Newman's Typability Algorithm

Herman Geuvers (joint work with Robbert Krebbers)
Radboud University Nijmegen
Technical University Eindhoven
The Netherlands

November 30, 2009

Newman's article

PROCEEDINGS OF THE
Cambridge Philosophical Society

Vor. 39 June 1943 Part 2

STRATIFIED SYSTEMS OF LOGIC
By M. H. A. NEWMAN
Received 2 Scptember 1942

The suffixes used in logic to indicate differences of type may be regarded either as
belonging to the formalism itself, or as being part of the machinery for deciding which
rows of symbols (without suffixes) are to be admitted as significant. The two different
attitudes do not necessarily lead to different formalisms, but when types are regarded
as only one way of regulating the calculus it is natural to consider other possible ways,
in particular the direct characterization of the significant formulae. Direct criteria
for stratification were given by Quine, in his ‘New Foundations for Mathematical
Logic’(7). In the corresponding typed form of this theory ordinary integers are adequate
as type-suffixes, and the direct description is correspondingly simple, but in other
theories, including that recently proposed by Church(4), a partially ordered set of
types must be used. In the present paper criteria, equivelent to the existence of &
correct typing, are given for a general class of formalisms, which includes Chuxch’s
system, several systems proposed by Quine, and (with some slight modifications, given
in the last paragraph) Principia Mathematica. (The discussion has been given this
general form rather with a view to clarity than to comprehensiveness.)

About M. H. Newman

» English topologist with side-interest in logic

» Newman’'s Lemma
“On theories with a combinatorial definition of equivalence”.
Annals of Mathematics, 1942.

» Wrote “Stratified Systems of Logic” in 1943

» Abstract algorithm to decide typability
» Quine's “New Foundation” was his starting point
» Also works on a variant of A— a la Curry

» Returns true or false instead of a principal type
» At first sight very different from the standard algorithm

Hindley

» J R Hindley: M. H. Newman's typability algorithm for
lambda-calculus, J. Logic and Computation 18(2): 229-238
(2008) 17.

(Talk at Jan Willem Klop's 60th Birthday, 2005)

» Question: How does Newman's algorithm compare to the
standard typability algorithm?

Simple Type Theory a la Curry

AN == V(AN | (AV.A)
T == TypeVar| T —>T

Contexts: [=x1 :01,...,xp:0, (x; € V,0;,€ T)
(var) TkEx:o fx:0c€el

r=M:o—r N=P:o
rEMP:1

(app)

MNx:ocFN:T
FrN=Xx.N:oc—r

(abs)

Simple Type Theory a la Newman

A = V(AN | (AV.A)

Only terms that satisfy the Barendregt convention: So, in a term:
» all bound variables are different from the free ones
» all bound variables are different.

Not x (Ax.x)
Not (Ax.x) (Ax.x)

Newman's algorithm: Schemes

Newman's algorithm is a system for rewriting the scheme of a
term. A scheme over a domain A and set of operation symbols ¢
consists of

A finite list of equations of the form.

X = pX1 X2 .. Xar(p) where X, X; € Aand p € ®

The (finitely many) operation symbols in ¢ have a fixed arity
ar: ® — N.

Newman's algorithm: Scheme of a A-term

The domain is
Name ::= TermName | Var

Equations are of the form

Name = app Name Name Name = A Name Name

Newman's algorithm: Scheme of a A-term

The domain is
Name ::= TermName | Var

Equations are of the form
Name = app Name Name Name = A Name Name
As notation, we of course just use

Name = Name Name Name = AName.Name

Newman's algorithm: Scheme of a A-term

The domain is
Name ::= TermName | Var

Equations are of the form
Name = app Name Name Name = A Name Name
As notation, we of course just use
Name = Name Name Name = AName.Name

S(M) generates a list of equation of this form from M

Example
The scheme S(M) of M = Ax.f(fx) is

U= M.V V = Ax.W W= fz Z = fx

Newman's algorithm: Reduction of a scheme

M — S51=8(M) — binary relations 1 and ~

Newman's algorithm: Reduction of a scheme

M — S51=8(M) — binary relations 1 and ~
! fXnY

Sy =Si[X = Y]

Newman's algorithm: Reduction of a scheme

M — S51=8(M) — binary relations 1 and ~
! ifXnY

So =S5i1[X:=Y] — binary relations n and ~

!

S¢

S¢ is the n-normal form (no more 7-reduction exists)

(NB: This is something completely different from the well-known
n-reduction in A-calculus.)

Newman's algorithm: Stratification

Definition
A scheme S is stratified iff no cycles in the 7-relation exist.

Newman's claim
Let M € A and S(M) —,, 5¢ (in normal form).

Then S is stratified iff M is typable.

Newman's algorithm: Properties

» Reduction is strongly normalizing
» Reduction is locally confluent up to renaming of letters
» Thus the result is unique up to renaming of letters

» Whether S¢ is stratified is independent of the order of
reduction

From Lambda Trees to “Newman Graphs”

A Modern presentation of Newman's algorithm

From Lambda Trees to “Newman Graphs”

A Modern presentation of Newman's algorithm

Ax AX
A / | \
d
d

From Lambda Trees to “Newman Graphs”

A Modern presentation of Newman's algorithm

Ax Ax
& / | \
d
d

N —

From Lambda Trees to “Newman Graphs”

U2V the type of V is the domain of the type of U.
U -5 V: the type of V is the range of the type of U.

Ax Ax

& |
d

d

@

N —

Example

Equivalence Relation on Nodes ~

S
/
\

V=

Y
X

Equivalence Relation on Nodes ~

3 X

b
Ty
¢ X

s
ey

X_ L X_ o
\U and \
vl T

Joining Equivalent Nodes

Joining Equivalent Nodes

Joining Equivalent Nodes

Joining Equivalent Nodes

Joining Equivalent Nodes

Joining Equivalent Nodes

Joining Equivalent Nodes

ky\r;@
r
. X*d>7uz
r r

Joining Equivalent Nodes

ky\r;@
r
. X*d>7uz
r r
d
d

Joining Equivalent Nodes

\@
r ANy F
X—>=Az
r r r
d d /Xid)7LZ
/ r
y d z

The graph is in normal form.
It contains a cycle, so the term is not typable.

Joining Equivalent Nodes

\@
r Ay T
X—>=Az
r r r
d d /Xid)7LZ
y d z

The graph is in normal form.
It contains a cycle, so the term is not typable (Theorem).

Newman's algorithm: original form

Definition
Given a scheme S of a A-term, define the relations 4 and ~, over
Name as follows.

Z=MN — MyyNAM~, Z
=P = Z~ygxNZ~,P

Newman's algorithm: original form

Definition
Given a scheme S of a A-term, define the relations 4 and ~, over
Name as follows.

Z=MN — MyyNAM~, Z
=P = Z~ygxNZ~,P

Definition
Given a scheme S, define the binary relation 7 as follows.
X n Y iff one of the following conditions hold:

L. Jyeady[U~i X AUy Y]
2. ¥y, JuealX vi UNY ~; U]

X~ Y iff 3,[X i Y]

Newman's algorithm: 7-reduction

Definition

An n-reduction in a scheme S replaces X in all equations by Y if
X#Yand XnYeS.

Notation: S X:—:>77Y S’, multiple steps are denoted by S _Zn S’ where
v is a substitution.

A scheme S is n-irreducible if no n-reduction steps are possible, the
n-irreducible form of S is denoted by Sf.

Lemma
n-reduction is strongly normalising.

Definition
A scheme S is stratified iff no cycles in the «-relations of S exist.

Newman's algorithm: 7-reduction

Example
Take the scheme S = S(M) of the A\-term M = f(fx).

W=fz Z = fx

Newman's algorithm: 7-reduction

Example
Take the scheme S = S(M) of the A\-term M = f(fx).

W=fz Z = fx

After one step of n-reduction, S Z—>:7;< S’, the scheme S’ is
obtained.

W = fx X = fx
fvgx ‘f’y,W‘ ‘f’yrx‘

Newman's algorithm: 7-reduction

Example
Take the scheme S = S(M) of the A\-term M = f(fx).

W=fz Z = fx

After one step of n-reduction, S Z—:>:77X S’, the scheme S’ is
obtained.

W = fx X = fx
fvgx ‘f’y,W‘ ‘f’yrx‘

Finally an n-irreducible scheme S¢ is obtained by S’ W—>:77X S¢.

x = fx x = fx

f g x fyrx

Relation to the standard algorithm: Wand

Wand's algorithm produces a scheme of type equations.
These are solved using unification.

SG: set of goals: triples (I', M, o)

EQ: set of equations: o =7

Relation to the standard algorithm: Wand

Wand's algorithm produces a scheme of type equations.
These are solved using unification.

SG: set of goals: triples (I', M, o)

EQ: set of equations: o =7

Action table:
g 5G(g) EQ(g)
(M,x,7) 1] T =T(x)
(Mo .M, 1) | (T x: a1, M,) T=a; — a
(rMP,r) | (MM, — 1), (T, Pa) | 0

Relation to the standard algorithm: Wand

Wand's algorithm produces a scheme of type equations.
These are solved using unification.

SG: set of goals: triples (I', M, o)

EQ: set of equations: o =7

Action table:
g 5G(g) EQ(g)
(Fx,7) 0 T=T(x)
(Mo .M, 1) | (T x: a1, M,) T=a; — a
(rMP,r) | (MM, — 1), (T, Pa) | 0

Adapt Wand's algorithm to generate a scheme of equations of the
following (simpler) form

TVar = TVar — TVar

Relation to the standard algorithm: Wand
Wand's original algorithm:

rMP,T)

Action table:
g 56G(g) EQ(g)
(Mx,) 0 T =T(x)
(Mo .M, 71) | (T x a1, M, ap) T=a1 — a
((M, — 7),(F,P,x) | O

Relation to the standard algorithm: Wand
Wand's original algorithm:

Action table:
g 5G(g) EQ(g)
(Mx,) 0 T =T(x)
(Mo .M, 71) | (T x a1, M, ap) T=a1 — a
(rMpP,r) | (TM,a— 1), (T, P,a) | 0
Adapted Wand's algorithm
Action table:
g 5G(g) EQ(g)
(Fyx,7) T=1T(x)

0
(MM, 1) | (M x: a1, M, an) T=01— Q
(rMpP,7r) | (IM,a1),(T,P,a2) |1 =ap — T

Generates a scheme of equations of the form

TVar = TVar — TVar

Relation to the standard algorithm

Scheme of type equations

Use Wand'’s algorithm to generate a scheme of equations of the
following form
TVar = TVar — TVar

Example
5

—~
The scheme W(M) of M = Af®. \x?. £ (F¥xP) is

Relation to the standard algorithm

» Scheme of type equations (Wand) = scheme of A-term
(Newman)

» Computation of most general unifier 2 reduction of schemes

Relation to the standard algorithm

» Scheme of type equations (Wand) = scheme of A-term
(Newman)

» Computation of most general unifier 2 reduction of schemes

Corollary

» Newman's algorithm can be extended to compute a principal
type / principal pair
» Newman'’s algorithm is correct

Extension to weak polymorphism
Weak polymorphic A-calculus
Type,, ::= (VTVar.Type,,) | Type

MNx:cFP:7T
rMN-MP:0c—T1

o, 7 € Type

rM-M™m:o

=M :Va.o

N=M:Va.o
MM :ofa:=T]

ag FTV(IN)

T € Type

Joining Equivalent Nodes

Ax. (Ay.y x) (x (A\z.z)) can be typed in weak polymorphic types as

x :Va.ao — ab (Ay.yx)(x(A\z.2)) 7

Joining Equivalent Nodes

Ax. (Ay.y x) (x (A\z.z)) can be typed in weak polymorphic types as

x :Va.ao — ab (Ay.yx)(x(A\z.2)) 7

@
/r
Ay d @
r r
d @ X2 — =LAz
/I’ r \I‘
yi'xl
r A2
d

Joining Equivalent Nodes

r?

x24>kz

H’N Z

Al

Joining Equivalent Nodes

A

x24>kz d @ x24d>7uz

yﬁxw BN

Al Al

Joining Equivalent Nodes

Joining Equivalent Nodes

A
Ay—d A2 Y
r

r d

Joining Equivalent Nodes

Joining Equivalent Nodes

Ay A
r
d @] d @
Az=@ /r /r
—A2= y- 9y yH“

. \\

The graph is in normal form.
It contains no cycle, so the term is typable.

Conclusions / Further research

Not so different after all
Original machinery quite heavy
Nice tree representation of the algorithm

Extend to /et polymorphism?

vV v v v Y

Extend to dependent types?

Questions

