
Programming with Higher Inductive Types

Herman Geuvers
joint work with Niels van der Weide, Henning Basold,

Dan Frumin, Leon Gondelman
Radboud University Nijmegen, The Netherlands

November 17, 2017

1/32

Overview

I How to define a data type of finite sets?

I Introduction to Dependent Type Theory

I The problem with equality

I Homotopy Type Theory (HoTT)

I A higher inductive type for finite sets

2/32

How to define Finite Sets

I Represent a set as a list of elements (with duplicates).

I Operations on sets then become operations on lists.

I But ... not all functions on lists are proper functions on sets
(e.g. length)

I In a proper implementation one needs to maintain several
invariants.

I What are the proper proof principles for finite sets?

3/32

Programming in Dependent Type Theory

I Dependent Type Theory (Martin-Löf Type Theory, Calculus of
Inductive Constructions, ...) is an integrated system for
programming and proving

I Implemented as a Proof Assistant (Coq, Agda, NuPRL, ...)

4/32

Ingredients of Dependent Type Theory

1. Data types and definition of functions over these

2. Predicate logic via “formula-as-types”.

3. Integration of programming and proving

4. Inductive definitions: introduction and elimination rules

I Various shortcomings

5/32

Ingredients of DTT: data types and definition of functions

1. Data types are inductive types

Inductive List (A : Type) :=
| nil : List(A)
| cons : A→ List(A)→ List(A)

2. Functions are defined by pattern matching and well-founded
recursion

Fixpoint append (A : Type) (`, k : List(A)) :=
match ` with

| nil ⇒ k
| cons a `′ ⇒ cons a (append `′ k)

6/32

Ingredients of DTT: Predicate logic via “formula-as-types”

1. A proposition is also a type;
a proposition ϕ is the type of proofs of ϕ.

2. M : A is read as “M is a term of data-type A” if A : Set

3. M : A is read as “M is a proof of proposition A” if A : Prop

4. Set is the type of data types and Prop is the type of
propositions.

5. a predicate P on A is a P : A→ Prop.

6. Π-type, dependent function space. Intuitively

Π(x : A).B ≈ {f |∀a(a : A⇒ f a : B[x := a])}.

7. Example:

λ(x : A).λ(h : P x).h : ∀(x : A).P x → P x

∀ is interpreted as Π.

7/32

Ingredients of DTT: Integration of programming and
proving

Example. Sorting a list of natural numbers.

sort : ListN → ListN

More refined:

sort : ListN → ∃(y : ListN),Sorted(y)

Sorted(x) := ∀i < length(x)− 1(x [i] ≤ x [i + 1])
Further refined:

sort : ∀(x : ListN), ∃(y : ListN), (Sorted(y) ∧ Perm(x , y))

8/32

Ingredients of DTT: Programming with proofs

Example. Sorting a list of natural numbers.

sort : ∀(x : ListN), ∃(y : ListN), (Sorted(y) ∧ Perm(x , y))

The proof sort contains a sorting program that can be extracted

sort : Π(x : ListN), ∃(y : ListN),Sorted(y) ∧ Perm(x , y))

	�
�
�
�
�
�

?

ŝort : ListN → ListN

correct : ∀(x : ListN), (Sorted(ŝort(x)) ∧ Perm(x , ŝort(x)))

9/32

Ingredients of DTT: Inductive definitions

Example of inductive data types of lists.

Inductive List (A : Type) :=
| nil : List(A)
| cons : A→ List(A)→ List(A)

This generates

1. constructors

2. a definition mechanism for recursive functions on List

3. a principle for proofs by induction over List

4. These are the same (!) elimination principle for List.
For P : List(A)→ Prop or P : List(A)→ Set:

f0 : P nil fc : Π` : List(A).P `→ Πa : A.P (cons a `)

Rec f0 fc : Π` : List(A).P(`)

10/32

Dependent Type Theory: Various shortcomings

I No extensionality

p : Πx : A.f x = g x

ext p : f = g

I No uniqueness of identity proofs...
What is identity anyway?

11/32

Identity is defined inductively

Identity is an inductive type Id (with notation “=”)

Inductive Id (A : Type) : A→ A→ Type :=
| refl : Πx : A.x = x

The smallest binary relation on A containing {(x , x) | x : A}.

Giving

refl : Π(A : Type)(a : A).a = a

and the J-rule

P : Πa, b : A, a = b → Prop r : Πa : A,P a a refl

J r : Πx , y : A,Πi : x = y ,P x y i

with computation rule

J a a (refl a)→ r .

12/32

Properties of the Identity type

The J-rule gives:

I Identity is symmetric: sym : a = b → b = a

I Identity is transitive: trans : a = b → b = c → a = c

I Substitutivity (Leibniz property)

t : Q(a) r : a = b

t ′ : Q(b)

But: t ′ is not just t. (In fact t ′ ≡ J a b r t.)

13/32

Properties of the Identity type

The J-rule does not give:

I Function extensionality

f , g : A→ B r : ∀a : A, f a = g a

t : f = g

for some term t.

I Proof Irrelevance (all proofs are equal).

A : Prop a : A b : A

t : a = b
for some term t.

I Uniqueness of Identity Proofs (UIP).

a, b : A q0, q1 : a = b
t : q0 = q1

for some term t.

14/32

Uniqueness of Identity Proofs (UIP)

Isn’t UIP derivable??

a, b : A q0, q1 : a = b
t : q0 = q1

for some term t.

The intuition of the type a = b is that the only term of this type is
refl (and then a and b should be the same).

UIP is equivalent to the K-rule:

a : A q : a = a

t : q = refl a a

for some term t.

This rule may look even more natural

There is a countermodel to K (and UIP): M. Hofmann and Th.
Streicher, The groupoid interpretation of type theory, 1998.

15/32

Types are groupoids

A type can be interpreted as a groupoid, which is defined either as

I A group where the binary operation is a partial function,

I A category in which every arrow is invertible.

A groupoid (seen as a group) should satisfy the following

I Associativity: If p · q ↓ and q · r ↓, then (p · q) · r ↓ and
p · (q · r) ↓ and (p · q) · r = p · (q · r).

I Inverse: p−1 · p ↓ and p−1 · p = p · p−1 = 1

I Identity: If p · q ↓, then (p · q)−1 = q−1 · p−1.

I These are exactly the laws for our proofs of identities if we
read p· as composition of p and q (via trans) and p−1 as the
inverse of a proof (via sym)!

I In a groupoid the K rule (∀p, p = 1) obviously does not hold!

16/32

Homotopy type theory (HoTT)

Vladimir Voevodsky
2006

Fields medal 2002

I homotopy theory algebraic varieties
I formulation of motivistic cohomology

mathematics independent of specific definitions

homotopy type theory

I homotopy is the ‘proper’ notion of equality
I homotopy = continuous transformation

17/32

Homotopy Theory

Part of Algebraic Topology dealing with homotopy groups:
associating groups to topological spaces to classify them.

I an equality is a path from
one object to another
(continuous transformation)

I higher equality
= transformation between paths
= a path between paths.

18/32

Types are topological spaces, equality proofs are paths

Voevodsky: A type A is a topological space and if a, b : A with
p : a = b, then

p is a continuous path from a to b in A.

If p, q : a = b and h : p = q, then

h is a continuous transformation from p to q in A

also called a homotopy.

19/32

Equality proofs are paths, path-equalities are higher paths

Note: A property P : ∀a, b : A, a = b → Prop should be closed
under continuous transformations of points and paths.

P : ∀a, b : A, a = b → Prop r : ∀a : A,P a a refl

J r : ∀x , y : A,∀i : x = y ,P x y i

The following do not hold

a, b : A q0, q1 : a = b
t : q0 = q1

(for some term t)

a : A q : a = a

t : q = refl a a

(for some term t).

20/32

Homotopy Type Theory

Voevodsky’s Homotopy Type Theory (HoTT):

I We need to add: Univalence Axiom: for all types A and B:

(A = B) ' (A ' B)

where A ' B denotes that A and B are isomorphic: there are
f : A→ B and g : B → A such that ∀x : A, g(f x) = x etc.

I HoTT is the internal language for homotopy theory. All proofs
in homotopy theory should be formalised in type theory.
(Agda and Coq give support for that.)

I Univalence implies that isomorphic structures can be treated
as equal.

21/32

Higher Inductive Types (HITs)

Inductive types + path constructors.

Inductive circle : Type :=
| base : circle
| loop : base = base.

Inductive torus : Type :=
| base : torus
| meridian : base = base
| equator : base = base
| surf : meridian · equator = equator ·meridian

Questions:

I What are the proper general rules for higher inductive types?

I What are the good use cases for higher inductive types in
computer science?

22/32

Finite Sets according to Kuratowski

A possible definition as an inductive type would be

Inductive Fin() (A : Type) :=
| ∅ : Fin(A)
| L : A→ Fin(A)
| ∪ : Fin(A)× Fin(A)→ Fin(A)

I Notation: {a} for L a

I Notation: x ∪ y for ∪ x y

I We require some equations (eg: ∪ is commutative,
associative, ∅ is neutral, . . .).

I But inductive types are ’freely generated’. We can’t simply
add extra equations to inductive types.

23/32

Possible solutions

1. Data Types with laws (Turner 1980’s)

2. Quotient Types

3. Higher Inductive Types

We will look at the last solution.

24/32

A general scheme for higher inductive types

I Published as ‘Higher Inductive Types in Programming’
(Basold, Geuvers, Van der Weide), JUCS, Vol. 23, No. 1, pp.
63-88, 2017.

I Formalized in Coq using the HoTT library by Bauer, Gross,
Lumsdaine, Shulman, Sozeau, Spitters.

I Example of Finite Sets worked out further in ‘Finite Sets in
Homotopy Type Theory’ (Frumin, Geuvers, Gondelman, Van
der Weide), to appear in CPP, January 2018, Los Angeles.

25/32

Example: Finite Sets

Inductive Fin (A : Type) :=
| ∅ : Fin(A)
| L : A→ Fin(A)
| ∪ : Fin(A)× Fin(A)→ Fin(A)
| as :

∏
(x , y , z : Fin(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z

| neut1 :
∏

(x : Fin(A)), x ∪ ∅ = x
| neut2 :

∏
(x : Fin(A)), ∅ ∪ x = x

| com :
∏

(x , y : Fin(A)), x ∪ y = y ∪ x
| idem :

∏
(x : A), {x} ∪ {x} = {x}

| trunc :
∏

(x , y : Fin(A)),
∏

(p, q : x = y), p = q

26/32

Elimination Rule for Kuratowski Sets

The non-type dependent variant

Y : Type

∅Y : Y

LY : A→ Y

∪Y : Y → Y → Y

aY :
∏

(a, b, c : Y), a ∪Y (b ∪Y c) = (a ∪Y b) ∪Y c

nY ,1 :
∏

(a : Y), a ∪Y ∅Y = a

nY ,2 :
∏

(a : Y), ∅Y ∪Y a = a

cY :
∏

(a, b : Y), a ∪Y b = b ∪Y a

iY :
∏

(a : A), {a}Y ∪Y {a}Y = {a}Y
truncY :

∏
(x , y : Y),

∏
(p, q : x = y), p = q

Fin(A)-rec(∅Y , Ly ,∪Y , aY , nY ,1, nY ,2, cY , iY) : Fin(A)→ Y

27/32

Example: membership

We define ∈: A→ Fin(A)→ Prop.
For a : A, X : Fin(A) we define membership of a in X by recursion
over X :

a ∈ ∅ := ⊥,
a ∈ {b} := ||a = b||,

a ∈ (x1 ∪ x2) := ||a ∈ x1 ∨ a ∈ x2||

Here ||A|| denotes the truncation of A: the type A where we have
identified all elements.

We can prove the following Theorem (Extensionality):
For all x , y : Fin(A),
the types x = y and

∏
(a : A), a ∈ x = a ∈ y are equivalent.

28/32

Alternative definition using lists

We can also define finite sets using lists.

Inductive Enum (A : Type) :=
| nil : Enum(A)
| cons : A→ Enum(A)→ Enum(A)
| dupl :

∏
(a : A)

∏
(x : Enum(A)), cons a (cons a x) = cons a x

| comm :
∏

(a, b : A)
∏

(x : Enum(A)), cons a (cons b x) = cons b (cons a x)
| trunc :

∏
(x , y : Enum(A)),

∏
(p, q : x = y), p = q

It can be proven that

Enum(A) ' Fin(A)

29/32

The size of a finite set

Using the alternative definition we can define the size of a set
#(x), for types A with a decidable equality.

#(nil) := 0,

#(cons a k) := # k if a ∈ k

#(cons a k) := 1 + # k if a /∈ k

Note: a simple length function of the underlying list is just not
well-defined as it isn’t compatible with the required equations on
Enum(A).

30/32

Interface for Finite Sets
A type operator T : Type → Type is an implementation of finite
sets if for each A the type T (A) has

I ∅T (A) : T (A),

I an operation ∪T (A) : T (A)→ T (A)→ T (A),

I for each a : A there is {a}T (A) : T (A),

I a predicate a ∈T (A) : T (A)→ Prop.

and there is a homomorphism f : T (A)→ Fin(A):

f ∅T (A) = ∅ f (x ∪T (A) y) = f x ∪ f y

f {a}T (A) = {a} a ∈T (A) x = a ∈ f x

Such a homomorphism is always surjective, and therefore:

I functions on Fin(A) can be carried over to any
implementation of finites sets

I all properties of these functions carry over.
31/32

Conclusion and Further Work

I Higher inductive types offer good opportunities for
programming.

I HiTs get closer to the specification.

I Some further work: add higher paths, good formal semantics.

32/32

