Programming with Higher Inductive Types

Herman Geuvers
joint work with Niels van der Weide, Henning Basold,
Dan Frumin, Leon Gondelman
Radboud University Nijmegen, The Netherlands

November 17, 2017

1/32

Overview

v

How to define a data type of finite sets?

v

Introduction to Dependent Type Theory

v

The problem with equality
Homotopy Type Theory (HoTT)
A higher inductive type for finite sets

v

v

2/32

How to define Finite Sets

v

Represent a set as a list of elements (with duplicates).

» Operations on sets then become operations on lists.

» But ... not all functions on lists are proper functions on sets
(e.g. length)

In a proper implementation one needs to maintain several
invariants.

v

v

What are the proper proof principles for finite sets?

3/32

Programming in Dependent Type Theory

» Dependent Type Theory (Martin-Lof Type Theory, Calculus of
Inductive Constructions, ...) is an integrated system for
programming and proving

» Implemented as a Proof Assistant (Coq, Agda, NuPRL, ...)

4/32

Ingredients of Dependent Type Theory

1. Data types and definition of functions over these
2. Predicate logic via “formula-as-types"”.

3. Integration of programming and proving

4

. Inductive definitions: introduction and elimination rules

» Various shortcomings

5/32

Ingredients of DT T: data types and definition of functions

1. Data types are inductive types
Inductive List (A: Type) :=
| nil : List(A)
| cons: A — List(A) — List(A)

2. Functions are defined by pattern matching and well-founded
recursion
Fixpoint append (A: Type) (¢, k : List(A)) :=
match £ with
| nil = k
| cons a ¢’ = cons a (append ¢ k)

6/32

Ingredients of DT T: Predicate logic via “formula-as-types”

1. A proposition is also a type;
a proposition ¢ is the type of proofs of ¢.

. M:Aisread as "M is a term of data-type A" if A: Set

N

. M: Aisread as "M is a proof of proposition A" if A: Prop

>~ W

. Set is the type of data types and Prop is the type of
propositions.

5. a predicate Pon Aisa P: A — Prop.
6. lM-type, dependent function space. Intuitively

MN(x:A).B =~ {f|Va(a:A= fa:B[x:=a])}.
7. Example:
A(x: A)A(h: Px).h : V(x:A).Px— Px

V is interpreted as 1.

7/32

Ingredients of DT T: Integration of programming and
proving
Example. Sorting a list of natural numbers.
sort : Listy — Listy
More refined:
sort : Listy — 3(y : Listy), Sorted(y)

Sorted(x) := Vi < length(x) — 1(x[i] < x[i +1])
Further refined:

sort : V(x : Listy), 3(y : Listy), (Sorted(y) A Perm(x, y))

8/32

Ingredients of DT T: Programming with proofs

Example. Sorting a list of natural numbers.

sort : V(x : Listy), 3(y : Listy), (Sorted(y) A Perm(x, y))

The proof sort contains a sorting program that can be extracted

sort : M(x : Listy), 3(y : Listy), Sorted(y) A Perm(x, y))

sort : Listy — Listy

correct : V(x : Listy), (Sorted(sort(x)) A Perm(x, sort(x)))

9/32

Ingredients of DT T: Inductive definitions

Example of inductive data types of lists.
Inductive List (A: Type) :=
| nil : List(A)
| cons: A — List(A) — List(A)
This generates
1. constructors
2. a definition mechanism for recursive functions on List
3. a principle for proofs by induction over List

4. These are the same (!) elimination principle for List.
For P : List(A) — Prop or P : List(A) — Set:
fo : P nil fo : N : List(A).P¢ — MNa: A.P(cons al)
Rec fy fo : 1€ : List(A).P(£)

10/32

Dependent Type Theory: Various shortcomings

» No extensionality

p:MNx:Afx=gx

extp:f=g
» No uniqueness of identity proofs...
What is identity anyway?

11/32

|dentity is defined inductively

Identity is an inductive type Id (with notation “=")

Inductive Id (A: Type) : A— A — Type :=
| refl : Mx:Ax=x

The smallest binary relation on A containing {(x, x) | x : A}.
Giving

refl : M(A: Type)(a: A).a=a

and the J-rule

P:Ma,b:Aa=b— Prop r:Ma: A, Paa refl
Jr:Nx,y :AMli:x=y,Pxyi

with computation rule

Jaa(refl a) — r.

12/32

Properties of the Identity type

The J-rule gives:
> ldentity is symmetric: sym:a=b—>b=a
> ldentity is transitive: trans:a=b—>b=c—a=c
» Substitutivity (Leibniz property)
t:Q(a) r:a=»>b
t': Q(b)
But: ¢’ is not just t. (In fact ' = Jabrt.)

13/32

Properties of the Identity type

The J-rule does not give:

» Function extensionality

f,g:A— B r:Va:Afa=ga

t:f=g
for some term t.
» Proof Irrelevance (all proofs are equal).
A Prop a:A b:A
t:a=»>b

for some term t.
» Uniqueness of Identity Proofs (UIP).

a,b: A go,q1:a=»>ob
t:q=q1

for some term t.

14/32

Uniqueness of Identity Proofs (UIP)

Isn't UIP derivable??

a,b:A go,g1:a=>b
t:qgo=qi

for some term t.

The intuition of the type a = b is that the only term of this type is
refl (and then a and b should be the same).

UIP is equivalent to the K-rule:

a:A g:a=a

t:g=refl aa
for some term t.
This rule may look even more natural

There is a countermodel to K (and UIP): M. Hofmann and Th.
Streicher, The groupoid interpretation of type theory, 1998.

15/32

Types are groupoids

A type can be interpreted as a groupoid, which is defined either as

>

>

A group where the binary operation is a partial function,

A category in which every arrow is invertible.

A groupoid (seen as a group) should satisfy the following

>

Associativity: If p-g] and g-r |, then (p-q)-r] and
p-(g-r)dand(p-q)-r=p-(q-r)
.plandpt.p=p-pt=1

Identity: If p-q |, then (p-q) ' =g 1.-p~ L.

Inverse: p~

These are exactly the laws for our proofs of identities if we
read p- as composition of p and g (via trans) and p~ 1 as the
inverse of a proof (via sym)!

In a groupoid the K rule (Vp, p = 1) obviously does not hold!

16/32

Homotopy type theory (HoTT)
Fields medal 2002

» homotopy theory algebraic varieties
» formulation of motivistic cohomology

mathematics independent of specific definitions
homotopy type theory

» homotopy is the ‘proper’ notion of equality
» homotopy = continuous transformation

Vladimir Voevodsky

2006

17/32

Homotopy Theory

Part of Algebraic Topology dealing with homotopy groups:
associating groups to topological spaces to classify them.

PR W
DD H O

> an equality is a path from
one object to another
(continuous transformation)

> higher equality
= transformation between paths
= a path between paths.

18/32

Types are topological spaces, equality proofs are paths

Voevodsky: A type A is a topological space and if a, b : A with
p:a=b, then

p is a continuous path from a to b in A.

If p,g:a=band h: p=gq, then
h is a continuous transformation from p to g in A

also called a homotopy.

19/32

Equality proofs are paths, path-equalities are higher paths

Note: A property P :Va,b: A ,a= b — Prop should be closed
under continuous transformations of points and paths.

P:Va,b:Aa=b— Prop r:Va: A, Paa refl
Jr:Vx,y tAVi:x=y,Pxyi

The following do not hold

a,b:A go,q1:a=>b
t:qgo=qi

(for some term t)

a:A g:a=a
t:g=refl aa

(for some term t).

20/32

Homotopy Type Theory

Voevodsky's Homotopy Type Theory (HoTT):
» We need to add: Univalence Axiom: for all types A and B:

(A=B)~(A~B)
where A >~ B denotes that A and B are isomorphic: there are

f:A— Band g: B — Asuch that Vx : A, g(f x) = x etc.

» HoTT is the internal language for homotopy theory. All proofs
in homotopy theory should be formalised in type theory.
(Agda and Coq give support for that.)

» Univalence implies that isomorphic structures can be treated
as equal.

21/32

Higher Inductive Types (HITs)

Inductive types + path constructors.

Inductive circle : Type :=
| base : circle
| loop : base = base.

Inductive torus: Type =
| base : torus
| meridian : base = base
| equator : base = base
| surf : meridian - equator = equator - meridian
Questions:
» What are the proper general rules for higher inductive types?

» What are the good use cases for higher inductive types in
computer science?

22/32

Finite Sets according to Kuratowski

A possible definition as an inductive type would be

Inductive Fin(_) (A: Type) =
| 0: Fin(A)
| L:A— Fin(A)
| U:Fin(A) x Fin(A) — Fin(A)

v

Notation: {a} for La

v

Notation: x Uy for Uxy

» We require some equations (eg: U is commutative,
associative, () is neutral, ...).

v

But inductive types are 'freely generated'. We can’t simply
add extra equations to inductive types.

23/32

Possible solutions

1. Data Types with laws (Turner 1980's)
2. Quotient Types
3. Higher Inductive Types

We will look at the last solution.

24/32

A general scheme for higher inductive types

» Published as ‘Higher Inductive Types in Programming’

(Basold, Geuvers, Van der Weide), JUCS, Vol. 23, No. 1, pp.

63-88, 2017.

» Formalized in Coq using the HoTT library by Bauer, Gross,
Lumsdaine, Shulman, Sozeau, Spitters.

» Example of Finite Sets worked out further in ‘Finite Sets in
Homotopy Type Theory’ (Frumin, Geuvers, Gondelman, Van
der Weide), to appear in CPP, January 2018, Los Angeles.

25/32

Example: Finite Sets

Inductive Fin (A: Type) :=

| 0: Fin(A)

| L:A - Fin(A)

| U:Fin(A) x Fin(A) — Fin(A)

| as:[[(x,y,z:Fin(A)),xU(yUz)=(xUy)Uz
| neuty : J](x: Fin(A)),x U = x

| neuty : [](x : Fin(A)),0Ux = x

| com:J](x,y:Fin(A)),xUy =yUx

| idem: [[(x: A),{x}U{x} ={x}

| trunc: [[(x,y : Fin(A)),II(p,q: x=y),p=¢q

26/32

Elimination Rule for Kuratowski Sets

The non-type dependent variant

Y : Type
Oy : Y
Ly :A=Y
Uy : Y=Y =Y
ay : [[(a,b,c:Y),aUy (bUy c)=(aUy b)Uy ¢
ny1:][(a: Y),aUy 0y =a
nys:[[(a: Y),0yUya=a
cy :[I(a,b:Y),aUy b=bUy a
iy : [[(a: A),{a}y Uy {a}y = {a}y
truncy : [[(x,y : Y),[I(p,g:x=y),p=¢q
Fin(A)-rec(dy, L,, Uy, ay, ny 1, ny2,cy,iy) : Fin(A) = Y

27/32

Example: membership

We define €: A — Fin(A) — Prop.
For a: A, X : Fin(A) we define membership of a in X by recursion

over X:
aclh:= 1,
a e {b}:=|la= b,
ac(x1Ux) =llaexVacx

Here ||A|| denotes the truncation of A: the type A where we have
identified all elements.

We can prove the following Theorem (Extensionality):
For all x,y : Fin(A),
the types x =y and [[(a: A),a € x = a € y are equivalent.

28/32

Alternative definition using lists

We can also define finite sets using lists.

Inductive Enum (A : Type) =

| nil : Enum(A)

| cons: A— Enum(A) — Enum(A)

| dupl:J](a: A)J(x: Enum(A)),cons a(cons ax) = cons ax

| comm:[](a,b:A)](x: Enum(A)),cons a(cons bx) = cons b (cons ax)
| trunc: [I(x,y : Enum(A)). II(p,q: x=y).p=gq

It can be proven that

Enum(A) ~ Fin(A)

29/32

The size of a finite set

Using the alternative definition we can define the size of a set
#(x), for types A with a decidable equality.

#(nil) := 0,
#(cons ak):=#kifack
#(cons ak):=1+#kifad k

Note: a simple length function of the underlying list is just not
well-defined as it isn't compatible with the required equations on
Enum(A).

30/32

Interface for Finite Sets
A type operator T : Type — Type is an implementation of finite
sets if for each A the type T(A) has

> Drea): T(A),
> an operatlon Ur(a) @ T(A) = T(A) — T(A),
» for each a: A there is {a}7(a): T(A),
> a predicate a €74y ——: T(A) — Prop.
and there is a homomorphism f : T(A) — Fin(A):

f@‘r @ f(X UT(A) y) =fxU fy
f{a}ra = {a} acrpayx=acfx

Such a homomorphism is always surjective, and therefore:

» functions on Fin(A) can be carried over to any
implementation of finites sets

» all properties of these functions carry over.

31/32

Conclusion and Further Work

» Higher inductive types offer good opportunities for
programming.
» HiTs get closer to the specification.

» Some further work: add higher paths, good formal semantics.

32/32

