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ABSTRACT
We implement a secure and privacy friendly asynchronous uni-
directional message transmission protocol using a public bulletin
board that makes individual send or receive events unlinkable
to one another. While the clients must securely run in the user’s
endpoint device, the bulletin board can be hosted on an arbitrary
public cloud at no additional risk. In fact the protocol provides
the same unlinkability guarantees as the underlying mixing net-
work. The protocol is efficient, and the central bulletin board can
adaptively be scaled and distributed depending on the load. We
show how the basic unidirectional protocol can be used to hide
the metadata in bidirectional message exchange applications like
WhatsApp, and how it can be used to implement a private pres-
ence service efficiently. In these applications our protocol pro-
tects the so-called social graph.

1. INTRODUCTION
Messaging apps that allow people to asynchronously exchange

messages are hugely popular. However, people have become in-
creasingly aware of the extent of the dragnet surveillance per-
formed by intelligence agencies and show a decreasing trust in
the providers of such messaging services service themselves. This
has created a market for more secure and privacy friendly imple-
mentations of such messaging services.

Ideally such services should both hide the content of the mes-
sages exchanged as well as the sender and recipient (i.e the meta-
data) associated with the communication. Moreover, both con-
tent and metadata should be hidden from both an external (ac-
tive) adversary as well as the service provider itself. In partic-
ular the social graph, i.e. the graph representing who is con-
nected to whom, should be protected. In the extreme case the
service should offer you the possibility to anonymously establish
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a secure contact that allows you to securely and anonymously
communicate with that contact at a later stage.

Our research is partly motivated by the following use case.
Consider a journalist that wants to stay in touch with (anony-
mous) contacts and informants in a hostile environment, like a
civil war zone or a country with limited protection to journalists
(or informants). Exchanging phone numbers to stay in touch is
dangerous, as these can be traced back to their owner. Yet even
very secure and privacy friendly messaging applications like Sig-
nal need such a phone number to create an account and to es-
tablish first contact. If you don’t even need a phone number to
connect to each other, loss or theft of your phone means your
contacts cannot be traced (as would be the case if their phone
numbers would be in your address book). This is relevant, as
the following quote from the recent Freedom on the Net 2014
report [17] shows.

The increased use of “social engineering” – essen-
tially tricking users into revealing information – and
account hijacking has reinforced the idea that one’s
own digital security often depends on the actions
and judgment of those in one’s broader social or pro-
fessional network.

We wish to stress that although this example motivated our re-
search, the system we propose has not been analysed, imple-
mented or tested to ensure that it provides strong enough pro-
tection for this particular use case.

Substantial improvements to protect the content of messages
exchanged has been made. And in fact several so called se-
cure messaging apps are readily available1. However, none of
these apps protect the metadata. This is problematic because
this metadata allows adversaries (or the service providers them-
selves) to reconstruct the social graph, which is in itself quite
sensitive2 [18].

One way to limit metadata collection by the service provider
is to avoid any centralised server and instead implement a peer-
to-peer protocol. Yet a truly peer-to-peer solution is often im-
practical, because devices like mobile phones may not always be
on line, have non-fixed IP addresses (especially when roaming
or when connected using a cellular network) or may live behind
a firewall3. Also, many people may be reluctant or incapable
to install and run a local server that could serve as a proxy to
implement such a P2P protocol.
1https://www.eff.org/secure-messaging-scorecard
2See http://www.principiadiscordia.com/forum/index.
php?topic=34746.msg1285642#msg1285642 and http:
//firstmonday.org/article/view/2611/2302.
3One of the main reasons Skype was so successful was that it was smart
in figuring out how to bypass specific firewall settings.
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In short, for large scale adoption of a messaging app a more
centralised approach that does not require any user-side setup
is preferred. Yet any centralised solution runs, almost by defini-
tion, the risk of exposing the social graph. Existing solutions to
prevent this (as discussed in section 8) are inefficient or other-
wise inappropriate.

In this paper we show that it is indeed possible to protect the
metadata associated with exchanging asynchronous messages,
even when implementing the system using a centralised server.
In fact we implement a secure and privacy friendly message trans-
mission protocol (defined in section 3) using a public bulletin
board that makes individual send or receive events unlinkable to
one another. The protocol is asynchronous, allowing senders to
send their messages even when the intended receiver is off line,
and unidirectional, meaning that Alice can send messages to Bob
without necessarily allowing Bob to reach Alice. The protocol is
present in section 5 and the correctness and security arguments
are provided in section 6.

The system assumes that the communication network itself
does not leak the identity of the sender or the receiver connect-
ing to the bulletin board. This assumption can for example be
met by letting all users connect to the bulletin board over a mix-
ing network [5] like Mixminion [10], using a compact yet secure
packet format like Sphinx [11]. A low-latency anonymising net-
work like Tor4 is not necessary for an application like messaging,
and actually provides weaker anonymity guarantees.

The use of a generic mixing network, that is not tied the par-
ticular application at hand, allows the application traffic to be
mixed with traffic from other applications that also use the same
mixing network. This increases the level of privacy provided to
both applications. We note that a different way of looking at our
results is to view the protocol that we design as a way to make
mixing networks asynchronous.

The cost of sending or receiving a message is O(1). The size
of the public bulletin board can be adapted dynamically, and the
message processing load can be distributed over several servers.
The use of a public bulletin board maximises the amount of in-
formation available to both the service provider and an external
adversary (and in fact makes them essentially equally powerful).
Still the content and metadata are protected by the protocol. Be-
cause of this design choice, the bulletin board can be hosted on
an arbitrary public cloud at no additional risk. Of course the
client side code must securely run on the endpoint devices of the
users.

The basic unidirectional protocol can be used to hide the meta-
data and the social graph in bidirectional messaging apps like
WhatsApp or Signal. It can also can be used to implement a pri-
vate presence service efficiently. Section 7 discusses this. We
finish the paper with a discussion of our results in Section 9 and
our conclusions in Section 10. But first we present a simple, but
broken idea to solve the problem at hand, because it serves to
motivate the actual approach taken in this paper.

2. A SIMPLE, BUT BAD IDEA
Suppose Alice and Bob share two secret 16 character strings

AB and BA. These strings should be unrelated, and should be dif-
ferent from any other such strings shared among other users.
Alice also has, for each user B she wants to communicate with,
a pair of asymmetric encryption keys (kAB , KAB) and asymmetric
signature keys (sAB , SAB). The same holds for Bob.

4https://www.torproject.org

Let Bob create a Tor hidden service AB.onion hosted by the
bulletin board server, using the 16 character name AB. This hid-
den service is like a point-to-point mailbox responsible for relay-
ing messages from Alice to Bob. It implements a post function for
Alice to drop messages to Bob and a fetch function for Bob to re-
trieve any messages left by Alice since the last fetch. These mes-
sages are signed using sAB and then encrypted against KBA. (The
signature is necessary to prevent fake messages, but it needs to
be embedded within a layer of encryption to prevent tracking
of Alice based on the signatures on her messages.) Similarly let
Alice create ‘mailbox’ BA.onion.

The problem with this approach is twofold. First of all, when
Alice and Bob engage in a conversation, the server will observe
that mailboxes AB.onion and BA.onion are accessed alternat-
ingly quickly in succession. The server will eventually conclude
that these two mailboxes connect two users. Secondly, if Alice
has several mailboxes BA.onion, CA.onion, etc., and routinely
checks her mailboxes every morning at breakfast, then the server
will see that each day at around the same time a sequence of
mailboxes is accessed. It may then conclude that BA.onion,
CA.onion belong to the same person. Combining these two
heuristics allows the server to reconstruct the social graph!

3. DEFINING THE PROTOCOL
An asynchronous unidirectional private point-to-point message

transmission protocol allows one user to send messages asynchro-
nously to another user in private. The user can send a message
even if the recipient is off line, such that the message will be de-
livered later once the recipient becomes on line. It protects the
content as well as the metadata associated with the transmission
of any message, against both an external adversary as well as the
provider of the service itself.

Such a message transmission protocol implements the follow-
ing functions for a sender Alice (A) and a receiver Bob (B).

setupAB Used by Alice and Bob to establish contact. Exchanges
keys and necessary state information required before Alice
can send messages to Bob.

sendAB(m) Used by Alice to send a message m to Bob.

receiveAB Used by Bob to receive the next available message from
Alice, if available. Returns ⊥ if no message is available.

In this paper we focus on the design of the protocols to send
and receive messages, and will simply assume that Alice and Bob
have found a way to initially exchange keys and any other neces-
sary information5. We do this to show that such message trans-
mission protocols can indeed be implemented with very strong
privacy guarantees even if we use a public bulletin board to im-
plement the service.

3.1 Requirements
The point-to-point message transmission protocol should sat-

isfy the following requirements. Suppose Alice successfully sends
a message m to Bob. Then

correctness Bob eventually receives m (unaltered). Moreover,
Bob receives its messages in the same order as Alice sends
them.

5In the use case described in the introduction, one way to anonymously
establish contact when Alice and Bob meet in person is to ’bump’ their
smart phones to exchange data using some proximity channel. Alterna-
tively, they can mutually scan a QR code displayed on the other device.

https://www.torproject.org


Figure 1: System model.

confidentiality Nobody else (except Alice and Bob) learns m.

integrity If Bob receives a message m′, m′ was sent to Bob (by
one of his contacts).

authenticity Alice is guaranteed that only Bob receives m, and
Bob is guaranteed that Alice was the sender of m (if he
receives m).

unlinkability of events The adversary cannot link any two send
and/or receive events, except the events that happen at the
bulletin board that receives a single message with the cor-
responding event that sent that message, or any sequence
of unsuccessful receives of the next expected message from
a particular user and the final successful receipt of that
message.

unlinkability of relationships No two users can determine whe-
ther they are sharing a contact.

forward security If a user device is compromised, the adver-
sary is only able to obtain the contents of (or tamper with)
future messages to or from this user. In particular, the ad-
versary is unable to trace the contacts of a compromised
user.

availability A sender will eventually be able to send a message,
and a message sent will eventually be delivered.

3.2 Informal system model
For the implementation of our transmission protocol we as-

sume the following system model.
A central server hosts a public bulletin board, that all users in

the system have access to. Conceptually, it is an array of n cells,
indexed by arbitrary integers modulo n. Although the bulletin
board is in principle publicly accessible as is, an API containing
a set of functions to access the cells in a structured manner (tai-
lored to the protocol we will define) will be defined further on.

Users send and receive messages using a personal device with
a network connection. This endpoint device is trusted. Users

access the bulletin board over an anonymising network. This
ensures that individual requests to the bulletin board cannot be
linked to particular users. The connections between user devices
and the bulletin board are server-side authenticated: the user
device is guaranteed it is talking to the bulletin board. More-
over, confidentiality of messages between user device and bul-
letin board is guaranteed end-to-end (i.e. independent of the
additional encryption used by the mixing network). We assume
the mixing networks guarantees that any message sent is even-
tually delivered. The setup is depicted in figure 1.

3.3 Threat model
We assume the server is honest but curious: it will not modify

the contents of the bulletin board, except when instructed by a
user, but it will try to learn all it can by observing all accesses
to the bulletin board. We do not assume anything about the
behaviour of the users, except that they do not act against their
own interests. The anonymising network is assumed to provide
(some degree of) unlinkability between user actions and accesses
observed by the server.

We do not specify the power of the adversary explicitly in
terms of what it can and cannot do, as is typically done. Instead
we assume that the adversary (whatever its particular capabili-
ties) has a certain maximal probability of linking messages en-
tering or leaving the mixing network (given a particular choice
of mixing network). In what follows we show our the protocol
does not give the adversary a better chance to link communicat-
ing users than this.

4. PRELIMINARIES
We use the following primitives in our protocol. First of all

we use an authenticated encryption scheme [2]. Such a scheme
uses a secret symmetric key KAB ∈ K shared between Alice and
Bob, and provides confidentiality, integrity and authenticity of
the messages transmitted from Alice to Bob. In the protocol users
have different keys for each party they communicate with, and
keep these keys private. We write

{[m]}AB

for the authenticated encryption of message m using KAB . The
inverse of this function is

openAB(c)

that returns the plaintext contained in ciphertext c by decrypting
it using KAB . This may fail if the ciphertext has been tampered
with or has been created using a different key. In that case, the
function returns ⊥. We have

m= openAB({[m]}AB) .

We assume {[m]}AB leaks no information about m or KAB , and
that it provides no information about {[m′]}A′B′ if m 6= m′ or
A 6= A′ or B 6= B′. In the protocol each message is encrypted
using a fresh key. Hence we only require one-time secure Au-
thenticated Encryption schemes [15]. These can be efficiently
and generically build from (one-time secure) IND-CPA symmet-
ric encryption and message authentication codes [2].

We also use a key derivation function KDF(·) : K 7→ K that
given a key generates a new key such that given KDF(K), no
information about K can efficiently be computed [13, 20]. This
forms the basis for the forward security of our scheme.

We write ‖ for the concatenation of two strings (including the
additional information necessary to unambiguously determine



the point where the first string terminates and the second string
starts).

5. IMPLEMENTATION
The problem with the simple protocol outlined in section 2 is

caused by the fact that users are tied to specific, fixed, mailboxes.
Their accesses to these mailboxes allow the server to eventually
reconstruct the social graph. To avoid this problem, in the pro-
tocol below users essentially never access a particular mailbox
more than once.

5.1 The bulletin board
As explained in section 3.2 and sketched in figure 1, we as-

sume a central server is hosting a publicly accessible bulletin
board B[] of n cells, indexed by arbitrary integers modulo n.
Users access the bulletin board through an anonymising mixing
network. This ensures that individual requests to the bulletin
board cannot be linked to particular users. Each cell of the bul-
letin board contains a set of value/tag pairs 〈v, t〉. Associated
with the bulletin board is a public cryptographic hash function
B(·) : T 7→ T . |T | > 2`, where ` is the security parameter. The
hash functionB(·) together with the tag associated with a value
is used to prevent malicious users from deleting values at will.
Only intended recipients of messages can delete the messages
addressed to them.

Users access the bulletin board by sending one of the following
commands that the server implements.

add(i, v, t): Add 〈v, t〉 to the set at cell i: B[i] := B[i]∪{〈v, t〉}.

get(i, b): Let t =B(b). If 〈v, t〉 ∈ B[i] for some value v, return
v and remove 〈v, t〉 from B[i]. Otherwise return ⊥, and
leave B[i] unchanged.

Initially, all cells contain the empty set ∅. Note that to read a
value from the bulletin board, one must know the preimage of
the corresponding tag. This preimage is also used to locate the
value to return among the set of values stored in the cell.

5.2 Client protocols
Again suppose Alice and Bob share a symmetric key KAB for an

authenticated encryption scheme. This key is used for messages
sent by Alice to Bob. A different key KBA is used for messages in
the other direction.

The protocol is depicted in figure 2. To send a message m to
Bob, Alice runs the sendAB(m) protocol. To receive the next avail-
able message (if any) from Alice, Bob executes the receiveAB()
protocol in the same figure6. If no message is available, ⊥ is
returned.

The main idea of the protocol is that users use a random cell
in the bulletin board for each new message they want to send.
Initially (at the same time they also exchange the necessary cryp-
tographic keys) they agree on a tag and the index of the first cell
to use. (How to do this is outside the scope of the protocol, but
is discussed in the application section below.) These are stored
in (idxAB , tagAB) at both the sender Alice and the receiver Bob.

When sending a message, Alice already randomly picks a cell
index and a tag for the next message to be sent. This index and
tag are piggybacked to the current message intended for Bob.
The index tells Bob where to look for a new message. The tag al-
lows him to find the right one among the set of messages stored

6 The AB in the subscript denotes that the receive function is used to
receive a message from A to B.

in that cell. Alice’s messages are encrypted using an authenti-
cated encryption scheme using key KAB . The final message added
to the set in the cell equals

{[m‖ idx′ ‖ tag′]}AB .

If Bob successfully received a message it is also removed from
the cell used to store it to prevent the message board from over-
flowing. Note that if u 6= ⊥ in the receive protocol in figure 2
then openAB(u) should normally be successful.

Forward security is achieved using a scheme inspired by Silent
Circle’s SCIMP protocol [19]. After sending a message, Alice up-
dates her key using a key derivation function KDF(·). Bob does
the same after successfully receiving a message. Both Alice and
Bob destroy the old copies of their keys after this step. Note
that we cannot use Off-The-Record (OTR) style ephemeral key
exchange [4] in our protocol because the reverse channel from
Bob back to Alice is unrelated to the forward channel. And in
any case, because of the way messages are delivered in differ-
ent cells, sender and receiver need to be synchronised anyway.
This means using a key derivation function the way SCIMP does,
does not impose further restrictions. We discuss synchronisation
issues further in section 5.4.

5.3 Informal analysis
To see that the scheme is correct we observe the following.

When Alice sends messages, she essentially creates a linked list
of cells containing future messages for Bob to receive7. Bob re-
ceives them in the correct order by traversing this list.

Suppose receiveAB() returns a message. This message was ob-
tained from a cell with a message that could successfully be de-
crypted using KAB . This guarantees the message was sent by Alice
and addressed to Bob. The cell also contains the index and tag
to use for the next message to be received from Alice. Bob stores
these two values in (idxAB , tagAB).

Suppose Alice sends Bob a message. Then the index idxAB of
the cell to store the message in was sent to Bob in the previ-
ous message, while the tag value associated with that cell equals
B(tagAB). The preimage tagAB was also sent to Bob in the pre-
vious message. This allows Bob to retrieve the message (and
remove it from the cell).

Both the send and the receive protocol accesses the bulletin
board exactly once. The send protocol clearly takes constant
time to complete. The receiver knows the index of the cell of
the bulletin board to inspect for the next incoming message. The
time complexity of the receive protocol (or rather the get oper-
ation implemented by the bulletin board) therefore equals the
expected number of entries in this cell. This depends on the size
of the bulletin board n and the number of messages c it contains.
As the index of a cell to use for a message is selected at random,
the expected size of a cell equals c/n (see Lemma 6.1). If there
is a message waiting to be received, the expected size of the cell
becomes 1+(c−1)/n. (Typically the service provider will ensure
that t never becomes larger than n, which means that in most
cases, any cell either contains no entries, or just a single one.
This is further discussed in Section 5.5.)

To see the scheme satisfies the security requirements from sec-
tion 3.1, we observe the following. All messages are encrypted
using an authenticated encryption scheme, with different keys
for each connected pair of users. This assures confidentiality,
authenticity and integrity of the messages transmitted. Unlink-
ability follows from the random selection of the next cell to be
7This list is embedded in the array of cells representing the bulletin
board. The indices of the bulletin board serve as list pointers.



function sendAB(m)
idx′ ∈R {0, . . . , n− 1}
tag′ ∈R T
u := {[m‖ idx′ ‖ tag′]}AB
write(idxAB , u,B(tagAB))
(idxAB , tagAB) := (idx′, tag′)
KAB := KDF(KAB)

function receiveAB()
u := get(idxAB , tagAB)
if u 6=⊥
∧ (m‖ idx′ ‖ tag′) := openAB(u) is successful
then (idxAB , tagAB) := (idx′, tag′)

KAB := KDF(KAB)
return m

else return ⊥

Figure 2: Protocols to send or receive a message.

used to transmit a message, and the fact clients connect to the
bulletin board over a mixing network. Consider any two differ-
ent events that are not a send and the corresponding receive, or
two different tries to receive the same message. These use totally
unrelated cells because of the random selection process. The en-
cryption used in the transmission of the next index to use ensures
that the adversary cannot predict the next index in advance.

5.4 Keeping clients synchronised
One issue with the approach taken by the protocol is that users

need to remember indices, tags and keys. What if these get cor-
rupted?

If any key is corrupted, this means that messages will no longer
be correctly decrypted or verified by the receiver. As a result
messages will fail to get across. If the sender continues to send
new messages eventually the bulletin board will get full. Note
that only receivers are able to tell that their keys are corrupted,
when they fail to decrypt a message that is stored in a cell they
successfully accessed.

Indices and tags can also get corrupted. If the index or the
tag of a sender gets corrupted, the write will store the message
in the wrong cell. If the index or the tag of a receiver gets cor-
rupted, the get will fail because with overwhelming probability
there is no value/tag pair at the given index that matches the
supplied tag. For the read, this will simply look as if no message
is currently waiting for him. We conclude that the protocol itself
allows neither a sender or a receiver to determine whether their
index and tag values have been corrupted. This can be overcome
by adding redundancy to the local state of each user client. One
possibility is to store a hash of the state along with the state itself,
and verify this hash at the start of each send or receive.

This allows users to at least discover that something is wrong.
The question remains how to resolve the issue. The obvious solu-
tion is to allow clients to encrypt their state (keys, index and tag
for each of their communicating parties) against some long term
static key (with an offline copy) and store this somewhere. How-
ever this idea does increase the risk of linkability: every time a
user performs an action his state needs to be updated, and these
events can be correlated. Using the mixing network to also ob-
fuscate this storage of the state partially resolves this, but still
gives the adversary additional information for the potential iden-
tity of the sender or the receiver of a particular message. This
increases his chances.

5.5 Scalability
Another engineering issue is scalability. If the number of users

is small, a single server maintaining a small bulletin board will
suffice. As the number of users grows, or the number of messages
sent increases, bandwidth and storage requirements increase as

well. The question is whether the design allows us to dynami-
cally accommodate for such changes.

If the load on the server gets too high, the bulletin board can be
partitioned into chunks that are each served by a different server.
The partitioning is communicated to the users, which allows all
read and write operations to be directed at the appropriate server
depending on the index of the cell to be accessed. One issue
to be aware of, is that this allows the adversary to distinguish
which of the servers is being accessed. In an extreme case, if
the anonymity set of Alice’s first write access to the new server
is small, and so is the anonymity set of Bob’s first get from the
new server, then the adversary has a better than usual chance to
determine whether Alice and Bob are acquainted.

To change the size of the bulletin board a new bulletin board
with the appropriate size has to be created, and all send func-
tion calls will be instructed to direct their locks and writes to the
new bulletin board. At the same point in time, all receives are
instructed to look for any remaining (old) messages on the old
board once, and to start looking for messages on the new board
from that point onward. Once the old bulletin board only con-
tains empty cells, it can be discarded. This can be monitored by
letting the bulletin board keep track of the difference δ between
successful write and get calls, as this in fact equals the num-
ber of messages c the bulletin board currently contains. Because
both bulletin boards are served by the same server, an external
adversary cannot tell the difference and use this information to
increase his chances to trace a user.

This difference can also be used to determine whether the bul-
letin board size should be increased or decreased. A bulletin
board with very few occupied cells wastes storage space and
should be decreased. A bulletin board with many occupied cells
will make reads become slower (as the expected size of the set
of messages stored in a cell increases).

5.6 Availability
The protocol as it stands assumes honest users and is highly

susceptible to denial-of-service attacks. Although deletion of en-
tries from cells is prevented by requiring the knowledge of the
preimage of the corresponding tag value8, anybody can write to
a cell. This allows the adversary to completely fill the bulletin
board essentially blocking new writes.

A natural approach to limit the damage an adversary can do
is to a associate a certain cost with sending a message. The cost
could be monetary (a small payment for each write) or involve
other resources (like solving a complex puzzle [1]). Alternatively

8The preimage of the tag value cannot be obtained by an adversary, even
if Bob is using it to check for a new message that has not been sent yet,
because Bob uses an authenticated and encrypted channel to communi-
cate with the bulletin board server.



users can register with the service, at which point they receive
a few anonymous send-coins, that need to be spent when send-
ing a message. Users that receive a message (and hence free
up space on the bulletin board) also receive a new send-coin.
This approach limits the number of messages pending between
A and B. None of these approaches completely solve the problem
though.

Unfortunately any more fundamental solution to the problem
does not appear to exist, in essence because an adversary can al-
ways spawn an overwhelming number of users that individually
behave within the limits deemed acceptable, while collectively
bringing the system down to its knees.

6. PROOFS
We now proceed to prove the protocol in Figure 2 correct and

secure. In the lemma’s below we are slightly more precise about
corruptions of nodes, compared to the statement of the require-
ments in section 3.1.

Lemma 6.1 If the bulletin board has size n and contains c mes-
sages in total, then the expected number of elements stored in a cell
is c/n. If there is a message waiting to be received, the expected
size of the set becomes 1+ (c − 1)/n.

PROOF. The cell to store a message in is selected uniformly
at random from a total of n locations. Hence the probability p
that a particular message is stored at a particular cell i equals
1/n. When storing c messages like this in the bulletin board, the
number of messages X in a particular cell follows the binomial
distribution, with

Pr [X = x] =
�

c
x

�

px (1− p)t−x

The expected value

E [X ] =
t
∑

x=0

xPr [X = x]

equals c × p = c/n [14].
If there is a message waiting to be received, i.e. if there is cer-

tainly one message stored in that cell, then the expected size of
the set is determined by distributing the remaining c − 1 mes-
sages over the n cells. This gives 1+ (c − 1)/n.

Let us focus on the case where Alice is sending messages to
Bob. The state of a Alice (or Bob) is the value of KAB , idxAB , and
tagAB .

Assumption 6.2 Alice’s state for sending messages to Bob is inde-
pendent of her state for sending messages to any other user.

In what follows we simplify notation and omit mentioning the
label AB explicitly. Let us write mA,i for the i-the message sent by
Alice (to Bob). Let us write mB,i for the i-the message received
by Bob (from Alice). Let us write σA,i for the state of Alice in
which she starts sending message mA,i . Similarly let σB,i be the
state of B in which he starts receiving mB,i . Let KA,i be the value
of KAB in σA,i . Define idxA,i , tagA,i , KB,i , idxB,i and tagB,i similarly.

We assume the following about the initial exchange of keys
and other data between two users that execute setupAB .

Assumption 6.3 σA,1 = σB,1. Initially, only Alice and Bob know
the values in these states.

Proposition 6.4 In the absence of any adversarial activity, for all
i > 1, mA,i−1 = mB,i−1 and σA,i = σB,i with overwhelming proba-
bility (provided both states are reached).

PROOF. By induction on i. σA,1 = σB,1 by assumption 6.3.
Now suppose σA, j = σB, j , we will prove the proposition holds for
i = j+1. We assumeσA, j+1 andσB, j+1 are both reached. To reach
σA, j+1, Alice successfully sent mA, j . This means she actually sent
u= {[mA, j ‖ idxA, j+1 ‖ tagA, j+1]}A, j using write(idxA, j , u,B(tagA, j)).
To reachσB, j+1, Bob successfully received a message when started
in state σB, j . Bob’s call to get(idxB, j , tagB, j) returns with over-
whelming probability {[mA, j ‖ idxA, j+1 ‖ tagA, j+1]}A, j . (With prob-
ability roughly 2−` there is a collision such that another tuple in
the set stored at cell idxB, j contains the same tag.) Bob then sets
mB, j = mA, j , idxAB = idxA, j+1 and tagAB = tagA, j+1 as required. Al-
ice sets KA, j+1 := KDF(KA, j) and Bob sets KB, j+1 := KDF(KB, j). If
KA, j = KB, j then KA, j+1 = KB, j+1

The following lemma is an easy corollary of this proposition.

Lemma 6.5 (Correctness) Suppose Alice successfully sends a mes-
sage m to Bob. Then Bob eventually receives m unaltered. More-
over, Bob receives its messages in the same order as Alice sends
them.

Proposition 6.6 For all i > 0, unless Alice or Bob gets corrupted
at a state c < i, it is guaranteed that only Alice and Bob know σA,i ,
with the following two exceptions. The bulletin board learns idxA,i
as soon as Alice writes mA,i . The bulletin board learns tagB,i as soon
as Bob tries to get mB,i .

PROOF. By induction on i. The proposition holds initially by
assumption 6.3. Suppose the proposition holds for i = j. We
show it also holds for i = j + 1. If Alice or Bob are corrupted
at state j the proposition trivially holds. If Alice is corrupted at
state j + 1, then by construction she has erased idxA, j and tagA, j
and has set KA, j+1 := KDF(KA, j). From the latter value KA, j cannot
be reconstructed (see Section 4). The same holds for Bob. KA, j
is never revealed in the normal course of the protocol. The two
exceptions follow from the way Alice and Bob send and receive
messages in state j.

Lemma 6.7 (Confidentiality) Suppose Alice successfully sends a
message m to Bob before being corrupted. Then nobody else (ex-
cept Alice and Bob) learns m, provided Bob receives it before being
corrupted.

PROOF. Follows from proposition 6.6 and the fact that Alice
encrypts m as {[m‖ idx′ ‖ tag′]}AB using key KAB before sending
it to the bulletin board.

We note that as long as Bob has not received the message,
there is a danger that Bob is compromised giving the adversary
access to his current and all future keys.

Lemma 6.8 (Integrity) If Bob receives a message m while not be-
ing corrupted, m was sent to Bob (by one of his contacts), provided
this contact was not corrupted before sending the message.

PROOF. Follows from proposition 6.6 and the fact that if Bob
receives m, it got from the bulletin board {[m‖ idx′ ‖ tag′]}AB us-
ing key KAB for some contact A.

Lemma 6.9 (Authenticity) Suppose Alice successfully sends a mes-
sage m to Bob before being corrupted. Then Alice is guaranteed
that only Bob receives m, and Bob is guaranteed that Alice was the
sender of m (if he receives m, before being corrupted).



PROOF. Similar to the proof of Lemma 6.8.

Unlinkability of events was defined in section 3.1 as “The ad-
versary cannot link any two send and/or receive events, except
the events that happen at the bulletin board that receives a single
message with the corresponding event that sent that message, or
any sequence of unsuccessful receives of the next expected mes-
sage from a particular user and the final successful receipt of that
message.” We make that more precise as follows.

We assume some upper bound on the power of the adversary
in obtaining information by observing or interacting with the
mixing network. Instead of strictly specifying what the adver-
sary can or cannot do, we assume we are given an upper bound
on the probability that the adversary correctly links two events
he observes in the mixing network.

Assumption 6.10 The adversary is able to guess with probabil-
ity at most p whether any message entering the mixing network
corresponds to some other message leaving the mixing network.

This allows us to show that the adversary gains no additional
information from the protocol, in the sense that it does not mat-
ter whether Alice and Bob would communicate directly through
the mixing network, or us our protocol to do so. Of course, us-
ing our protocol allows Alice and Bob to communicate asynchro-
nously. This is impossible when communicating through a mix-
ing network directly.

Lemma 6.11 (Unlinkability of events) Suppose Alice successfully
sends a message m to Bob, and that Bob queries the bulletin board
k times until receiving the message. Then the adversary is able to
guess with probability at most p that Alice sent this message to Bob.

PROOF. Alice uses a random location on the bulletin board for
each new message she sends. This ensures that write events on
the bulletin board are completely independent. By assumption
{[m]}AB leaks no information about m or KAB , or information
about {[m′]}A′B′ if m 6= m′ or A 6= A′ or B 6= B′. Hence these
write events provide no useful information to the adversary.

Suppose Alice sends a message to Bob. This involves sending
one message from Alice to the bulletin board over the mixing
network for the call to the write(idxAB , u, b) function. Then the
adversary has probability at most p to guess correctly that the
message sent by Alice is stored at index idxAB on the bulletin
board. (Note that this requires cooperation of the bulletin board
server, because the index is protected by the secure channel from
Alice to the bulletin board.)

Suppose Bob queries the bulletin board k times until receiving
the message. Each query involves sending one message from
Bob to the bulletin board over the mixing network for the call to
the get(idxAB , t) function, and another return message from the
bulletin board back to Bob over the mixing network to return the
result. In total then the adversary sees 2k messages to or from
index idxAB , and for each message he has probability p to guess
Bob is involved in them.

How these 2k observations of the adversary determine the
probability he guesses correctly that Bob is the recipient, very
much depends on the particular observations. On the one hand,
if the adversary observes in all 2k cases the same 1/p users each
having probability p to be accessing idxAB , then the probability
remains p. On the other hand, if Bob is the only user in the
intersection of all observations, then p = 1.

However, the uncertainty about Alice being the sender remains
p as argued in the beginning of the proof, which concludes the
proof.

Lemma 6.12 (Unlinkability of contacts) Suppose Alice has Bob
as contact, and Charlie has Donna as contact. Then Alice and Char-
lie cannot determine whether Bob and Donna are the same person
or not.

PROOF. This follows from the fact that independent of whe-
ther Bob and Donna are the same person or not, the key, index
and tag Alice uses to communicate with Bob is chosen at random.
The same values would have been used in both cases.

Note that Alice and Charlie can always try to determine whe-
ther Bob and Donna are the same person by sending particular
messages to their contacts and compare their responses. If both
talk about the same event in a very similar way, or even by simply
comparing their writing style, a link can be deduced.

Lemma 6.13 (Forward security) If a user device is compromised,
the adversary is only able to obtain the contents of (or tamper with)
future messages to or from this user. In particular, the adversary is
unable to trace the contacts of a compromised user.

PROOF. Let Alice be compromised in state i. From the fact
that message mA, j is protected using {[mA, j ‖ idx′ ‖ tag′]}AB using
key KA, j , using proposition 6.6 we conclude that mA, j is safe for
all j < i. The same holds for Bob.

Because both senders and receivers each use a mixing net-
work to connect to the bulletin board, they cannot be traced even
when the adversary, the other user, and the bulletin board col-
laborate.

As discussed in section 5.6 our system only guarantees partial
availability.

Lemma 6.14 ((Partial) Availability) A message sent will even-
tually be delivered.

PROOF. Suppose 〈v, t〉 is the value/tag record stored in the
bulletin board at location i that corresponds to a message sent by
Alice but that never is received by Bob. A sent message will fail to
be delivered if it is deleted before the intended recipient asks for
its delivery. We assume the bulletin board server itself is honest
but curious, so deletion only happens if the bulletin board re-
ceives a get(i, b) command with t =B(b). Bob receives b from
Alice through an encrypted message that can only be decrypted
using key KAB known to only Alice and Bob. (We note that Alice
updates KAB and destroys b right after she sends the messages, so
even Alice or an adversary compromising her afterwards cannot
recover b.) We conclude that only Bob eventually (after receiv-
ing the preceding message) learns b. Once Bob starts asking for
the message, the bulletin board also learns b of course, but this is
not an issue. Because communication between Bob and the bul-
letin board is protected end-to-end using an authenticated and
encrypted channel, no other party can learn b. We conclude that
only Bob himself can send the get(i, b) command with t =B(b)
to delete the message. But then by definition Bob received the
message.

7. APPLICATIONS

7.1 Anonymous and secure messaging
Clearly a unidirectional asynchronous message transmission

protocol can be used to implement a bidirectional asynchronous
message exchange protocol, by running two instances of the pro-
tocol in parallel: one for messages to be sent from Alice to Bob,



and one for messages to be sent from Bob to Alice. These in-
stances run completely independent of each other, and do not
share state or keys.

To be able to use the message exchange protocol Alice and Bob
need to exchange keys, tags and indices for both unidirectional
channels in private. One intuitive way to do so is the following.
Assume both Alice and Bob have the app implementing the pro-
tocol installed on their smart phone. By bumping their phone, a
key exchange protocol is triggered. The protocol could use any
short range transmission protocol to ensure that no man in the
middle could physically be interfering with the exchange. Al-
ternatively, Alice and Bob need to verify fingerprints over the
exchanged keys on their own devices.

The fact that communication is bidirectional may help over-
come synchronisation issues in the underlying unidirectional trans-
mission protocol (as described in Section 5.4). Recall that clients
can tell whether their state is corrupted or not, by maintaining
some redundancy (e.g. a hash over the state) together with their
state. Now if corruptions of the sender and receiver part of the
state of a bidirectional messaging client are independent (and
this is a big if), then one channel can be used to inform the party
at the other end of this corruption. Both users can then use out-
of-band means to resynchronise.

7.2 An efficient presence protocol
Our primitive can also be used to efficiently implement a pri-

vacy friendly presence protocol, similar to DP5 [3] (discussed in
more detail below). Such a presence protocol allows Alice to in-
form her contacts whether she is on line or not, a function found
on many popular chat, messaging and VoIP systems. A privacy
friendly presence protocol hides the social graph from both an
external adversary as well as the service provider itself.

The idea is to let Alice use our point-to-point message trans-
mission protocol to inform Bob of her current status, by simply
sending him an update using our protocol whenever her status
changes. The message complexity is constant in this case. The
privacy guarantees provided by this approach are much lower
than that offered by DP5 however: if only Alice and Bob are us-
ing the system, and no one else is using the underlying mixing
network, their relationship is easily exposed. On the other hand,
if there simultaneously many other users using the mixing net-
work for other purposes, this does also give Alice and Bob strong
privacy guarantees. Perhaps even stronger than provided by DP5
if the user base is very small. This is the risk of a dedicated sys-
tem to provide anonymity.

This simple approach has two drawbacks. First of all, Alice
needs to inform all of her friends of a status change separately.
Moreover, the approach taken informs Bob of all of Alice’s past
status changes, even if he was offline for a long time. He can, for
example, tell that Alice was online several times last night even
he himself was vast asleep... This is perhaps counter intuitive
but hard to strongly protect against in practice, because even a
system like DP5 cannot prevent a malicious ’friend’ to keep the
application alive and log all status changes.

Yet, Alice can prevent that this information is leaked to honest
users if we slightly tweak the protocol. The idea is to update the
cell in which Alice’s status is kept if Bob has not read that cell yet.
This is possible because Alice uses independent messages to each
of her friends to inform them of her status change. To implement
this idea, the bulletin board needs to offer an update instead of a
write primitive that swaps old values with new values if possible.

To remove the overhead of having to informing each friend
separately, a broadcast like protocol needs to be developed. Let

Alice’s friends be a fixed group of users. The essential idea is
that all of them initially share the same state KAB , idxAB , and
tagAB . Each tuple stored on the bulletin board also gets a refer-
ence counter, indicating how many of the friends have received
the associated message. The bulletin board only deletes the tu-
ple if the reference counter becomes zero. Alice notifies a change
in state by writing the new state as before, but now including the
number of friends as the initial value for the reference counter. A
drawback of this approach is that it leaks the number of friends
Alice has to the bulletin board. We note that this idea is incom-
patible with the idea presented in the previous paragraph. In
other words, there is not yet an efficient protocol that prevents
a friend of Alice to learn all her state changes.

8. RELATED WORK
Several other papers have recently been published that ad-

dress the protection of metadata in private messaging protocols.
Dissent [22, 9] is based on DC-nets [6]. It distinguishes be-

tween clients and servers to increase efficiency, under the as-
sumption that at least one of the servers is trusted. The commu-
nication costs is not negligible however: it depends on both the
number of users and the number of servers. In 2012 the system
supported anonymity sets of up to 5.000 users. The system is
synchronous, operates in rounds, and assumes all communicat-
ing users are online. Our protocol is asynchronous, and assumes
no trusted servers.

Riposte [8] is a system for anonymous broadcasting, and is
using ideas from Private Information Retrieval (PIR) [7] in ’re-
verse’ (i.e. to hide the location and the value being written). Like
our protocol it uses a shared bulletin board, but in Riposte’s case
the bulletin board is maintained by a small set of servers at least
one of which is assumed to be trusted. Senders need to submit
O(
p

n) size encoded shares to each of the servers, where n is the
size of the bulletin board. To read a message, users need to col-
lect the shares at a particular index from all servers and combine
the shares to retrieve the message. The system is asynchronous,
like ours, but assumes some trust in servers and is less efficient.

Independent of our work, Van den Hooff et al. [21] recently
proposed ’Vuvuzela’, a private messaging system. The techniques
they use are similar to ours, however their system is synchronous
(operating in rounds), bidirectional, and assumes all senders
and receivers are online. These assumptions do allow them to
achieve stronger privacy guarantees, for example by introducing
cover traffic.

Ricochet9 is an anonymous instant messaging system built us-
ing Tor hidden services, similar to the idea explained in Sec-
tion 2. Ricochet however assumes a P2P model of communica-
tion where each user hosts his own hidden service. This makes
it less easy to deploy in practice. Also users need to be online to
receive messages.

Another interesting approach to hide the social graph in online
communication protocols is used in DP5 [3], that uses private in-
formation retrieval (PIR) [7] as a building block to implement a
private presence service. Such a service allows Alice to inform
Bob whether she is online, without revealing the fact that Alice
and Bob are even connected to an external observer. The privacy
guarantee given by DP5 is strong: even if only Alice and Bob are
communicating, an observer does not learn whether Alice and
Bob are connected. This privacy comes at a cost however. Us-
ing a particularly efficient instantiation of PIR [16], the message

9https://ricochet.im/

https://ricochet.im/


complexity of their protocol is roughly O(
p

ns), where n is the
number of users and s the (fixed) message size.

9. DISCUSSION
From the analysis is may seem that the second mixing network

(between the bulletin board and the recipient Bob) is not neces-
sary. We note however that omitting the second mix first and
foremost leaks (to the bulletin board) the fact that Bob is using
the service, leaks how many messages he is receiving, and when
he prefers to receive them. Moreover, the second mix is impor-
tant to protect Bob’s identity whenever Alice becomes compro-
mised and the adversary tries to identify her contacts (with the
help of the bulletin board service, who may be legally compelled
to cooperate).

Lemma 6.11 and its proof are unsatisfactory. The proof does
not use the fact that the receiver is connected to the bulletin
board through a mixing network at all. Intuitively it seems logi-
cal that adding the mixing network there increases the protection
offered by the system overall. But this is hard to quantify, espe-
cially because it is hard to model the privacy protection offered
by a mixing network in a way that helps in our analysis here.
We are aware of the work by Diaz et al. [12] for example, but
believe additional research would be beneficial in this area.

To increase the level of privacy protection offered it would be
great if there was a way to make it impossible for an external
adversary to distinguish senders and receivers. Currently they
can easily be told apart because senders use one call to a write
function that does not return a value, whereas a receiver uses a
call to a get function that does return a value. Obviously, they
could be made indistinguishable by letting the write function re-
turn an arbitrary value. This does however break the proof of
Lemma 6.11. By returning a value, you give the adversary more
chances to trace the sender.

Our protocol is susceptible to the following active attack. If an
adversary suspects that Alice and Bob are communicating, it can
block all traffic from other users. If the bulletin board server co-
operates, they can observe the access patterns on the cells of the
bulletin board to see whether the same cell is accessed by both
a write and a get operation. If that is the case, Alice and Bob are
indeed communicating. For this attack to work the (honest but
curious) bulletin board must cooperate with the external adver-
sary blocking all traffic. A possible countermeasure would be to
let clients detect whether they are blocked, and inform all other
clients of this fact.

10. CONCLUSIONS
We have shown that it is possible to construct a secure and

privacy friendly asynchronous unidirectional point-to-point mes-
sage transmission protocol using a public bulletin board. Our
construction is built on top of an arbitrary mixing network, and
provides the same privacy guarantees as this underlying mixing
network. However, our construction allows messages to be trans-
mitted asynchronously (which is impossible with a bare mixing
network). So another way to interpret our results is to say that
we show how to use mix networks asynchronously.

Our construction is efficient and scalable. The public bulletin
board can be hosted ’in the cloud’ without any security or privacy
consequences.
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