
1 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Splitters

Objects For On-Line Partitioning

Jaap-Henk Hoepman

Department of Computer Science

University of Nijmegen, the Netherlands

jhh@cs.kun.nl

www.cs.kun.nl/˜jhh



2 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Contents

I Introduction

I Contention

I Defining splitters

I (Im)possibility results

I Conclusions



3 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

What is a splitter?

A concurrent asynchronous non-blocking object

that can partition a collection of contending tokens

into smaller groups with certain properties.

Used many times before in the literature:

I mutual exclusion [Lam87],

I renaming [MA95, AM94, BGHM95], and

I resource allocation [AHS94].

But never studied independently (except for counting

networks [AHS94]).



4 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Splitters

Splitter

token

Legend

PSfrag replacementsx

y0

ym−1

I 1 input x, m outputs yi.

I shared among n processes.

I tokens enter and release.

I one-shot vs. long-lived.

I Token states idle, entering, assigned, and releasing.



5 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Research questions

I What does it require to implement a certain splitter?

I How can splitters be combined to implement other splitters?

But first. . .

How do we define splitters?



6 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Contention (1)

For input or output z of S at time t:

point contention ðtz: the number of tokens at z at time t.

maximal point contention δtz: the maximal number of

tokens at z at any time t′ within the busy prefix of S at t.

interval contention ∆tz: the total number of different tokens

(i.e., not counting doubles) at z in the busy prefix of S at t.

total contention ∇tz: the total number of tokens (counting

doubles) at z in the busy prefix of S at t.



7 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Contention (2)

entering

assigned

releasing

Legend

busy prefix

PSfrag replacements

x

y0

ym−1

x

y1

y2

aa

aa

b

b

c

c

d

d

t
ðt δt ∆t ∇t

y1 0 2 2 3

ðt δt ∆t ∇t

y2 1 1 2 2

ðt δt ∆t ∇t

x 3 4 4 5



8 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Defining splitters

Invariant Inv(S)

I Predicate over the states σ of S

� using only input contention dx and output contentions

dyi, where d ∈ {ð, δ,∆,∇}.

I σ î Inv(S) must hold for all states.

(σ î P if predicate P holds in state σ )



9 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Properties

For any state σ of splitter S with m outputs, and input or

output z:

I ðz, δz,∆z,∇z ≥ 0,

I ðz ≤ δz ≤ ∆z ≤ ∇z (equality for one-shot).

I
∑m
i=1 ðyi ≤ ðx and

∑m
i=1∇yi ≤ ∇x (equality in the steady

state),



10 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Axioms

Axiom 1 Let σ be the state of splitter S with all tokens idle.

Then σ î Inv(S).

Axiom 2 For all states σ of a splitter S, if σ î Inv(S) and for

some token t we have σ(t) =→�, then there is an i with

1 ≤ i ≤m such that σ(t) : i î Inv(S).

For long-lived splitters only:

Axiom 3 For all states σ of a splitter S, if σ î Inv(S) and for

some token t we have σ(t) = i with 1 ≤ i ≤m, then

σ(t) : �→î Inv(S).

Axiom 4 For all states σ of a splitter S, if σ î Inv(S) and for

some token t we have σ(t) = �→ then σ(t) : ⊥ î Inv(S).



11 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Smooth splitters

Definition 5 A splitter S with m outputs is called smooth if its

invariant Inv(S) can be specified by a collection of m+ 1

inequalities of the form

d0x ≤ f0(σ)

diyi ≤ fi(σ) for all i, 1 ≤ i ≤m ,

where for each i with 0 ≤ i ≤m, di is any of the four contention

measures ð, δ, ∆ or ∇, and each fi is a function mapping

splitter states to integers.

Almost all splitters are smooth.



12 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Examples (one shot)

I Aspnes et al. [AHS94] balancer,

∇y1 ≤

⌈
∇x

2

⌉
∧ ∇y2 ≤

⌊
∇x

2

⌋
,

I Aspnes et al. [AHS94] counting network

For all i, 1 ≤ i ≤m: ∇yi ≤

⌈
∇x − i+ 1

m

⌉
,

I Aspnes et al. [AHS94] k-smoothing network

For all i, 1 ≤ i ≤m: ∇yi ≤ min

{
∇yj | j ≠ i

}
+ k .

I Moir et al. [MA95]

∇y1 ≤ 1 ∧ ∇y2 ≤ ∇x − 1 ∧ ∇y3 ≤ ∇x − 1



13 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Examples (long-lived)

I Buhrman et al. [BGHM95]

For all i, 1 ≤ i ≤ 3: δyi ≤ max(1, δx − 1) .

I Afek et al. [AAF+99]

δy1 ≤ 1 ∧ ∇y2 ≤ ∇x − 1 ∧ ∇y3 ≤ ∇x − 1 ,

I Moir et al. [MA95]

δy1 ≤ 1 ∧ δy2 ≤ δx − 1 ∧ δy3 ≤ δx − 1 .



14 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Impossibility results (1)

Theorem 6 Let S be a splitter with m > 1 outputs. Suppose for

some constant c > 1 we can select constants c1, . . . , cm such

that for all states σ of S with dx = c we have

f Si (σ) ≤ ci

and
m∑

i=1

ci < c +
m− 1

2
.

Then a read/write implementation of S does not exists



15 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Impossibility results (2)

Proof (sketch):

I Consider one-shot case, and let c tokens enter.

I At each output yi run renaming algorithm (e.g., [AF00]) to

2ci − 1 names.

I Then total number of assigned names is

m∑

i=1

(2ci − 1) = 2

m∑

i=1

ci −m

I Impossible if < 2c − 1 (Herlihy and Shavit [HS93]).



16 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Impossibility results (3)

Theorem 7 Define M = {1, . . . ,m}. Let S be a splitter with

m > 1 outputs. Suppose there exists an index set I ⊂ M such

that for all states σ of S with dx > 0 we have

∑

i∈I

fi(σ) < max(2, dx) and
∑

i∈M−I

fi(σ) < dx .

Then a read/write implementation of S does not exist.



17 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Impossibility results (4)

Proof (sketch):

If both properties hold, we can build a test-and-set object. This

contradicts [LAA87, Her91].

Door

{

looseloose

win

{

{

{

loose

PSfrag replacements

x

y0

ym−1

x

y1

y2

a

b

c

d

t
ðt δt ∆t ∇t

y1 0 2 2 3

ðt δt ∆t ∇t

y2 1 1 2 2

ðt δt ∆t ∇t

x 3 4 4 5

S1 Sk−1

II

M − IM − I



18 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Possibility results (1)

Theorem 8 Splitter S defined by

δyi ≤
2

3
δx, for 1 ≤ i ≤ 3.

has a read/write implementation.

Proof 9 Use any optimal long-lived renaming algorithm

(like [AF00]) to rename the δx incoming tokens to 2δx − 1

names. Map a token with name i to output y(i mod 3)+1. Then

δyi ≤
2

3
δx.



19 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Possibility results (1)

Theorem 10 Let S be a splitter satisfying the axioms, shared

with n processors. This splitter can be implemented using a

single n processor read-modify-write register.



20 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

Conclusions

Results:

I Start of independent theory of splitters.

I Splitters can be defined using invariants in a straightforward

pattern.

I RMW registers are strong enough to build splitters.

I But in read/write case, certain classes of splitters cannot be

constructed.

Remaining issues:

I Building splitters using other splitters as building block.

I The place of splitters in Herlihy’s hierarchy [Her91].



21 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

References

[AAF+99] Afek, Y., Attiya, H., Fouren, A., Stupp, G., and

Touitou, D. Long-lived renaming made adaptive. In

18th PODC (Atlanta, GA, USA, 1999), ACM Press,

pp. 91–103.

[AM94] Anderson, J. H., and Moir, M. Using k-exclusion to

implement resilient, scalable shared objects. In 13th

PODC (Los Angeles, CA, USA, 1994), ACM Press,

pp. 141–150.

[AHS94] Aspnes, J., Herlihy, M., and Shavit, N. Counting

networks. J. ACM 41, 5 (1994), 1020–1048.



22 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

[AF00] Attiya, H., and Fouren, A. Polynomial and adaptive

long-lived (2k− 1)-renaming. In 14th DISC (Toledo,

Spain, 2000), M. Herlihy (Ed.), LNCS 1914, Springer,

pp. 149–163.

[BGHM95] Buhrman, H., Garay, J. A., Hoepman, J.-H., and Moir,

M. Long-lived renaming made fast. In 14th PODC

(Ottawa, Ont., Canada, 1995), ACM Press,

pp. 194–203.

[Her91] Herlihy, M. P. Wait-free synchronization. ACM Trans.

Prog. Lang. & Syst. 13, 1 (1991), 124–149.

[HS93] Herlihy, M. P., and Shavit, N. The asynchronous

computability theorem for t-resilient tasks. In 25th

STOC (San Diego, CA, USA, 1993), ACM Press,

pp. 111–120.



23 J.-H. Hoepman Splitters, (v 1.5 – 2003/12/10 00:07:52 )

[Lam87] Lamport, L. A fast mutual exclusion algorithm. ACM

Trans. Comput. Syst. 5, 1 (1987), 1–11.

[LAA87] Loui, M. C., and Abu-Amara, H. H. Memory

requirements for agreement among unreliable

asynchronous processes. In Advances in Computing

Research, F. P. Preparata (Ed.), vol. 4. JAI Press,

Greenwich, CT, 1987, pp. 163–183.

[MA95] Moir, M., and Anderson, J. H. Wait-free algorithms

for fast, long-lived renaming. Science of Computer

Programming 25, 1 (1995), 1–39.


