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What is a splitter?

University
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Used many times before in the literature:

» mutual exclusion [Lam87],

» renaming [MA95, AM94, BGHM95], and

» resource allocation [AHS94].

But never studied independently (except for counting
networks [AHS94)).
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Splitters

@)
Splitter > V0
University
s @ o0
Nijmegen X >
© O
> Vm-1
Legend
© token

» 1 input x, m outputs v;.

» shared among n processes.
» tokens enter and release.
» one-shot vs. long-lived.

» Token states idle, entering, assigned, and releasing.
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Research questions
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» What does it require to implement a certain splitter?

» How can splitters be combined to implement other splitters?

But first...

How do we define splitters?
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Contention (1)
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For input or output z of § at time ¢:

point contention 0!z: the number of tokens at z at time t.

maximal point contention 6!z: the maximal number of
tokens at z at any time t" within the busy prefix of S at ¢.

interval contention Afz: the total number of different tokens
(i.e., not counting doubles) at z in the busy prefix of S at ¢.

total contention VI!z: the total number of tokens (counting
doubles) at z in the busy prefix of § at t.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)




Contention (2)
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Defining splitters
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Invariant Inv(S)

» Predicate over the states o of S

¢ using only input contention dx and output contentions
dyi, whered € {0,6,A, V}.

» o =Inv(S) must hold for all states.

(o = P if predicate P holds in state o)
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Properties
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For any state o of splitter S with m outputs, and input or
output z:

» 0z,0z,Az,Vz >0,
» 0z < 6z < Az < Vz (equality for one-shot).

» >, 0y <0x and 3", Vy; < Vx (equality in the steady
state),
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Axioms
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of Axiom 1 Let o be the state of splitter S with all tokens idle.

Then o = Inv(S).

Axiom 2 For all states o of a splitter S, if o = Inv(S) and for
some token t we have o (t) =0, then there is an i with
1 <i<msuchthato(t):iEeInv(S).

For long-lived splitters only:

Axiom 3 For all states o of a splitter S, if o = Inv(S) and for
some token t we have o (t) =i withl <i < m, then
o(t) :eEInv(S).

Axiom 4 For all states o of a splitter S, if o = Inv(S) and for
some tokent we have o (t) = & then o(t) : L EInv(S).

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)



University
of

Smooth splitters

Definition 5 A splitter S with m outputs is called smooth if its
invariant Inv(S) can be specified by a collection of m + 1
inequalities of the form

dox < fo(o)

div; < fi(o) foralli,1 <i<m,

where for each i with 0 < i < m, d; is any of the four contention
measures 0, 6, A or V, and each f; is a function mapping
splitter states to integers.

Almost all splitters are smooth.
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Examples (one shot)
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of » Aspnes et al. [AHS94] balancer,
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VXx VxJ

VoL = [ﬂ N VY2 s {T

» Aspnes et al. [AHS94] counting network
Vx —1+ lw
m )

Foralli,lsism:Vyis[

» Aspnes et al. [AHS94] k-smoothing network

Foralli,1sism:Vyismin{Vyj|j¢i}+k.

» Moir et al. [MA95]

Vy1 <1 A Vy, < Vx -1 A Vy <Vx -1
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Examples (long-lived)
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» Buhrman et al. [BGHM95]

Foralli,1 <i<3:0y; <max(l,0x—-1).

» Afek et al. [AAF*99]

oyi<1 A Vy, =Vx -1 A Vy3=Vx -1,

» Moir et al. [MA95]

Oyi<1 A Oy <dx—-1 A O0y3<d6x-—-1.
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Impossibility results (1)
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Theorem 6 Let S be a splitter with m > 1 outputs. Suppose for
some constant ¢ > 1 we can select constants cy,...,Cm SUch
that for all states o of S with dx = ¢ we have

fi(o) < ¢

and

m

Sei<cr M
& 2
1=1

Then a read/write implementation of S does not exists
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Impossibility results (2)
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» Consider one-shot case, and let ¢ tokens enter.

» At each output y; run renaming algorithm (e.g., [AF0O0]) to
2¢; — 1 names.

» Then total number of assigned names is
m m
> (2ci—1)=2> ¢i-
i=1 i=1

» Impossible if < 2c¢c — 1 (Herlihy and Shavit [HS93]).
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Impossibility results (3)
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Theorem 7 Define M = {1,...,m}. Let S be a splitter with
m > 1 outputs. Suppose there exists an index set I C M such
that for all states o of S with dx > 0 we have

Zfi(()') <max(2,dx) and Z filo) <dx .

i€l ieM-1
Then a read/write implementation of S does not exist.

J.-H. Hoepman Splitters, (v 1.5 =2003/12/10 00:07:52)



Impossibility results (4)
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Proof (sketch):

If both properties hold, we can build a test-and-set object. This
contradicts [LAA87, Her91].
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Possibility results (1)
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Theorem 8 Splitter S defined by
Oy < §5x, forl <i<3.
has a read/write implementation.

Proof 9 Use any optimal long-lived renaming algorithm
(like [AFOOQ]) to rename the 0x incoming tokens to 20x — 1
names. Map a token with name i to output V(i mod3)+1- Then
Syi < £6x.
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Possibility results (1)
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Theorem 10 Let S be a splitter satisfying the axioms, shared
with n processors. This splitter can be implemented using a
single n processor read-modify-write register.
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Conclusions

Results:
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» Start of independent theory of splitters.

» Splitters can be defined using invariants in a straightforward
pattern.

» RMW registers are strong enough to build splitters.

» Butin read/write case, certain classes of splitters cannot be
constructed.

Remaining issues:

» Building splitters using other splitters as building block.

» The place of splitters in Herlihy’s hierarchy [Her91].
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