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Newman’s article



About M. H. Newman

I English topologist with side-interest in logic

I Newman’s Lemma
“On theories with a combinatorial definition of equivalence”.
Annals of Mathematics, 1942.

I Wrote “Stratified Systems of Logic” in 1943
I Abstract algorithm to decide typability
I Quine’s “New Foundation” was his starting point
I Also works on a variant of λ→ à la Curry
I Returns true or false instead of a principal type
I At first sight very different from the standard algorithm



Hindley

I J R Hindley: M. H. Newman’s typability algorithm for
lambda-calculus, J. Logic and Computation 18(2): 229-238
(2008) 17.
(Talk at Jan Willem Klop’s 60th Birthday, 2005)

I Question: How does Newman’s algorithm compare to the
standard typability algorithm?



Simple Type Theory à la Curry

Λ ::= V | (Λ Λ) | (λV .Λ)

T ::= TypeVar | T → T

Contexts: Γ = x1 : σ1, . . . , xn : σn (xi ∈ V , σi ∈ T )

(var) Γ ` x : σ if x : σ ∈ Γ

(app)
Γ ` M : σ → τ Γ ` P : σ

Γ ` M P : τ

(abs)
Γ, x : σ ` N : τ

Γ ` λx .N : σ → τ



Simple Type Theory à la Newman

Λ ::= V | (Λ Λ) | (λV .Λ)

Only terms that satisfy the Barendregt convention: So, in a term:

I all bound variables are different from the free ones

I all bound variables are different.

Not x (λx .x)
Not (λx .x) (λx .x)



Newman’s algorithm: Schemes

Newman’s algorithm is a system for rewriting the scheme of a
term. A scheme over a domain A and set of operation symbols Φ
consists of

A finite list of equations of the form.

X l ϕX1X2 . . .Xar(ϕ) where X ,Xi ∈ A and ϕ ∈ Φ

The (finitely many) operation symbols in Φ have a fixed arity
ar : Φ→ N.



Newman’s algorithm: Scheme of a λ-term

The domain is
Name ::= TermName | Var

Equations are of the form

Name l app Name Name Name l λ Name Name

As notation, we of course just use

Name l Name Name Name l λName.Name

S(M) generates a list of equation of this form from M

Example

The scheme S(M) of M ≡ λfx .f (fx) is

U l λf .V V l λx .W W l fZ Z l fx
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Newman’s algorithm: Reduction of a scheme

M → S1 = S(M) → binary relations η and γ

↓ if X η Y

S2 = S1[X := Y ] → binary relations η and γ

...
↓

Sf

Sf is the η-normal form (no more η-reduction exists)

(NB: This is something completely different from the well-known
η-reduction in λ-calculus.)
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Newman’s algorithm: Stratification

Definition
A scheme S is stratified iff no cycles in the γ-relation exist.

Newman’s claim
Let M ∈ Λ and S(M)→η Sf (in normal form).

Then Sf is stratified iff M is typable.



Newman’s algorithm: Properties

I Reduction is strongly normalizing

I Reduction is locally confluent up to renaming of letters

I Thus the result is unique up to renaming of letters

I Whether Sf is stratified is independent of the order of
reduction



From Lambda Trees to “Newman Graphs”
A Modern presentation of Newman’s algorithm
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From Lambda Trees to “Newman Graphs”

U
d→ V : the type of V is the domain of the type of U.

U
r→ V : the type of V is the range of the type of U.
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Example

λx . (λy . y x) (x (λz . z))
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Equivalence Relation on Nodes '
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Joining Equivalent Nodes
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Joining Equivalent Nodes
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Joining Equivalent Nodes
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The graph is in normal form.
It contains a cycle, so the term is not typable.



Joining Equivalent Nodes
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The graph is in normal form.
It contains a cycle, so the term is not typable (Theorem).



Newman’s algorithm: original form

Definition
Given a scheme S of a λ-term, define the relations γd and γr over
Name as follows.

Z l MN =⇒ M γd N ∧M γr Z

Z l λx .P =⇒ Z γd x ∧ Z γr P

Definition
Given a scheme S , define the binary relation η as follows.
X η Y iff one of the following conditions hold:

1. ∃U∈A∃γi [U γ i X ∧ U γ i Y ]

2. ∀γi∃U∈A[X γi U ∧ Y γi U]

X γ Y iff ∃γi [X γ i Y ]
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Newman’s algorithm: η-reduction

Definition
An η-reduction in a scheme S replaces X in all equations by Y if
X 6= Y and X η Y ∈ S .

Notation: S
X :=Y→η S ′, multiple steps are denoted by S

ν
�η S ′ where

ν is a substitution.
A scheme S is η-irreducible if no η-reduction steps are possible, the
η-irreducible form of S is denoted by Sf .

Lemma
η-reduction is strongly normalising.

Definition
A scheme S is stratified iff no cycles in the γ-relations of S exist.



Newman’s algorithm: η-reduction

Example

Take the scheme S = S(M) of the λ-term M ≡ f (fx).

W l fZ Z l fx

f γd Z f γr W f γd x f γr Z

After one step of η-reduction, S
Z :=x→η S ′, the scheme S ′ is

obtained.

W l fx x l fx

f γd x f γr W f γr x

Finally an η-irreducible scheme Sf is obtained by S ′
W :=x→η Sf .

x l fx x l fx

f γd x f γr x

There are no cycles, thus we conclude that Sf is stratified.
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Relation to the standard algorithm: Wand

Wand’s algorithm produces a scheme of type equations.
These are solved using unification.
SG: set of goals: triples (Γ,M, σ)
EQ: set of equations: σ = τ

Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ,P, α) ∅

Adapt Wand’s algorithm to generate a scheme of equations of the
following (simpler) form

TVar l TVar→ TVar
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Relation to the standard algorithm: Wand
Wand’s original algorithm:
Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ,P, α) ∅

Adapted Wand’s algorithm
Action table:

g SG (g) EQ(g)

(Γ, x , τ) ∅ τ = Γ(x)
(Γ, λx .M, τ) (Γ; x : α1,M, α2) τ = α1 → α2

(Γ,M P, τ) (Γ,M, α1), (Γ,P, α2) α1 = α2 → τ

Generates a scheme of equations of the form
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Relation to the standard algorithm
Scheme of type equations

Use Wand’s algorithm to generate a scheme of equations of the
following form

TVar l TVar→ TVar

Example

The scheme W(M) of M ≡ λf α. λxβ. f α(

δ︷ ︸︸ ︷
f αxβ)︸ ︷︷ ︸
ε︸ ︷︷ ︸

ρ︸ ︷︷ ︸
t

is

t l α→ ρ ρ l β → ε α l δ → ε α l β → δ



Relation to the standard algorithm

I Scheme of type equations (Wand) ∼= scheme of λ-term
(Newman)

I Computation of most general unifier ∼= reduction of schemes

Corollary

I Newman’s algorithm can be extended to compute a principal
type / principal pair

I Newman’s algorithm is correct
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Extension to weak polymorphism

Weak polymorphic λ-calculus

Typeω ::= (∀TVar.Typeω) | Type

Γ, x : σ ` P : τ
σ, τ ∈ Type

Γ ` λx .P : σ → τ

Γ ` M : σ
α 6∈ FTV (Γ)

Γ ` M : ∀α.σ

Γ ` M : ∀α.σ
τ ∈ Type

Γ ` M : σ[α := τ ]



Joining Equivalent Nodes

λx . (λy . y x) (x (λz . z)) can be typed in weak polymorphic types as

x : ∀α.α→ α ` (λy . y x) (x (λz . z)) :?
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λ

λ

y

@

y d

r

r

d

x1

A1

r

=A2=

x2

r d
d

z=@

z

r

λ y

@

y d

r

r

d

x1

A1

r

x2

r d
d

The graph is in normal form.
It contains no cycle, so the term is typable
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Conclusions / Further research

I Not so different after all

I Original machinery quite heavy

I Nice tree representation of the algorithm

I Extend to let polymorphism?

I Extend to dependent types?



Questions

?


