

Splitters

Objects For On-Line Partitioning

Jaap-Henk Hoepman

Department of Computer Science University of Nijmegen, the Netherlands jhh@cs.kun.n1

www.cs.kun.n7/~jhh

Contents

Introduction

- Contention
- Defining splitters
- (Im)possibility results
- Conclusions

What is a splitter?

A concurrent asynchronous non-blocking object that can partition a collection of contending tokens into smaller groups with certain properties.

Used many times before in the literature:

- mutual exclusion [Lam87],
- renaming [MA95, AM94, BGHM95], and
- resource allocation [AHS94].

But never studied independently (except for counting networks [AHS94]).

Research questions

What does it require to implement a certain splitter?

How can splitters be combined to implement other splitters?

But first...

How do we define splitters?

Contention (1)

For input or output z of S at time t:

point contention $\eth^t z$: the number of tokens at z at time t.

maximal point contention $\delta^t z$: the maximal number of tokens at z at any time t' within the busy prefix of S at t.

interval contention $\Delta^t z$: the total number of *different* tokens (i.e., not counting doubles) at z in the busy prefix of S at t.

total contention $\nabla^t z$: the total number of tokens (counting doubles) at z in the busy prefix of S at t.

r<mark>eplaceme</mark>nts

Defining splitters

Invariant Inv(S)

• Predicate over the states σ of S

using only input contention dx and output contentions dy_i , where $d \in \{\eth, \delta, \Delta, \nabla\}$.

► $\sigma \models Inv(S)$ must hold for all states.

($\sigma \models P$ if predicate *P* holds in state σ)

Properties

For any state σ of splitter *S* with *m* outputs, and input or output *z*:

- $\blacktriangleright \quad \eth z, \delta z, \Delta z, \nabla z \ge 0,$
- ► $\eth z \le \delta z \le \Delta z \le \nabla z$ (equality for one-shot).
- ► $\sum_{i=1}^{m} \eth y_i \le \eth x$ and $\sum_{i=1}^{m} \nabla y_i \le \nabla x$ (equality in the steady state),

Axioms

Axiom 1 Let σ be the state of splitter S with all tokens idle. Then $\sigma \models Inv(S)$.

Axiom 2 For all states σ of a splitter S, if $\sigma \models \text{Inv}(S)$ and for some token t we have $\sigma(t) = \oplus$, then there is an i with $1 \le i \le m$ such that $\sigma(t) : i \models \text{Inv}(S)$.

For long-lived splitters only:

Axiom 3 For all states σ of a splitter S, if $\sigma \models \text{Inv}(S)$ and for some token t we have $\sigma(t) = i$ with $1 \le i \le m$, then $\sigma(t) : \bigoplus \models \text{Inv}(S)$.

Axiom 4 For all states σ of a splitter S, if $\sigma \models \text{Inv}(S)$ and for some token t we have $\sigma(t) = \bigoplus$ then $\sigma(t) : \bot \models \text{Inv}(S)$.

Smooth splitters

Definition 5 A splitter S with m outputs is called smooth if its invariant Inv(S) can be specified by a collection of m + 1 inequalities of the form

 $d_0 x \leq f_0(\sigma)$

 $d_i y_i \leq f_i(\sigma)$ for all $i, 1 \leq i \leq m$,

where for each *i* with $0 \le i \le m$, d_i is any of the four contention measures \eth, δ, Δ or ∇ , and each f_i is a function mapping splitter states to integers.

Almost all splitters are smooth.

Examples (one shot)

University of Nijmegen Aspnes et al. [AHS94] balancer, $\nabla y_1 \leq \left\lceil \frac{\nabla x}{2} \right\rceil \land \nabla y_2 \leq \left\lceil \frac{\nabla x}{2} \right\rceil,$ Aspnes et al. [AHS94] counting network For all $i, 1 \le i \le m$: $\nabla y_i \le \left\lfloor \frac{\nabla x - i + 1}{m} \right\rfloor$, Aspnes *et al.* [AHS94] k-smoothing network For all $i, 1 \leq i \leq m$: $\nabla y_i \leq \min \{ \nabla y_j \mid j \neq i \} + k$. Moir et al. [MA95] $\nabla \gamma_1 \leq 1 \land \nabla \gamma_2 \leq \nabla x - 1 \land \nabla \gamma_3 \leq \nabla x - 1$

Examples (long-lived)

Impossibility results (1)

Theorem 6 Let S be a splitter with m > 1 outputs. Suppose for some constant c > 1 we can select constants c_1, \ldots, c_m such that for all states σ of S with dx = c we have

 $f_i^S(\sigma) \leq c_i$

and

$$\sum_{i=1}^{m} c_i < c + \frac{m-1}{2} \,.$$

Then a read/write implementation of *S* does not exists

University of Nijmegen

Impossibility results (2)

Proof (sketch):

- Consider one-shot case, and let c tokens enter.
- At each output y_i run renaming algorithm (e.g., [AF00]) to $2c_i 1$ names.

Then total number of assigned names is

$$\sum_{i=1}^{m} (2c_i - 1) = 2 \sum_{i=1}^{m} c_i - m$$

Impossible if < 2c - 1 (Herlihy and Shavit [HS93]).

Impossibility results (3)

Theorem 7 Define $M = \{1, ..., m\}$. Let S be a splitter with m > 1 outputs. Suppose there exists an index set $I \subset M$ such that for all states σ of S with dx > 0 we have

 $\sum_{i \in I} f_i(\sigma) < \max(2, dx)$ and $\sum_{i \in M-I} f_i(\sigma) < dx$.

Then a read/write implementation of S does not exist.

17

Possibility results (1)

Theorem 8 Splitter S defined by

 $\delta y_i \leq \frac{2}{3} \delta x$, for $1 \leq i \leq 3$.

has a read/write implementation.

Proof 9 Use any optimal long-lived renaming algorithm (like [AF00]) to rename the δx incoming tokens to $2\delta x - 1$ names. Map a token with name *i* to output $y_{(i \mod 3)+1}$. Then $\delta y_i \leq \frac{2}{3}\delta x$.

Possibility results (1)

Theorem 10 Let *S* be a splitter satisfying the axioms, shared with *n* processors. This splitter can be implemented using a single *n* processor read-modify-write register.

Conclusions

Results:

- University of Nijmegen
- Start of independent theory of splitters.
- Splitters can be defined using invariants in a straightforward pattern.
- RMW registers are strong enough to build splitters.
- But in read/write case, certain classes of splitters cannot be constructed.

Remaining issues:

- Building splitters using other splitters as building block.
- The place of splitters in Herlihy's hierarchy [Her91].

References

- [AAF⁺99] Afek, Y., Attiya, H., Fouren, A., Stupp, G., and Touitou, D. Long-lived renaming made adaptive. In *18th PODC* (Atlanta, GA, USA, 1999), ACM Press, pp. 91–103.
- [AM94] Anderson, J. H., and Moir, M. Using *k*-exclusion to implement resilient, scalable shared objects. In *13th PODC* (Los Angeles, CA, USA, 1994), ACM Press, pp. 141–150.
- [AHS94] Aspnes, J., Herlihy, M., and Shavit, N. Counting networks. *J. ACM* **41**, 5 (1994), 1020–1048.

- [AF00] Attiya, H., and Fouren, A. Polynomial and adaptive long-lived (2k - 1)-renaming. In *14th DISC* (Toledo, Spain, 2000), M. Herlihy (Ed.), LNCS 1914, Springer, pp. 149–163.
- [BGHM95] Buhrman, H., Garay, J. A., Hoepman, J.-H., and Moir,
 M. Long-lived renaming made fast. In *14th PODC* (Ottawa, Ont., Canada, 1995), ACM Press,
 pp. 194–203.
- [Her91] Herlihy, M. P. Wait-free synchronization. ACM Trans. Prog. Lang. & Syst. 13, 1 (1991), 124–149.
- [HS93] Herlihy, M. P., and Shavit, N. The asynchronous computability theorem for *t*-resilient tasks. In *25th STOC* (San Diego, CA, USA, 1993), ACM Press, pp. 111–120.

[Lam87] Lamport, L. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5, 1 (1987), 1–11.

[LAA87]

- B7] Loui, M. C., and Abu-Amara, H. H. Memory requirements for agreement among unreliable asynchronous processes. In *Advances in Computing Research*, F. P. Preparata (Ed.), vol. 4. JAI Press, Greenwich, CT, 1987, pp. 163–183.
- [MA95] Moir, M., and Anderson, J. H. Wait-free algorithms for fast, long-lived renaming. *Science of Computer Programming* **25**, 1 (1995), 1–39.