
The Church-Scott representation of inductive and
coinductive data in (typed) λ calculus

Herman Geuvers

Radboud University Nijmegen
and

Eindhoven University of Technology
The Netherlands

Types 2014, Paris
March 15, 2014



Church numerals

The most well-known Church data type

0 := λx f .x p := λx f .f p (x)
1 := λx f .f x Succ := λn.λx f .f (n x f )
2 := λx f .f (f x)

I The Church data types have iteration as basis. The numerals
are iterators.

I Iteration scheme for nat. (Let D be any type.)

d : D f : D → D

It d f : nat→ D
with

It d f 0 � d
It d f (Succ x) � f (It d f x)

I Advantage: quite a bit of well-founded recursion for free.

I Disadvantage: no pattern matching built in; predecessor is
hard to define.



Scott numerals
(First mentioned in Curry-Feys 1958)

0 := λx f .x n + 1 := λx f .f n
1 := λx f .f 0 Succ := λp.λx f .f p
2 := λx f .f 1

I The Scott numerals have case distinction as a basis: the
numerals are case distinctors.

I Case scheme for nat. (Let D be any type.)

d : D f : nat→ D

Case d f : nat→ D
with

Case d f 0 � d
Case d f (Succ x) � f x

I Advantage: the predecessor can immediately be defined:
P := λp.p 0 (λy .y).

I Disadvantage: No recursion (which one has to get from
somewhere else, e.g. a fixed point-combinator).



Primitive recursion scheme

Can we define numerals such that we have the following definition
scheme?
Primitive Recursion scheme for nat. (Let D be any type.)

d : D f : nat→ D → D

Rec d f : nat→ D

Rec d f 0 � d
Rec d f (Succ x) � f x (Rec d f x)

One can define Rec in terms of It. (This is what Kleene found out
at the dentist.)

d : D f : nat→ D → D

〈0, d〉 : nat× D λz .〈z1, f z1 z2〉 : nat× D → nat× D

It 〈0, d〉λz .〈z1, f z1 z2〉 : nat→ nat× D

λp.(It 〈0, d〉λz .〈z1, f z1 z2〉 p)2 : nat→ D

〈−,−〉 denotes the pair; (−)1 and (−)2 denote projections.



Primitive recursion in terms of iteration

Problems:

I Only works for values. For the now definable predecessor P we
have:

P(Succn+1 0) � Succn 0

but not P(Succ x) = x

I Computationally inefficient

P(Succn+1 0)� Succn 0 in linear time



Typing Church and Scott data types

I Church data types can be typed in polymorphic λ-calculus, λ2.
E.g. for Church numbers: nat := ∀X .X → (X → X )→ X .

I To type Scott data types we need λ2µ: λ2 + positive
recursive types:

I µX .Φ is well-formed if X occurs positively in Φ.
I Equality on types is the congruence generated from
µX .Φ = Φ[µX .Φ/X ].

I Additional derivation rule:

Γ ` M : A A = B

Γ ` M : B

E.g. for Scott numerals: nat := µY .∀X .X → (Y → X )→ X ,
that is

nat = ∀X .X → (nat→ X )→ X .



The categorical picture
Syntax for data types is often derived from categorical semantics:
Initial F -algebra: (µF , in) s.t. ∀(B, g), ∃!h such that the diagram
commutes:

F (µF )
in - µF

FB

Fh

?

g
- B

!h

?

Due to the uniqueness:

I in is an isomorphism, so it has an inverse out : µF → F (µF ).
(In case FX := 1 + X , µF = nat and out is basically the
predecessor.)

I we can derive the prim. rec. scheme via this diagram.

I But in syntax we only have weakly initial algebras: ∃, but not
∃!. So we get out and prim.rec. only in a weak slightly twisted
form . . .



Recursive Algebras
We want something stronger than weakly initial . . .
[G. 1992]: Recursive F -algebra: (µF , in) s.t. ∀(B, g), ∃h such that

F (µF )
in - µF

F (µF × B)

F 〈id, h〉

?

g
- B

h

?

For nat this is: ∀B,∀d : 1→ B,∀f : nat× B → B, ∃h such that

1 + nat
[Zero,Succ]- nat

1 + nat× B

[id, 〈id, h〉]

?

[d , f ]
- B

h

?

That is: h = Rec d f .



Recursive algebras in type theory

I In [G. 1992] I added to λ2

1. inductive types with
2. constructor in,
3. eliminator Rec and
4. reduction rules representing the commuting diagram.

(Similarly for coinductive types.)

I But we can do better:
I We can merge the Church and Scott approach and have

recursive algebras already in untyped λ-calculus.
I These can be typed in λ2µ.
I We can do this dually for coinductive types.



Church-Scott numerals
Also called Parigot numerals (Parigot 1988, 1992).

Church Scott Church-Scott
0 := λx f .x 0 := λx f .x 0 := λx f .x
1 := λx f .f x 1 := λx f .f 0 1 := λx f .f 0 x
2 := λx f .f (f x) 2 := λx f .f 1 2 := λx f .f 1 (f 0 x)

For Church-Scott:

n + 1 := λx f .f n (n x f )

Succ := λp.λx f .f p (p x f )

I These can be typed in λ2µ as

nat = ∀X .X → (nat→ X → X )→ X .

I This is a recursive algebra

I NB This works very generally for all algebraic data types.



Church-Scott numerals

nat = ∀X .X → (nat→ X → X )→ X

Succ := λp.λx f .f p (p x f )

Positive: we have Rec directly

d : D f : nat→ D → D

Rec d f := λn : nat.n d f : nat→ D

Rec d f 0 � d
Rec d f (Succ x) =β f x (Rec d f x)



Church-Scott numerals

nat = ∀X .X → (nat→ X → X )→ X

Succ := λp.λx f .f p (p x f )

Negative:

I Representation of n is exponential in the size of n.

I No canonicity: There are closed terms of type nat that do not
represent a number, e.g. λx f .f 2 x .
NB For Church numerals we have canonicity:
If ` t : ∀X .X → (X → X )→ X , then ∃n ∈ N(t =β n).
Similarly for Scott numerals.



Dually: coinductive types

Our pet example is StrA, streams over A. Its (standard) definition
in λ2 as a “Church datatype” is

StrA := ∃X .X × (X → A× X )

hd := λs.(s2 s1)1

tl := λs.〈(s2 s1)2, s2〉

NB1: I do typing à la Curry, so ∃-elim/∃-intro are done ‘silently’.
NB2: 〈−,−〉 denotes pairing and (−)i denotes projection.
Two examples

ones := 〈1, λx .〈1, x〉〉 : Strnat

nats := 〈0, λx .〈x ,Succ x〉〉 : Strnat

NB Representations of streams in λ-calculus are finite terms in
normal form!



Constructor for streams?

Church datatype StrA

StrA := ∃X .X × (X → A× X )

hd := λs.(s2 s1)1

tl := λs.〈(s2 s1)2, s2〉

Problem: we cannot define

cons : A→ StrA → StrA.

Problem arises because StrA is only a weakly terminal co-algebra.
(No uniqueness in the diagram.)
We need a co-recursive co-algebra in the syntax.



Co-recursive co-algebra
Final F -coalgebra: (νF , out) s.t. ∀(B, g), ∃!h such that the
diagram commutes:

B
g - FB

νF

!h

?

out
- F (νF )

Fh

?

Co-recursive F -coalgebra: (νF , out) s.t. ∀(B, g), ∃h such that the
diagram commutes:

B
g- F (νF + B)

νF

h

?

out
- F (νF )

F [id, h]

?



Streams as Church-Scott data type
(Streams as a Church data type (in λ2):

StrA := ∃X .X × (X → A× X ) )

Streams as a Church-Scott data type (in λ2µ)

StrA = ∃X .X × (X → A× (StrA + X ))

hd := λs.(s2 s1)1

tl := λs.case (s2 s1)2 of (inl y ⇒ y) (inr x ⇒ 〈x , s2〉)
cons := λa s.〈a, λx .〈a, inl s〉〉 [take X := A]

And we can check that

hd(cons a s) := a

tl(cons a s) := s

Other definitions of cons are possible, e.g.

cons := λa s.〈〈a, s〉, λv .〈v1, inl v2〉〉 [take X := A× StrA]



Programming with proofs
Following Krivine, Parigot, Leivant we can use proof terms in
second order logic (SOL) as programs. This also works for
recursively defined types in SOL. The natural numbers example:

nat(x) := ∀X .X (Z)→ (∀y .nat(y)→ X (y)→ X (S y))→ X (x)

where Z and S are a constant and a unary function in some
ambient domain U.
Now define the untyped λ-terms 0 and Succ as the proof-terms

0 : nat(Z)

Succ : ∀x .nat(x)→ nat(S x)

Then

0 =β λz f .z

Succ =β λp.λz f .f p (p z f )



Recursive programming with proofs

nat(x) := ∀X .X (Z)→ (∀y .nat(y)→ X (y)→ X (S y)→ X (x)

Programming can now be done by adding a function symbol with
an equational specification, e.g.

A(Z, y) = y

A(S(x), y) = S(A(x , y)

And then prove

∀x , y .nat(x)→ nat(y)→ nat(A(x , y))

This proof (the proof-term) is an implementation of addition in
untyped λ-calculus.



Corecursive programming with proofs
Given a data type A, and unary functions H and T , we define
streams over A by

StrA(x) := ∃X .X (x)× (∀y .X (y)→ A(H y)× X (T y))

We find that for our familiar functions hd and tl:

hd := λs.(s2 s1)1 : ∀x .StrA(x)→ A(H x)

tl := λs.〈(s2 s1)2, s2〉 : ∀x .StrA(x)→ StrA(T x)

To define cons, we need to make this into a recursive type:

StrA(x) := ∃X .X (x)×(∀y .X (y)→ A(H y)×(StrA(T y)+X (T y)))

and we see that

cons := λa s.〈〈a, s〉, λv .〈v1, inl v2〉〉

is a well-typed constructor function
[take X (x) := A(H x)× StrA(T x)].



Conclusion

I Church-Scott data types provide a good union of the two,
I giving (co)-recursion in untyped λ-calculus
I being typable in λ2µ
I but the size of representation is a problem.

I We can prevent closed terms that don’t represent data, by
moving to types in SOL

Some questions:

I Does the “programming with proofs” approach in SOL for
inductive types fully generalize to coinductive types?

I Does that include corecursive types?


