \lambda x \cdot M, \tau)$	$\left(\Gamma ; x: \alpha_{1}, M, \alpha_{2}\right)$	$\tau=\alpha_{1} \rightarrow \alpha_{2}$
$(\Gamma, M P, \tau)$	$(\Gamma, M, \alpha \rightarrow \tau),(\Gamma, P, \alpha)$	\emptyset

Relation to the standard algorithm: Wand

Wand's algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ, M, σ)
EQ: set of equations: $\sigma=\tau$
Action table:

g	$S G(g)$	$E Q(g)$
(Γ, x, τ)	\emptyset	$\tau=\Gamma(x)$
$(\Gamma, \lambda x \cdot M, \tau)$	$\left(\Gamma ; x: \alpha_{1}, M, \alpha_{2}\right)$	$\tau=\alpha_{1} \rightarrow \alpha_{2}$
$(\Gamma, M P, \tau)$	$(\Gamma, M, \alpha \rightarrow \tau),(\Gamma, P, \alpha)$	\emptyset

Adapt Wand's algorithm to generate a scheme of equations of the following (simpler) form

$$
\text { TVar } \bumpeq \text { TVar } \rightarrow \text { TVar }
$$

Relation to the standard algorithm: Wand

Wand's original algorithm:
Action table:

g	$S G(g)$	$E Q(g)$
(Γ, x, τ)	\emptyset	$\tau=\Gamma(x)$
$(\Gamma, \lambda x \cdot M, \tau)$	$\left(\Gamma ; x: \alpha_{1}, M, \alpha_{2}\right)$	$\tau=\alpha_{1} \rightarrow \alpha_{2}$
$(\Gamma, M P, \tau)$	$(\Gamma, M, \alpha \rightarrow \tau),(\Gamma, P, \alpha)$	\emptyset

Relation to the standard algorithm: Wand

Wand's original algorithm:
Action table:

g	$S G(g)$	$E Q(g)$
(Γ, x, τ)	\emptyset	$\tau=\Gamma(x)$
$(\Gamma, \lambda x \cdot M, \tau)$	$\left(\Gamma ; x: \alpha_{1}, M, \alpha_{2}\right)$	$\tau=\alpha_{1} \rightarrow \alpha_{2}$
$(\Gamma, M P, \tau)$	$(\Gamma, M, \alpha \rightarrow \tau),(\Gamma, P, \alpha)$	\emptyset

Adapted Wand's algorithm
Action table:

g	$S G(g)$	$E Q(g)$
(Γ, x, τ)	\emptyset	$\tau=\Gamma(x)$
$(\Gamma, \lambda x \cdot M, \tau)$	$\left(\Gamma ; x: \alpha_{1}, M, \alpha_{2}\right)$	$\tau=\alpha_{1} \rightarrow \alpha_{2}$
$(\Gamma, M P, \tau)$	$\left(\Gamma, M, \alpha_{1}\right),\left(\Gamma, P, \alpha_{2}\right)$	$\alpha_{1}=\alpha_{2} \rightarrow \tau$

Generates a scheme of equations of the form

$$
\text { TVar } \bumpeq \text { TVar } \rightarrow \text { TVar }
$$

Relation to the standard algorithm

Scheme of type equations

Use Wand's algorithm to generate a scheme of equations of the following form

$$
\text { TVar } \bumpeq \text { TVar } \rightarrow \text { TVar }
$$

Example
The scheme $\mathcal{W}(M)$ of $M \equiv \lambda^{\lambda f^{\alpha} \cdot \lambda x^{\beta} \cdot \underbrace{f^{\alpha}(\overbrace{f^{\alpha} x^{\beta}}^{\delta})}_{t}}$ is

$$
t \bumpeq \alpha \rightarrow \rho \quad \rho \bumpeq \beta \rightarrow \varepsilon \quad \alpha \bumpeq \delta \rightarrow \varepsilon \quad \alpha \bumpeq \beta \rightarrow \delta
$$

Relation to the standard algorithm

- Scheme of type equations (Wand) \cong scheme of λ-term (Newman)
- Computation of most general unifier \cong reduction of schemes

Relation to the standard algorithm

- Scheme of type equations (Wand) \cong scheme of λ-term (Newman)
- Computation of most general unifier \cong reduction of schemes

Corollary

- Newman's algorithm can be extended to compute a principal type / principal pair
- Newman's algorithm is correct

Extension to weak polymorphism

Weak polymorphic λ-calculus

$$
\begin{gathered}
\text { Type }_{\omega}::=\left(\forall \text { TVar.Type }{ }_{\omega}\right) \mid \text { Type } \\
\frac{\Gamma, x: \sigma \vdash P: \tau}{\Gamma \vdash \lambda x . P: \sigma \rightarrow \tau} \sigma, \tau \in \text { Type } \\
\frac{\Gamma \vdash M: \sigma}{\Gamma \vdash M: \forall \alpha \cdot \sigma} \alpha \notin F T V(\Gamma) \\
\frac{\Gamma \vdash M: \forall \alpha \cdot \sigma}{\Gamma \vdash M: \sigma[\alpha:=\tau]} \tau \in \text { Type }
\end{gathered}
$$

Joining Equivalent Nodes

$\lambda x .(\lambda y . y x)(x(\lambda z . z))$ can be typed in weak polymorphic types as

$$
x: \forall \alpha . \alpha \rightarrow \alpha \vdash(\lambda y \cdot y x)(x(\lambda z \cdot z)): ?
$$

Joining Equivalent Nodes

$\lambda x .(\lambda y . y x)(x(\lambda z . z))$ can be typed in weak polymorphic types as

$$
x: \forall \alpha . \alpha \rightarrow \alpha \vdash(\lambda y . y x)(x(\lambda z . z)): ?
$$

Joining Equivalent Nodes

The graph is in normal form.
It contains no cycle, so the term is typable.

Conclusions / Further research

- Not so different after all
- Original machinery quite heavy
- Nice tree representation of the algorithm
- Extend to let polymorphism?
- Extend to dependent types?

Questions

?

