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Preface

This document contains the first draft of lecture notes for the course Talen en Auto-
mata (Languages and Automata) that I teach at the Radboud University Nijmegen. It
is a first year, first semester course, that runs for 8 weeks, with one 90 min lecture a
week. The aim of the course is to introduce students to the mathematics of regular
languages, context-free languages and finite state machines. It covers core material in
Computer Science that every student should eventually be familiar with. The subjects
included in this course are best learned trough practice and hence every section ends
with an extensive set of exercises. The exercises marked with a † are more challeng-
ing. In the appendix, I include a special set of exercises on induction and exams/tests
from previous years.
There are a lot of great books and lecture notes on automata theory. I recommend
the following

– J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata Theory, Languages
and Computation.

– D. Kozen. Automata and Computability.

– E. Rich. Automata, Computability and Complexity: Theory and Applications.

– T. Sudkamp. Languages and Machines.

– Andrew Pitts. Lecture Notes on Regular Languages and Finite Automata. Available
from http://www.cl.cam.ac.uk/Teaching/1213/RLFA/materials.html.

Sudkamp’s book is also used in the Berekenbaarheid (Computability) course, taught
by Freek Wiedijk.
The material in these notes is based on several sources including the above books/notes,
and the author’s own notes. Any errors are of course the author’s responsibility. I
kindly ask the readers to please report any error found to alexandra@cs.ru.nl.
Updated versions of these notes will be produced and made available through the
author’s webpage.
I am grateful for the help and feedback of all the students and teaching assistants
in the various editions of the course. A particular thanks to: Henning Basold, for
designing exercises for the edition 2013/2014 of the course; Tim Steenvoorden, for
his constant feedback on all aspects of the course which has definitely helped me
greatly improving the lectures; and Bas Westerbaan, for his help in designing and
grading exercises and for his constant availability to discuss about subtleties of proofs
and various aspects of Mathematics.

Alexandra Silva
Nijmegen, December 2013

http://www.cl.cam.ac.uk/Teaching/1213/RLFA/materials.html




Note

Various typos were fixed in the 2014/2015 edition of course. I am grateful for feed-
back from students, in particular Lars Jellema, Rom Nijholt, and Rick Schouten, who
thoroughly read the notes in the first week of the course and pointed out several typos
and inconsistencies.

Alexandra Silva
Nijmegen, November 2014





Lecture 1

Regular Languages and Expressions

In this first lecture, we introduce languages over an alphabet and operations on lan-
guages. We characterize the subclass of regular languages and introduce regular sets.

1.1 Languages

The word language is used in various contexts – think, for instance, programming
language (C, Java, . . . ) or natural language (English, Ducth, . . . ) – and the intuitive
meaning is easily understood. In this course, we will be studying formal languages
over a given alphabet and subclasses thereof. For the purpose of this course, a lan-
guage is a (sub)set of words over an alphabet. Let us now precisely define all the
ingredients involved.

1.1.1 DEFINITION (Alphabet). An alphabet is a finite set, denoted by capital letter A,
B, . . . , whose elements are referred to as symbols or letters. ♣

1.1.2 EXAMPLE (Alphabets).

1. The set A= {x , y,+, 1, 2, 3} is an alphabet containing alphanumeric symbols.

2. The set A = {a, b, c, . . . , z} is an alphabet containing the usual letters of the
English alphabet.

3. The set A= {dog, cat, mother, is} is an alphabet with 4 symbols.

4. The set N= {1, 2,3,4, 5, . . .} is not an alphabet because it is not finite. ♠

1.1.3 DEFINITION (Word). A word of length n over an alphabet A is just a finite
list/sequence of elements of A. The empty word is the empty sequence which will
be denoted by λ. ♣

We will denote by leng th(u) or |u| the number of symbols of a given word u. We will
denote by |u|a the function that counts the number of occurrences of a letter a in the
word u.

1.1.4 EXAMPLE (Strings).

1. students, dogs, set are words over the usual latin alphabet A = {a, b, c, . . . , z} of
length 8, 4 and 3, respectively. We have |students|s = 2 and |set|t = 1.
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8 Lecture 1. Regular Languages and Expressions

2. x+1, x=2 and 3+2 are words over the alphabet A= {x , 1, 2, 3,+,=}.

3. The students will do their homework is a word, of length 11, over the alphabet

A= {The, homework, wil l, do, students, their, , dog, cat}.

1.1.5 DEFINITION (The set of all words). We shall denote by A∗ the set defined by

A∗ = set of all words over A of any finite length.

The set A∗ can be defined inductively by the following two rules.

1. λ, the empty word, is an element of A∗.

2. If w ∈ A∗, then, for all a ∈ A, the word aw ∈ A∗. ♣

The second rule in the above definition could be equivalently replaced by

If w ∈ A∗, then, for all a ∈ A, the word wa ∈ A∗.

Note that the set A∗ has the following two properties.

– A∗ is non-empty, since it always contains the empty word λ.

– if A is non-empty, then A∗ is infinite, since, for any a ∈ A λ, a, aa, aaa, . . . are in
A∗.

1.1.6 EXAMPLE (Examples of A∗).

1. If A= {a} then A∗ contains exactly λ, a, aa, aaa, . . ..

2. If A= {a, b} then A∗ contains

λ, a, b, aa, ab, ba, bb, aaa, . . .

3. If A= ; then A∗ = {λ}. ♠

1.1.7 DEFINITION (Language). Let A be an alphabet. A language L is a subset of all
the words over A, that is, L ⊆ A∗. ♣

1.1.8 EXAMPLE (Languages).

1. ;, the language with no words, and {λ}, the language containing only the empty
word, are languages over any alphabet.

2. {λ, a, aaaa} and {w | |w| is odd} are languages over {a}. Note that the second
language, of words of odd length, does not contain the empty word. The empty
word is always in A∗ but not necessarily in a given language.

3. {w | w = aa · · · abb · · · b and |w|a = |w|b} is a language over {a, b} containing all
words that have a number of a’s followed by the the same number of b’s.
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1.2 Operations on Words and Languages

First we define the following operations on words: concatenation and reverse.

If u and v are words we can form the word uv which is called the concatenation of u
and v. For instance, the concatenation of abc and de is abcde.

1.2.1 DEFINITION (Concatenation of words). The concatenation is a binary opera-
tion ·: A∗ × A∗→ A∗ defined inductively as follows.

λ · u= u (aw) · u= a(w · u). ♣

We will often drop the · and just write uv for u · v.

1.2.2 EXAMPLE. Let A= {a, b, c} and consider the words u = ca, v = b and w = aaa.
We have

uv = cab wu= aaaca vv = bb vu= bca.

Note that uv = cab 6= bca = vu: the concatenation is not a commutative operation. ♠

1.2.3 EXAMPLE (Intermezzo: a proof by induction). Let us illustrate the use of in-
duction in the definition of functions over A∗. The function | − |a that returns the
number of occurrences of a in a word is defined as

|λ|a = 0 |bw|a =
¨

1+ |w|a if b = a
|w|a otherwise

.

Let us now prove that, given two words u, v ∈ A∗ and a ∈ A,

|uv|a = |u|a + |v|a.

By induction on u. Base case: u= λ.

|λv|a = |v|a = 0+ |v|a = |λ|a + |v|a.

Inductive step: u = bw. Suppose |wv|a = |w|a + |v|a as induction hypothesis. If b = a,
then

|bwv|a = 1+ |wv|a by definition of | − |a, since a = b
= 1+ |w|a + |v|a by induction hypothesis
= |bw|a + |v|a. by definition of | − |a, since a = b

If b 6= a, then

|bwv|a = |wv|a by definition of | − |a, since a 6= b
= |w|a + |v|a by induction hypothesis.
= |bw|a + |v|a. by definition of | − |a, since a 6= b ♠
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The exercises contain more material on induction and there is also an extended exer-
cise provided in the appendix.
We now define another operation on words, namely the reverse of a word u, which
we denote by uR and which is the word with the order of the letters reversed. E.g.
(abc)R = cba and (aa)R = aa.

1.2.4 DEFINITION (Reverse of a word). The function (−)R : A∗→ A∗ is defined by

λR = λ (aw)R = wR · a.

This function has interesting properties such as (uR)R = u and (uv)R = vRuR. These
can be proved by induction.
The above operations on words, concatenation and reverse, can be extended to lan-
guages.

1.2.5 DEFINITION (Concatenation and reverse of languages). Given two languages
U , V ⊂ A∗ their concatenation is defined as

UV = {uv | u ∈ U , v ∈ V}

and the reverse of U as
UR = {uR | u ∈ U}. ♣

These operations inherit some properties of the corresponding word operations. For
instance, we have (UR)R = U and UV 6= V U in general.

1.2.6 EXAMPLE (Concatenation and reverse of languages). Let U = {acb, a,λ}, V =
{bca, a,λ} and W = {cc} be languages over the alphabet A= {a, b, c}. We have

– UV = {acbbca, acba, acb, abca, aa, a, bca, a,λ} (why is λ ∈ UV?).

– VW = {bcacc, acc, cc}.

– V R = {acb, a,λ}= U and W R =W . ♠

Since languages are just sets we also have the union of languages

U ∪ V = {w | w ∈ U or w ∈ V}

which contains all the words of both languages. The concatenation operation, to-
gether with the union, can be used to define an iteration operator on languages,
usually referred to as Kleene star. Let Un denote the concatenation of U with itself n
times (U0 = {λ}). For instance U3 = UUU = {uvw | u, v, w ∈ U}. The Kleene star of
language U ⊆ A∗ is defined as

U∗ =
⋃

n∈N

Un = U0 ∪ U1 ∪ U2 ∪ · · ·

U∗ contains all words that can be built from elements of U , that is

U∗ = {u1u2 · · ·un | u1, . . . , un ∈ U , n ∈ N}.
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1.2.7 EXAMPLE (Kleene star). Let A= {a, b} and U = {ab, ba}. We have

U0 = {λ}
U1 = U = {ab, ba}
U2 = UU = {abab, abba, baab, baba}
...

So, the set U∗ = U0 ∪ U1 ∪ · · · contains exactly the words

λ, ab, ba, abab, abba, baba, baab, bababa, ababba, . . . ♠

Operations on languages can be used to specify/restrict the words that belong to a
certain languages. For instance,

1. L = {a, b}∗{a} contains all words, over {a, b}, that end with an a.

2. L = {a, b}∗{b}{a, b}∗ contains all words, over {a, b}, that have at least one b.

3. L = {bb}∗ contains all words, over {b}, that have an even length.

Sometimes it is convenient to denote all the non-empty words in X ∗ that is X ∗ \ {λ}.
We will use X+ to denote X ∗ \ {λ}= X X ∗.

1.3 Regular sets and Expressions

If one defines languages using the operations defined above and starting from the
basic languages ;, {λ} and {a} this gives exactly the class of languages known as
regular languages.

1.3.1 DEFINITION (Regular sets over A). Let A be an alphabet. The regular sets over
A are defined inductively as follows

1. ;, {λ} and {a} (for every a ∈ A) are regular sets over A.

2. Let U and V be regular sets over A. Then,

U ∪ V, UV, and U∗

are regular sets over A.

A language is called regular if it is defined by a regular set. ♣

1.3.2 EXAMPLE (Regular Languages). Let A= {a, b}.

1. A is a regular set because
{a, b}= {a} ∪ {b}
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2. The language
L = {w ∈ A∗ | |w|b ≥ 1}

is regular. In particular, L = A∗{b}A∗ (and we know from above that A is regular).

3. The language
L = {w ∈ A∗ | |w| is even}

is regular, because L = (AA)∗ = ({a, b}{a, b})∗ (and we know from above that A
is regular). ♠

1.4 Exercises

1. Define formally the length function

| − |: A∗→ N

which returns the number of characters/symbols of a word in A∗, using struc-
tural induction.

2. Prove by induction that, for all u, w ∈ A∗,

|uw| = |u|+ |w|

3. Which of the following properties hold for all u, v, w ∈ A∗?

a) uv = vu

b) (uv)w = u(vw)

c) uR = u

For the ones that do not hold provide a counter-example.

4. Prove that, for any u, v ∈ A∗,

a) (uR)R = u and

b) (uv)R = vRuR.

5. Let Lk =
�

w ∈ A∗
�

� |w|a = k
	

be the languages with k occurrences of the letter a
in a word w. Write down the sets for the following concatenations

a) L5;,
b) L5{λ}, and

c) L5 L2.

6. Describe the following languages over the alphabet A= {a, b} using regular set
operations.
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a) {x | x ∈ A∗, |x |> 3, and x contains at least one a}.
b) {x | x ∈ A∗, |x |> 3, and x contains an even number of b’s}.
c) {x | x ∈ A∗, |x |> 3, and x contains an even number of a’s and such that all

a’s occur before any occurrence of b}.
d) {x | x ∈ A∗, |x | is even and x contains exactly two a’s}.

7. Consider the language
L =

�

w ∈ A∗
�

� |w|a is odd
	

a) Show that L is regular. This means, that you have to construct a regular
language X using the basic building blocks given in the lecture (;, {λ}, {a},∪,
concatenation and star) and then show, that X is the same as L.
Hint: to show, that X = L, show X ⊆ L and L ⊆ X separately.

b) Show that LR is regular.

8. (†) Let X be a language over an alphabet A. We say that X is transitive if X X ⊆ X
and reflexive if λ ∈ X . Prove that for any language L, L∗ is the smallest reflexive
and transitive set containing L. (That is, show that L∗ is reflexive and transitive
and that if X is any other reflexive and transitive set satisfying L ⊆ X , then
L∗ ⊆ X .)





Lecture 2

Regular Expressions and Deterministic Finite Automata

In this second lecture, we introduce regular expressions as an alternative formalism
to denote regular languages. We then take a more operational view on languages and
define deterministic finite automata.

2.1 Regular Expressions

The notation above for regular languages is quite verbose (e.g. the language with
only one letter requires 3 symbols). In order to have a more user friendly syntax to
denote regular languages, regular expressions were introduced. Regular languages
play an important role in formal languages, pattern recognition and the theory of
finite state systems. Most of you have come across regular expressions in different
programming languages or in text editors when searching for a certain pattern in a
text.

2.1.1 DEFINITION (Regular expressions over A). Let A be an alphabet. The regular
expressions over A are defined inductively as follows

1. 0, 1 and a (for every a ∈ A) are regular sets over A.

2. Let r and s be regular expressions over A. Then,

(r + s), rs, and (r)∗

are regular expressions over A. ♣

Examples of regular expressions include (a+ b), ab, (a+ b)ab and (ab)∗.

Remark (Binding preference). In the definition above we implicitly assume that the
alphabet A does not contain the symbols

0,1, (, ).+, ∗

Then, concretely, the set of regular expressions form a language over the alphabet
containing A and these extra 6 symbols.
To make things more readable, we drop as many parentheses as possible by adopting
the following convention: ∗ bind more tightly than concatenation which binds more
tightly than +.
For example, r + st∗ means (r + s(t)∗) and not (r + s)(t)∗ or (r + (st)∗).

15
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Regular expressions are used to define languages – they are often used to match
words. Each regular expression r denotes a regular language L(r) which we define
next.

2.1.3 DEFINITION (Language denoted by a regular expression). The map L asso-
ciating with each regular expression the language it denotes is defined by

L(0) = ;
L(1) = {λ}
L(a) = {a}
L(r + s) = L(r)∪L(s)
L(rs) = L(r)L(s)
L(r∗) = (L(r))∗ ♣

As for regular languages we will use r+ as a shorthand for r r∗.
Regular expressions are syntax to denote regular languages. It is important to keep
in mind that there are these two separate worlds: the syntax, given by a regular
expression r, and the semantics, provided by the language L(r) that the expression
denotes.

2.1.4 EXAMPLE (Languages denoted by expressions). Let A= {a, b} be a two-letter
alphabet.

syntax – regular expression r semantics – language L(r)
a+ b any symbol in A= {a, b}
(a+ b)∗ all words over A
a(a+ b)∗ all words that begin with an a

((a+ b)(a+ b))∗ all words of even length
01+ 0 no words (the empty language)
a∗ba∗ all words over A with exactly one b

(a+ b)∗(a+ b)∗ all words over A

In the example above you see that the expressions (a+ b)∗ and (a+ b)∗(a+ b)∗ denote
the same language. Different expressions, as they are syntax, can denote the same
language. When that happens, we say that the expressions are equivalent.

2.1.5 DEFINITION (Equivalent regular expressions). Two regular expressions r and
s are equivalent if and only if L(r) = L(s). When two expressions are equivalent we
write r = s or r ≡ s. ♣

2.1.6 EXAMPLE. The following equivalences hold.

r + s ≡ s+ r s0≡ 0 0+ s ≡ s

Let us show the last two:

L(s0) = L(s)L(0) = L(s);= ;= L(0).
L(0+ s) = L(0)∪L(s) = ; ∪L(s) = L(s).
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The expression rs and sr are not equivalent in general (why?).
Some equivalences are (relatively) obvious but sometimes it gets trickier to show
that two expressions are equivalent. Hence, automatizing the equivalence process is
convenient. We do not explore this in this course but there is a lot done in the area of
algorithms to decide whether two regular sets/expressions are equivalent.
Here are two examples of equivalences that require a bit more ingenuity in proving
their correctness.

(a∗b)∗a∗ ≡ (a+ b)∗ a(ba)∗ ≡ (ab)∗a

Let us show the last one. First note that

L(a(ba)∗) = {a} ·

 

⋃

n∈N

L(ba)n
!

=
⋃

n∈N

{a} · ({ba})n

Now observe that

w ∈ {a} · ({ba})n ⇐⇒ w = a (ba)(ba) · · · (ba)
︸ ︷︷ ︸

n times

⇐⇒ w = (ab)(ab) · · · (ab)
︸ ︷︷ ︸

n times

a

⇐⇒ w ∈ ({ab})n · {a}).

Hence,
L(a(ba)∗) =

⋃

n∈N

{a} · ({ba})n =
⋃

n∈N

({ab})n · {a}= L((ab)∗a).
♠

2.2 Deterministic Finite Automata

We will now study languages from a more operational perspective, using finite-state
machines. The goal is to define a notion of machine that accepts languages. The moti-
vation behind finite state machines is that they are easier to run (from an algorithmic
perspective) that regular expressions and many times defining a machine is intuitively
easier than defining a regular expression. We will introduce several notions of lan-
guage acceptors. In this lecture, we will restrict ourselves to a deterministic version of
finite state machines – deterministic finite automata.

Finite state machines are devices that have (internal) control states and transitions
between states are based on certain inputs from the environment. Intuitively, we can
explain states and transitions as follows. Take the two-letter alphabet A= {5, 10} and
imagine that the letters in A denote inserting 5 and 10 cents into a machine where
you can get a newspaper. This machine is very simplistic: the news paper costs 25
cents and when that amount (or greater) is inserted it delivers the newspaper; the
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machine does not give change but leftover credit can be used by the next person. The
control states of this machine will represent the amount of credit at a given moment.
The transitions allow to move state by inserting more money.
We could symbolically represent this newspaper machine as follows, where the num-
bers inside the circles indicate how much credit is left:

?>=<89:;5
5 //

10

((?> =<89 :;10
5 //

10

((RRRRRRRRRRRRRRRRRR
?> =<89 :;15

5

""DDDDDDDD

10nn?>=<89:;0

5

>>}}}}}}}}
10

66mmmmmmmmmmmmmmmmm ?> =<89 :;20

5

jj 10

cc

Note that in this example, every state has the possibility of accepting both 5 and 10
cents and moreover there is exactly one transition from each state labelled by 5 and
10: this is what makes this machine deterministic.

2.2.1 DEFINITION (Deterministic Finite Automata). A deterministic finite automa-
ton (DFA) over an alphabet A is a tuple (Q,δ, q0, F) where

– Q is a finite set of states;

– δ : Q× A→Q is the transition function;

– q0 ∈Q is the initial state;

– F ⊆Q is the set of final/accepting states. ♣

Notation: We will be using the following notation:

– //?> =<89 :;q0 – an incoming arrow will point to the initial state.

– ?>=<89:;q – a double circle indicates that the state q is final.

– ?> =<89:;p a //?>=<89:;q – indicates δ(p, a) = q.

– ?> =<89:;p a,b
//?>=<89:;q is a shorthand for ?> =<89:;p

a
**

b
55
?>=<89:;q

Let A= {a, b}. The following diagram

//?> =<89:;p

b

JJ

a
**?>=<89:;/.-,()*+q

a
jj

b

TT
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denotes a DFA (Q,δ, q0, F) where

– Q = {p, q};

– q0 = p;

– δ(p, a) = q,δ(p, b) = p,δ(q, a) = p,δ(q, b) = q. We can represent the transition
function as a matrix:

δ a b
p q p
q p q

– F = {q}.

Remark: Note that the transition function of the automaton is total: every state
has to have exactly one transition for each letter in a ∈ A. Also note that δ : Q×A→Q
can alternatively and equivalently be represented as a function δ : Q→ QA, where QA

denotes the set of functions A→ Q. The switch between these two representations is
known in functional programming as currying/uncurrying.

A DFA will accept a word if starting from the initial state and moving through the
automaton’ states by reading all the letters of the word from left-to-right the state
reached is final.
Take the word babaa and let us run the automaton in the example above:

//?> =<89:;p b //?> =<89:;p a //?>=<89:;/.-,()*+q b //?>=<89:;/.-,()*+q a //?> =<89:;p a //?>=<89:;/.-,()*+q

babaa babaa babaa babaa babaa babaa

When we are finished reading the word the automaton is in state q which is final and
therefore the word is accepted.
Take the word baba and let us again run the automaton above:

//?> =<89:;p b //?> =<89:;p a //?>=<89:;/.-,()*+q b //?>=<89:;/.-,()*+q a //?> =<89:;p

baba baba baba baba baba

When we are finished reading the word the automaton is now in state p which is not
final and therefore the word is not accepted.
How do we formally describe the language accepted by an automaton? We need to
formalize the notion of moving through the automaton with a given word. Given a
state q ∈ Q and a word w ∈ A∗ we define δ? : Q × A∗ → Q such that δ?(q, w) returns
the state reached in the automaton after reading the word w. The function δ∗ is the
inductive extension of δ to words (intuitively, think of δ as providing you the one-step
information and δ∗ can do multiple steps by using δ for the singular steps).
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2.2.2 DEFINITION (δ∗ of a DFA). The function δ? : Q× A∗→Q is given by

δ∗(q,λ) = q δ∗(q, aw) = δ∗(δ(a, q)
︸ ︷︷ ︸

one a-step

, w)

︸ ︷︷ ︸

running the word aw ♣

We are now ready to define the language accepted by a DFA.

2.2.3 DEFINITION (Language accepted by a DFA). Given a DFA A = (Q, q0,δ, F) we
define, for every q ∈Q,

L(q) = {w ∈ A∗ | δ∗(q, w) ∈ F}.

The language accepted by A is the language L(q0) accepted by its initial state. ♣

One thing to note in this definition is that the accepted language function L is defined
for every state q ∈Q and then the language of a given automaton is just the language
of its initial state. This means that one can compare states p and q of the same
automaton by asking whether L(q) and L(p) are the same.

2.2.4 EXAMPLE (Language accepted by a DFA). Fix A= {a, b}.

//?> =<89:;p

b

JJ

a
**?>=<89:;/.-,()*+q

a
jj

b

TT
L(p) = {w ∈ A∗ | |w|a is odd}.

//?> =<89 :;q0

a

JJ

b //?> =<89 :;q1

b
ww

a

��?> =<89 :;q3

b
77

a
//?> =<89 :;76 5401 23q2

a,b

TT

L(q0) = {w ∈ A∗ | w has the subword ba}.

//?> =<89 :;76 5401 23q0

b

JJ

a //?> =<89 :;q1

b
++

a

��

?> =<89 :;76 5401 23q3

b

UUa
kk

?> =<89 :;q2

a,b

TT

L(q0) = {w ∈ A∗ | every a in w is followed by a b}.

//?> =<89 :;76 5401 23q0

a

		
b //?> =<89 :;q1

b //

a

		 ?> =<89 :;76 5401 23q3

a

		

b

hh L(q0) = {w ∈ A∗ | |w|b = 3n+ 2 or |w|b = 3n, n ∈ N}.

♠
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2.3 Exercises

1. Describe the following languages over the alphabet A = {a, b} using regular
expressions.

a) {x | x ∈ A∗, |x |> 3, and x contains at least one a}.

b) {x | x ∈ A∗, |x |> 3, and x contains an even number of b’s}.

c) {x | x ∈ A∗, |x |> 3, and x contains an even number of a’s and such that all
a’s occur before any occurrence of b}.

d) {x | x ∈ A∗, |x | is even and x contained exactly two a’s}.

2. Describe the languages defined by the following regular expressions over A =
{a, b}:

a) (a+ b)(a+ b)(a+ b)∗

b) a∗ba+ b∗ab

3. Let A= {a, b}. Construct a regular expression e, such that its generated language
L(e) is

L =
¦

w ∈ A∗
�

�w contains aba at least once
©

.

Argue, why L(e) = L holds.

4. More generally, let A be an alphabet and v ∈ A∗ a word. Define a regular expres-
sion has(A, v) which recognizes the language

Has(A, v) =
�

w ∈ A∗
�

�w contains v
	

and argue again, why L(has(A, v)) = Has(A, v).

5. (†) Show that for any regular language L, the reversed language LR is again
regular.

Hint: For a regular expression e define eR.

6. Use the regular expression identities provided below to show

a) (ba)+(a∗b∗ + a∗) = (ba)∗ba+(b∗ +λ)

b) (a+ b)∗ = (a+ b)∗b∗

c) (†) (ab+ a)∗a = a(ba+ a)∗.
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For regular expressions e, e1, e2, e3, the following identities hold:

e1 + (e2 + e3) = (e1 + e2) + e3 (associativity of +)
e1 + e2 = e2 + e1 (commutativity of +)
e+ e = e (idempotency of +)
e+ 0 = e (0 is an identity of +)

e1(e2e3) = (e1e2)e3 (associativity of ·)
e1 = e = 1e (1 is an identity of ·)
e0 = 0 = 0e (0 is an annihilator of ·)

(e2 + e3)e1 = e2e1 + e3e1 (right distributivity)
e1(e2 + e3) = e1e2 + e1e3 (left distributivity)
e∗e+λ = e∗

ee∗ +λ = e∗

1∗ = 0∗ = 1
e∗ = (e∗)∗

(e1e2)∗e1 = e1(e2e1)∗ (sliding rule)
(e1 + e2)∗ = (e∗1e2)∗e∗1 (denesting)
(e1 + e2)∗ = e∗1(e1 + e2)∗ = (e∗1e∗2)

∗

e+ = ee∗ = e∗e

7. (†) Give a regular expression over {a, b} characterizing the language

{x | x does not contain the subword aba}

8. (†) Let A be an alphabet and w ∈ A∗. We say that v ∈ A∗ is a subword of w, if
all letters of v occur in w in the same order. For example λ is a subword of any
word, whereas aba has subwords {λ, a, b, ab, aa, ba, aba}. We denote the set of
all subwords of w by Sub(w).

Define by induction a map sub: A∗→ RegEx p assigning to each word w a regular
expression that recognises the language Sub(w) of all subwords of w. Argue,
why L(sub(w)) = Sub(w) holds.

9. (†) Let P = {p1, . . . , pn} be an alphabet and which does not contain the symbol
“|”, set A= P ∪ {|} and let

L =
�

t ∈ A∗
�

� t = v1|v2| . . . |v`|, in every vi each pk ∈ P

occurs up to one time and pk occurs before pk′ for k< k′
	

An example of a word in L is p1||p1p2|p2||p3|, while non-examples are p1p2|p2
since the last vertical bar is missing, p1p1|p2| since p1 occurs twice in the first
step and p2p1|p2| since p2 occurs before p1. Define a regular expression e such
that L(e) = L and argue why the equality holds.
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Hint: you can solve this by using the word w0 = p1 . . . pn.

10. Let A be the deterministic automaton with state diagram

//?> =<89 :;q0

b

JJ

a //?> =<89 :;q1

b
||

a

TT

?> =<89 :;76 5401 23q2

b

CC������
a

[[777777

Which of the words baba, baab, abaaab are accepted by A?

11. Give a regular expression that denotes the language accepted by the automaton
A of exercise 1.

12. Build a deterministic finite automaton that accepts the set of words over {a, b}
in which the subword aa occurs at least twice.

13. Build a deterministic finite automaton that accepts the set of words over {a, b}
in which the number of a’s is divisible by 3.

14. Let A = {a, b} a two letter alphabet. Construct a deterministic automaton A

which accepts the language

L =
n

w ∈ A∗
�

�

�w contains aba exactly once
o

.

You don’t need to prove that the languages are equivalent. Note that ababa
contains aba twice.

15. We define a family of DFA over the alphabet A = {a, b} by letting the states Q,
the transition map δ and the initial state q0 be as in the following picture.

//?> =<89 :;q0

a
++

b




?> =<89 :;q1
a

kk

b


?> =<89 :;q2

b

JJ

a
++?> =<89 :;q3

a
kk

b

JJ

Give explicit descriptions of the languages L1, . . . , L4 accepted by the automata
Di = (Q,δ, q0, Fi) with accepting states F1 = ;, F2 = {q0}, F3 = {q3} and F4 =
{q1, q2}. Argue in each case briefly, why those are the accepted languages.

16. Given two DFAs A1,A2 with the same alphabet, construct a third such DFA A

with the property that u is accepted by A iff it is accepted by both A1 and A2.

Hint: take the states of A to be ordered pairs (q1, q2) of states of A1 and A2,
respectively.





Lecture 3

Non-deterministic Finite Automata

In the third lecture, we introduce two other types of automata, less restrictive than
DFA, which are more compact (in terms of number of states and transitions) language
acceptors ad enable easy composition of automata.

3.1 Non-deterministic Finite Automata

Consider the language

L = {w ∈ {a, b}∗ | the fifth symbol from the right is an a}

We have

abbbb, aaaaaa, bbbabbba ∈ L and babba, aabbaaa, bbbbbb 6∈ L

We would like to show that L is regular. Thinking up a regular expression r such that
L(r) = L is relatively easy:

(a+ b)∗a(a+ b)(a+ b)(a+ b)(a+ b)

But how about a DFA? Is this possible? We will see later that a language is regular if
and only if it is accepted by a DFA, so it must be possible. But the obvious automaton
one would draw has a slight problem

//?> =<89 :;x a //

a,b

�� ?>=<89:;5
a,b
//?>=<89:;4

a,b
//?>=<89:;3

a,b
//?>=<89:;2

a,b
//?>=<89:;/.-,() *+1

State x has two outgoing a transitions and the final state 1 does not have transitions
defined. Still, this is a convenient automaton to accept the above language and in fact
a deterministic automaton accepting L will have a minimum of 32 (!) states.
This new type of automata, non-deterministic, offer a more flexible and compact way
of accepting languages. As we will see, they still accept exactly the same languages
as DFA, namely regular languages.
What is the type of the new transition structure?
In the above example, we need δ(x , a) = x or 5 and we need δ(1, a) = δ(1, b) = no
states. That can be formalized by considering subsets of states, which also includes the
empty subset allowing us to return no transitions. Define

P(Q) = {Y | Y ⊆Q}

25
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Now the transition function of the above automaton has type δ : Q × A→ P(Q) and
would be defined as

δ a b
x {x , 5} {5}
5 {4} {4}
4 {3} {3}
3 {2} {2}
2 {1} {1}
1 ; ;

Formally a non-deterministic finite automaton is defined as follows.

3.1.1 DEFINITION (Non-deterministic Finite Automata). A non-deterministic finite
automaton (NFA) over an alphabet A is a tuple (Q,δ, q0, F) where

– Q is a finite set of states;

– δ : Q× A→ P(Q) is the transition function;

– q0 ∈Q is the initial state;

– F ⊆Q is the set of final/accepting states. ♣

We now need to define when a word is accepted by an NFA. Note that now a word w
can label more than one path in the automaton, whereas for DFA every word labelled
exactly one path. In this new setting, a word is accepted by an NFA if there exists one
path from the initial state, labelled by w, that leads to a final state.
In order to compute which states can be reached by reading w we again extend the
transition function to words (similar to Definition 2.2.2).

3.1.2 DEFINITION (δ∗ of an NFA). Given an NFA (Q,δ, q0, F), we define δ∗ : Q×A∗→
P(Q) such that δ∗(q, w) returns the states reached by reading w starting from q.

δ∗(q,λ) = {q} δ∗(q, aw) =
⋃

p∈δ(q,a)

δ∗(p, w)
♣

The union in the second clause above processes all states p reached after one a-step
– p ∈ δ∗(q, a) – and collects all states that can be reached from such p’s after reading
the rest of the word w.
For a word w to be accepted we want that there exists at least one path, starting from
the initial state q0, labelled by w and leading to a final state. That means that among
the states reached after reading w – δ∗(q0, w) – there exists at least one final state.
That is:

δ∗(q0, w)∩ F 6= ;
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Take for instance the NFA

//?> =<89 :;x a //

a

��
????????
?> =<89 :;y b //?>=<89:;z

?> =<89 :;w b //?>=<89:;/.-,()*+v

We then have δ∗(x , ab) = {v, z}, F = {v} and {v, z} ∩ {v} = {v} 6= ;. Hence ab is
accepted. We have δ∗(x , a) = {y, w} and {y, w} ∩ {v}= ;. Hence a is not accepted.
We are now ready to define the language accepted by a DFA.

3.1.3 DEFINITION (Language accepted by an NFA). Given an NFA A = (Q, q0,δ, F)
we define the language accepted by a state q ∈Q as

L(q) = {w ∈ A∗ | δ∗(q, w)∩ F 6= ;}.

The language accepted by A is the language L(q0). ♣

3.1.4 EXAMPLE (Language accepted by an NFA). Fix A= {a, b}.

//?> =<89:;p

a

JJ

a //?>=<89:;/.-,()*+q

b

TT
L(p) = {anabm | n, m ∈ N}.

//?> =<89 :;q0

a,b

JJ

a //?> =<89 :;q1

b
}}{{{{{{{{

?> =<89 :;q3 a
//?> =<89 :;76 5401 23q2

a,b

TT

L(q0) = {w ∈ A∗ | w has the subword aba}.

//?> =<89 :;q0

a,b

JJ

a //

b

!!DDDDDDDD
?> =<89 :;q1

b //?> =<89 :;76 5401 23q3

a,b

UU

?> =<89 :;q2

a
==zzzzzzzz

L(q0) = {w ∈ A∗ | w has the subword ab
or w has the subword ba}.

3.2 Non-deterministic automata with λ-transitions

The last example above seems to hint that NFA are also suitable to build an automaton
that accepts the union of languages. But let us look at another example. Can we easily
build an NFA that accepts words that contain the subword ab or that have a as third
symbol from the right?
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We know how to build an automaton for each of the above languages:

//?> =<89 :;y a //

a,b

		 ?>=<89:;z b //?>=<89:;/.-,()*+v

a,b

��

//?> =<89 :;x a //

a,b

�� ?>=<89:;3
a,b
//?>=<89:;2

a,b
//?>=<89:;/.-,() *+1

♠

How to combine them in a compositional way? Diagrammatically, we would like to
be able to do the following:

?> =<89 :;y a //

a,b

		 ?>=<89:;z b //?>=<89:;/.-,()*+v

a,b

��

// •

EE������

��
222222

?> =<89 :;x a //

a,b

�� ?>=<89:;3
a,b
//?>=<89:;2

a,b
//?>=<89:;/.-,() *+1

But how do we handle the unlabeled transitions? We will actually label them with λ,
the empty word, and define NFA-λ a class of non-deterministic automata that allows
empty transitions.

3.2.1 DEFINITION (Non-deterministic Finite Automata with λ transitions). A non-
deterministic finite automaton with λ transitions (NFA-λ) over an alphabet A is a tuple
(Q,δ, q0, F) where

– Q is a finite set of states;
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– δ : Q× (A∪ {λ})→ P(Q) is the transition function;

– q0 ∈Q is the initial state;

– F ⊆Q is the set of final/accepting states. ♣

We now need to define when a word is accepted by an NFA-λ. At every step, when
reading a word w we can opt by reading a letter a and moving in the automaton with
an a transition or first move with a λ to a new state q and then read the word w from
the new state q.
We define λ−closure: Q → P(Q) as the function that given q ∈ Q returns all states
reached by only taking λ-transitions starting from q.

3.2.2 DEFINITION (λ-closure). Given an NFA-λ A= (Q, q0,δ, F) and q ∈Q, we define
λ−closure(q) inductively:

1. q ∈ λ−closure(q) and

2. If p ∈ λ−closure(q) and p′ ∈ δ(p,λ) then p′ ∈ λ−closure(q) ♣

Option 1. describes that the automaton remains in the current state whereas in option
2. the state changes by using a λ-transition. For instance, in the above example,
λ−closure(•) = {•, x , y} and λ−closure(v) = {v}.
In order to compute which states can be reached by reading w we again extend the
transition function to words, but now taking into account that intermediate λ steps
can occur.

3.2.3 DEFINITION (δ∗ of an NFA-λ). Given an NFA-λ, we define δ∗ : Q × A∗ → P(Q)
as follows.

δ∗(q,λ) = λ−closure(q) δ∗(q, aw) =
⋃

q′∈λ−closure(q)

⋃

p∈δ(q′,a)

δ∗(p, w)
♣

In the above example, δ∗(•)(a) = δ(x , a)∪δ(y, a) = {x , 3, y, z}.
The language accepted by an NFA-λ is now defined in the same way as for NFA’s but
now with the new δ∗.

3.2.4 DEFINITION (Language accepted by an NFA-λ). Given an NFA-λA= (Q, q0,δ, F)
we define the language accepted by a state q ∈Q as

L(q) = {w ∈ A∗ | δ∗(q, w)∩ F 6= ;}.

The language accepted by A is the language L(q0). ♣

NFA-λ are very convenient to compose simpler automata. For instance, suppose we
are given NFA’s (possibly with λ’s) A, A1 and A2 that accept languages L, L1 and L2,
respectively. We can use NFA-λ to build automata that accept L1 ∪ L2, L1 L2 and L∗.
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For the union we add an extra initial state, which becomes the new initial state and
connect it to the initial states of A1 and A2 using λ transitions.

?> =<89 :;q1

8x 7w 5u 4t 2r 1q /o -m ,l *j )i 'g &f $d

&f 'g )i *j ,l -m /o 1q 2r 4t 5u 7w 8x :zA1

//?>=<89:;•
λ

=={{{{{{{{

λ
!!CCCCCCCC

?> =<89 :;q2

8x 7w 5u 4t 2r 1q /o -m ,l *j )i 'g &f $d

&f 'g )i *j ,l -m /o 1q 2r 4t 5u 7w 8x :zA2

How about for the concatenation and star?
Here is a concrete example on how λ-transitions can be used to (more) easily build
an automaton. Take the language

L = {w ∈ {a, b}∗ | |w| is even }

We know how to build the automaton that recognizes the words of length 0 and 2.

//?> =<89 :;76 5401 23q0
a,b
//?> =<89 :;q1

a,b
//?> =<89 :;76 5401 23q2

Now the automaton accepting L can easily be constructed:

//?> =<89 :;76 5401 23q0
a,b
//?> =<89 :;q1

a,b
//?> =<89 :;76 5401 23q2

λ

hh

For another example, imagine you are asked to build an automaton that accepts the
language denoted by the regular expression a∗b∗c∗. Again, we can easily build auto-
mata recognizing the languages denoted by a∗, b∗ and c∗.

//?> =<89 :;76 5401 23q1

a

		

//?> =<89 :;76 5401 23q2

b

		

//?> =<89 :;76 5401 23q3

c

		

And now the automaton for L(a∗b∗c∗) is compositionally built from the above three
automata using λ-transitions.

//?> =<89 :;q1

a

		
λ //?> =<89 :;q2

b

		
λ ////?> =<89 :;76 5401 23q3

c
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3.3 Removing λ-transitions

Adding non-determinism and λ-transitions increases the versatility of automata and
allows us to have compacter acceptors of languages. However, the class of languages
that DFA, NFA and NFA-λ accept is the same: the class of regular languages.
We will prove this result, known as Kleene’s theorem, in the next lecture. For now,
let us just show how to remove λ-transitions. That is, how to build an NFA starting
from an NFA-λ that recognizes the same language. Intuitively, what happens is the
following. Consider the automaton above accepting L(a∗b∗c∗):

//?> =<89 :;q1

a

		
λ //?> =<89 :;q2

b

		
λ ////?> =<89 :;76 5401 23q3

c

		

For each state we remove the λ transitions as follows. Take a state q ∈ {q1, q2, q3}. We
need to do two things.

1. The state q is final if is was already final in the given automaton or if it has a
chain of λ transitions to a final state. That is, λ−closure(q)∩ F 6= ;.

2. The state q will have an a transition to another state q′ if this transition was
already there in the given automaton or if there is a path

q λ // • λ // . . . λ // • a // q′

in the automaton. In some books you will find that the definition considers λ’s
on both sides of the a transition:

q λ // • λ // . . . λ // • a // • λ // . . . λ // q′

but these are equivalent and for simplicity I take the first.

Below you can see the elimination of λ-transitions for states q1 and q2, respectively
(q3).

//?> =<89 :;76 5401 23q1

a

		
b //

c

99

?> =<89 :;q2

b

		
λ ////?> =<89 :;76 5401 23q3

c

		

//?> =<89 :;76 5401 23q1

a

		
b //

c

99

?> =<89 :;76 5401 23q2

b

		
c ////?> =<89 :;76 5401 23q3

c
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3.3.1 DEFINITION (NFA-λ to NFA). Given an NFA-λ A= (Q,δ, q0, F) we build an NFA
Ā= (Q, δ̄, q0, F̄) where

– F̄ = {q ∈Q | λ−closure(q)∩ F 6= ;} and

– δ̄(q, a) =
⋃

p∈λ−closure(q)
δ(p, a). ♣

The new automaton Ā recognizes the same language.

3.3.2 THEOREM. Given an NFA-λ A = (Q,δ, q0, F), the corresponding automaton Ā =
(Q, δ̄, q0, F̄) after elimination of λ-transitions accepts the same language.

PROOF. We want to show that, for all w ∈ A∗,

w is accepted by A ⇐⇒ w is accepted by Ā

We show a slightly more general result, by induction on words,

δ∗(q, w)∩ F 6= ; ⇐⇒ δ̄∗(q, w)∩ F̄ 6= ;

The intended result follows by instantiating this last equivalence for q = q0. If w = λ
then

δ∗(q,λ)∩ F 6= ; ⇐⇒ λ−closure(q)∩ F 6= ;
⇐⇒ q ∈ F̄
⇐⇒ {q} ∩ F̄ 6= ;
⇐⇒ δ̄∗(q,λ)∩ F̄ 6= ;

If w = au then

δ∗(q, au)∩ F 6= ; ⇐⇒

 

⋃

q′∈λ−closure(q)

⋃

p∈δ(q′,a)
δ∗(p, u)

!

∩ F 6= ;

⇐⇒

 

⋃

q′∈λ−closure(q)

⋃

p∈δ(q′,a)
δ∗(p, u)∩ F

!

6= ;

⇐⇒

 

⋃

q′∈λ−closure(q)

⋃

p∈δ(q′,a)
δ∗(p, u)

!

∩ F 6= ;

IH
⇐⇒

 

⋃

q′∈λ−closure(q)

⋃

p∈δ(q′,a)
δ̄∗(p, u)

!

∩ F 6= ;

⇐⇒

 

⋃

q′∈λ−closure(q)

⋃

p∈δ(q′,a)
δ̄∗(p, u)∩ F

!

6= ;

⇐⇒

 

⋃

p∈δ̄(q,a)

δ̄∗(p, u)

!

∩ F 6= ;

⇐⇒ δ̄∗(q, au)∩ F 6= ; �
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3.3.3 EXAMPLE (Elimination of λ-transitions).

Let A be the NFA-λ over A= {a, b, c}

//?> =<89 :;q0

a

		
a //

a
��

7777777
?> =<89 :;76 5401 23q1

b

		

?> =<89 :;q2

λ

CC������

c

II

We have

λ−closure(q0) = {q0} λ−closure(q1) = {q1} λ−closure(q2) = {q2, q1}

and therefore
F̄ = {q ∈Q | λ−closure(q)∩ F 6= ;}= {q1, q2}

and
δ̄(q2, b) =

⋃

q∈λ−closure(q2)

δ(q, b) = δ(q2, b)∪δ(q1, b) = {q1}
♠

The other δ̄(q, a) are direct since only q2 has a non-singleton λ−closure set. The
automaton Ā is:

//?> =<89 :;q0

a

		
a //

a
��

7777777
?> =<89 :;76 5401 23q1

b

		

?> =<89 :;76 5401 23q2

b

CC������

c

II

3.4 Exercises

1. Let A be the non-deterministic automaton with state diagram

//?> =<89 :;q0

a

		 a
++?> =<89 :;76 5401 23q1

b
kk

b
++?> =<89 :;76 5401 23q2

b
kk

b

		

a) Compute δ∗(q0)(aabb).
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b) Is aabb accepted by A? Justify your answer using the answer of a).
c) Give a regular expression that denotes the language accepted by the above

automaton A.

2. Construct a deterministic automaton that accepts the language accepted by the
non-deterministic automaton of exercise 1.

3. Build a non-deterministic finite automaton that accepts the set of words over
{a, b} that have a subword of length 3 with the same first and last letter.

4. Let A the non-deterministic automaton over the alphabet A= {a, b} given by

//?> =<89 :;q0
a //

a

!!CCCCCCCC
?> =<89 :;q1

a,b

		
a //

b

!!CCCCCCCC
?> =<89 :;q3

b //?> =<89 :;76 5401 23q5

?> =<89 :;q2

b

OO

?> =<89 :;q4

a
=={{{{{{{{

a) Give an example of a word of length 3 which is accepted.
b) Compute δ∗(q1)(ab), giving the steps explicitly.
c) Use this information to compute δ∗(q0)(abab), again writing down all

steps necessary steps.
d) Is abab accepted by A? Use the above exercise to answer this.
e) What is the language accepted by A?
f) Give a regular expression e with L(A) = L(e).

5. Consider the following automaton

//?> =<89 :;q0

λ

��
7777777

λ,a
//?> =<89 :;76 5401 23q1

b




?> =<89 :;76 5401 23q2

a
CC������

a

ii

Compute the λ-closure of q0 and give a regular expression denoting the lan-
guage accepted by the automaton.

6. Let A be the NFA over the alphabet A= {a, b, c} given by the following picture

//?> =<89 :;q0

a,b

		
c //?> =<89 :;q1

a,b

		
λ //?> =<89 :;q2

a,b

		
λ //?> =<89 :;q3

a,b

		
a //?> =<89 :;76 5401 23q4

a,b
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a) What is the length of the shortest accepted word? Give an example.

b) Is the word cacaca accepted? Why or why not?

c) Compute λ−closure(q2) and λ−closure(q1).

d) Construct an NFA which accepts the same language as A using λ−closure.

e) Construct a DFA which accepts the same language as A using the deter-
minisation procedure (subset construction). Annotate the states with the
set of states of A they are representing. The resulting automaton should
have 7 states.

7. Let A be the NFA over the alphabet A= {a, b, c} given by the following picture

?> =<89 :;q3

a

		
b //?> =<89 :;76 5401 23q5

a,b

		

//?> =<89 :;q0

a,b

		
c //?> =<89 :;q1

a,b

		
λ //?> =<89 :;q2

c

		

λ

=={{{{{{{{

λ

!!CCCCCCCC

?> =<89 :;q4

b

		
a //?> =<89 :;76 5401 23q6

a,b

		

a) What is the length of the shortest accepted word? Give an example.

b) Compute λ−closure(q2) and λ−closure(q1).

c) Construct a DFA which accepts the same language as A using the deter-
minisation procedure from the lecture. Annotate the states with the set of
states of A they are representing. The resulting automaton should have 10
states.

8. Show that any finite set of strings is a regular language.

9. (†) Give an NFA over A = {a} that rejects some word, but the length of the
shortest rejected word is strictly greater than the number of states.





Lecture 4

Kleene’s theorem and Properties of Regular Languages

We continue the material of the previous lecture and show that every NFA can be
equivalently represented by a DFA. We then present and prove Kleene’s theorem that
states the equivalence between regular expressions and finite automata. We conclude
the lecture by discussing a few closure properties of regular languages.

4.1 Determinization of NFA

In the previous lecture we showed how to eliminate λ-transitions. In this section,
we will show how to eliminate non-determinism and build a DFA that recognizes the
same language as a given NFA. This process is known as determinization. The intuitive
idea is to build an automaton where the non-determinism is hidden/collected in the
states. For instance, if we have

?> =<89 :;q1

a

		
b //?> =<89 :;76 5401 23q3

//?> =<89 :;q0

b

		

a
=={{{{{{{{

a

!!CCCCCCCC

?> =<89 :;q2

a

		
b //?> =<89 :;76 5401 23q4

Then we build a new automaton where the first non-deterministic branching is re-
placed by

//?> =<89 :;q0

b

		
a //?> =<89 :;q1, q2

The we continue building the automaton by keeping in mind that a state labelled by
p, q can move using both the transitions of q and q. Moreover, such a state will be
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final if one of the states is final. In the example above,

//?> =<89 :;q0

b

		
a //?> =<89 :;q1, q2

a

		
b //?> =<89 :;76 5401 23q3, q4

The only thing missing to make the above automaton deterministic is who to define
the a and b transitions of the state q3, q4? Since in the original automaton there were
no transitions the behavior is empty. And once empty the behavior remains empty.
Hence, we complete the automaton above as follows.

?> =<89 :;q3, q4
a,b

//?>=<89:;;
a,b





4.1.1 DEFINITION (subset construction). Given an NFA A = (Q,δ, q0, F) we build a
DFA det(A) = (Q′,δ′, {q0}, F ′) as follows.
Start with Q′ = {q0}. Build Q′ by repeating the following procedure:

– For all a ∈ A, let Xa =
⋃

q∈X
δ(q, a). If Xa 6∈Q′ then add it: Q′←Q′ ∪ {Xa}.

Define

– δ′ : Q′ × A→Q′ by δ′(X , a) = Xa.

– F ′ = {X ∈Q′ | X ∩ F 6= ;}. ♣

We now show that the DFA obtained in the subset construction accepts the same
language as the original NFA.

4.1.2 THEOREM. Given an NFA A= (Q,δ, q0, F), the corresponding DFA obtained in the
subset construction det(A) = (Q′,δ′, {q0}, F ′) accepts the same language.

PROOF. We want to show that, for all w ∈ A∗,

w is accepted by A ⇐⇒ w is accepted by det(A)

We show a slightly more general result: for all X ∈Q′

⋃

x∈X

δ∗(x , w)∩ F 6= ; ⇐⇒ (δ′)∗(X , w) ∈ F ′

The intended result follows by instantiating this last equivalence for X = {q0}. By
induction on words. If w = λ then

⋃

x∈X
δ∗(x ,λ)∩ F 6= ; ⇐⇒ X ∩ F 6= ;

⇐⇒ X ∈ F ′

⇐⇒ (δ′)∗(X ,λ) ∈ F ′
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If w = au then

⋃

x∈X
δ∗(x , au)∩ F 6= ; ⇐⇒

⋃

x∈X

⋃

q∈δ(x ,a)
δ∗(q, u)∩ F 6= ;

⇐⇒
⋃

q∈δ′(X ,a)
δ∗(q, u)∩ F 6= ;

IH
⇐⇒ (δ′)∗(δ′(X , a), u) ∈ F ′

⇐⇒ (δ′)∗(X , au) ∈ F ′ �

4.1.3 EXAMPLE (Subset construction). Consider the NFA A over {a, b, c}:

//?> =<89 :;q0

a

		
a //

a
��

7777777
?> =<89 :;76 5401 23q1

b

		

?> =<89 :;76 5401 23q2

b

CC������

c

II

We first build Q′, starting from Q′ = {{q0}}.

δ(q0)(a) = {q0, q1, q2} δ(q0)(b) = δ(q0)(c) = ;

We have two new states and therefore Q′ = {{q0},;, {q0, q1, q2}}. We now inspect the
transitions of {q0, q1, q2}:

δ(q0)(a)∪δ(q1)(a)∪δ(q2)(a) = {q0, q1, q2}
δ(q0)(b)∪δ(q1)(b)∪δ(q2)(b) = {q1}
δ(q0)(c)∪δ(q1)(c)∪δ(q2)(c) = {q2}

In this step, we encountered two new states, {q1} and {q2}, and therefore we extend
Q′ to {{q0},;, {q0, q1, q2}, {q1}, {q2}}. We now inspect the transitions of {q1} and {q2}:

δ(q1)(a) = δ(q1)(c) = ; δ(q1)(b) = {q1}

δ(q2)(a) = ; δ(q2)(b) = {q1} δ(q2)(c) = {q2}

At this stage we have not found any new states and hence we have built Q′. We have
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a starting point for our automaton:

//GF ED@A BC{q0} GF ED@A BC{q0, q1, q2}

GF ED@A BC{q1} GF ED@A BC{q2}

?>=<89:;;
Now we need to compute final states:

F ′ = {X ∈Q′ | X ∩ F 6= ;}= {{q0, q1, q2}, {q1}, {q2}}.

Putting everything together, we build the DFA set(A):

//GF ED@A BC{q0}
a //

b,c

��

GF ED@A BC?> =<89 :;{q0, q1, q2}

a

��

c

""DDDDDDDD
b

||zzzzzzzz

?>=<89:;;
a,b,c

JJ

GF ED@A BC?> =<89 :;{q1}

b

��

a,c
oo GF ED@A BC?> =<89 :;{q2}

c

��

b
oo

a

gg

♠

4.2 Kleene’s theorem

We have defined a language to be regular if it is denoted by a regular expression.
In this section, we show that the class of languages accepted by DFA is precisely the
class of regular languages. Since we also showed in the previous sections that NFA-λ
accept the same languages as NFA and these accept exactly the same languages as
DFA the following theorem states that all acceptors we introduced so far and regular
expressions have the same expressivity in terms of languages – they all accept/denote
regular languages.

4.2.1 THEOREM. Let L ⊆ A∗ be a language over A. The following are equivalent.

1. L is regular.

2. L is accepted by a deterministic finite automaton.
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The proof of this theorem has two parts, corresponding to each implication. For the
first, regular ⇒ DFA, we need to build a DFA which accepts the same language as
a given regular expression. We do this in Section 4.2.1. For the second, regular ⇐
DFA, we need to build a regular expression which denotes the same language as the
accepted a given DFA. We do this in Section 4.2.2.

4.2.1 From regular expressions to automata

We have already explained in the previous lecture how to use λ-transitions to combine
two automata in order to build an automaton that recognizes the union of the two
languages. We now do this systematically for all regular operators. For simplicity, we
will use λ-transitions to combine automata that have precisely one final state (this
is not a restriction, how can you child an automaton that only has a final state and
recognizes the same language as a given NFA(-λ)?).

We first define automata for the basic regular constructs:

//?> =<89 :;q0
?> =<89 :;76 5401 23q1 accepts ;

//?> =<89 :;q0
λ //?> =<89 :;76 5401 23q1 accepts {λ}

//?> =<89 :;q0
a //?> =<89 :;76 5401 23q1 accepts {a}

Given two NFA-λ A1 = (Q1,δ1, q1, { f1}) and A2 = (Q2,δ2, q2, { f2}) (with Q1 ∩Q2 = ;)
we build automata for the concatenation, union and star as follows.

Concatenation. Let C= (Q1∪Q2,δ, q1, { f2})where δ( f1,λ) = {q2}, δ(q, a) = δ1(q, a),
for all q ∈ Q1 and δ(q, a) = δ2(q, a), for all q ∈ Q2. The language accepted by C is
precisely L(q1)L(q2). Diagramatically, C can be represented as follows:

//?> =<89 :;q1

7w 6v 5u 3s 2r 0p /o .n ,l +k )i (h 'g

'g (h )i +k ,l .n /o 0p 2r 3s 5u 6v 7w
A1

GFED@ABCf1
λ //?> =<89 :;q2

7w 6v 5u 3s 2r 0p /o .n ,l +k )i (h 'g

'g (h )i +k ,l .n /o 0p 2r 3s 5u 6v 7w
A2

GFED@ABC?>=<89:;f2

Union. Let U= (Q1 ∪Q2 ∪ {•, f },δ,•, { f }) where δ( f1,λ) = δ( f2,λ) = { f }, δ(•,λ) =
{q1, q2}, δ(q, a) = δ1(q, a), for all q ∈Q1 and δ(q, a) = δ2(q, a), for all q ∈Q2. The lan-
guage accepted by U is precisely L(q1)∪L(q2). Diagramatically, U can be represented
as follows:
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?> =<89 :;q1

7w 6v 5u 3s 2r 0p /o .n ,l +k )i (h 'g

'g (h )i +k ,l .n /o 0p 2r 3s 5u 6v 7w
A1

GFED@ABCf1

λ

  
AAAAAAAA

//?>=<89:;•
λ

>>}}}}}}}}}

λ
  

AAAAAAAAA
?> =<89 :;76540123f

?> =<89 :;q2

7w 6v 5u 3s 2r 0p /o .n ,l +k )i (h 'g

'g (h )i +k ,l .n /o 0p 2r 3s 5u 6v 7w
A2

GFED@ABCf2

λ

>>}}}}}}}}

Star. Let S = (Q1 ∪ {•},δ,•, {•}) where δ(•,λ) = {q1}, δ( f1,λ) = {•}, δ(q, a) =
δ1(q, a), for all q ∈ Q1. The language accepted by S is precisely L(q1)∗. Diagra-
matically, S can be represented as follows:

//?>=<89:;/.-,()*+• λ //?> =<89 :;q1

7w 6v 5u 3s 2r 0p /o .n ,l +k )i (h 'g

'g (h )i +k ,l .n /o 0p 2r 3s 5u 6v 7w
A1

GFED@ABCf1

λ

yy

4.2.2 EXAMPLE (From expressions to automata). Consider the expression (a+b)∗b.
We construct the automaton for a+ b:

?> =<89 :;q1
a //GFED@ABCf1

λ

  
AAAAAAAA

//?>=<89:;•
λ

>>}}}}}}}}}

λ
  

AAAAAAAAA
?> =<89 :;76540123f

?> =<89 :;q2
b //GFED@ABCf2

λ

>>}}}}}}}}

and from this the automaton for (a+ b)∗:

?> =<89 :;q1
a //GFED@ABCf1

λ

  
AAAAAAAA

//?>=<89:;/.-,()*+� λ //?>=<89:;•
λ

>>}}}}}}}}}

λ
  

AAAAAAAAA
?> =<89 :;f

λ

hh

?> =<89 :;q2
b //GFED@ABCf2

λ

>>}}}}}}}}
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We can now construct the automaton for (a+ b)∗b:

?> =<89 :;q1
a //GFED@ABCf1

λ

  
AAAAAAAA

//?>=<89:;� λ //

λ

��

?>=<89:;•
λ

>>}}}}}}}}}

λ
  

AAAAAAAAA
?> =<89 :;f

λ

hh

?> =<89 :;q3

b
��

?> =<89 :;q2
b //GFED@ABCf2

λ

>>}}}}}}}}

GFED@ABC?>=<89:;f3 ♠

So, we have now showed how to obtain an NFA-λ which accepts the same language
as denoted by a given regular expression. In order to build a DFA, we just need to
apply the procedures of λ-elimination and determinization presented above.

4.2.2 From automata to regular expressions

We now explain how to build a regular expression denoting the language accepted
by an automaton. There are several ways to do this but here we follow the method
presented in Sudkamp.
Consider the following two automata:

//?> =<89 :;q0

u

		 x
++?> =<89 :;76 5401 23q1

y
kk

v

		

//?> =<89 :;76 5401 23q0

u

		

The regular expressions u∗x(v + yu∗x)∗ and u∗ denote the languages accepted by the
above automata (check!). Also, note that if we have

//?> =<89 :;76 5401 23q0

u

		 x
++?> =<89 :;q1

y
kk

v

		

//?> =<89 :;q0

u

		

then the regular expressions (u+ x v∗ y)∗ and 0 denote the languages accepted by the
above automata (check!)
What we do next is to reduce the problem of finding a regular expression denoting
the language of any automaton by gradually reducing the automaton to one of the
cases above.
We again assume that the input automaton only has one final state. As above, this is
not a restriction.
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4.2.3 DEFINITION (Two state NFA-λ). Given an NFA-λ (Q,δ, q0, { f }) we transform
the automaton into ({q0, f },δ′, q0, { f }) by defining δ′ as follows.
For every q ∈ Q such that q 6= f and q 6= q0 we delete the state q after replacing, for
every pair of states p, p′ ∈ Q, the dashed transitions below by a new one displayed
below:

?> =<89:;p x //_____

x v∗ y

::

_
� �

L
�

L_ �q

v

		�
_ '

y
//_____ GFED@ABCp′

Note that if the state q does not have a self-loop, that is v = λ, then x v∗ y = x y. To
ensure that we always only have one transition between each two states we replace
multiple transitions

?> =<89:;p
x

++

y
33
GFED@ABCp′

by

?> =<89:;p x+y
//GFED@ABCp′ ♣

Once we have the new NFA with only two states we can apply the formulae above to
derive the regular expression.

4.2.4 EXAMPLE. Consider the following NFA:

//?> =<89 :;q0

a





a //?> =<89 :;q1

b

		

a

��?> =<89 :;76 5401 23q2

b

JJ

b
//

c

II

?> =<89 :;q3

b
aaDDDDDDDD

We first delete q1:

//?> =<89 :;q0

a





ab∗a

��?> =<89 :;76 5401 23q2

b

JJ

b
//

c

II

?> =<89 :;q3

b
aaDDDDDDDD
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We then delete q3:

//?> =<89 :;q0

a





ab∗ab

		

?> =<89 :;76 5401 23q2

b+bb

JJ

c

II

Hence, the regular expression denoted by the automaton is:

(ab∗ab)∗a(c+ (b+ bb)(ab∗ab)∗a)∗.

4.3 Properties of regular languages

Regular languages have some closure properties. For instance, if languages L, M are
regular then the reverse LR, the intersection L ∩ M and the complement L̄ are also
regular. Let us show the last two closure properties.
Let L be a regular language. By Kleene’s theorem, we know that there is a DFA
(Q,δ, q0, F) accepting L. Define a new DFA (Q,δ, q0,Q \ F) and let us show that this
new automaton accepts L̄ = {w ∈ A∗ | w 6∈ L}, that is, w ∈ L̄ ⇐⇒ δ∗(q0, w) ∈ Q \ F . It
is an easy calculation:

w ∈ L̄ ⇐⇒ w 6∈ L ⇐⇒ δ∗(q0, w) 6∈ F ⇐⇒ δ∗(q0, w) ∈Q \ F

Now the fact that regular languages are closed under intersection follow by using de
Morgan’s laws and observing that:

L ∩M = L̄ ∪M .

Closure properties help in establishing that a certain language is regular. For instance,
take the language L over {a, b} of all words that contain the substring aba but do not
contain the substring bb. To show that this language is regular we observe that

1. r = (a + b)∗aba(a + b)∗ is a regular expression for the language over {a, b} of
all words that contain the substring aba.

2. s = (a+ b)∗bb(a+ b)∗ is a regular expression for the language over {a, b} of all
words that contain the substring bb.

3. L = L(r)∩L(s).
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4.4 Exercises

1. a) Build two NFAs that accept b∗a and (ab∗b)∗, respectively.

b) Using λ-transitions combine them into an NFA that accepts b∗a(ab∗b)∗.

c) Using the subset construction build an equivalent DFA.

2. Consider the following automaton

//?> =<89 :;q0

a
++?> =<89 :;q1

b
kk

a
++

a

		 ?> =<89 :;76 5401 23q2

b
kk

Compute the regular expression denoting the language accepted by this auto-
maton using the (state-elimination) algorithm we discussed in the lecture.

3. Let L1 be a non-regular language and L2 a regular language. Give a concrete
instance of L1 and L2 such that

a) L1 ∪ L2 is regular.

b) L1 ∪ L2 is not regular.

4. Let r = (a+ b)∗ab(a+ b)∗. Find a complement for r over the alphabet A= {a, b},
that is a regular expressions r̄ over the alphabet A satisfying L(r̄) = {w ∈ A∗ |
w 6∈ L(r)}.

5. (†)

a) Let L be a regular language. Is {ww|w ∈ L} regular?

b) Let A and B be alphabets. A string homomorphism is a total function
h: A∗→ B∗ that preserves concatenation. More precisely it satisfies:

h(λ) = λ
h(uv) = h(u)h(v)

Let L ⊆ A∗ be regular. Show that {h(w) | w ∈ L} is also regular.

6. a) Let A1,A2 be NFA over the alphabet A= {a, b} given by

//?> =<89 :;q0

a,b

		
b //?> =<89 :;q1

a,b
//?> =<89 :;76 5401 23q2 and //?> =<89 :;s0

a //?> =<89 :;76 5401 23s1

a,b

		

Use the construction given in the lecture to obtain an λ-NFA A which ac-
cepts L(A1)∪L(A2). Describe the resulting language.



4.4. Exercises 47

b) Let L1 = L(A1) and L2 = L(A2) for the above NFA. Construct a λ-NFA A

which accepts exactly the concatenation L1 L2. Describe again the resulting
language.

7. Let A be the alphabet {a, b, c} and A the NFA

//?> =<89 :;76 5401 23q0

b,c

		 a
++?> =<89 :;q1

b
kk

a

		

a) Which of the words cac, cabc and caaabc are accepted? What is the lan-
guage the automaton accepts?

b) Construct a regular expression e using the algorithm from the lecture which
generates the language L(A).

8. (†)

a) Using that regular languages are closed under complement and intersec-
tion, show that for regular languages L1, L2 their difference L1\L2 is regular
as well.

b) Give an algorithm which decides whether for a regular expression e its
language L(e) is empty. Hint: use deterministic finite automata.

c) Give an algorithm which checks for given regular expressions e1, e2 whether
their languages are equal: L(e1) = L(e2). Hint: use the above exercises.

9. (†) Let A be an alphabet and L1, L2 ⊆ A∗ two regular languages given by NFAs
A1,A2 with L(Ai) = Li . Show that the concatenation L1 L2 is regular by con-
structing a nondeterministic automaton A from A1,A2 and showing that L(A) =
L1 L2.

Hint: use the set Q = ({1} ×Q1)∪ ({2} ×Q2) as states.

10. The algorithm to construct a regular expression from an NFA requires that the
automaton has exactly one accepting state. Show how to construct for a given
NFA A another NFA B with exactly one acceptance state and L(A) = L(B).





Lecture 5

Beyond regular languages.

In the previous lectures, we have studied regular languages both from a denotational
perspective (regular expressions) and an operational perspective (automata). In the
coming lectures, we are going to move up in the Chomsky hierarchy of formal lan-
guages and we are going to study another, more expressive, class: context-free lan-
guages. But before we do, we will show a method to prove that a given language is
not regular.

5.1 How to prove that a language is not regular?

Consider the language over alphabet {a, b}

L = {an bn | n ∈ N}.

Using Kleene’s theorem, we know that if L is regular then there exists a finite auto-
maton accepting L. Hence, a method to disprove that L is not regular is to show that
there does not exist a finite automaton accepting it.
Suppose there would exist a finite automaton (Q, q0,δ, F), with Q = {q0, · · · , qm}, ac-
cepting L. Then, for any i, j ∈ N such that i 6= j we know that

ai bi ∈ L and a j bi 6∈ L

That is, δ∗(q0, ai bi) 6= δ∗(q0, a j bi). But we have

δ∗(q0, ai bi) = δ∗(δ∗(q0, ai), bi) and δ∗(q0, a j bi) = δ∗(δ∗(q0, a j), bi)

Hence, we must have that δ∗(q0, ai) 6= δ∗(q0, a j) for all i, j ∈ N which implies that Q is
infinite. We can therefore conclude that L is not regular.
What one can observe in the above proof is that in order to build an automaton to
accept L we need states qi that memorize the number of aś that have been read so
far. In the next lecture, we will introduce a new type of automaton which has the
capability to memorize, thereby increasing the expressivity in relation to DFA/NFA.

Another way to prove that a language is not regular is given by the pumping lemma
for regular languages, which requires words in a regular language to satisfy certain
decomposition properties.
Pumping a word refers to build new words by repeating sub-words in the original
word. In a regular language, accepted by a finite automaton, if one increases the
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length of an accepted word enough, the path going through the automaton will have
to repeatedly go through the same states (since we have a finite number of them).
For instance, consider the automaton

//?> =<89 :;76 5401 23q0

c

		
a //?> =<89 :;q1

a //

c

		 ?> =<89 :;q2

a

gg

c

		

and the word w = ccaaac. We can divide w into u = cc, v = aaa and z = c. Pumping
subword aaa means building words uv iz – ccaaac, ccaaaaaac, . . .. All these words are
accepted by the above automaton.

5.1.1 LEMMA (Pumping lemma for regular languages). Let L be a regular language
accepted by a DFA with k states. Let w be any word in L with |w| ≥ k. Then, w can be
written as uvz with |uv| ≤ k, |v|> 0 and uv iz ∈ L for all i ≥ 0.

The pumping lemma is a powerful took to prove that a language is not regular. Every
string of length k must have an appropriate decomposition. To show that a language
is not regular, it is enough to find one word that does not satisfy the conditions in the
lemma. That is, find a word w and show that there is no decomposition w = uvz for
which every uv iz ∈ L, for all i ≥ 0.

5.1.2 EXAMPLE (Pumping Lemma). 1. Let us consider the example of the begin-
ning of the lecture {an bn | n ∈ N}. Consider a word ai bi ∈ L. We can decompose
it in three different ways

a j · am · ai−m− j bi ai bk · bm · bi−m−k a j · ai− j bk · bi−k

In the last case if we pump substring ai− j bk we end up in a word that has a’s
and b’s mixed: hence not in L. The other two cases are symmetric, we argue
the first. Pump substring am twice. This generates word

a j · a2m · ai−m− j bi

which has j + 2m+ i − m− j = i + m a’s and i b’s. Since i 6= i + m the word
is not in L. Hence, for all decompositions w = uvz we have that uv2z 6∈ L and
therefore, using the Pumping Lemma, we conclude that the language is not
regular. (There was a simpler string we could have considered, namely ak bk for
k the number of states of the DFA accepting L. why? how many decompositions
are then?).

2. Consider the language {w ∈ {a}∗ | |w| = k2 for some k ∈ N}. Assume that this
language is regular and let k be the number of states in the DFA that accepts it.
Now, take the word w = ak2

∈ L. We can divide this string as w = uvz = apaqar

with q> 0 and p+ q+ r = k2. But now observe that uv2w has the length:

|uv2w|= |uvw|+ |v|= k2 + q ≤ k2 + k< k2 + 2k+ 1= (k+ 1)2
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so we have k2< |uv2w|< (k+1)2 which shows that it cannot be a perfect square
and hence uv2w 6∈ L. We can then conclude that L is not regular. ♠

5.2 Context-free languages

The language {an bn | n ∈ N} which we considered above is not regular but it belongs
to another class of well-studied languages: context-free languages.
We will now introduce a formal system, context-free grammars, which is used to
generate strings of a language.

5.2.1 DEFINITION (Context-free grammar). A context-free grammar is a quadruple
(V,Σ, P, S) where

– V is a finite set of non-terminal symbols.

– Σ is the alphabet (finite set of terminal symbols).

– P is a finite set of rules. A rule is written A→ w, where A∈ V and w ∈ (V ∪Σ)∗ .

– S ∈ V is the start symbol. ♣

We use capital letters A, B, C , . . . to denote non-terminal symbols and lower-case a, b, c, . . .
to denote elements of Σ.

5.2.2 EXAMPLE (Context-free Grammar). Let V = {S, B}, let Σ = {a, b}, and let P be
the set with the following two rules.

S→ aSB | λ B→ b

Note that λ is always a word in (V ∪Σ)∗ and hence can always be used on the right
side of a production rule. ♠

Grammars are used to generate/derive words as follows. Given a rule A→ w and a
string uAv we can apply the rule to this string to generate uwv and we write

uAv→ uwv

The grammars we study in this course are called context-free because rules A → w
can be applied in any context to replace the non-terminal symbol A.
Given u, v ∈ (V ∪ Σ)∗, we say that u can be derived from v if there is a sequence of
applications of the production rules

v→ v′→ v′′→ ·· · → u

and we write v⇒ u.
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5.2.3 DEFINITION (Language generated/derived from a context-free grammar). Let
G = (V,Σ, P, S) be a context-free grammar. The language generated (or derived) by
the context-free grammar G is given by

L(G) = {w ∈ Σ∗ | S⇒ w} ♣

We use capital letters A, B, C , . . . to denote non-terminal symbols and lower-case a, b, c, . . .
to denote elements of Σ.

5.2.4 EXAMPLE (Language generated). Recall the grammar above

S→ aSB | λ B→ b

The word aabb is in the language generated by the grammar:

S→ aSB→ aaSBB→ aaBB→ aabB→ aabb

In fact, the grammar above generates precisely the language {an bn | n ∈ N} which we
have been using as running example. ♠

The application of rules, when showing that a word is generated by a grammar, does
not need to follow a particular order. For instance, the word aabb of the previous
example could have been generated applying the rules in a different order. Here are
three alternative examples of derivations, including the one above:

S→ aSB→ aaSBB→ aaBB→ aabB→ aabb

S→ aSB→ aSb→ aaSBb→ aaSbb→ aabb

S→ aSB→ aSb→ aaSBb→ aaBb→ aabb

The first derivation above was obtained by always replacing the non-terminal symbol
appearing first in a left-to-right reading of the word. Such derivations are called
leftmost. The second derivation is rightmost because we always replaced the rightmost
symbol first.
Derivations can be depicted as trees by initializing the tree with S as root and then
for each application of rule A→ x1 x2 . . . xn add x1, . . . , xn as children of the leaf A. We
illustrate this with the example above.



5.2. Context-free languages 53

Derivation steps Corresponding tree

S S

→ aSB S

uuuuuu
JJJJJJ

a S B
→ aaSBB S

rrrrrrr
LLLLLLL

a S

���� :::: B

a S B
→ aaBB S

rrrrrrr
MMMMMMM

a S

���� ;;;; B

a S B

λ

→ aabB S

rrrrrrr
MMMMMMM

a S

���� ;;;; B

a S B

λ b
→ aabb S

rrrrrrr
MMMMMMM

a S

���� :::: B

a S B b

λ b

Leftmost derivations correspond to replacing the leftmost leaf of the tree. The word
derived is simply obtained by reading the leaves of the tree in a left-to-right order.
When a word can be derived using two leftmost derivations in the same grammar we
say that the grammar is ambiguous. For instance, consider the grammar

S→ aS | Sa | a

that generates a+. The grammar is ambiguous because aa can be obtained using two
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different leftmost derivations

S→ aS→ aa S→ Sa→ aa

The language generated by the above grammar can also be generated by an unam-
biguous grammar, namely

S→ aS | a

This example show that ambiguity is a property of grammars not languages. When a
grammar is shown to be ambiguous it is often possible to build an equivalent unam-
biguous grammar. However, this is not always possible. Context-free languages that
are only generated by an ambiguous grammar are called inherently ambiguous.

5.3 Exercises

1. Using the pumping lemma, show that the following languages are not regular

a) {an bm | n= 2m}
b) {x ∈ {a, b, c}∗ | x is a palindrome (that is, x = xR)}
c) {x ∈ {a, b}∗ | the number of a’s is a cube}
d) {x x | x ∈ {a, b}∗}
e) {x ∈ {a, b}∗ | |x |a = |x |b}

2. Let L1 be a non-regular language and L2 a finite language.

a) Show that L1 ∪ L2 and L1 − L2 are not regular.

b) If L2 is not finite, are L1 ∪ L2 and L1 − L2 not regular?

3. Let A be the alphabet A= {a, b}. Show that the language L1 = {w ∈ A∗ | |w|a =
2|w|b} is context-free by giving a context free grammar that generates it. Give
the derivation of the word abbaa.

4. Consider the following grammar

S→ aS | Sb | ab | SS

a) Give a regular expression for the language denoted by the above grammar.

b) Construct the two leftmost derivations for the string aabb and build the
respective derivation trees.

5. Show that the above grammar is ambiguous and give an equivalent unambigous
grammar.

6. Let G be the CFG given by the derivation rules

S −→ aS | SS | b

and the non-terminal S being the start symbol.



5.3. Exercises 55

a) Show that ababb ∈ L(G) by giving a left-most derivation.

b) Turn the above derivation into a derivation tree.

c) Find another left-most derivation that leads to another derivation tree.

7. Give a context free grammar generating the language of “balanced parenthesis”
D. Show that contains the words λ, (), ()(), (()()).

8. Let L = {an bkam | k = n+m} ⊆ A∗.

a) Construct a CFG G such that L(G) = L.

b) Give a derivation for the word aabbba ∈ L.

9. (†) The operation of shuffle is important in the context of concurrency theory.
If u, v ∈ A∗, we write u | v for the set of all strings that can be obtained from u
and v by shuffling them like a deck of cards; for instance

ab | cd = {abcd, cdab, acd b, cad b, cdab}

The set u | v can formally be defined by induction:

λ | v = {y} u | λ= {u} ua | vb = (u | vb) · {a} ∪ (ua | v) · {b}

The operation · is language concatenation. The shuffle f two languages is then
defined as

X | Y = {(x | y) | x ∈ X , y ∈ Y }

For example,

{ab} | {cd, e}= {abe, acb, eab, abcd, acbd, acd b, cabd, cad b, cdab}

a) What is (01)∗ | (10)∗?

b) Show that if X and Y are regular, so is X | Y .





Lecture 6

Automata with memory.

In this lecture, we introduce pushdown automata, an automaton model with memory
that accepts context-free languages.

6.1 Pushdown automata.

Recall from the previous lecture that the language

{an bn | n ∈ N}

was not accepted by a finite automaton because, intuitively, the automaton had no
way to remember how many a’s it had already read using only finite states.
In this lecture we study an automaton model that combines finite automata with
an external memory. The memory we consider is a stack memory, a last-in first-out
memory. Writing the string DCBA to an empty stack results in the following:

. . . DCBA→

D
C
B
A

→ ABC D

When reading from the stack the first element will be D, followed by C , B and A, in
the reverse order in which they were written into the stack.
The stack has 2 operations: push and pop. Push takes an element and puts it in the
top of the stack.

push(Z ,

D
C
B
A

) =

Z
D
C
B
A

Pop removes the top element of the stack.

pop(

D
C
B
A

) =
C
B
A

57
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The operations pop and push only affect the top element of the stack.
We are now ready to define pushdown automata.

6.1.1 DEFINITION (Pushdown automaton). A pushdown automaton (PDA) is a tu-
ple (Q,Σ,Γ,δ, q0, F) where

– Q is a set of states (finite);

– Σ is the input alphabet;

– Γ is the stack alphabet;

– q0 is the initial state;

– F ⊆Q is the set of final states;

– δ : Q→ P(Q×Γλ)Σλ×Γλ is the transition function.

Here, we use Γλ and Σλ as shorthands for Γ∪ {λ} and Σ∪ {λ}, respectively. ♣

We will use the notation

?> =<89:;p a, A/B
//?>=<89:;q ⇐⇒ (q, B) ∈ δ(p)(a, A)

The differences of PDA with the automata we defined in previous lectures:

– two alphabets: one for the stack, one for input.

– to make a transition a PDA uses: the current control state q ∈ Q, the input
symbol, and the symbol on top of the stack.

– δ(p)(a, A) = {(q, B), (r, C)} indicates two possible transitions and two possible
changes in the stack.

(q, B) ∈ δ(p)(a, A)

causes

• change of state from p to q;

• process the input symbol a;

• pop symbol A from the stack (so: if the stack top is different from A this
transition cannot be taken);

• push symbol B into the stack.

– If (q, B) ∈ δ(p)(a,λ) this means that the transition can be taken no matter what
the content of the stack is and only three actions occur:

• change of state from p to q;

• process the input symbol a;
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• push symbol B into the stack.

When depicting computations in a PDA we will represent the stack as a string in Γ∗.
The empty stack will be denoted by the empty word λ; the word Aα denotes a stack
with A on top.
The computation of a PDA begins at the initial state with the empty stack. Then the
input word is read causing changes to the stack as described above.

6.1.2 EXAMPLE (Computation in a PDA). Consider the following PDA over Σ = {a, b}
and Γ = {A, B}

?> =<89 :;q0
b,A/λ

//

a,λ/A
�� ?> =<89 :;76 5401 23q1

b,A/λ




In input word aabb the computation steps will be as follows:

q0, aabb,λ−→ q0, aabb, A−→ q0, aabb, AA−→ q0, aabb, A−→ q0, aabb,λ ♠

We will use the notation p, uv,α =⇒ q, v,β to denote that the PDA moved from state
p to q, through several steps of computation, by reading word u and with the stack α
at the start of the computation (which is then changed to β).

6.1.3 DEFINITION (Language accepted by a pushdown automaton). Given a push-
down automaton (Q,Σ,Γ,δ, q0, F) the language accepted by a state q ∈Q is given by

L(q) = {w ∈ Σ∗ | q, w,λ=⇒ q′,λ,λ and q′ ∈ F} ♣

This definition is known as acceptance by empty stack and final states. In textbooks,
you will find alternative definitions where PDA are allowed to accept a word based
on only final states or only empty stack. All these definitions are equivalent and in
this course we consider acceptance by both empty stack and final states.

6.1.4 EXAMPLE (Language accepted by a PDA). Consider the language {wcw r | w ∈
{a, b}∗} over alphabet Σ = {a, b, c}.
Take Γ = {A, B} and F and δ as depicted:

?> =<89 :;q0
c,λ/λ

//

b,λ/B
��

a,λ/A

TT

?> =<89 :;76 5401 23q1

b,B/λ




a,A/λ

TT

A successful computation in this PDA: memorizes w, then reads c. At this point the
stack contains precisely (an encoding of) the word wR and the automaton just reads
the input string until the stack is empty. For example, the word abcba would generate
computations

q0, abcba,λ−→ q0, bcba, A−→ q0, cba, BA−→ q1, ba, BA−→ q1, a, A−→ q1,λ,λ
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State q1 is final and hence abcba is accepted.
Take now word abcab:

q0, abcab,λ−→ q0, bcab, A−→ q0, cab, BA−→ q1, ab, BA−→ X X

Now, the automaton is stuck because there is a B on top of the stack but the next
input letter is a and the only transition in the automaton for a requires an A on top of
the stack. Hence, abcab is not accepted. ♠

6.2 From grammars to automata.

In this section, we show how to build a PDA from a given grammar. For simplicity,
we consider grammars in Greibach normal form. A grammar is in Greibach normal
form if every production rule is of the form A → λ or A → aA1 · · ·An, with a ∈ Σ
and A1, · · · , An ∈ V . Every grammar can be converted into an equivalent grammar in
Greibach normal form (how?) so this is not a restriction.
Take the grammar

S→ aAB | aB
A→ aB | a
B→ b

The following automaton accepts the same language:

?> =<89 :;q0

a,λ/B
++

a,λ/AB

33
?> =<89 :;76 5401 23q1

b,B/λ

��

a,A/B
ss

a,A/λ

UU

Note that we are using a shorthand: we have a push of a string AB instead of two
transitions. Why is this not a problem?
The above automaton was constructed using the following definition.

6.2.1 DEFINITION (Construction of a PDA from a grammar). Given a grammar (V,Σ, P, S),
we build a PDA with ({q0, q1},Σ,Γ,δ, {q1}) with

δ(q0, a,λ) = {(q1, w) | S→ aw ∈ P}
δ(q0,λ,λ) = {(q1,λ) | S→ λ ∈ P}
δ(q1, a, A) = {(q1, w) | A→ aw ∈ P} ♣

Note that the last rule can be instantiated for λ: δ(q1,λ, A) = {(q1,λ) | A→ λ ∈ P}.

The converse construction, of a CFG from a PDA, exists but is more verbose and we
will skip it in this course (for those who are curious, check pages 235-237 of the
Sudkamp book).
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6.3 Closure properties of CFL

Context free languages are closed under union, concatenation and Kleene star. Let us
show the first, the other two are left as exercises.
Suppose that L and M are context free languages. Then there are CFG’s G1 =
(V1,Σ1, P1, S1) and G2 = (V2,Σ2, P2, S2) generating L1 and L2, respectively. Define
G = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S → S1 | S2}, S), assuming S is a symbol not
present in the given grammars. It is now easy to see that L(G) = L(G1)∪L(G2).
Context free languages are not closed under intersection. For instance,

L1 = {ai bic j | i, j ≥ 0} and L2 = {a j bic i | i, j ≥ 0}

are context free (what are the grammars?) but

L1 ∩ L2 = {ai bic i | i, j ≥ 0}

is not (try!).
Context free languages are also not closed under complement. If they were then,

given context free languages L1 and L2 we would be able to prove that L1∩L2 = L1 ∪ L2
also is context free, but we just saw a counter-example of this fact.

6.4 Wrap-up

In this course we studied two major classes of languages from a denotational (syntac-
tic) and operational perspective (automata). The table below summarizes the mate-
rial.

Regular Languages Context-Free Languages

Syntax Regular expressions Context-Free Grammars
Operational DFA, NFA, NFA-λ PDA
Closure prop-
erties

intersection, complement, . . . union, concatenation and star

Connecting
syntax and
automata

Kleene’s theorem CFG→ PDA

6.5 Exercises

1. Consider the following PDA:

?> =<89 :;q0
λ,λ/λ

//

b,A/λ
��

a,λ/A
�� ?> =<89 :;76 5401 23q1

λ,A/λ




?> =<89 :;q2 λ,A/λ
ss

b,A/λ
++
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a) Describe the language accepted by the above PDA.

b) Describe all computations of the input strings aab and abb.

2. Construct a PDA accepting the language L2 = {w ∈ {a, b}∗ | |w|a = |w|b}. Show
that the word abba is accepted.

3. Construct a PDA accepting the language L1 = {w ∈ A∗ | |w|a = 2|w|b}. Show that
abbaaa is accepted.

4. Construct PDA’s that accept the following languages

a) {an bm | m= 2n}
b) {x ∈ {a, b}∗ | x is a palindrome (that is, x = xR)}
c) {x ∈ {a, b}∗ | x has at least twice as many a’s as b’s}

5. Let L be the language {w ∈ a, b∗ | w has a prefix containing more b’s than a’s}.
For example, baa, abba, abbaaa ∈ L but aab, aabbab 6∈ L. Construct a PDA that
accepts L.

6. (†) Construct a PDA where the stack alphabet only has two symbols that recog-
nizes the language over {a, b, c, d}:

{wdwR | w ∈ {a, b, c}∗}

7. Construct (two-state) PDA’s for the following CFG

a)
S→ aABA | aBB
A→ bA | b
B→ cB | c

b)

c)
S→ AB
A→ aAC | λ
B→ cB | λ
C → b

8. (†) Show that for a given context free grammar G, there is a grammar G′ with
L(G′) = L(G)∗.

9. (†) Let M be the regular language given by (a + b)∗a(a + b) over A = {a, b}.
Show that L2 ∩ M is context-free. Hint: given the NFA for M and the PDA for
L2, one can construct a PDA accepting the intersection, just like in the case for
NFA/DFA.



Lecture A

Extra exercises on induction

A.1 Exercise I

The purpose of this exercise is to explain in detail the basics of induction on sets. If
you do not know how to answer the questions below right away, we strongly recom-
mend to do this exercise. Induction is a very basic yet powerful technique. You will
see it over and over again in this course and everywhere in Computer Science (and
of course in Mathematics for that matter). So it is worthwhile to familiarise yourself
with it. This can be only achieved by practising, which is the purpose of this exercise.
So let us begin with the general scheme of defining a set by induction. Assume we
want to define a set X by some inductive property. Then its definition has to contain
a base case, which we will refer to by BX , an induction step SX and a closure clause
CX which states that nothing besides what is given by BX and SX is in X . Often this
closure clause is left implicit. We will make it explicit in this exercise for the sake of
clarity.
For this first exercise, we include solutions. Try to solve the exercise before reading
the solutions. After solving and understanding the first exercise you should be able
to solve the second exercise provided in this appendix (for which we do not provide
solutions).

A.1.1 EXAMPLE (Natural numbers). Natural numbers are the prime example for do-
ing induction and often are mistaken to be the only set on which one can do induction.
Even though this is not true, we still begin by giving a definition of natural numbers
using the above described principle. A natural number will in this case be either 0 or
sn where n is already a natural number (pronounce s as successor). Both 0 and s are
just letters in the alphabet {0, s}. So here is the official definition of a set N which we
might call natural numbers. The set N ⊆ {0, s}∗ is defined by

BN ) the symbol 0 is an element of N .

SN ) for any n in N the word sn is in N .

CN ) nothing else is an element of N . ♠

A.1.2 EXAMPLE (Non-empty words). The first example is close to what you already
have seen in the lecture: we define the set A+ of non-empty words for an alphabet A.
The set A+ is defined by

63
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BA+) all elements of A are in A+: A⊆ A+.

SA+) for any w ∈ A+ we have that wa ∈ A+ for all a ∈ A.

CA+) nothing else is an element of A+. ♠

Let A be the alphabet A= {x , y}.

a) What is the minimal length of the words in A+? Give an example.

Solution: The minimal length of a word w ∈ A+ is 1, for example x ∈ A+.

b) Is there a maximum length of words in A+?.

Solution: Of course not, the induction step always increases the word length.
So there is no upper bound.

Given an inductively defined set X , the next step we want to take, is to check whether
a given element x is in X . This is done by constructing a finite number (possibly zero)
of applications of SX to an element defined in the base case.

A.1.3 EXAMPLE. We may wonder, whether the number 2 represented by ss0 is a nat-
ural number in N . That it is, one can be see by starting from 0 ∈ N and then applying

the induction step SN twice: 0
SN−→ s0

SN−→ ss0. ♠

c) Show how x x is an element of A+.

Solution: By the base case x ∈ A ⊆ A+ and by applying the induction step
once, we have x x ∈ A+.

On the contrary one sometimes also would like to show that something is not con-
tained in X . To do this, we need to give an argument why the element is not given by
the base case and cannot be constructed by the induction step.

A.1.4 EXAMPLE. Take for example the word s0s ∈ {0, s}∗. It should not be an element
of N . First it is not covered by the base case, since s0s 6= 0. To be constructed in the
induction step, it must be of the form, sw with w ∈ N . But then w = 0s, for which
we prove by a second induction that it cannot be in N . To this end we observe that
again 0s 6= 0 and also that 0s 6= sw for any w ∈ N ⊆ {0, s}∗. Thus w 6∈ N and hence
s0s = sw 6∈ N . ♠

d) Show that λ 6∈ A+.
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Solution: λ is not covered by the base case, since λ 6∈ A. In the induction step
we find that λ 6= wa for any w ∈ A+, hence λ 6∈ A+.

More generally, a property on an inductively defined set can be proven by the induc-
tion principle which comes with every inductively defined set. Assume we want to
prove that a property P(x) holds for all x ∈ X . Then the induction principle reduces
this problem to showing that

BX ) P(x) holds for all x ∈ X defined in the base case and

SX ) P(x ′) holds for all x ′ constructed in the induction step, using the assumption
that P(x) holds for all x ∈ X .

Please note here, that this is different from assuming that P(x) holds for all x ∈ X .
Let us write x ∈ BX if x is defined by the base case and x ′ ∈ SX (x) if x ′ is constructed
from some x ∈ X using the induction step (e.g. 0 ∈ BN and ss0 ∈ SN (s0)). Then it
might be helpful to see the induction principle as a formula:

��

∀y ∈ BX :P(y)
�

∧ (∀z ∈ X :P(z)⇒ (∀z′ ∈ SX (z):P(z
′))
�

⇒∀x ∈ X :P(x).

This says: if P(y) holds for all y in the base case and if P(z′) holds for all z′ constructed
in the induction step from any z ∈ X with the assumption that P(z) holds, then P(x)
holds for all x ∈ X . This is a scary formula indeed, but since natural language has
quite some imprecision, this can be clearer. But let us look at a concrete example.

A.1.5 EXAMPLE. In the case of N we recover the usual principle of induction on the
natural numbers (sometimes called “mathematical induction”). A property P on N is
thus proven by

BN ) showing that P(0) holds and

SN ) showing that P(sn) holds, provided P(n) holds for all n ∈ N (this assumption is
called induction hypothesis).

The logical formula then becomes

(P(0)∧ (∀n ∈ N :P(n)⇒ P(sn)))⇒∀n ∈ N :P(n)

which should look a little less scary.
Note that above we have proven that the property P(n) ⇔ n 6= s0s holds for all
n ∈ N . ♠

e) Define the property P you have shown in item d).

Solution: Since λ 6∈ A+ means, that every w ∈ A+ is not equal to λ, we can
define P by P(w)⇔ w 6= λ.

Remark. Sometimes it is easier to see a property as a set P where we say, that the
property P holds for X if P ⊆ X . In this context P is often called a predicate.
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A.2 Exercise II

We come now to a more realistic example of defining a set and proving properties
about it using induction. In the following we fix alphabets A= {a, b, c} and B = A∪{_}
(yes, an underscore). We will define two languages over B by induction and your task
will be to show that they are equal. One of the descriptions is in a way which is easy
to capture by a regular expression or a DFA.
We start with the language L ⊆ B∗ defined by

BL) the letters a, b, c are in L, i.e. A⊆ L.

SL) if w ∈ L then

i) for all x ∈ A the word wx is in L, i.e. wA⊆ L.

ii) for all x ∈ A the word w_x is in L, i.e. w_A⊆ L.

CL) Nothing else is in L.

a) Is λ ∈ L? Give a reason.

b) What is the length of the shortest word in L? Give an example.

c) Decide which of the following words is in L. Give a construction or show why
it is not in L.

i) abc

ii) ab_bc

iii) a_b_.

Now it is up to you to define another language K and investigate properties of it.

d) Give a formal definition (by giving the base case, induction step and closure
clause) of the following informally defined language K. The language K ⊆ B∗

consists of non-empty words over A and for any word w in K of words w_v for
all non-empty words v over A, i.e. a non-empty word followed by a sequence of
_v with v being non-empty.

e) Decide which of the following words is in K. Give construction or show why it
is not in K.

i) The empty word λ.

ii) abc

iii) ab_bc

iv) a_b_.
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Now you are going to show that L = K by showing that L ⊆ K and K ⊆ L. This will of
course be carried out by induction and is more interesting than what we have done
so far.

f) Show that L ⊆ K. Use induction on L to show that every word w ∈ L is contained
in K which in turn uses the inductive definition of K.

g) Show that K ⊆ L by induction. For this you need to construct a word w from K
in L using the inductive definition of L.

Now this representation is actually very close to a regular expression and a determi-
nistic finite automaton. So we close here with the following exercises.

a) Give a regular expression e with L(e) = K.

b) Give a DFA which accepts the language K.
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Talen en Automata
Test 1, Wednesday, Dec. 19, 2012

15h45 - 17h00

This test consists of five exercises. It is advised to explain your approach and to check your
answers carefully. You can score a maximum of 100 points. Each question indicates how many
points it is worth. The test is closed book. You are NOT allowed to use a calculator, a computer
or a mobile phone. You may answer in Dutch or in English. Please write clearly, and do not
forget to put on each page: your name, your student number, and your werkcollege group. Put
your student-card clearly visible at the corner of your table (for inspection).

1. (20 points) Prove that the following languages are regular.

(a) {w ∈ {a, b}∗ | w begins with b and has an even number of a’s }
(b) {w ∈ {a, b}∗ | w contains the substring ba and does not contain the substring bb }

2. (20 points) Let L1 be a non-regular language and L2 a regular language.

(a) Is the language L1L2 always regular? If not, give a counter-example (that is, concrete
L1 and L2 for which L1L2 is non-regular).

(b) Give L1 and L2 such that L1L2 is regular.

3. (20 points) Consider the following non-deterministic automaton with λ transitions:

// q0

a

uu

b

��

λ,a
// q1

a
��

λ
{{

q2

b

CC

a

ii

(a) Construct an equivalent deterministic automaton (using the power set construction).
In your answer, show the intermediate steps needed to reach the final result (so that
we can evaluate that you understand the algorithm).

4. (20 points) Prove that the following language is not regular.

(a) {w ∈ {a, b}∗ | |w|a = 2|w|b}, where |w|a and |w|b denote the number of a and b in w,
respectively.

5. (20 points) Given a language L ⊆ A∗, define two words u, v ∈ A∗ to be equivalent with
respect to L, written u ∼L v, as follows.

u ∼L v def⇐⇒ for all z ∈ A∗ (uz ∈ L ⇐⇒ vz ∈ L)

That is, two words are L equivalent if no matter how we extend them (by appending z) they
either both belong to L or they both do not.

(a) Suppose L = {an | n is even}. Which words v ∈ A∗ are L-equivalent to λ?

(b) Prove that if L is regular, then there exist w1, . . . , wn, such that for each w ∈ A∗ there
is a i such that w ∼L wi.



Talen en Automata
Test 2, Wednesday, Jan. 22, 2013

15h45 - 17h30

This test consists of six exercises. It is advised to explain your approach and to check your answers
carefully. You can score a maximum of 100 points. Each question indicates how many points it is
worth. The test is closed book. You are NOT allowed to use a calculator, a computer or a mobile
phone. You may answer in Dutch or in English. Please write clearly, and do not forget to put on
each page: your name, your student number, and your werkcollege group. Put your student-card
clearly visible at the corner of your table (for inspection).

1. (10 points) Consider the following context-free grammar, with starting symbol S.

S → V V | V
V → (S) | a | b | c

For each of the following sentences say whether it is described by this grammar or not. If it
is, give either a syntax tree with S at its root or a derivation from S.

i. a(b)

ii. abc

iii. a(bc)

2. (10 points) Write a context-free grammar describing the language containing all strings of
a’s and b’s for which the number of a’s is even.

3. (20 points) Consider the language

L = {w ∈ {a, b}∗ | the first, middle, and last characters of w are the same and |w| is odd.}.

(a) Provide a context-free grammar that generates L.

(b) Provide a pushdown automaton that recognizes L.

4. (20 points) Consider the following pushdown automaton with starting state q0 and final
state q2.

// q0
λ,λ/X

// q1

b,Y/λ

TT

a,λ/Y

��
λ,X/λ

// q2

(a) Which of the strings aaabbbba, aaabbabb and aaabbbaababb are accepted?

(b) Describe the language accepted by this pushdown automaton.

5. (20 points) Consider the grammar below over alphabet Σ = {(, ), a,+, ∗}:

S → T | S + T
T → F | T ∗ F
F → a | (S)

The grammar accepts sentences such as a+(a∗a). Construct a PDA recognizing the language
accepted by this grammar.

6. (20 points) The language
L = {ww | w ∈ {a, b}∗}

is not a context free language. However, its complement L̄ is context free. Construct a
grammar for L̄.



Talen en Automata
Re-take exam, Friday, April 5, 2013

15h45 - 17h30

This exam consists of three parts. Each part is optional and will replace the mark you had for,
respectively, homework, first and second tests.

It is advised to explain your approach and to check your answers carefully. You can score a
maximum of 100 points for each part. Each question indicates how many points it is worth. The
exam is closed book. You are NOT allowed to use a calculator, a computer or a mobile phone.
You may answer in Dutch or in English. Please write clearly, and do not forget to put on each
page: your name, your student number, and your werkcollege group. Put your student-card clearly
visible at the corner of your table (for inspection).

Part 1 (Homework)

1. (30 points) Give a regular expression r over the alphabet A = {a, b, c} such that the
language determined by r consists of all strings that contain at least one occurrence of each
symbol in A. Briefly explain your answer.

2. (30 points) Give a deterministic finite automaton over the alphabet {a, b} which accepts
all strings containing no more than two consecutive occurrences of the same input letter.
(For example, abba should be accepted but not abaaab.)

3. (40 points) Give a pushdown automaton that recognizes the language {anbn | n ∈ N}.

Part 2 (Regular languages)

1. Let L be the language accepted by the following non-deterministic finite automaton with
λ-transitions.

// q0
a

��

a // q1
a // q2

a //

a

xx
λ

��

q3

q4
a

++ q5
a

kk

(a) (20 points) Construct an equivalent deterministic automaton (using the power set
construction). In your answer, show (some of) the intermediate steps needed to reach
the final result (so that we can evaluate that you understand the algorithm).

(b) (20 points) Give a regular expression that denotes L.

2. (30 points) Is the language {akblam | k ≥ n+ l} regular? Provide a proof of your answer.

3. (30 points) Show that regular languages are closed under doubling: If a language L is
regular, then so is the language {two(x) | x ∈ L}, where string doubling is defined by
two(λ) = λ and two(xa) = (two(x))aa (for instance, two(abb) = aabbbb).

Part 3 (Context-free languages)

1. Consider the language L = {xy ∈ {a, b}+ | y = xR}, where xR denotes the reverse string
of x.

(a) (30 points) Give a context-free grammar for L.

(b) (30 points) Give a pushdown automaton that accepts L.

2. (40 points) Construct a pushdown automaton, with two states, that accepts the grammar
over alphabet Σ = {(, ), a,+, ∗}:

S → T | S + T
T → F | T ∗ F
F → a | (S)


	Regular Languages and Expressions
	Languages
	Operations on Words and Languages
	Regular sets and Expressions
	Exercises

	Regular Expressions and Deterministic Finite Automata
	Regular Expressions
	Deterministic Finite Automata
	Exercises

	Non-deterministic Finite Automata
	Non-deterministic Finite Automata
	Non-deterministic automata with -transitions
	Removing -transitions
	Exercises

	Kleene's theorem and Properties of Regular Languages
	Determinization of NFA
	Kleene's theorem
	Properties of regular languages
	Exercises

	Beyond regular languages.
	How to prove that a language is not regular?
	Context-free languages
	Exercises

	Automata with memory.
	Pushdown automata.
	From grammars to automata.
	Closure properties of CFL
	Wrap-up
	Exercises

	Extra exercises on induction
	Exercise I
	Exercise II


