University
of
Nijmegen

Splitters

Objects For On-Line Partitioning

Jaap-Henk Hoepman

Department of Computer Science
University of Nijmegen, the Netherlands
jhh@cs.kun.nl

www.cs.kun.nl/ jhh

J.-H. Hoepman Splitters, (v 1.5 -2003/12/10 00:07:52)

Contents

University
of
Nijmegen

» Introduction

» Contention

» Defining splitters

» (Im)possibility results

» Conclusions

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

What is a splitter?

University
of
Nijmegen

Used many times before in the literature:

» mutual exclusion [Lam87],

» renaming [MA95, AM94, BGHM95], and

» resource allocation [AHS94].

But never studied independently (except for counting
networks [AHS94)).

J.-H. Hoepman Splitters, (v 1.5 -2003/12/10 00:07:52)

Splitters

@)
Splitter > V0
University
s @ o0
Nijmegen X >
© O
> Vm-1
Legend
© token

» 1 input x, m outputs v;.

» shared among n processes.
» tokens enter and release.
» one-shot vs. long-lived.

» Token states idle, entering, assigned, and releasing.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Research questions

University
of
Nijmegen

» What does it require to implement a certain splitter?

» How can splitters be combined to implement other splitters?

But first...

How do we define splitters?

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Contention (1)

University
of

For input or output z of § at time ¢:

point contention 0!z: the number of tokens at z at time t.

maximal point contention 6!z: the maximal number of
tokens at z at any time t" within the busy prefix of S at ¢.

interval contention Afz: the total number of different tokens
(i.e., not counting doubles) at z in the busy prefix of S at ¢.

total contention VI!z: the total number of tokens (counting
doubles) at z in the busy prefix of § at t.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Contention (2)

t
Univoefrsity | ‘81‘ o) t At Vt
Nijmegen a a | O 2 2
Y1 b : yl‘ 3
.. .
C i ‘515 st At vt
'z d vl 1 2 2
............ busy prefix :
a a |
y b ! ‘615 St Al vt
c | x[3 4 4 5
|
a I
Legend |
assigned
entering releasing

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Defining splitters

University
of
Nijmegen

Invariant Inv(S)

» Predicate over the states o of S

¢ using only input contention dx and output contentions
dyi, whered € {0,6,A, V}.

» o =Inv(S) must hold for all states.

(o = P if predicate P holds in state o)

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Properties

University
of
Nijmegen

For any state o of splitter S with m outputs, and input or
output z:

» 0z,0z,Az,Vz >0,
» 0z < 6z < Az < Vz (equality for one-shot).

» >, 0y <0x and 3", Vy; < Vx (equality in the steady
state),

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Axioms

University

of Axiom 1 Let o be the state of splitter S with all tokens idle.

Then o = Inv(S).

Axiom 2 For all states o of a splitter S, if o = Inv(S) and for
some token t we have o (t) =0, then there is an i with
1 <i<msuchthato(t):iEeInv(S).

For long-lived splitters only:

Axiom 3 For all states o of a splitter S, if o = Inv(S) and for
some token t we have o (t) =i withl <i < m, then
o(t) :eEInv(S).

Axiom 4 For all states o of a splitter S, if o = Inv(S) and for
some tokent we have o (t) = & then o(t) : L EInv(S).

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

University
of

Smooth splitters

Definition 5 A splitter S with m outputs is called smooth if its
invariant Inv(S) can be specified by a collection of m + 1
inequalities of the form

dox < fo(o)

div; < fi(o) foralli,1 <i<m,

where for each i with 0 < i < m, d; is any of the four contention
measures 0, 6, A or V, and each f; is a function mapping
splitter states to integers.

Almost all splitters are smooth.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Examples (one shot)

University

of » Aspnes et al. [AHS94] balancer,

Nijmegen

VXx VxJ

VoL = [ﬂ N VY2 s {T

» Aspnes et al. [AHS94] counting network
Vx —1+ lw
m)

Foralli,lsism:Vyis[

» Aspnes et al. [AHS94] k-smoothing network

Foralli,1sism:Vyismin{Vyj|j¢i}+k.

» Moir et al. [MA95]

Vy1 <1 A Vy, < Vx -1 A Vy <Vx -1

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Examples (long-lived)

University
of
Nijmegen

» Buhrman et al. [BGHM95]

Foralli,1 <i<3:0y; <max(l,0x—-1).

» Afek et al. [AAF*99]

oyi<1 A Vy, =Vx -1 A Vy3=Vx -1,

» Moir et al. [MA95]

Oyi<1 A Oy <dx—-1 A O0y3<d6x-—-1.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Impossibility results (1)

University
of
Nijmegen

Theorem 6 Let S be a splitter with m > 1 outputs. Suppose for
some constant ¢ > 1 we can select constants cy,...,Cm SUch
that for all states o of S with dx = ¢ we have

fi(o) < ¢

and

m

Sei<cr M
& 2
1=1

Then a read/write implementation of S does not exists

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Impossibility results (2)

University
of
Nijmegen Proof (S kEtCh):

» Consider one-shot case, and let ¢ tokens enter.

» At each output y; run renaming algorithm (e.g., [AF0O0]) to
2¢; — 1 names.

» Then total number of assigned names is
m m
> (2ci—1)=2> ¢i-
i=1 i=1

» Impossible if < 2c¢c — 1 (Herlihy and Shavit [HS93]).

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Impossibility results (3)

University
of
Nijmegen

Theorem 7 Define M = {1,...,m}. Let S be a splitter with
m > 1 outputs. Suppose there exists an index set I C M such
that for all states o of S with dx > 0 we have

Zfi(()') <max(2,dx) and Z filo) <dx .

i€l ieM-1
Then a read/write implementation of S does not exist.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Impossibility results (4)

University
of
Nijmegen

Proof (sketch):

If both properties hold, we can build a test-and-set object. This
contradicts [LAA87, Her91].

S1 Sk-1

Door))
I8 I8

R N

_> _> \—> \—» W|n

: H
M—{g M—{g

N N

\4 \4
loose loose loose
J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Possibility results (1)

University
of
Nijmegen

Theorem 8 Splitter S defined by
Oy < §5x, forl <i<3.
has a read/write implementation.

Proof 9 Use any optimal long-lived renaming algorithm
(like [AFOOQ]) to rename the 0x incoming tokens to 20x — 1
names. Map a token with name i to output V(i mod3)+1- Then
Syi < £6x.

“ J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Possibility results (1)

University
of
Nijmegen

Theorem 10 Let S be a splitter satisfying the axioms, shared
with n processors. This splitter can be implemented using a
single n processor read-modify-write register.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

Conclusions

Results:

University

» Start of independent theory of splitters.

» Splitters can be defined using invariants in a straightforward
pattern.

» RMW registers are strong enough to build splitters.

» Butin read/write case, certain classes of splitters cannot be
constructed.

Remaining issues:

» Building splitters using other splitters as building block.

» The place of splitters in Herlihy’s hierarchy [Her91].

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

References

University
of

[AAFT99] Afek, Y., Attiya, H., Fouren, A., Stupp, G., and
Touitou, D. Long-lived renaming made adaptive. In
1 8th PODC (Atlanta, GA, USA, 1999), ACM Press,
pp. 91-103.

[AM94] Anderson, J. H., and Moir, M. Using k-exclusion to
implement resilient, scalable shared objects. In 13th
PODC (Los Angeles, CA, USA, 1994), ACM Press,
pp. 141-150.

[AHS94] Aspnes, J., Herlihy, M., and Shavit, N. Counting
networks. J. ACM 41, 5 (1994), 1020-1048.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

[AFOO] Attiya, H., and Fouren, A. Polynomial and adaptive
long-lived (2k — 1)-renaming. In 14th DISC (Toledo,
University Spain, 2000), M. Herlihy (Ed.), LNCS 1914, Springer,
. pp. 149-163.

[BGHM95] Buhrman, H., Garay, J. A., Hoepman, J.-H., and Moir,
M. Long-lived renaming made fast. In 14th PODC
(Ottawa, Ont., Canada, 1995), ACM Press,
pp. 194-203.

[Her91] Herlihy, M. P. Wait-free synchronization. ACM Trans.
Prog. Lang. & Syst. 13, 1 (1991), 124-149.

[HS93] Herlihy, M. P., and Shavit, N. The asynchronous
computability theorem for t-resilient tasks. In 25th
STOC (San Diego, CA, USA, 1993), ACM Press,
pp. 111-120.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)

University
of

[LAA87]

[MA95]

J.-H. Hoepman

Lamport, L. A fast mutual exclusion algorithm. ACM
Trans. Comput. Syst. 5, 1 (1987), 1-11.

Loui, M. C., and Abu-Amara, H. H. Memory
requirements for agreement among unreliable
asynchronous processes. In Advances in Computing
Research, F. P. Preparata (Ed.), vol. 4. JAl Press,
Greenwich, CT, 1987, pp. 163-183.

Moir, M., and Anderson, J. H. Wait-free algorithms
for fast, long-lived renaming. Science of Computer
Programming 25, 1 (1995), 1-39.

Splitters, (v 1.5 =2003/12/10 00:07:52)

