
Programming with Higher Inductive Types

Herman Geuvers
(joint work with Niels van der Weide, Henning Basold,

Dan Frumin, Leon Gondelman)

December 16, 2021
FSA Seminar

TU Eindhoven

1/31

Overview

I How to define a data type of finite sets?

I Introduction to Dependent Type Theory

I Identity as a type

I Homotopy Type Theory (HoTT)

I A higher inductive type for finite sets

2/31

How to define Finite Sets

I Represent a set as a list of elements (with duplicates).

I Operations on sets then become operations on lists.

I But ... not all functions on lists are proper functions on sets
(e.g. length)

I In a proper implementation one needs to maintain several
invariants.

I What are the proper proof principles and function definition
principles for finite sets?

3/31

Ingredients of Dependent Type Theory

I Dependent Type Theory (Martin-Löf Type Theory, Calculus of
Inductive Constructions, ...) is an integrated system for
programming and proving

I Implemented as a Proof Assistant (Coq, Agda, NuPRL, ...)

1. Data types and definition of functions over these

2. Predicate logic via “formula-as-types”.

3. Integration of programming and proving

4. Inductive definitions: introduction and elimination rules

4/31

Ingredients of DTT: data types and definition of functions

1. Data types are inductive types

Inductive List (A : Type) :=
| nil : List(A)
| cons : A→ List(A)→ List(A)

2. Functions are defined by pattern matching and well-founded
recursion

Fixpoint append (A : Type) (`, k : List(A)) :=
match ` with

| nil ⇒ k
| cons a `′ ⇒ cons a (append `′ k)

5/31

Ingredients of DTT: Predicate logic via “formula-as-types”
1. A proposition is also a type;

a proposition ϕ is identified with the type of proofs of ϕ.
2. M : A is sometimes read as “M is a term of data-type A”
3. M : A is sometimes read as “M is a proof of proposition A”
4. a predicate P on A is a P : A→ Type.
5. Dependent function type. Intuitively

Π(x : A).B ≈ {f | ∀a(a : A⇒ f a : B[x := a])}.
6. Example:

λ(x : A).λ(h : P x).h : ∀(x : A).P x → P x

∀ is interpreted as Π.
7. Dependent product type. Intuitively

Σ(x : A).B ≈ {〈a, b〉 | a : A ∧ b : B[x := a])}.
8. Example:

〈0, refl 0〉 : ∃(x : N).x = x

∃ is interpreted as Σ.
6/31

Ingredients of DTT: Integration of programming and
proving

Example. Sorting a list of natural numbers.

sort : ListN → ListN

More refined:

sort : ListN → ∃(y : ListN),Sorted(y)

Sorted(y) := ∀i < length(y)− 1(y [i] ≤ y [i + 1])

Further refined:

sort : ∀(x : ListN), ∃(y : ListN), (Sorted(y) ∧ Perm(x , y))

7/31

Ingredients of DTT: Programming with proofs

Example. Sorting a list of natural numbers.

sort : ∀(x : ListN), ∃(y : ListN), (Sorted(y) ∧ Perm(x , y))

The proof sort contains a sorting program that can be extracted

sort : ∀(x : ListN), ∃(y : ListN),Sorted(y) ∧ Perm(x , y))

	�
�
�
�
�
�

?

ŝort : ListN → ListN

correct : ∀(x : ListN), (Sorted(ŝort(x)) ∧ Perm(x , ŝort(x)))

8/31

Ingredients of DTT: Inductive definitions

Example of inductive data types of lists.

Inductive List (A : Type) :=
| nil : List(A)
| cons : A→ List(A)→ List(A)

This generates

1. constructors

2. a definition scheme for recursive functions on List

3. a principle for proofs by induction over List

4. These are the same (!) elimination principle for List.
For P : List(A)→ Type:

f0 : P nil fc : Π(` : List(A)).P `→ Π(a : A).P (cons a `)

Rec f0 fc : Π(` : List(A)).P `

9/31

Identity is defined inductively

Identity is an inductive type Id (with notation “=”)

Inductive Id (A : Type) : A→ A→ Type :=
| refl : Π(x : A).x = x

The smallest binary relation on A containing {(x , x) | x : A}.

Giving

refl : Π(A : Type)(a : A).a = a

and the J-rule

P : Π(a, b : A).a = b → Type r : Π(a : A).P a a refl

J r : Π(x , y : A).Π(i : x = y).P x y i

with computation rule

J a a (refl a)→ r .

10/31

Properties of the Identity type

The J-rule gives:

I Identity is symmetric: sym : a = b → b = a

I Identity is transitive: trans : a = b → b = c → a = c

I Substitutivity (Leibniz property)

t : Q(a) r : a = b

t ′ : Q(b)

But: t ′ is not just t. (In fact t ′ ≡ J a b r t.)

11/31

Properties of the Identity type

The J-rule does not give:

I Function extensionality

f , g : A→ B r : ∀a : A, f a = g a

t : f = g

for some term t.

I Proof Irrelevance (all proofs are equal).

If A is a proposition a : A b : A

t : a = b
for some term t.

I Uniqueness of Identity Proofs (UIP).

a, b : A q0, q1 : a = b
t : q0 = q1

for some term t.

12/31

Uniqueness of Identity Proofs (UIP)

Why isn’t UIP derivable??

a, b : A q0, q1 : a = b
t : q0 = q1

for some term t.

The intuition of the type a = b is that the only term of this type is
refl (and then a and b should be the same).

UIP is equivalent to the K-rule:

a : A q : a = a

t : q = refl a a

for some term t.

This rule may look even more natural

There is a countermodel to K (and UIP): M. Hofmann and Th.
Streicher, The groupoid interpretation of type theory, 1998.

13/31

Types are groupoids

A groupoid is defined either as

I A group where the binary operation is a partial function,

I A category in which every arrow is invertible.

For A : Type, the proofs of identities between elements of type A
form a groupoid:

I For p : a = b and q : b = c , we read p · q as composition of p
and q (via trans)

I For p : a = b, we read p−1 as the inverse of a proof (via sym)

I In a groupoid the K rule (∀p, p = 1) obviously does not hold!

14/31

Homotopy type theory (HoTT)

Vladimir Voevodsky
2006

Fields medal 2002

I homotopy theory algebraic varieties

I formulation of motivistic cohomology

mathematics independent of specific definitions

homotopy type theory

I homotopy is the ‘proper’ notion of equality

I homotopy = continuous transformation

15/31

Homotopy Theory

Part of Algebraic Topology dealing with homotopy groups:
associating groups to topological spaces to classify them.

I an equality is a path from
one object to another
(continuous transformation)

I higher equality
= transformation between paths
= a path between paths.

16/31

Types are topological spaces, equality proofs are paths

Voevodsky: A type A is a topological space and if a, b : A with
p : a = b, then

p is a continuous path from a to b in A.

If p, q : a = b and h : p = q, then

h is a continuous transformation from p to q in A

also called a homotopy.

17/31

Equality proofs are paths, path-equalities are higher paths

A property P : ∀a, b : A, a = b → Type should be closed under
continuous transformations of points and paths.

P : ∀a, b : A, a = b → Type r : ∀a : A,P a a refl

J r : ∀x , y : A,∀i : x = y ,P x y i

The following do not hold

a, b : A q0, q1 : a = b
t : q0 = q1

(for some term t)

a : A q : a = a

t : q = refl a a

(for some term t).

18/31

Homotopy Type Theory

Voevodsky’s Homotopy Type Theory (HoTT):

I We need to add: Univalence Axiom: for all types A and B:

(A ' B) ' (A = B)

where A ' B denotes that A and B are isomorphic: there are
f : A→ B and g : B → A such that ∀x : A, g(f x) = x etc.

I Univalence implies that isomorphic structures can be treated
as equal.

I HoTT is the internal language for homotopy theory. All proofs
in homotopy theory should be formalised in type theory.
(Agda and Coq give support for that.)

19/31

Higher Inductive Types (HITs)
Inductive types + path constructors.
In homotopy theory, one studies the fundamental group of a
topological space. Some examples

Inductive circle : Type :=
| base : circle
| loop : base = base.

Inductive torus : Type :=
| base : torus
| meridian : base = base
| equator : base = base
| surf : meridian · equator = equator ·meridian

Torus
Questions:

I What are the proper general rules for higher inductive types?

I What are the use cases for higher inductive types in computer
science?

20/31

Finite Sets according to Kuratowski

A possible definition as an inductive type would be

Inductive Fin() (A : Type) :=
| ∅ : Fin(A)
| L : A→ Fin(A)
| ∪ : Fin(A)× Fin(A)→ Fin(A)

I Notation: {a} for L a

I Notation: x ∪ y for ∪ x y
I We require some equations (eg: ∪ is commutative,

associative, ∅ is neutral, . . .).

I But inductive types are freely generated. We can’t simply add
extra equations to inductive types.

21/31

Possible solutions

1. Data Types with laws (Turner 1980’s)

2. Quotient Types

3. Higher Inductive Types

We will look at the last solution.

22/31

Example: Finite Sets

Inductive Fin (A : Type) :=
| ∅ : Fin(A)
| L : A→ Fin(A)
| ∪ : Fin(A)× Fin(A)→ Fin(A)
| assoc :

∏
(x , y , z : Fin(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z

| neut1 :
∏

(x : Fin(A)), x ∪ ∅ = x
| neut2 :

∏
(x : Fin(A)), ∅ ∪ x = x

| com :
∏

(x , y : Fin(A)), x ∪ y = y ∪ x
| idem :

∏
(x : A), {x} ∪ {x} = {x}

| trunc :
∏

(x , y : Fin(A)),
∏

(p, q : x = y), p = q

23/31

Elimination Rule for Kuratowski Sets

The non-type dependent variant

Y : Type

∅Y : Y

LY : A→ Y

∪Y : Y → Y → Y

aY :
∏

(a, b, c : Y), a ∪Y (b ∪Y c) = (a ∪Y b) ∪Y c

nY ,1 :
∏

(a : Y), a ∪Y ∅Y = a

nY ,2 :
∏

(a : Y), ∅Y ∪Y a = a

cY :
∏

(a, b : Y), a ∪Y b = b ∪Y a

iY :
∏

(a : A), {a}Y ∪Y {a}Y = {a}Y
truncY :

∏
(x , y : Y),

∏
(p, q : x = y), p = q

Fin(A)-rec(∅Y , Ly ,∪Y , aY , nY ,1, nY ,2, cY , iY) : Fin(A)→ Y

24/31

Example: membership

We define ∈: A→ Fin(A)→ Type.
For a : A, X : Fin(A) we define membership of a in X by recursion
over X :

a ∈ ∅ := ⊥,
a ∈ {b} := ||a = b||,

a ∈ (x1 ∪ x2) := ||a ∈ x1 + a ∈ x2||

Here ||A|| denotes the truncation of A: the type A where we have
identified all elements.

We can prove the following Theorem (Set-extensionality):
For all x , y : Fin(A),
the types x = y and

∏
(a : A), a ∈ x = a ∈ y are equivalent.

25/31

The size of a finite set

The size of a finite set x : Fin(A) is hard to define.

I We need to decide equality on A. We can only compute size
of a finite set if A has decidable equality: we have a term dec
with

dec : Π(x , y : A)||x = y ||+ ||¬(x = y)||.

I The x ∪ y is tricky:

#(x ∪ y) := #x + #y −#(x ∩ y) ??

So we first need to define (x ∩ y), but then still, the recursive
call #(x ∩ y) is not structurally smaller...

Solution: we give an alternative definition of finite sets, Enum(A),
using lists for which we can define the size of a set #(x) easily.
(And we show that Enum(A) ' Fin(A).)

26/31

Alternative definition using lists

We define finite sets using lists.

Inductive Enum (A : Type) :=
| nil : Enum(A)
| cons : A→ Enum(A)→ Enum(A)
| dupl :

∏
(a : A)

∏
(x : Enum(A)), cons a (cons a x) = cons a x

| comm :
∏

(a, b : A)
∏

(x : Enum(A)), cons a (cons b x) = cons b (cons a x)
| trunc :

∏
(x , y : Enum(A)),

∏
(p, q : x = y), p = q

It can be proven that

Enum(A) ' Fin(A)

27/31

The size of a finite set
Using the alternative definition Enum(A) we can define the size of
a set #(x), for types A with a decidable equality.

#(nil) := 0,

#(cons a k) := # k if a ∈ k

#(cons a k) := 1 + # k if a /∈ k

Note: a simple length function of the underlying list is just not
well-defined: If we set

length(cons a k) := 1 + # k

then we can’t prove the equality

length(cons a (cons a k)) = length(cons a k)

so we cannot type such a function with

length : Enum(A)→ N.

28/31

Interface for Finite Sets
A type operator T : Type → Type is an implementation of finite
sets if for each A the type T (A) has

I ∅T (A) : T (A),

I an operation ∪T (A) : T (A)→ T (A)→ T (A),

I for each a : A there is {a}T (A) : T (A),

I a predicate a ∈T (A) : T (A)→ Type

and there is a homomorphism f : T (A)→ Fin(A):

f ∅T (A) = ∅ f (x ∪T (A) y) = f x ∪ f y

f {a}T (A) = {a} a ∈T (A) x = a ∈ f x

Such a homomorphism is always surjective, and therefore:

I functions on Fin(A) can be carried over to any
implementation of finites sets

I all properties of these functions carry over.
29/31

Conclusion and Further Work

I Higher inductive types can be used to capture “data types
with additional equalities”:
I HiTs closely represent the specification,
I the type enforces the programs to obey the additional

equalities,
I the proof principle (elimination rule) takes the equations into

account.

I Isomorphic representations allow to transfer recursive
functions and proof principles.

I Univalence implies the “Structure Identity Principle”: if
A ' B, then A ≡ B.

I The “precision” of HiTs can be used e.g. to represent type
theory in type theory.

I Another potential application of HoTT: use dihomotopy
(directed paths) to model concurrent processes abstractly
(Goubault et al.)

30/31

Concurrency via dihomotopies

31/31

