
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Self-stabilizing mutual exclusion on directed graphs

D. Alstein, J.H. Hoepman, B.E. Olivier and P.I.A. van der Put

Computer Science/Department of Algorithmics and Architecture

CS-R9513 1995

Report CS-R9513
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Self-Stabilizing Mutual Exclusion on Directed GraphsDick Alsteinwsinda@win.tue.nlEindhoven University of TechnologyJaap-Henk Hoepmanjhh@cwi.nlCWI AmsterdamBryan E. Olivierolivier@fwi.uva.nlUniversity of AmsterdamPascale I. A. van der Putpascale@cs.ruu.nlUtrecht UniversityAbstractThis paper investigates the complexity of self-stabilizing mutual exclusion protocols for distributed systems,where processors communicate through shared memory according to a strongly connected directed communi-cation graph. Tchuente's approach of covering a network with one directed cycle is taken as point of departure.This protocol requires O(n2n) states per processor together with some preprocessing. By coalescing statesa protocol requiring only O(n2) states per processor|still requiring preprocessing|is derived. Finally twoprotocols based on spanning trees are considered. Combining these protocols with a self-stabilizing spanningtree protocol yields two O(n3m)|where m is the maximal degree of a processor|states per processor pro-tocols that require knowledge of processor identities. This report concludes with a full proof of the coalescedstates protocol in Lamport's Temporal Logic of Actions.CR Subject Classi�cation (1991): C.2.4, C.4, D.1.3, D.2.1, D.2.4, D.4.1, D.4.4, D.4.5, F.3.1Keywords & Phrases: self-stabilization, mutual exclusion, distributed control, fault tolerance, sharedmemory, directed communication graphs, TLA, formal correctness proofsNote: The last three authors were partially supported by the Dutch foundation for scienti�c research (NWO)through NFI Project ALADDIN, under contract number NF 62-3761. IntroductionIn a distributed systemmultiple processors co-operate to perform certain tasks. A prerequisitefor achieving co-operation are protocols that implement distributed control, i.e. protocols thatreach or maintain a global objective despite the fact that processors can only access partial,local information. Because distributed control protocols are extensively used to implement

1. Introduction 2distributed systems, many researchers have tried to implement them e�ciently. Mutualexclusion protocols constitute a well-know example. These protocols pass a single privilegefairly among the processors in the system. A processor requiring exclusive access to a criticalresource must request the privilege and wait for it to arrive. After a processor is done withthe privilege, it forwards the privilege to some other processor requesting it. Many solutionsto the mutual exclusion problem exist, but most of them assume that the system operates
awlessly at all times.One can add failure resilience to distributed control protocols by making them self-sta-bilizing. In abstract terms a self-stabilizing protocol will, when started on a system in anarbitrary initial con�guration, reach a certain desirable|legitimate|con�guration after a�nite number of steps. The legitimate con�gurations characterize the global objective that hasto be maintained in the system. Once such a legitimate con�guration is reached, the protocolwill keep the system in a legitimate con�guration forever. For a mutual exclusion protocol forinstance, the legitimate con�gurations would be those in which at most one processor holdsthe privilege. In practice this means that a self-stabilizing protocol is resilient to transienterrors that change the state of some processors, but will leave the processors themselves inworking order. Since, as far as a self-stabilizing protocol is concerned, the erroneous statejust after an error might also have been its initial state, self-stabilizing protocols will recoverfrom such errors.Most research on self-stabilizing protocols has focussed on systems in which part of thestate of a processor can be read by other, neighbouring, processors as if they communicatedthrough shared memory. An important complexity measure in this model is the number ofstates per processor used by such a protocol. The distributed system is|as usual|modelledby a communication graph containing the processors as vertices and a directed edge betweentwo processors if the state of the �rst can be read by the second. This graph is consideredundirected if for every edge there exists an edge between the same processors in the reversedirection as well. It is assumed that this communication graph is strongly connected.Self-stabilization was introduced by Dijkstra [Dij74, Dij82] in the context of the mutualexclusion problem. Dijkstra gives an O(n)-state1 self-stabilizing mutual exclusion (SSME)protocol for directed rings, a four-state protocol for an undirected chain, and a three-stateprotocol for undirected rings. All his protocols are non-uniform: the protocol of at leastone processor di�ers from the protocol of the other processors to break the symmetry of thesystem. He aslo proved that for rings of non-prime size no uniform SSME protocol can exist.Burns and Pachl [BP89] complemented this result with a uniform SSME protocol for ringsof prime size.Elaborating on Dijkstra's results, Tchuente [Tch81] gives some lower bounds on the numberof states per processor for any self-stabilizing mutual exclusion (SSME) protocol on a chainor a ring. He also extends Dijkstra's results to SSME protocols for arbitrary graphs in twoways: by covering a graph with a ring2, and by covering a graph with chains and rings that allshare at least one common node. The resulting protocols require knowledge of the coverings,1Unless stated otherwise, an x-state protocol should be read as x-state-per-processor protocol.2Here a ring is a cyclic path in the graph that may visit nodes more than once, and may traverse edgesmore than once.

2. Model & notation 3and therefore require some preprocessing.For undirected graphs, many SSME protocols have been developed. There the focus hasbeen on optimizing the time needed to reach a legitimate con�guration and the time neededto pass the privilige from one processor to the other. Of special interest to us is a SSMEprotocol for arbitrary undirected graphs based on spanning trees, by Dolev et. al. [DIM93].They introduce the notion of a fair protocol combination to combine a self-stabilizing spanningtree protocol with a SSME algorithm for tree-shaped graphs to obtain a SSME protocol forarbitrary graphs. The resulting protocol only requires one a priori special node and can evenhandle topological changes, as long as the diameter and the maximal degree of the graph donot exceed the limits assumed by the protocol.To summarize: space e�cient self-stabilizing mutual exclusion protocols for undirectedgraphs exist, but for arbitrary directed graphs only Tchuente's covering with a directed ringcan be used. This requires O(n2n) states per processor in the worst case. Our contributionis twofold. First we reduce the number of states needed to cover a graph with a virtualring to O(n2) by coalescing states on the processors. Recall that this cover still needs to becomputed beforehand. Secondly, we present two new protocols using roughly O(n2) statesper per processor that do not require preprocessing, but do require that processors knowtheir identities. Instead of a virtual ring, this protocol uses a spanning tree which can bemaintained by a separate self-stabilising protocol requiring an additional O(mD)|wherem isthe maximum degree of any node in the graph and D is the diameter of the graph|states perprocessor. Merging both protocols using fair protocol combination yield two O(n2Dm) statesper processor protocols for self-stabilizing mutual exclusion on arbitrary, strongly connected,directed graphs.The structure of our paper is as follows. We begin by describing the model, give a precisestatement of the problem and introduce some notation in section 2. Section 3 discussesTchuente's results from [Tch81], and is followed by section 4, in which we improve his solutionof covering a graph with a ring. Our protocols based on a spanning tree are presented insection 5. Finally, section 6 discusses our results, and suggests ways of further research. Dueto space considerations, the proofs in this paper will only be sketched.2. Model & notationWe consider arbitrary strongly connected distributed systems modelled by a directed commu-nication graph G=(V,E), with nodes v2V = f0; : : : ; n�1g and directed edges uv2E � V �V .If uv 2E, then u is an in-neighbour of v and v an out-neighbour of u. Internally, nodes candistinguish between neighbours. We de�ne the set of in-neighbours In(v) = fu j uv 2 Eg.Nodes in the system communicate with each other by reading each others state. Node v canread the state of node u if and only if uv 2E.A con�guration C 2 C of the system is the Cartesian product Qv2V Sv of states Sv 2 Svof all nodes v 2 V . Here Sv is the set of all possible states of node v, and C is the set ofall possible con�gurations. We write C[v] for the state of node v in con�guration C. Aprogram for a node v describes the steps it can perform, based on the state of v and thestate of its in-neighbours In(v). We model a program for a node v as a deterministic state-transition function �v : Sv �Qu2In(v) Su 7! Sv. A step of v in con�guration C changes the

3. Tchuente's approach 4state of v to �v(C) = �v(C[v]; (C[u])u2In(v)), yielding con�guration C 0 with C 0[v] = �v(C)and C 0[u] = C[u] for all u 6= v. We write C v! C 0. A protocol consists of a program for eachnode v 2 V .All protocols assume the existence of a central daemon [Dij74]. In this model, nodes take astep one at a time according to a fair schedule (v0v1 : : :), such that each v2V occurs in�nitelyoften in the schedule. An initial con�guration C0 and a schedule (vi)i�0 induce an execution(C0C1 : : :) such that Ci vi! Ci+1 for all i � 0. This execution is fair i� the schedule is fair.We consider normalized executions from which all void steps Ci vi! Ci+1 with Ci = Ci+1 areremoved.Let L be the set of legitimate con�gurations, i.e. the set of con�gurations the distributedsystems should be in. Then a protocol is self-stabilizing to L if for all executions C0C1 : : :there exists an i such that Ci 2L, and moreover, for all C 0 2L and C 00 2C with C 0 ! C 00, wehave C 00 2L as well. In other words, a protocol is self-stabilizing to L if in every execution acon�guration in L is reached, and if L is closed under transitions of the protocol.The performance of a self-stabilizing protocol is usually measured by the number of statesper processor used by the protocol, and the rate of convergence, i.e. the worst case number ofnon-void steps needed to reach a legitimate con�guration. The state-per-processor measuredoes not count any overhead incurred by communicating the state to the neighbour. Thiscost is considered part of the topology. Of course, any critical assessment of a self-stabilizingprotocol should also consider the complexity measures related to the original problem to besolved by the protocol. For self-stabilizing mutual exclusion protocols this would include abound on the time a processor may have to wait before it receives the privilege.The problem to be solved can now be stated as follows: design a protocol, self-stabilizingto a set L of legitimate con�gurations in which at most one node is privileged. Each nodeshould be able to determine whether it is privileged or not based on its own state and thatof its in-neighbours. A further requirement is that during an execution of the protocol, eachnode gets privileged in�nitely often.We use the following notational conventions. The state of a processor is split into severalnamed �elds. A �eld name of the state of v is written name[v]. Its value in a con�gurationC is denoted C:name[v]. The program �v for a node v is denoted as a sequence of statementsto transform the state of v to its new state. Assignment is denoted by :=, alternatives by if-then -else statements.3. Tchuente's approachTchuente considers undirected (network) graphs whereas we consider directed graphs. Someof Tchuente's ideas are applicable to directed graphs (as will be shown).3.1 Virtual ringDijkstra's protocol for mutual exclusion applies to a unidirectional ring. A variant of thisprotocol applies to an arbitrary strongly connected directed graph.For each node v there exists a path from v to any other node in an arbitrary stronglyconnected directed graph G. So it is possible to �nd a walk in G which contains all nodes in

3. Tchuente's approach 5G. 3 Such a walk forms a virtual ring. Each node in G simulates (i.e. executes the programof) one or more nodes in the (unidirectional) virtual ring Gr. And each virtual node in Gr issimulated by one node in G. So mutual exclusion in the virtual ring implies mutual exclusionin the (corresponding original) arbitrary strongly connected directed graph.
... ...

n/2+2

n

1 n/22

n/2+1

n−1
...

n/2+2

n−1n

1

n/2+1Figure 1: Virtual Ring and Construction from Subgraphs (Worst case)The best case example occurs when the original graph is a simple ring. The virtual ring(with minimal number of nodes) inG isG itself. A worst case example is presented in �gure 1.The virtual ring in G is (1; n=2 + 1; n=2 + 2; : : : ; n; 2; n=2 + 1; n=2 + 2; : : : ; n; : : : ; n=2; n=2 +1; n=2 + 2; : : : ; n). The virtual ring contains about n2=4 nodes. It can be shown that thereexists a virtual ring Gr = (V r; Er) for an arbitrary strongly connected directed graph G =(V;E), where jV j = n, s.t. n � jV rj � n2.The state of a node v in graph G should represent the states of all nodes in Gr which vsimulates. Tchuente's representation is simple. The state sv of node v is a tuple. This tuplehas as �elds the states su of all (distinct) nodes u simulated by v. In worst case n nodessimulate �(n2) nodes. Each simulated node u has a state consisting of a variable which has�(n2) values in worst case. Since an arbitrary node v simulates O(n) nodes u this results inO(n2n) states per processor ((n2)n = n2n).3.2 Construction from subgraphsWe describe another idea of Tchuente as follows. The mutual exclusion problem in a subgraphis solved by means of a subprotocol. An protocol for the entire graph is constructed bycombining the subprotocols. Combining the subprotocols requires a so called central nodewhich is common to all subgraphs. Each node in G simulates one or more nodes in one ormore subgraphs Gc. And each node in a Gc is simulated by one node in G. The centralnode chooses which subprotocol is `active'. So mutual exclusion in and among the subgraphsimplies mutual exclusion in the (corresponding original) arbitrary strongly connected directedgraph. (Hierarchies of subprotocols may be considered.) Tchuente's subprotocols are variantsof Dijkstra's protocol. Each node in a subgraph has a state consisting of a single variablewhich has a constant number of values (instead of about n0 values where n0 is the number of3Consider the nodes v1 upto including vn. There exist a path from v1 to v2, from v2 to v3 and a path fromvn to v1, forming a (non-minimal) walk.

4. Reducing the number of states 6nodes in the subgraph).The best case example occurs when the original graph as a whole resembles a subgraph.The protocol amounts to the corresponding subprotocol. Figure 1 can be viewed as a worstcase example. Node n is the central node. A subgraph in the form of a ring is presentedin the same �gure. There exist
(n) subgraphs of
(n) length in this example. In worstcase n nodes simulate �(n2) nodes in a directed graph. Since an arbitrary node v simulatesO(n) nodes u this results in O(cn) states per processor. The worst case may be less bad inan undirected graph. In worst case n nodes simulate an amount of nodes ranging between
(n � log n) and O(n2).4. Reducing the number of statesAs in Tchuentes approach we start with a walk through the directed strongly connected graphG = (V;E) visiting all nodes, each node is visited at most n � 1 (n = jV j) times and thewalk returns where it started. We will call each visit of a node an occurrence of this node.Some occurrence of some node is selected as the start of the walk and is assigned a number0. It will be called the root. If the length of the walk is nR then all occurrences are assigneda number in VR �= f0; : : : ; nR � 1g increasing along the walk. The function f : VR ! V givesfor each occurrence its corresponding node.Sim(v) �= fvR 2 VRjf(vR) = vgFirst(v) �= minSim(v)Last(v) �= maxSim(v)Sim(v) is the set of occurrences of node v, First(v) is the �rst and Last(v) is the last occurrenceof node v.In Tchuentes protocol each occurrence runs the program of a processor in Dijkstra's pro-tocol, ending up with a total number of states per processor of O(nnR) It is our goal to reducethis number to O(n2). In our protocol we also have a program for each occurrence of a node,but all occurrences of a node share two variables t and d, each with O(n) values. Variablet, called ticket , corresponds to Dijkstra's variable. Instead of associating a ticket with eachoccurrence, all occurrences of a node share the ticket of the node. The variable d, calleddistance, is used to tell which occurrences have this ticket and which don't. The distance ata node v is equal to one of the occurrences of node v: all occurrences with a smaller or equalnumber as this distance have the ticket, the others do not. Formally occurrence vR has theticket (t[f(vR)]) i� d[f(vR)] � vR. It should be noted that the number of values of distanceis O(n), because a node has at most n� 1 occurrences.The �rst occurrences of nodes follow Dijkstra's protocol, the others take care of propagatingthe tickets. The root will generate new tickets when its own ticket returns at its predecessor(in the walk), i.e.The program for vR = 0 :if t[f(nR � 1)] = t[f(0)] ^ d[f(nR � 1)] � nR � 1 thent[f(0)]] := t[f(0)] + 1 mod (n+ 1); d[f(0)] := 0end if

4. Reducing the number of states 7The other �rst occurrences will wait for their predecessor to have a di�erent ticket and thencopy this ticketThe program for vR 6= 0 and vR = First(v) for some v 2 V :if t[f(vR � 1)] 6= t[f(vR)] ^ d[f(vR � 1)] � vR � 1 thent[f(vR)]] := t[f(vR � 1)]; d[f(vR)] := vRend ifThe non-�rst occurrences just propagate their ticket by increasing the distance to includethemselfsesThe program for vR 6= 0 and vR > First(v) for some v 2 V :if t[f(vR � 1)] = t[f(vR)] ^ d[f(vR � 1)] � vR � 1 ^ d[f(vR)] < vR thend[f(vR)] := vRend ifThe behaviours must satisfy the following fairness requirement: if the central daemon gives aturn to a processor, this processor selects one of its occurrences and executes the correspond-ing action, as described above. A processor is required to eventually execute an occurrencethat is enabled, i.e. its guard holds. The daemon is required to eventually select a processorthat has an occurrence enabled.In the legitimate con�gurations the walk can be divided in two parts. In the �rst partall occurrences have the same ticket as the root, we call them Green. In the second part alloccurrences either have the previous ticket of the root or are waiting for the ticket of theroot. Green(vR) �= t[f(vR)] = t[f(0)] ^ d[f(vR)] � vRRed(vR) �= (d[f(vR)] � vR) t[f(vR)] = t[f(0)]� 1 mod (n+ 1))^(d[f(vR)] < vR) t[f(vR)] = t[f(0)])Legal(vR) �= �8uR : uR 2 VR ^ uR � vR :: Green(vR)�^�8uR : uR 2 VR ^ uR > vR :: Red(vR)�Legitimate �= �9vR : vR 2 VR :: Legal(vR)�In a legitimate con�guration, if Legal(vR) holds, only the occurrence vR+1 mod nR is enabled(theorem B.11). It will therefore eventually be executed (theorem B.12). After performingits action Legal(vR + 1 mod nR) holds (theorem B.18). A processor can be privileged ifany of its occurrences is enabled. Or, if we want all processors to be privileged in a moreround-Robin way, if its �rst occurrence is enabled. Or, if we want control over the sequenceof privileges, the �rst occurrence is enabled and its predecessor has a ticket with the numberof this node. From the above it follows that legitimate con�gurations are preserved and theprivilege is passed on. If all occurrences, except the root (number 0), are disabled, then alloccurrences are Green (induction on VR), therefore Legal(nR � 1) holds (lemma B.20) andthe root is enabled. So in any con�guration some occurrence is enabled (corollary B.21).The stabilization period consists of two phases. In the �rst phase the root will generatenew tickets until no other occurrence has the same ticket. This starts the second phase, in

4. Reducing the number of states 8which the root will not generate a new ticket until all occurrences have copied its ticket, atwhich moment Legal(nR � 1) holds. For both phases we will de�ne a function that decreaseswith the execution of any enabled occurrence, unless we can start the next phase. Considerthe legitimate con�gurations as the third phase. The ranges of these bounding functions are�nite and therefore eventually a legitimate con�guration is reached. The sum of the sizes ofthese ranges is an upper-bound on the number of changes of con�guration before reaching alegitimate con�guration. For this reason we try to keep the ranges small.First we exhibit a function Chaos, decreasing with the execution of any enabled occurrenceexcept the root. This function will be used in both phases. For convenience the root willnot be considered an occurrence in the following and execution of any occurrences impliesit is enabled. We write �#v : D(v) :: P (v)� to denote the number of v s.t. D(v) and P (v)(domain and predicate) hold.W (v) �= f(First(v) � 1 mod nR)Weight(v) �= 1 + �Pu : u 2 V n ff(0)g ^W (u) = v :: Weight(u)�Distance(v) �= �#vR : vR 2 Sim(v) :: vR < d[v]�M �= �max v : v 2 V :: jSim(v)j�Rank(v) �= �Distance(v) +(0 if t[v] = t[W (v)] _ v = f(0)M �Weight(v) otherwiseChaos �= �Pv : v 2 V :: Rank(v)�Chaos consists of the sum of contributions, Rank(v), of the nodes. This contribution in turnconsists of two parts: its distance and its weight. �Distance(v) decreases with the executionof a non-�rst occurrence of v (lemma B.29) and increases with at most M � 1 if the �rstoccurrence is executed (lemma B.30). The sum of the weight-parts decreases with at leastM with the execution of a �rst occurrence (lemma B.28) and stays unchanged otherwise(lemma B.27). From this it follows that Chaos decreases with at least 1 by the execution ofan occurrence (lemma B.32).It can be shown that 0 � Distance(v) < jSim(v)j (lemma B.22) and therefore it followsthat n � nR � �Pv : v 2 V :: �Distance(v)� � 0 (lemma B.23). It can also be shown that0 � �Pv : v 2 V ^ v 6= f(0) :: Weight(v)� � 12n(n�1) (lemmaB.26), concluding (lemmaB.31)n� nR � Chaos �M � n(n� 1)2Con�gurations in the second phase look like legitimate con�gurations, the walk can also besplit in two parts and all occurrences in the �rst part are Green. The occurrences in thesecond part however need not be Red as long as they are not Green.Stable(vR) �= �8uR : uR 2 VR :: uR � vR , Green(uR)�The second phase starts with Stable(0) and is ended with Stable(nR � 1) being equivalentwith Legal(nR � 1) (lemma B.44). If Stable(vR) (vR < nR � 1) holds then execution of

5. Two Protocols Based On Spanning Trees 9occurrence vR + 1 will establish Stable(vR + 1). Furthermore all occurrences uR (includingthe root) before vR (uR � vR) are not enabled. Execution of an occurrence uR after vR + 1(uR > vR + 1) preserves Stable(vR) (lemma B.46). We conclude that if the second phaseis indeed started with Stable(0) it will run through all vR to be Stable at vR, because thefunction Chaos does not allow in�nitely many executions of non-root occurrences. EventuallyStable(nR � 1) holds, ending the second phase.The �rst phase starts in an arbitrary con�guration and ends with Stable(0), the start ofthe second phase. As long as the second phase can't start, the function Phase1, as de�nedbelow, will decrease.Missing(s) �= �8v : v 2 V n ff(0)g :: t[v] 6= s� ^ (t[f(0)] = s) d[f(0)] = 0)for s 2 f0; : : : ; ngMiss �= �min s : s 2 f0; : : : ; ng ^Missing(s) :: (s� t[f(0)]) mod (n+ 1)�Phase1 �= M � n �Miss+ChaosSince there only n nodes there can be at most n tickets so there is at least one Missing andtherefore Miss is well de�ned in any con�guration (lemma B.37). If Miss = 0 also Stable(0)holds (lemma B.43) (no occurrence is Green), so during the �rst phase Miss > 0. Let'sassume Miss > 0. If the root executes, Miss decreases with 1 (lemma B.40). Though nottrivial to prove, the increase of Chaos is at mostM �n�1 (lemma B.33) and therefore Phase1decreases with at least 1 (lemma B.42).The other occurrences only copy or preserve tickets so missing tickets stay missing, unlessthey copy from f(0). If Miss > 0 the ticket of the root wasn't missing anyway. Thereforethey don't increase Miss (lemma B.39) and as already shown they decrease Chaos. Since therange of Phase1 is �nite, Miss will eventually equal 0, starting the second phase.The stabilization time can in general be bounded by O(M � n2) � O(n3). In case of aring and the obvious walk through it: M 2 O(1) and the protocol is almost equivalent withDijkstra's protocol. He uses n tickets where we require n+1 tickets. It is possible to computethe walk in a self-stabilizing way, by �rst computing the total topology in every node andthen have each node compute a ring in such a way that they will all compute the samering. It would be interesting whether it could also be done more space e�cient. Unlike theother protocols in this paper the read/write synchronization is limited to two processors, aprocessor only reads the state of one other processor at the time followed by a write of itsown state.5. Two Protocols Based On Spanning TreesAlthough the protocol of the previous section is very space-e�cient, it has one major drawbackin that it requires preprocessing to compute the covering of the graph. In this section welift this restriction at the expense of space-e�ciency, and present two O(n2Dm) state perprocessor SSME protocols for arbitrary, strongly connected, directed graphs with n nodes,diameter D and maximal degree m. In the following two sections we will describe two SSMEprotocols, assuming that we are given a stable spanning tree for the graph. Both protocolsrequire roughly O(n2) states per processor. Several self-stabilizing spanning-tree protocols

5. Two Protocols Based On Spanning Trees 10have been published, for instance by Afek et. al. [AKY90] for undirected graphs, and Dolevet. al. [DIM93] for arbitrary communication graphs. Combining this second protocol withone of the SSME protocols described below using fair protocol combination [DIM93] willyield a SSME protocol for arbitrary strongly connected directed graphs. This compositionincreases the state complexity by a factor of O(mD), hence the complete protocol requiresO(n2Dm) states per processor. For details on both the spanning-tree protocol and fairprotocol combination we refer to section 5.3 and Dolev et. al. [DIM93]. Throughout thissection we assume that each node has access to its identity u2 f0; : : : ; n� 1g which is storedin some storage resilient to transient errors.5.1 The �rst protocolThe central idea in this �rst SSME protocol is to use the root of the spanning tree as coordi-nator. This root will continually generate numbers in the range f0; : : : ; n�1g in cyclic order.Such a number indicates the next node to become privileged. All non-root nodes cooperateto pass this number down the spanning tree. Whenever a non-root node discovers that itsidentity is equal to the number held by its parent, it becomes privileged until it stores thisnumber in its own state.To ensure that only one node is privileged at a time, the root is only allowed to generatea new number if it can be sure that all nodes hold the same number. Note that in that casethe node with identity equal to this number has already used its privilege. Inspection of thenumbers held by all incoming nodes of the root alone will not guarantee this, because theroot may not be able to read all leaves of the spanning tree directly. To allow the root tomake the correct decision, all nodes are required to express their trust in the number theyhold. For a node holding a certain number, its trust roughly corresponds to the length of theshortest path to this node starting from an arbitrary node not holding this number. Then,once all the incoming nodes of the root express the maximal trust (D � 1), the root may beallowed to generate the next number. The root always expresses the maximal trust for anynumber it holds. Then once the root sees this number on all its incoming nodes, all withmaximal trust, it is certain that all nodes hold the same number.5.1.1 The implementation In the protocol we assume that one node r is the root of thespanning tree. The identity of this node is determined beforehand, for example picking thenode with identity 0. All non-root nodes u have access to their parent P(u) in the tree.For the purpose of this section it is assumed that this information is also stored in somenon-volatile storage, but it will actually be maintained by a separate self-stabilizing spanningtree protocol (see above).The mutual exclusion protocol appears in �gure 2. In this protocol the externally visiblestate|i.e. the one readable by neighbouring processors|of each processor u is divided intotwo �elds: num[u] with values in f0; : : : ; n� 1g, and trust[u] with values in f0; : : : ;D � 1g.A node is privileged i� the corresponding predicate is true in the current con�guration. Aprivileged node can choose to access its critical resource before taking the next step in theSSME protocol, in which case it loses its privilege again.

5. Two Protocols Based On Spanning Trees 11Node r : Privileged if (8v 2 In(r) : num[v] = num[r] = r ^ trust[v] = D � 1)if (8v 2 In(r) : num[v] = num[r] ^ trust[v] = D � 1)then num[r] := (num[r] + 1) mod ntrust[r] := D � 1Node u 6= r : Privileged if num[P(u)] = u 6= num[u]num[u] := num[P(u)]if (8v; w 2 In(u) : num[v] = num[w])then trust[u] := min(fD � 1g [ftrust[v] + 1 j v 2 In(u)g)else trust[v] := 0Figure 2: The First Mutual Exclusion Protocols5.1.2 Proof of correctness To prove correctness we proceed as follows. First we give aprecise characterization of the legitimate con�gurations. We show that in these con�gurationsthe mutual exclusion property is satis�ed, and that the privilege is passed fairly among allprocessors in the system. Then we show that once the system has reached a legitimatecon�guration, it will remain in a legitimate con�guration as long as no further errors occur.We prove that the system is indeed self-stabilizing, by showing that the system will reach alegitimate con�guration when started from an arbitrary initial con�guration.The legitimate con�gurations C must satisfy the following three conditions for each nodeu. First, the number held by u must equal the one held by r, or one less. If u holds the samenumber as r, then so must its parent and therefore all other nodes on the path from r to uin the spanning tree.Proper(C; u) � C:num[u] 2 fC:num[r]; (C:num[r]� 1) mod ng^h(u 6= r ^ C:num[u] = C:num[r])) C:num[P(u)] = C:num[r]iSecond, if u and all its incoming nodes hold the same number as the root r, then the trustexpressed by u should not be exaggerated.Modest(C; u) � h(8v 2 In(u) : C:num[v] = C:num[r]) ^ u 6= r ^ C:num[u] = C:num[r]i) C:trust[u] � minv2In(u)C:trust[v] + 1Third, if u holds the same number as the root r while some of its incoming nodes do not, thetrust expressed by u should be 0.Honest(C; u) � h(9v 2 In(u) : C:num[v] 6= C:num[r]) ^ u 6= r ^ C:num[u] = C:num[r]i) C:trust[u] = 0Observe that according to these de�nitions Proper(C; r), Modest(C; r) and Honest(C; r) holdfor the root r in any con�guration C. Combining these three predicates we de�ne the legiti-mate con�gurations C as exactly those that satisfy the predicate

5. Two Protocols Based On Spanning Trees 12Legitimate(C) � (8u 2 V : Proper(C; u) ^Modest(C; u) ^Honest(C; u))We start with an important proposition, stating that if the root advances in a legitimatecon�guration, all nodes must hold the same value just prior to that.Proposition 1 If (8v 2 In(r) : C:num[v] = C:num[r] ^ C:trust[v] = D � 1) for a legitimatecon�guration C, then (8v 2 V : C:num[v] = C:num[r]).Proof: By contradiction. Suppose there is a node u2V with C:num[u] 6= C:num[r]. Clearlyu 62 In(r). Consider the shortest path (u; v1; � � � ; vk; r) from u to r for some k, 1 � k � D� 1.This path exists because the graph is strongly connected. Let v0 = u, and take the largesti � 0 such that C:num[vi] 6= C:num[r]. Then by Honest(C; vi+1) we have C:trust[vi+1] = 0,and for all j > i + 1 we have C:trust[vj+1] � C:trust[vj] + 1 by Modest(C; vj+1). ThenC:trust[vk] < k � D � 1. By the de�nition of the path, vk 2 In(r), and so for some v 2 In(r)we have C:trust[v] 6= D � 1. This is a contradiction, and the proposition follows. 2That our protocol is indeed a mutual exclusion protocol in legitimate con�gurations followsfrom the next lemma.Lemma 2 (safety) In any legitimate con�guration C, at most one processor is privileged.Proof: Take any node u 6= r. If u is privileged in C, then C:num[u] 6= C:num[P(u)] = u.Since C is legitimate we have Proper(C; u) and so C:num[u] = C:num[r] or C:num[u] =(C:num[r]�1) mod n. But in the second case we must have C:num[P(u)] = C:num[r], againby Proper(C; u). We conclude C:num[u] 6= C:num[r] and thus u = C:num[r] for a privilegednode in a legitimate con�guration C.This implies that no other node v 6= r can be privileged in C. Also, if the root rwere privileged, we have (8v 2 In(r) : C:num[v] = C:num[r] ^ C:trust[v] = D � 1). Then byproposition 1 we have (8v 2 V : C:num[v] = C:num[r]). But this contradicts the fact thatC:num[u] 6= C:num[r] from which we conclude that the root too cannot be privileged if u 6= ris privileged. 2The next lemma implies that the protocol is deadlock-free and all its executions are in�nite.Lemma 3 (no-deadlock) In any con�guration C at least one processor can take a non-voidstep.Proof: Let node u hold the minimal value in its trust �eld in con�guration C. Then forall v 2 In(u) trust[v] � trust[u]. If trust[u] < D � 1, then if u, whether it is equal to r ornot, takes a step C ! C 0, then C:trust[u] 6= C 0:trust[u] and u would be able take a non-voidstep. If trust[u] = D � 1 then, by minimality, for all nodes v trust[v] = D � 1. If forsome node u, num[u] 6= num[P(u)] then u is able to take a non-void step. If for all nodesu 6= r, num[u] = num[P(u)], we see that for all nodes u, num[u] = num[r]. Together withtrust[u] = D � 1 we see that now the root r must be able to take a non-void step. 2

5. Two Protocols Based On Spanning Trees 13Because we consider only fair executions, all processors take in�nitely many steps in suchan in�nite execution. That the protocol is also fair with respect to passing the privilegeamong the processors is established by the next lemma.Lemma 4 (fairness) If in a legitimate con�guration C node u is privileged, then in anyexecution, the next di�erent privileged node will be (u+ 1) mod n.Proof: In the proof of the safety-property we saw that if in a legitimate con�guration C nodeu is privileged, then u = C:num[r]. Consider the execution starting at C. If the root advancesfor the �rst time after C, say in con�guration C1, then for all con�gurations C 0 with C)C 0) C1 we know that only u can be privileged. Similarly, if the root advances once more,say in con�guration C2, then for all con�gurations C 00 with C1 r! C 01) C 00) C2 only node(u+1) mod n can be privileged in C 00. Then it remains to be shown that node (u+1) mod neventually becomes privileged for at least one such C 00. This is guaranteed by the fact thataccording to proposition 1 in con�guration C1 we have (8v 2 V : C1:num[v] = C1:num[r])and in con�guration C2 we have (8v 2 V : C2:num[v] = C2:num[r]). As C1:num[r] = uand C2:num[r] = (u + 1) mod n we must have an intermediate con�guration in which node(u + 1) mod n changes its value from u to (u + 1) mod n. If (u + 1) mod n 6= r then inthis con�guration num[P((u + 1) mod n)] = (u + 1) mod n while num[(u + 1) mod n] = u,implying that node (u+ 1) mod n is privileged as required. If (u+ 1) mod n = r, then in C2r is privileged. 2Note that we can weaken the privilege-condition of r to(8v 2 In(r) : num[v] = num[r] ^ trust[v] = D � 1)without violating the safety-property. In this case the root will be privileged every timeit generates a new number, i.e. between the time that u was privileged and the time that(u+1) mod n was privileged, the root will have been privileged as well (unless (u+1) mod nhappens to equal r).The next lemma states that once the system reaches a legitimate con�guration, it willremain in a legitimate con�guration for as long as no transient errors occur.Lemma 5 (closure) For any legitimate con�guration C, if C ! C 0 in any execution of theprotocol, then C 0 is legitimate.Proof: We split the proof in two casesNode r takes a step: If C:num[r] = C 0:num[r] clearly Proper(C 0; u) and Honest(C 0; u) stillhold for all u 2 V , and Modest(C 0; v) still holds for all v with r 62 In(v). For thosew with r 2 In(w), notice that r must have changed its trust to n � 1, and so stillC 0:trust[w] � C 0:trust[r] which shows Modest(C 0; w) for all those w as well.If C:num[r] 6= C 0:num[r], then C 0:num[r] = (C:num[r] + 1) mod n and also(8v 2 In(r) : num[v] = num[r] ^ trust[v] = D � 1). Using proposition 1 we obtain

5. Two Protocols Based On Spanning Trees 14(8v 2 V : C:num[v] = C:num[r]). Then (8v 6= r : C 0:num[v] = (C 0:num[r]� 1) mod n)and thus Proper(C 0; u) for all u 2 V and trivially Honest(C 0; u) and Modest(C 0; u) forall u 2 V .Node v 6= r takes a step: It is easily checked that Proper(C 0; u) for all u2V andModest(C 0; u)and Honest(C 0; u) for all u with v 62 In(u) or C:num[u] 6= C:num[r]. So it remains toshow that also Modest(C 0; u) and Honest(C 0; u) for all u with v2 In(u) and C:num[u] =C:num[r].If (9w 2 In(u) : C:num[w] 6= C:num[r]), then by Honest(C; u) we have C:trust[u] = 0.Then also C 0:trust[u] = 0 and trivially Honest(C 0; u) and Modest(C 0; u).If (8w 2 In(u) : C:num[w] = C:num[r]), then byModest(C; u) and the fact that v2In(u)we have C:trust[u] = C 0:trust[u] � C:trust[v]. Moreover, also C:num[v] = C:num[r]and thus C:num[P(v)] = C:num[r] by Proper(C; v), so C 0:num[v] = C 0:num[r] bythe protocol. This, in turn, implies (8w 2 In(u) : C 0:num[w] = C 0:num[r]) and thusHonest(C 0; u). By Modest(C; v) and the protocol we see C 0:trust[v] � C:trust[v] andthus Modest(C 0; u). 2Lemma 6 (self-stabilization) For any execution of the protocol starting in an arbitrarycon�guration C, the execution will eventually reach a legitimate con�guration C 0.Proof: Start the protocol in con�guration C, and wait until the root takes a step for the�rst time in con�guration C1: i.e. C) C1 r! C2. In C1 all v 2 In(r) have num[v] = num[r].Because there are n nodes and at least one such v, at least one value in f0; : : : ; n� 1g cannotoccur on any node in C1. Take the �rst such value following num[r] in the cyclic ordering,and call this value a. Continue the protocol until r sets num[r] = a reaching con�gurationC3. Because non-root nodes only copy existing values, in C3 the root is the only node withnum[v] = a.Now continue the execution until the root advances once more in con�guration C4, i.e.C4 r! C 0, setting num[r] = (a + 1) mod n. We will show that Legitimate(C 0) holds. Firstobserve that (8v 2 In(r) : C4:num[v] = a ^C4:trust[v] = D � 1). Also observe that, sincein C3 no non-root node has num[v] = a, all nodes with num[v] = a must have taken astep somewhere between C3 and C4. Now let C4:num[u] 6= a for some node u. Then forany con�guration C3) C) C4 we must have C:num[u] 6= a. Again, like the proof ofproposition 1, consider the shortest path u; v1; : : : ; vk; r, with k � D� 1 and all intermediatenodes holding number a. Because num[v1] = a, it must have taken a step, setting trust[v1] =0. Then trust[v2] � 1 because v2 also took a step, and, inductively, trust[vk] < k � D � 1.But then for some u 2 In(r) we have C4:trust[u] < D � 1, contrary to assumption.We conclude that (8v 2 V : C4:num[v] = a) and thus in C 0 we have num[r] = (a+1) mod nand (8v 6= r 2 V : C 0:num[v] = a), from which Legitimate(C 0) easily follows. 25.2 The second protocolIn this section we present a second protocol, also based on a spanning tree. The maindi�erence is that in legitimate con�gurations, it does not necessarily require the cooperation

5. Two Protocols Based On Spanning Trees 15of all nodes in order to transfer the privilege to another node. In other words, it has a lessstrict synchronization. The downside of the comparison is that it is slightly less space-e�cient(2n2 states per node).Like the protocol in the previous section, this protocol works by distributing a numberthrough a spanning tree. The number indicates the identity of the node that should get theprivilege. When that node has completed its critical section, it makes this fact known bysetting a (boolean)
ag. This
ag can be seen as an acknowledge. When the root node �ndsthat the
ag has been set, it chooses the next number.The number is distributed by letting each non-root node copy the number from its parentin the tree. When a node \sees" that its parent carries a number that destines the privilegeto itself, it �rst executes the critical section. On exiting the critical section, it copies thenumber and sets its
ag.Unlike the number, the value of the
ag is not spread via the edges of the tree. Instead,each node looks at the
ags of all of its in-neighbours nodes. If there is a neighbour that hasthe same number, it takes the logical or of this
ag and its own value. By this mechanism,a
ag value of T is di�used through the graph, and eventually reaches the root. When theroot �nds that one of its in-neighbours has set its
ag (and has the same number), it choosesa new number and sets its
ag to F .Thus, it is not necessary for all nodes to take steps before the root can choose a newnumber. All that is needed is that the number be copied from the root down the path in thetree to the privileged node. When that node has �nished the critical section, the
ag valueof F must be copied along some path from that node to the root. A node that is not in oneof those two paths does not need to update its state.The root chooses its new number in a round-robin fashion. In contrast with the previousprotocol, the numbers do not range from 0 to n� 1 but from 0 to n2 � 1. The necessity forthis will become clear in the proof. A node i is privileged only if the number of its parentequals i(modn).5.2.1 The implementation We �rst introduce some notational de�nitions: The state of anode consists of a number num 2 f0; 1; 2; : : : ; n2 � 1g, and a boolean flag 2 fT; Fg. For anode v, P(v) denotes its parent, and Anc(v) the set of ancestors of v, i.e. those nodes u 6= vfor which there is a directed path within the tree from u to v. The function Dest indicatesfor a certain node the destined privileged node: Dest(v) = num[v] mod n. The protocol ispresented in �gure 3.5.2.2 Proof of correctness To prove the correctness of the protocol, we �rst de�ne the setof legitimate con�gurations. We then show that the legitimate con�gurations satisfy theproperties of mutual exclusion, and that progress and fairness are guaranteed. Next we showthat the set of legitimate con�gurations is closed under the steps taken by the nodes, and�nally we prove self-stabilization.

5. Two Protocols Based On Spanning Trees 16Node r : Privileged if Dest(r) = r _ (9v 2 In(r) : num[v] = num[r] ^ flag[v])if Dest(r) = r _ (9v 2 In(r) : num[v] = num[r] ^ flag[v])then num[r] := num[r] + 1 mod n2flag[r] := FNode v 6= r : Privileged if Dest(P(v)) = v ^ num[P(v)] 6= num[v]if Dest(P(v)) = vthen flag[v] := Telse flag[v] := (9u 2 In(v) [fvg : num[u] = num[P(v)] ^ flag[u])num[v] := num[P(v)]Figure 3: The Second Mutual Exclusion ProtocolDe�nition 7 A con�guration C is legitimate i� it satis�esL1 � (8v 2 V; u 2 Anc(v) : num[v] � num[u])L2 � (8v 2 V : (8x : num[v] � x � num[r]) x 6= v mod n))L3 � num[Dest(r)] 6= num[r]) ((8v 2 V : num[v] = num[r]) flag[v] = F))L4 � num[Dest(r)] = num[r] ^ Dest(r) 6= r) flag[Dest(r)] = TIn L1, the ordering � on numbers is de�ned asx � y � (y � x mod n2) � nand x � y in L2 denotes (x � y) ^ (x 6= y), as might be expected.De�nition 7 can be intuitively understood as follows: since the numbers are distributeddownward through the tree, the ancestors of a node hold \more recent" numbers. The rootincreases the number, so nodes on higher levels should hold \higher" numbers. Since the rootneeds the cooperation of the destined privileged node in order to increase the number, thenumber of a node can never \lag behind" more than n (L1). Also, it is prohibited that theroot increases the number before the privileged node has seen this number. Suppose thatnode v has a number that is di�erent from the one that the root holds. The ancestors of v holdnumbers in the range from num[v] to num[r]. The numbers that lie strictly \in between"must not destine the privilege to v: if there is an ancestor u of v for which Dest(u) = vyet num[u] 6= num[v], then it must be that num[r] = num[u], otherwise u might overwritethis number (by copying the number from its parent) before v sees it. L2 excludes thesecon�gurations. Lastly, the
ags must express an \acknowledge" by node Dest(r). If thisnode has set its number to num[r] (i.e. completed the critical section), then its
ag must beT (L4). If it has not yet done so, then the
ags of all nodes that do hold num[r] should beF (L3).In the following lemmas, L denotes an arbitrary legitimate con�guration, C is an arbitrarycon�guration (not necessarily legitimate), and d is the node that is destined to get the privilegeaccording to the root: d = Dest(r).

5. Two Protocols Based On Spanning Trees 17Lemma 8 If, in L, the root r is privileged, then1. num[d] = num[r]2. if d 6= r then flag[d] = TProof: If r is privileged, then by de�nition of the protocol((9i 2 V : (num[i] = num[r]) ^ (flag[i] = T))) _ (d = r)Combined with L3, the �rst part of the lemma follows. Applying L4 then yields the secondpart. 2Lemma 9 If, in L, a non-root node v with parent p = P(v) is privileged, then1. num[p] = num[r]2. v = dProof: If v is privileged, then by de�nition of the protocolDest(p) = v ^ num[v] 6= num[p]Since by L1 num[v] � num[p] � num[r] we can use L2 to obtain num[p] = num[r]. Thesecond part of the lemma follows directly from this. 2With lemmas 8 and 9 it is also easy to prove that in a legitimate con�guration a node cannot lose its privilege while it is executing the critical section.Theorem 10 (safety) In any legitimate con�guration, at most one node is privileged.Proof: If some non-root node v is privileged, then by lemma 9 num[v] 6= num[P(v)] =num[r]. According to the protocol v = Dest(r), hence the root node is not privileged (as thatwould contradict the �rst part of lemma 8). Furthermore, if any other node u is privileged,then u = v, by the second part of lemma 9. 2Theorem 11 (progress) In an arbitrary execution, let the system be in con�guration C.Eventually, the system will reach a con�guration C 0 in which the root is privileged.Proof: We may assume that Dest(r) 6= r, and that r does not take a step (otherwise rbecomes privileged and we are ready).Consider the set A = fvj num[v] = num[r] ^ flag[v] = Tg. If A is empty in C, thenthe number held by r will be distributed through the tree, node d = Dest(r) will becomeprivileged and set its
ag to T . So eventually, the system reaches a con�guration where Ais non-empty. In the con�gurations reachable from this con�guration, A will become larger,until it includes an incoming node of r. At this point, r becomes privileged. 2

5. Two Protocols Based On Spanning Trees 18Theorem 12 (fairness) In an arbitrary execution, let the system be in a legitimate con�g-uration L. For any node v, the system will eventually reach a con�guration L0 in which v isprivileged.Proof: By repeatedly applying theorem 11, we know that the system will reach a legitimatecon�guration L00, in which Dest(r) = v. Since the root was privileged in the con�gurationjust prior to L00, there is no node i for which num[i] = num[r]. Hence num[v] 6= num[r], thenumber will be distributed through the tree and eventually, v will be privileged. 2Theorem 13 (closure) If the system goes from a con�guration C to con�guration C 0, andC is legitimate, then C 0 is legitimate as well.Proof: The transition from C to C 0 must be one of the following:1. The root takes a step (increases its number)2. The privileged node d 6= r takes a step (copies its number from its parent and sets its
ag to T)3. A non-root node v 6= d takes a step (copies the number from its parent, and copies the
ag from an incoming node that has the same number)We show that in all cases the requirements for a legitimate con�guration remain satis�ed inC 0.1. Suppose that L1 is violated in C 0 for a certain node i (i.e. num[r]�num[i] > n mod n2).Since L1 held in C and num[r] was increased by 1 in the step to C 0, in C num[r] =num[i] + n (mod n2). But since L2 also holds in C, all numbers x strictly betweennum[i] and num[r] have Dest(x) 6= i. Since there are n� 1 of those numbers it must bethat Dest(r) = Dest(i) = i. Applying lemma 8 results in num[i] = num[r], which is acontradiction.Suppose L2 were violated in C 0 for a node i. Since L2 held in C and r increased itsnum by 1, it must be that in C num[i]=num[r]. Hence in C 0 there is no x for whichnum[i] � x � num[r], contradicting the assumption.L3 and L4 must hold in C 0, because there is no v 6= r for which num[v] = num[r] (sinceby L1 r held the \largest" number in C).2. In C 0, num[d] = num[r] (lemma 9), so d satis�es L2. It is easily veri�ed that L1, L3and L4 are also satis�ed in C 0.3. As in the previous case, L1 and L4 trivially hold in C 0. L2 and L3 must also be satis�ed,otherwise they would already have been violated in C, by the node that v copied thestate from. 2We must now prove self-stabilization. According to theorem 11, the root will keep onincreasing its number. We can view an execution as consisting of rounds, separated by a step

5. Two Protocols Based On Spanning Trees 19in which the root chooses a new number. In a round, the non-root nodes may take steps, butthe state of the root does not change.The proof that the system stabilizes from any initial con�guration is based on the presenceof what may be called unoccupied numbers. De�ne Occ = fxj (9v 2 V; v 6= r : num[v] = x)g,the set of occupied numbers, i.e. numbers that are present in some non-root node. Supposethat the system starts a new round, and that the new value of num[r] is not occupied. Theroot can not increase its num again until node Dest(r) has been privileged. The number heldby the root is distributed through the tree until it reaches this node. After the critical sectionhas been completed, the
ag is set and the `acknowledge' is di�used through the graph. Atthe end of this round, node Dest(r) has a num equal to num[r].The proof is split in two parts. First we prove that from any con�guration, the system willreach a con�guration from which in the next n rounds, the root will choose an unoccupiedvalue. We then show that the con�guration reached after these n rounds is legitimate.Theorem 14 (self-stabilization) In an arbitrary execution, let the system be in con�gu-ration C.1. Eventually, the system will reach a con�guration C 0 in which: (9v 2 V : num[r] � num[v])2. From C 0, the system will eventually reach a legitimate con�gurationProof:1. First, observe that in any con�guration, there exist at least n consecutive unoccupiednumbers (since the set of numbers has size n2, and the non-root nodes hold at mostn�1 di�erent numbers). In C, let u1; u2; : : : ; un be such a row of consecutive numbers.Second, consider the way in which Occ changes during an execution. The only steps inwhich new numbers are added to Occ is when the root chooses a new number. Thus, inany execution from C, the numbers remain unoccupied until the round in which num[r]is equal to u1. Call the con�guration just prior to the start of this round C 0. In thiscon�guration num[r] = u1 � 1 mod n2, so the only numbers x for which num[r] � xare precisely the ones u1; u2; : : : ; un.2. In con�guration C 0, the root changes its number to u1. Since u1 is unoccupied, even-tually node v = u1 mod n2 will become privileged. At the end of this round, num[r]is set to u2, which is still an unoccupied number. We can repeat this argument foru2; u3; : : : ; un. Call the con�guration that is reached after these n rounds C 00. BetweenC 0 and C 00, each non-root node has been privileged exactly once, and exactly one nodewas privileged in each round.We can now show that C 00 is a legitimate con�guration:

5. Two Protocols Based On Spanning Trees 20� Let v be an arbitrary non-root node, with parent p. Immediately after v wasprivileged, num[v] = num[p]. In all steps thereafter, if num[v] or num[p] changed,then either num[v] was set equal to num[p], or num[p] was set to the number ofp's parent, which is a higher number (which can be proved by induction on p`sdepth in the tree). Hence num[v] � num[p] in C 00. Also, in C 00 all numbers heldby a node are within the range u1; u2; : : : ; un. Together this yields L1.� Immediately after some node v was privileged, num[v] = num[r] and Dest(r) = v.From then on until C 00, num[r] is incremented at most n times. Thus, L2 musthold in C 00.� In C 00, there is no non-root node that has the same number as the root, hence L3and L4 trivially hold. 25.3 About spanning trees & combining protocolsSeveral self-stabilizing spanning-tree protocols have been published, for instance by Afeket. al. [AKY90] for undirected graphs, and Dolev et. al. [DIM93] for arbitrary communicationgraphs. Since this last result matches our needs, we brie
y sketch the (adapted) spanningtree protocol of Dolev et. al.Node r :dist[r] 0P(r) nilNode u 6= r :dist[u] 1 +minfdist[v] j v 2 In(u)gP(u) deterministically select v 2 In(u) with dist[v] = minfdist[v] j v 2 In(u)gFigure 4: Spanning Tree ProtocolsThe self-stabilizing spanning tree protocol is presented in �gure 4. It will build a breadth-�rst-search tree using the distance to the root of the spanning tree. The range of values thatcan be assumed by �eld dist[u] should equal f0; : : : ;Dg, where D is an upperbound on thediameter of the graph. To break the symmetry, one of the nodes is selected root a-priori andforces its distance to 0. The other nodes read the distance of their neighbours, and add 1 tothe minimal value found. A selection among the nodes with minimal distance must be madeto determine the parent in the spanning tree. This selection must be deterministic to ensurethat once a complete spanning tree is computed, it remains stable provided no further errorsoccur.A subtle point that should not go unmentioned is related to storing the value for P(u).Technically speaking the identity of any of the incoming nodes cannot be determined, becausethe identity of a node is not part of the state readable by other processors. But in fact, weare not even interested in the identity of such a node: we only need to know which of theincoming nodes is the desired node. So in fact we only have to store a `port-address', or

6. Conclusions & Further Research 21something similar, in P(u). If m equals the maximal in-degree of any node in the graph, thenstoring P(u) requires O(m) values. The proof of the protocol is straightforward, and for moredetails we refer to [DIM93].Like [DIM93]|where the notion of fair protocol composition is formally derived|we com-pose both protocols to obtain a SSME protocol for arbitrary directed graphs. By observingthat the mutual exclusion part does not alter the part of the state used by the spanning treeprotocol, it is easily seen that any proof of this spanning tree protocol still holds for the com-bined case. After stabilization of the spanning-tree part of the combined protocol, this partwill not in
uence the mutual exclusion part any more: the values stored in the P(u) will notchange. Then after stabilization of the spanning-tree part, the proof of the mutual exclusionpart can be used unaltered to prove stabilsation and correctness of the whole protocol.The overall space-complexity of the protocol is determined by multiplying the number ofvalues stored in num[u], trust[u], dist[u], and P(u). This gives n �D2 �m states per node. Afactor m can be saved by observing that P(u) is really a function of the state of u and is onlyused and maintained locally. This means that P(u) does not have to be stored explicitly.6. Conclusions & Further ResearchIn this paper we investigated the complexity, in number of states per processor, of achiev-ing self-stabilizing mutual exclusion on strongly connected directed graphs. Starting of withTchuente's approach, reducing the number of states per processor needed to O(n2), we pre-sented two protocols usingO(n2D) states per processor. It would be interesting to see whetherthe second protocol can be modi�ed to work with O(n) numbers, reducing its complexity toO(nD). In any case, we have shown an exponential improvement in space-complexity overthe best known previous protocols for mutual exclusion on directed graphs.7. AcknowledgementsThe authors wish to express their utmost gratitude to Ted Herman for the advice and guidancehe has given while he was visiting Utrecht University. Without his help this paper might neverhave been written.References[Aba90] Abadi, M. An axiomatization of Lamport's temporal logic of actions. In Concur'90. Theories of Concurrency: Uni�cation and Extension (1990), J. Baeten andJ. Klop (Eds.), Springer-Verlag, pp. 57{69. volume 458.[AKY90] Afek, Y., Kutten, S., and Yung, M. Memory-e�cient self stabilizing protocolsfor general graphs. In 4th Int. Workshop on Distributed Algorithms (1990), pp. 15{28.[BP89] Burns, J. E., and Pachl, J. Uniform self-stabilizing rings. ACM Transactionson Programming Languages and Systems 11, 2 (1989), 330{344.[Dij74] Dijkstra, E. W. Self-stabilizing systems in spite of distributed control. Commu-nications of the ACM 17, 11 (1974), 643{644.[Dij82] Dijkstra, E. W. Self-stabilization in spite of distributed control. In SelectedWritings on Computing: A Personal Perspective. Springer-Verlag, New York, 1982,

References 22pp. 41{46.[DIM93] Dolev, S., Israeli, A., and Moran, S. Self-stabilization of dynamic systemsassuming only read/write atomicity. Distributed Computing 7, 1 (1993), 3{16.[Lam91] Lamport, L. The temporal logic of actions. DEC-SRC-report 79, 1991.[Tch81] Tchuente, M. Sur l'autostabilisation dans un r�eseau d'ordinateurs. RAIRO In-formatique Th�eoretique 15, 1 (1981), 47{66.

A. A correctness proof in TLA 23A. A correctness proof in TLAA.1 IntroductionIn this section we will substantiate our claims about the protocol, using the Temporal Logicof Actions (TLA). A readable and extensive introduction to this proof system can be found in[Lam91]. A complete axiomatization of its proposition part can be found in [Aba90], thoughit should be noted that axiom 16 should be changed a little. Here I give a small introductionespecially intended to understand the following proof.In TLA we have four types of formulas: (temporal) formulas, actions, state-predicates andstate-functions.(Temporal) formulas A statement in TLA is a temporal formula and its validity is evalu-ated on a single execution (a re
exive, transitive, linear and discrete Kripke frame). Ifa formula is valid we also say that it holds. A formula is a tautology (true) if it is validin any execution. We will write j= � if the formula phi is a tautology and write ` � ifwe can also derive it. Both speci�cations and properties of protocols are formulas. Weuse Greece symbols for formulas. The capital symbols are used to denote speci�cationsand properties and the non-capitals are used to denote arbitrary formulas. All booleancombinations of formulas are again formulas, with their obvious semantics. If � is aformula then also 2� and 3� are formulas. 2� means that � is valid at any state inthe execution. 3� is equivalent with :2:� and means that � holds at some state inthe execution (possibly the current state).Logical implication is used to express implementation. If � is a speci�cation and � isa property then proving that �) � is a tautology shows that � satis�es the property�, implements a property (possibly a higher-level speci�cation).Actions Actions describe state transitions, i.e. their semantics is a binary relation on states.Actions constitute the building blocks of TLA. Proving properties of speci�cationsmostly involves proving properties of actions, glued together with temporal logic. Weuse calligraphic capitals to denote actions. We write j=A B if B is a tautology andwrite `A B if we can also give a derivation. Boolean combinations of actions are againactions, with their obvious meaning. If A is an action then [A] and hAi are formulas.[A] means that the next state-change (a state transition from one state to a di�erentstate) satis�es A or there is no state-change at all. hAi is equivalent to :[:A] andmeans that there is a state-change and it satis�es A.As a consequence [?] (where ? denotes the empty relation) means there will be nostate-change at all, and we associate this with termination. Likewise h>i (where >is the complement of the empty relation) denotes non-termination, i.e. there will bea state-change. 2[A] now means that all state-changes satisfy A. Furthermore [A]is equivalent with hAi _ [?]. Since [>] is trivially a tautology, proving an action Aequivalent with > also proves [A] is a tautology. However it does not prove hAi atautology, because in addition this implies non-termination.Predicates Predicates, also calles state-predicates, can be evaluated in a single state.Boolean combinations of predicates are again predicates, with their obvious meaning.We use capitals to denote arbitrary predicates or the italic font if the name consist ofmore than one symbol. A predicate is also a formula (using an implicit cast), meaning

A. A correctness proof in TLA 24that the predicate holds in the �rst state of the execution. If predicate P is a tautologywe will write j=A P and write `A P if we can also give a derivation.For example a typical speci�cation looks like Init ^ 2[A], the �rst state satis�es theinitialization predicate Init and all state-changes satisfy A. A predicate P is also (usingan implicit cast) an action, meaning a state transition from a state satisfying P to somearbitrary state. Also a primed predicate P 0 is an action, meaning a state transition froman arbitrary state to one satisfying P . As a typical example of proving a safety property,we might prove P ^ A) P 0 and Init) P (as tautologies on actions) and concludeInit ^2[A]) 2P is a tautology, i.e. the speci�cation Init ^2[A] satis�es property 2P(predicate P holds at any state in an execution satisfying the speci�cation).If A is an action then �A and �A are predicates. �A holds in a state s1 if there is astate s2 (not necessary di�erent from s1) such that the state-transition (s1; s2) satis�esA. �A is the enabled predicate of A, if �A holds then A is enabled. �A is equivalent to: � :A, but is not used very often. The most important axiom concerning the enabledpredicate is A) �A: if A is executed then A was enabled. There is not yet anyreference to the axiomatization of the enabled predicate, except for my personal notes.Furthermore it is not clear whether this axiomatization is complete.State-functions Just as propositional logic is connected to the real world mathematics bythe use of functions, relations and quanti�ers, so is TLA. Variables and constants (alsocalled rigid variables) are the basic functions, in a state they may have some value, amathematical object like a natural number. To avoid obvious and obscuring formalities,we will show their use with an example.Let A be speci�ed by x 0 = x+ 1. x is a program variable and A speci�es that x 0 (thevalue of x after the state transition) is equal to x+1 (the value of x+1 before the statetransition). A state transition therefore only satis�es A if x is incremented by 1. Nowconsider the speci�cationx = 0 ^2[x 0 = x+ 1]Obviously this speci�cation satis�es the property 2(x � 0). How do we prove this?Init) P x = 0) x � 0P ^A) P 0 x � 0 ^ x 0 = x+ 1) (x � 0) 0Init ^2[A]) 2P x � 0 ^2[x 0 = x+ 1]) 2(x � 0)We will use a monad structure to depict quanti�ers, set operations and aggregates.Quanti�ers �8j : j 2 f1; : : : ; ng :: P (i; j)�means for all j = 1; : : : ; n, P (i; j) holds, note thati is a free variable in this expression. Other possible quanti�ers are 9 and 9!.Set operations �Si : i 2 f1; : : : ; ng :: S(i)� is the union of all sets S(i) for i = 1; : : : ; n. Theother set operation is T.Aggregates �Pi : i 2 f1; : : : ; ng :: f(i)� is the sum of all f(i) for i = 1; : : : ; n. Other aggre-gates are Q, max, min and # (number of).

A. A correctness proof in TLA 25The outer parentheses will be laid out around the whole formula inside, even if this coversmore than one line. It would be more consequent if the set-notation also was changed toexplicitly denote its bound variables, however I do not have a de�nite choice yet, so I stickedto the traditional notation.Let fA(i)j1 � i � ng be a set of actions describing some components then a standardasynchronous composition consists of their disjunction�Wi : i 2 f1; : : : ; ng :: A(i)�If component i has a set of local variables L(i) then all other components have to assert notto use these variables, i.e.�Vi; j : i; j 2 f1; : : : ; ng :: i 6= j) Unchanged (L(i))�where Unchanged (L(i)) = �Vv : v 2 L(i) :: Unchanged (v)� and Unchanged (v) = (v = v 0).The proof structure we use is basically a list �1; : : : ; �n of formulas (actions or predicates),that are all true statements. Each statement follows from previous statements using a validderivation rule (or are evidently true by them selfses).To ease down the requirement of the statements to be really true, we can put all statementsin a context of hypotheses. Generalisation with a context of hypotheses is a risky business.In this paper we use the word `arbitrary' in our assumption to announce generalisation andgeneralise in the prove-part (following the assumptions). So proving�8i : i 2D :: P (i)�will look likeh1i1. �8i : i 2D :: P (i)�Let: i 2D arbitraryProve: P (i)h2i1. : : :h2i2. : : :h2i3. Q.E.D. by h2i1 and h2i2In this way the correctness of the application of generalisation can be easily checked atthe beginning of the proof. A similar (and closely related) problem arises in modal logic.However there will be very few modal proofs here, so we will not digress on it.A statement can also be derived by starting a seperate proof, possibly involving new hy-potheses. We will not repeat already stated hypotheses at the start of these (nested) proofs.In this paper we don't refer to hypotheses by labels (as we do with the statements). If thehypothesis is short, like vR < nR� 1, we write it just like that. If it is too long we may write`by assumption' or `by let of vR'.In using lemmas sometimes the used substitution may become confusing. In these caseswe give it explicitly, like by lemma 1.1[vR; uR := nR � 1; vR]Only substitution of variables bound by the outer universal quanti�er is allowed this way.Often this is followed by references to previous proven statements to �ll in assumptions of

B. The TLA proof 26the lemma. In these cases we stick to the order in the lemma (as much as possible). Weapply the existential quanti�er (9-elimination) byLet i 2 f1; : : : ; ng s.t. P (i), such i exists by referencewhere we refer to a statement�9i : i 2 f1; : : : ; ng :: P (i)�The conclusion we get from this should (of course) not have i as a free variable.When exhibiting a case analysis (or natural induction) we announce its use with `by caseanalysis on : : : and : : :' and start a seperate proof for each case, possibly preceded by state-ments used in several cases. Some time we refer to the `op-mono of : : :', where op is one of[]; hi;2;3. This refers to the monotonicity of these operations. If we can derive(*) `A �8i : i 2 I :: A) B�then we can also derive` �8i : i 2 I :: [A]) [B]� by []-mono on (*)` �8i : i 2 I :: hAi) hBi� by hi-mono on (*)In case of 2 and 3 we only allow the 8i-quantor in case i is a rigid variable (i.e. a variablenot changed by the protocol).In formulas we may use bulleted conjunctions and disjunctions. The purpose of this notationis to use indentation instead of parentheses. So e.g. the following formula^ �^ _ �_
^ �is the same as� ^ (� _
) ^ �B. The TLA proofLet us start with some obvious facts about the function f and the associated notions.(F1) `A �8vR : vR 2 VR :: vR 2 Sim(f(vR))�(F2) `A �8vR : vR 2 VR :: First(f(vR)) � vR � Last(f(vR))�Next we de�ne the protocol in TLA style.

B. The TLA proof 27De�nition B.1A(vR) �= ^ �8v : v 2 V n ff(vR)g :: Unchanged (t[v]; d[v])�^ if vR = 0then ^ t[f(nR � 1)] = t[f(0)]^ d[f(nR � 1)] = nR � 1^ t[f(0)] 0 = t[f(0)] + 1 mod Q^ d[f(0)] 0 = 0elseif vR = First(f(vR))then ^ t[f(vR � 1)] 6= t[f(vR)]^ d[f(vR � 1)] � vR � 1^ t[f(vR)] 0 = t[f(vR � 1)]^ d[f(vR)] 0 = vRelseif vR > First(f(vR))then ^ t[f(vR � 1)] = t[f(vR)]^ d[f(vR � 1)] � vR � 1^ d[f(vR)] < vR^ t[f(vR)] 0 = t[f(vR � 1)]^ d[f(vR)] 0 = vRend ifS �= �9vR : vR 2 VR :: A(vR)�� �= 2[S] ^WF(S)Let us �rst conclude some (obvious) facts about the protocol.(F3) `A �8vR : vR 2 VR :: A(vR)) d[f(vR)] 0 = vR�(F4) `A �8vR : vR 2 VR n f0g :: A(vR)) t[f(vR)] 0 = t[f(vR � 1)]�(F5) `A �8vR : vR 2 VR n f0g :: A(vR)) t[f(0)] 0 = t[f(0)]��A(vR) is predicate that holds in con�gurations where the action A(vR) can be executed, i.e.its guards hold. Since we will often use �A(vR), we give it explicitly.�A(vR), ^ vR = 0) ^ t[f(0)] = t[f(nR � 1)]^ d[f(nR � 1)] = nR � 1^ vR 6= 0 ^ vR = First(f(vR))) ^ t[f(vR)] 6= t[f(vR � 1)]^ d[f(vR � 1)] � vR � 1^ vR 6= 0 ^ vR 6= First(f(vR))) ^ t[f(vR � 1)] = t[f(vR)]^ d[f(vR � 1)] � vR � 1^ d[f(vR)] < vRNote that in the third conjunct we have vR 6= First(f(vR)) instead of vR > First(f(vR)). By(F1) these are equivalent.B.1 Domain constraintsIn selfstabilizing protocols it is very customary to assume domain constraints on the variablesused. If a is a variable then a domain constraint for a has the form a 2 A, where A is itsdomain. If � is the protocol then it must satisfy ` a 2 A ^ �) 2(a 2 A). In general aselfstabilizing protocol has no initialization predicate. A domain constraint however may be

B. The TLA proof 28assumed initially, because we can change the protocol s.t. the domain constraints are satis�edafter a step of each proces. We change the program of each processor, such that it will runits program only when the domain constraints on its own variables is satis�ed. Otherwise itwill set its own variables to some arbitrary value in their domain. When each processor hastaken at least one step, the domain constraints will hold.De�nition B.2 Domain �= �8v : v 2 V :: t[v] 2 f0; : : : ; Q� 1g ^ d[v] 2 Sim(v)�Lemma B.1 `A Domain ^ S) Domain 0Proof:Assume: Domain ^ SLet: vR 2 VR s.t. A(vR) such vR exists by SLet: v 2 V arbitraryProve: t[v] 0 2 f0; : : : ; Q� 1g ^ d[v] 0 2 Sim(v)h1i1. Q.E.D. by case analysis on v 6= f(vR) and v = f(vR)Case: v 6= f(vR)h2i1. t[v] 0 = t[v] by A(vR) and v 6= f(vR)2 f0; : : : ; Q� 1g by Domainh2i2. d[v] 0 = d[v] by A(vR) and v 6= f(vR)2 Sim(v) by Domainh2i3. Q.E.D. by h2i1 and h2i2Case: v = f(vR)h2i1. d[v] 0 = d[f(vR)] 0 by v = f(vR)= vR by (F3)[vR := vR]2 Sim(f(vR)) by (F1)[vR := vR]=Sim(v) by v = f(vR)h2i2. t[v] 0 2 f0; : : : ; Q� 1g by case analysis on vR = 0 and vR 6= 0Case: vR = 0 so A(0) and v = f(0)h3i1. t[v] 0 = t[f(0)] 0 by v = f(0)= t[f(0)] + 1 mod Q by A(0)2 f0; : : : ; Q� 1gCase: vR 6= 0h3i1. t[v] 0 = t[f(vR)] 0 by v = f(vR)= t[f(vR � 1)] by (F4)[vR := vR]2 f0; : : : ; Q� 1g by Domainh2i3. Q.E.D. by h2i1 and h2i2Corollary B.2 ` Domain ^ �) 2DomainProof: Follows from lemma B.1 by applying INV1.Corollary B.3` Domain ^ �, Domain ^2[T] ^WF(T)where T �= S ^Domain ^Domain 0

B. The TLA proof 29Proof: Follows from lemma B.1 by applying our version of INV2: if `A I ^ N) I 0 then` I ^2[N] ^WF(N)I ^2[M] ^WF(M) .Corollary B.4 `A Domain) �8v : v 2 V :: First(v) � d[v] � Last(v)�Proof: Domain implies for any v 2 V , d[v] 2 Sim(v). Therefore d[v] = vR for some vR s.t.f(vR) = v, the corollary now follows from fact (F2).B.2 Privilige in a legitimate con�gurationIn this subsection we de�ne the legitimate con�gurations and prove that only one occurrenceis enabeled in such a con�guration.Green(vR) �= t[f(vR)] = t[0] ^ d[f(vR)] � vRRed(vR) �= ^ d[f(vR)] � vR) t[f(vR)] = t[f(0)]� 1 mod Q^ d[f(vR)] < vR) t[f(vR)] = t[f(0)]Legal(vR) �= 8uR : uR 2 VR :: ^ uR � vR) Green(uR)^ uR > vR) Red (uR) !Legitimate �= �9vR : vR 2 VR :: Legal(vR)�Lemma B.5 `A Green(0)Proof:h1i1. t[f(0)] = t[f(0)] why not?h1i2. d[f(0)] � 0 by corollary B.4h1i3. Q.E.D. by h1i1 and h1i2Lemma B.6 `A �8vR : vR 2 VR n f0g :: Green(vR � 1) ^Green(vR)) : �A(vR)�Proof:Let: vR 2 VR n f0g arbitraryAssume: Green(vR � 1) ^Green(vR)Prove: : � A(vR) by case analysis on vR = First(f(vR)) and vR 6= First(f(vR))Case: vR = First(f(vR))h2i1. t[f(vR � 1)]= t[f(0)] by Green(vR � 1)= t[f(vR)] by Green(vR)h2i2. Q.E.D. by vR = First(f(vR)) and h2i1Case: vR > First(f(vR))h2i1. d[f(vR)] � vR by Green(vR)h2i2. Q.E.D. by vR > First(f(vR)) and h2i1

B. The TLA proof 30Lemma B.7 `A �8vR : vR 2 VR n f0g :: Red(vR � 1) ^Red (vR)) : �A(vR)�Proof:Let: vR 2 VR n f0g arbitraryAssume: 1. Red (vR � 1) ^ Red (vR)2. �A(vR) for the sake of contradictionProve: ?h1i1. d[f(vR � 1)] � vR � 1 by �A(vR)h1i2. t[f(vR � 1)] = t[f(0)]� 1 mod Q by h1i1 and Red(vR � 1)h1i3. vR = First(f(vR)), t[f(vR)] 6= t[f(vR � 1)] by �A(vR) and vR 6= 0, t[f(vR)] 6= t[f(0)]� 1 mod Q by h1i2h1i4. d[f(vR)] < vR) t[f(vR)] = t[f(0)] by Red(vR)) vR = First(f(vR)) by h1i3) d[f(vR)] � vR by Domainh1i5. d[f(vR)] � vR) t[f(vR)] = t[f(0)]� 1 mod Q by Red (vR)) vR > First(f(vR)) by h1i3 and fact (F2)) d[f(vR)] < vR by �A(vR) and vR 6= 0h1i6. Q.E.D. by h1i4 d[f(vR)] � vR and by h1i5 d[f(vR)] < vRLemma B.8`A 8vR :vR 2 VR n f0g ::�8uR : uR 2 VR ^ uR < vR :: Green(uR)� ^ :Green(vR)) �A(vR)!Proof:Let: vR 2 VR n f0g arbitraryAssume: 1. :Green(vR)2. �8uR : uR 2 VR ^ uR < vR :: Green(uR)�Prove: �A(vR)h1i1. d[f(vR � 1)] � vR � 1 by vR > 0, vR � 1 < vR so Green(vR � 1)h1i2. Q.E.D. by case analysis on vR = First(f(vR)) and vR > First(f(vR))Case: vR = First(f(vR)) so d[f(vR)] � vR by corollary B.4h2i1. t[f(vR)] 6= t[f(0)] by :Green(vR) and d[f(vR)] � vR= t[f(vR � 1)] by Green(vR � 1)h2i2. Q.E.D. by vR 6= 0, vR = First(f(vR)), h2i1 and h1i1Case: vR > First(f(vR))h2i1. t[f(vR)] = t[f(First(f(vR)))] by f(vR) = f(First(f(vR)))= t[f(0)] by First(f(vR)) < vR so Green(First(f(vR)))h2i2. t[f(vR)] = t[f(vR � 1)] by h2i1 and Green(vR � 1)h2i3. d[f(vR � 1)] � vR � 1 by Green(vR � 1)

B. The TLA proof 31h2i4. d[f(vR)] < vR by h2i1 and :Green(vR)h2i5. Q.E.D. by vR 6= 0, vR > First(f(vR)), h2i2, h2i3, h1i1 and h2i4Lemma B.9 `A �8vR : vR 2 VR :: Red (vR)) :Green(vR)�Proof:Let: vR 2 VR arbitraryAssume: Red (vR) ^ d[f(vR)] � vRProve: t[f(vR)] 6= t[f(0)]h1i1. t[f(vR)] = t[f(0)]� 1 mod Q by Red (vR) and d[f(vR)] � vR6= t[f(0)]Lemma B.10 `A Green(nR � 1), �A(0)Proof:h1i1. d[f(nR � 1)]� Last(f(nR � 1)) by corollary B.4= nR � 1 � by Last(v) � nR � 1, � by nR � 1 2 Sim(f(nR � 1))h1i2. �A(0), t[f(nR � 1)] = t[f(0)] ^ d[f(nR � 1)] = nR � 1 by def. of A(0), t[f(nR � 1)] = t[f(0)] ^ d[f(nR � 1)] � nR � 1 by h1i1, Green(nR � 1)Theorem B.11`A 8vR : vR 2 VR :: Legal(vR)) ^ �A(vR + 1 mod nR)^ �8uR : uR 2 VR n fvR + 1 mod nRg :: : � A(uR)�!Proof:Let: vR 2 VR arbitraryAssume: Legal (vR) i.e. ^ �8uR : uR 2 VR ^ uR � vR :: Green(uR)�^ �8uR : uR 2 VR ^ uR > vR :: Red(uR)�h1i1. �A(vR + 1 mod nR) by case analysis on vR = nR � 1 and vR < nR � 1Case: vR = nR � 1 so Green(nR � 1) and by lemma B.10 �A(0)Case: vR < nR � 1 so vR + 1 mod nR = vR + 1h2i1. vR + 1 6= 0 by vR 2 VR so vR � 0h2i2. �8uR : uR 2 VR ^ uR < vR + 1 :: Green(uR)� by assumptionh2i3. Red (vR + 1) by assumptionh2i4. �A(vR + 1) by lemma B.9, lemma B.8[vR := vR + 1] and h2i1: : :h2i3h1i2. �8uR : uR 2 VR n fvR + 1 mod nRg :: : � A(uR)�

B. The TLA proof 32Let: uR 2 VR arbitrary s.t. uR 6= vR + 1 mod nRProve: : � A(uR) by case analysis on uR = 0, 0 < uR � vR and uR > vR + 1Case: uR = 0 so vR < nR � 1 (by uR 6= vR + 1 mod nR)h3i1. Red (nR � 1) by assumption and vR < nR � 1h3i2. :Green(nR � 1) by h3i1 and lemma B.9[vR := nR � 1]h3i3. : � A(0) by h3i2 and lemma B.10Case: 0 < uR � vRh3i1. Green(uR � 1) ^Green(uR) by assumptionh3i2. : � A(uR) by uR 6= 0 and lemma B.6[vR := uR]Case: vR + 1 < uRh3i1. Red (uR � 1) ^ Red (uR) by uR � 1 > vR and assumptionh3i2. : � A(uR) by h3i1, uR � 1 > vR � 0 and lemma B.7[vR := uR]h1i3. Q.E.D. by h1i1 and h1i2Theorem B.12 ` � ^ Legal(vR)) hA(vR + 1 mod nR)iProof:h1i1. `A Legal(vR)) �VuR; wR : uR; wR 2 VR ^ uR 6= wR :: �A(uR)) : �A(wR)�Assume: Legal (vR)Let: uR; wR 2 VR arbitrary s.t. uR 6= wRAssume: �A(uR)Prove: : � A(wR)h2i1. uR = vR + 1 mod nR by Legal(vR), �A(uR) and lemma B.11h2i2. wR 6= vR + 1 mod nR by h2i1 and uR 6= wRh2i3. Q.E.D. by Legal(vR), h2i2 and lemma B.11h1i2. ` �VuR : uR 2 VR :: Legal(vR) ^ [T] ^ �A(uR)) hA(uR)i�by h1i1 and the following theorem of which proof can obtained from the authors.If `A P) �Vi; j : i; j 2 I ^ i 6= j :: �A(i)) : � A(j)�then ` �Vi : i 2 I :: P ^ [A] ^WF(A) ^ �A(i)) [A(i)]�where A �= �Wi : i 2 I :: A(i)�h1i3. ` Legal (vR)) �A(vR + 1 mod nR) by lemma B.11h1i4. ` �) [T] by ` 2�) �h1i5. Q.E.D. by h1i4, h1i3 and h1i2B.3 Staying legitimateWe have now proven that in a legitimate con�guration only one occurrence is enabled andthat it will be executed next. We will now analyse what happens if it is executed, i.e. we provethe next occurrence will become the only one enabled and that we are still in a legitimatecon�guration.Lemma B.13 `A �8vR : vR 2 VR n f0g :: Green(vR � 1) ^A(vR)) Green(vR) 0 �

B. The TLA proof 33Proof:Let: vR 2 VR n f0g arbitraryAssume: Green(vR � 1) ^A(vR)Prove: Green(vR) 0h1i1. t[f(vR)] 0 = t[f(vR � 1)] by A(vR) and vR 6= 0= t[f(0)] by Green(vR � 1)= t[f(0)] 0 by (F5), A(vR) and vR 6= 0h1i2. d[f(vR)] 0 = vR by A(vR)h1i3. Q.E.D. by h1i1 and h1i2Lemma B.14`A �8uR; vR : uR; vR 2 VR ^ vR < uR :: Green(vR) ^A(uR)) Green(vR) 0 �Proof:Let: uR; vR 2 VR arbitrary s.t. vR < uR so uR 6= 0Assume: Green(vR) ^A(uR)Prove: Green(vR) 0 by case analysis on f(vR) = f(uR) and f(vR) 6= f(uR)Case: f(vR) = f(uR)h2i1. t[f(uR � 1)] = t[f(0)]h3i1. First(f(uR)) � vR by (F2) and f(vR) = f(uR)< uRh3i2. t[f(uR � 1)] = t[f(uR)] by A(uR), uR 6= 0 and h3i1= t[f(vR)] by f(uR) = f(vR)= t[f(0)] by Green(vR)h2i2. t[f(vR)] 0 = t[f(uR)] 0 by f(vR) = f(uR)= t[f(uR � 1)] by (F4), A(uR) and uR 6= 0= t[f(0)] by h2i1= t[f(0)] 0 by (F5), A(uR) and uR 6= 0h2i3. d[f(vR)] 0 = d[f(uR)] 0 by f(vR) = f(uR)= uR by (F3), A(uR)> vRh2i4. Q.E.D. by h2i2 and h2i3Case: f(vR) 6= f(uR)h2i1. Unchanged (t[f(vR)]; d[f(vR)]) by A(uR) and f(uR) 6= f(vR)h2i2. Unchanged (t[f(0)]) by (F5), A(uR) and uR 6= 0h2i3. Q.E.D. by Green(vR), h2i1 and h2i2Lemma B.15`A �8uR; vR : uR; vR 2 VR ^ 0 < uR < vR :: Green(uR � 1) ^A(uR) ^ Red (vR)) Red(vR) 0 �Proof:

B. The TLA proof 34Let: uR; vR 2 VR arbitrary s.t. 0 < uR < vRAssume: Green(uR � 1) ^A(uR) ^Red (vR)Prove: Red (vR) 0 by case analysis on f(vR) = f(uR) and f(vR) 6= f(uR)Case: f(vR) = f(uR)h2i1. d[f(vR)] 0 = d[f(uR)] 0 by f(vR) = f(uR)= uR by (F3) and A(uR)< vRh2i2. t[f(vR)] 0 = t[f(uR)] 0 by f(vR) = f(uR)= t[f(uR � 1)] by (F4), A(uR) and uR > 0= t[f(0)] by Green(uR � 1)= t[f(0)] 0 by (F5), A(uR) and uR > 0h2i3. Q.E.D. by h2i1 and h2i2Case: f(vR) 6= f(uR)h2i1. Unchanged (t[f(vR)]; d[f(vR)] by A(uR) and f(vR) 6= f(uR)h2i2. Unchanged (t[f(0)]) by (F5), A(uR) and uR > 0h2i3. Q.E.D. by h2i1 and h2i2The following lemma will not be used in this subsection, but in analysing the second phase.However, since it is very similar to the previous lemmas, we give it here.Lemma B.16`A 8uR; vR :uR; vR 2 VR ^ 0 < uR ::(:Green(uR � 1) _ uR < vR) ^A(uR) ^ :Green(vR)) :Green(vR) 0!Proof:Let: uR; vR 2 VR arbitrary s.t. 0 < uRAssume: 1. :Green(uR � 1) _ uR < vR2. A(uR) ^ :Green(vR)Prove: :Green(vR) 0 by case analysis on f(uR) 6= f(vR) and f(uR) = f(vR)h1i1. Unchanged (t[f(0)]) by (F5), A(uR) and uR 6= 0Case: f(uR) 6= f(vR)h2i1. Unchanged (t[f(vR)]; d[f(vR)]) by A(uR) and f(vR) 6= f(uR)h2i2. Q.E.D. by :Green(vR), h1i1 and h2i1Case: f(uR) = f(vR)h2i1. Q.E.D. by case analysis on :Green(uR � 1) and uR < vRCase: :Green(uR � 1)h3i1. d[f(uR � 1)] � uR � 1 by A(uR) and uR > 0h3i2. t[f(uR � 1)] 6= t[f(0)] by :Green(uR � 1) and h3i1h3i3. t[f(vR)] 0 = t[f(uR)] 0 by f(vR) = f(uR)= t[f(uR � 1)] by (F4), A(uR) and uR > 06= t[f(0)] by h3i2= t[f(0)] 0 by h1i1h3i4. Q.E.D. by h3i3Case: uR < vR

B. The TLA proof 35h3i1. d[f(vR)] 0 = d[f(uR)] 0 by f(vR) = f(uR)= uR by (F3), A(uR)< vRh3i2. Q.E.D. by h3i1Lemma B.17 `A Legal (nR � 1) ^A(0)) Legal(0) 0Proof:Assume: Legal (nR � 1) ^A(0)Let: vR 2 VR n f0g arbitrary, so Green(vR) by Legal(nR � 1)Prove: Red (vR) 0 so Legal(0) 0 by vR 2 VR n f0g arbitrary and `A Green(0) (lemma B.5).Proof by case analysis on f(vR) = f(0) and f(vR) 6= f(0)Case: f(vR) = f(0)h2i1. d[f(vR)] 0 = d[f(0)] 0 by f(vR) = f(0)= 0 by (F3), A(0)< vR by vR 6= 0h2i2. t[f(vR)] 0 = t[f(0)] 0 by f(vR) = f(0)h2i3. Q.E.D. by h2i1 and h2i2Case: f(vR) 6= f(0)h2i1. d[f(vR)] 0 = d[f(vR)] by A(0) and f(vR) 6= f(0)� vR by Green(vR)h2i2. t[f(vR)] 0 = t[f(vR)] by A(0) and f(vR) 6= f(0)= t[f(0)] by Green(vR)= t[f(0)] 0 � 1 mod Q by A(0)h2i3. Q.E.D. by h2i1 and h2i2Theorem B.18`A �8vR : vR 2 VR :: Legal(vR) ^A(vR + 1 mod nR)) Legal(vR + 1 mod nR) 0 �Proof:Let: vR 2 VR arbitraryAssume: Legal (vR) ^A(vR + 1 mod nR)Prove: Legal (vR + 1 mod nR) 0 by case analysis on vR = nR � 1 and vR < nR � 1Case: vR = nR � 1 by lemma B.17Case: vR < nR � 1 so vR + 1 mod nR = vR + 1Let: uR 2 VR arbitraryh2i1. uR � vR) Green(uR) 0Assume: uR � vRProve: Green(uR) 0h3i1. uR < vR + 1 by uR � vRh3i2. Green(uR) by uR � vR and Legal (vR)

B. The TLA proof 36h3i3. A(vR + 1) by A(vR + 1 mod nR)h3i4. Q.E.D. by lemma B.14 [uR; vR := vR + 1; uR] and h3i1: : :h3i3h2i2. uR = vR + 1) Green(uR) 0Assume: uR = vR + 1Prove: Green(uR) 0h3i1. uR 6= 0 by uR = vR + 1 > 0h3i2. Green(uR � 1) by uR � 1 = vR � vR and Legal (vR)h3i3. A(uR) by A(vR + 1) and uR = vR + 1h3i4. Q.E.D. by lemma B.13 [vR := uR] and h3i1: : :h3i3h2i3. uR > vR + 1) Red (uR) 0Assume: uR > vR + 1Prove: Red (uR) 0h3i1. 0 < vR + 1 < uRh3i2. Green(vR) by vR � vR and Legal (vR)h3i3. A(vR + 1) by A(vR + 1 mod nR)h3i4. Red (uR) by uR > vR + 1 > vR and Legal (vR)h3i5. Q.E.D. by lemma B.15 [uR; vR := vR + 1; uR] and h3i1: : :h3i4h2i4. Q.E.D. by h2i1, h2i2, h2i3 and uR 2 VR arbitrary.Corollary B.19 ` � ^ Legitimate) 2LegitimateProof:h1i1. If ` P ^ �) [P 0] then ` P ^2�) 2Ph2i1. ` P ^2�) P ^2(� ^ (P) [P 0])) by ` P ^ �) [P 0]) P ^2(P) [P 0])) 2P by rule TLA1Rule TLA1 saysIf `A P ^ (f 0 = f)) P 0then ` 2P , P ^2[P) P 0]fLet f be the tuple containing all program variables used (in particular all programvariables mentioned in P), then obviously `A P ^ (f 0 = f)) P 0 . Furthermore` (P) [P 0]), [P) P 0] and also ` [A]) [A]f for any state-function f .h1i2. Legitimate ^�) [Legitimate 0]Assume: Legitimate ^ �Let: vR 2 VR s.t. Legal (vR) such vR exists by LegitimateProve: hLegitimate 0 i so [Legitimate 0] (^h>i)h2i1. hA(vR + 1 mod nR)i by theorem B.12 and � and Legal (vR)h2i2. hLegal (vR) ^A(vR + 1 mod nR)i by h2i1, Legal(vR) and ` P ^ hAi , hP ^Aih2i3. hLegal (vR + 1 mod nR) 0 i by h2i2 and hi-mono of theorem B.18h2i4. Q.E.D. by h2i3 a vR exists s.t. hLegal (vR) 0 i so hLegitimate 0 ih1i3. ` Legitimate ^2�) 2Legitimate by h1i1 and h1i2h1i4. ` 2�, � by missing initial prediate

B. The TLA proof 37h1i5. Q.E.D. by h1i3 and h1i4Lemma B.20 `A �8vR : vR 2 VR n f0g :: : � A(vR)�) Legal (nR � 1)Proof:Assume: �8vR : vR 2 VR n f0g :: : � A(vR)�Prove: �8vR : vR 2 VR :: Green(vR)� by induction on vRCase: vR = 0. Green(0) by lemma B.5Case: vR = uR + 1 < nR so vR 6= 0Assume: �8wR : wR 2 VR ^wR < vR :: Green(wR)� induction hypothesisProve: Green(vR) by case analysis on vR = First(f(vR)) and vR > First(f(vR))Case: vR = First(f(vR))h3i1. d[f(vR � 1)] � vR � 1 by Green(vR � 1)h3i2. t[f(vR)]= t[f(vR � 1)] by : � A(vR), vR 6= 0, vR = First(f(vR)) and h3i1= t[f(0)] by Green(vR � 1)h3i3. d[f(vR)]� First(f(vR)) by corollary B.4= vR by case assumptionh3i4. Q.E.D. by h3i2 and h3i3Case: vR > First(f(vR))h3i1. d[f(vR � 1)] � vR � 1 by Green(vR � 1)h3i2. t[f(vR)]= t[f(First(f(vR)))] by f(vR) = f(First(f(vR)))= t[f(0)] by First(vR) < vR so Green(First(f(vR))h3i3. t[f(vR)]= t[f(0)] by h3i2t[f(vR � 1)] by Green(vR � 1)h3i4. d[f(vR)] � vR by : � A(vR), vR > First(f(vR)), h3i1 and h3i3h3i5. Q.E.D. by h3i2 and h3i4Corollary B.21 `A �9vR : vR 2 VR :: �A(vR)�Proof: If A(vR), for some vR 2 VR n f0g, is enabled then the corollary holds. Otherwise itfollows by lemma B.20 that Legal(nR � 1) holds and by theorem B.11 A(0) is enabled.B.4 The main decreasing function ChaosIn this section we de�ne the function Chaos and show that its range is �nite and executionof any non-root occurrence decreases this function.

B. The TLA proof 38W (v)�=f(First(v)� 1 mod nR)vTu�=u 6= f(0) ^ v =W (u)Weight(v)�=1 + �Pu : u 2 V ^ vTu :: Weight(u)�Distance(v)�=�#vR : vR 2 Sim(v) :: vR < d[v]�M �=�max v : v 2 V :: jSim(v)j�SDistance �=�Pv : v 2 V :: Distance(v)�SWeight �= Pv : v 2 V :: (Weight(v) if W (v)Tv ^ t[v] 6= t[W (v)]0 otherwise !Chaos �=M � SWeight � SDistanceLemma B.22 `A �8v : v 2 V :: 0 � Distance(v) < jSim(v)j�Proof:Let: v 2 V arbitraryh1i1. Distance(v) � 0 by �#v : R(v) :: P (v)� � 0h1i2. Distance(v)= �#vR : vR 2 Sim(v) :: vR < d[v]� by de�nition of Distance� �#vR : vR 2 Sim(v) :: vR < Last(v)� by d[v] � Last(v)= jSim(v)j � 1 by de�nition of Lasth1i3. Q.E.D. by h1i1 and h1i2Lemma B.23 `A n� nR � �SDistance � 0Proof:h1i1. 0� �Pv : v 2 V :: �Distance(v)� by lemma B.22� �Pv : v 2 V :: �jSim(v)j+ 1� by lemma B.22= n� nR by jV j = n and �Pv : v 2 V :: jSim(v)j� = nRh1i2. Q.E.D. by h1i1 and def. of SDistanceLemma B.24 The relation T de�nes a spanning tree on V with root f(0).Proof:h1i1. `A �8u; v : u; v 2 V ^ vTu :: First(v) < First(u)�Let: u; v 2 V arbitrary s.t. vTuProve: First(v) < First(u)h2i1. First(u) > 0 by vTu so u 6= f(0) and 0 =2 Sim(u)

B. The TLA proof 39h2i2. First(v)= First(W (u)) by vTu) v =W (u)= First(f(First(u)� 1 mod nR)) by def. of W= First(f(First(u)� 1)) by h2i1� First(u)� 1 by (F2)< First(u)h1i2. �8v : v 2 V :: :W (v)Tv) v = f(0)� by def. of relation Th1i3. Q.E.D.For every u there is at most one v s.t. vTu, since v = W (u) and W is a function. Byh1i1 there are no cycles in the relation. By h1i2 every u has a parent except for f(0).This proofs T makes up a spanning tree of V with root f(0).De�ne S(v) as the set of nodes in the subtree with root v.Lemma B.25 `A �8v : v 2 V :: Weight(v) = jS(v)j�Proof:Let: v 2 V arbitraryProve: Weight(v) = jS(v)jh1i1. Q.E.D. by induction on the depth of the subtree with root v.Case: depth = 0 so fu 2 V jvTug = ; and S(v) = fvgh2i1. Weight(v)= 1 + �Pu : u 2 V ^ vTu ::Weight(u)�= 1 by fu 2 V jvTug = ;= jS(v)j by S(v) = fvgCase: depth = e+ 1 and by induction hypothesis �8u : u 2 V ^ vTu ::Weight(u) = jS(u)j�h2i1. Weight(v)= 1 + �Pu : u 2 V ^ vTu ::Weight(u)� def. of Weight(v)= jS(v)jsince S(v) = fvg [�Su : u 2 V ^ vTu :: S(v)� and all S(u); fvg are disjoint.Lemma B.26 `A 0 � SWeight � n(n�1)2Proof:h1i1. �8v : v 2 V :: Weight(v) � 1�, since Weight(v) is the number of nodes in S(v). There-fore SWeight � 0.h1i2. �8v : v 2 V :: 2 �Pu : u 2 S(v) :: Weight(u)� �Weight(v)(Weight(v) + 1)�We prove this by induction to the depth d of the subtree with root v.Case: d = 0h3i1. Weight(v) = 1 and S(v) = fvg and the claim follows

B. The TLA proof 40Case: d = e+ 1Let: v1; : : : ; vc (c 6= 0) be the children of vLet: m = �max i : 1 � i � c :: Weight(vi)� so m �Weight(vi) for i = 1; : : : ; cAssume: �8i : 1 � i � c :: 2 �Pu : u 2 S(vi) ::Weight(u)� �Weight(vi)(Weight(vi) + 1)�by induction hypothesish3i1. Weight(v) = 1 + �Pi : 1 � i � c ::Weight(vi)� by de�nition of Weighth3i2. m � �Pi : 1 � i � c :: Weight(vi)�� (c� 1) by Weight(vi) � 1 and let of mh3i3. 2 �Pu : u 2 S(v) :: Weight(u)�= 2Weight(v) + 2 �Pi : 1 � i � c :: �Pu : u 2 S(vi) :: Weight(u)��by de�nition of S(v)� 2Weight(v) + �Pi : 1 � i � c ::Weight(vi)(Weight(vi) + 1)�by induc. hyp.� 2Weight(v) +m �Pi : 1 � i � c ::Weight(vi) + 1�by let of m= 2(1 + �Pi : 1 � i � c :: Weight(vi)�) +m �Pi : 1 � i � c :: Weight(vi) + 1�by h3i1� 2 �Pi : 1 � i � c :: Weight(vi) + 1�+m �Pi : 1 � i � c ::Weight(vi) + 1�by c � 1= (m+ 2) �Pi : 1 � i � c ::Weight(vi) + 1�� (�Pi : 1 � i � c ::Weight(vi)�+ 2� (c� 1)) �Pi : 1 � i � c ::Weight(vi) + 1�by h3i2= (Weight(v) + 1� (c� 1))(Weight(v) + (c� 1))by h3i1� Weight(v)(Weight(v) + 1)by calculationh1i3. SWeight� �Pu : u 2 V n ff(0)g :: Weight(u)� by Weight(u) > 0= �Pu : u 2 S(f(0)) :: Weight(u)��Weight(f(0)) by lemma B.24 S(f(0)) = V� Weight(f(0))(Weight (f(0))+1)2 �Weight(f(0)) by h1i2= n(n�1)2by lemma B.24 and lemma B.25 Weight(f(0)) = nLemma B.27`A �8vR : vR 2 VR n f0g :: A(vR) ^ vR > First(f(vR))) SWeight 0 = SWeight�Proof:Let: vR 2 VR n f0g arbitraryAssume: A(vR) ^ vR > First(f(vR))

B. The TLA proof 41Prove: SWeight 0 = SWeighth1i1. �8v : v 2 V :: Unchanged (t[v])� by A(vR) ^ vR > First(f(vR))h1i2. Q.E.D. by h1i1 and SWeight only depends on the t[]-valuesLemma B.28`A �8vR : vR 2 VR n f0g :: A(vR) ^ vR = First(f(vR))) SWeight 0 < SWeight�Proof:Let: vR 2 VR n f0g arbitraryAssume: A(vR) ^ vR = First(f(vR))Prove: SWeight 0 < SWeightLet: v = f(vR) and(a) = 0B@Pu :u 2 V ^ u 6= f(0) ^ u 6= v ^ v 6=W (u) ::(Weight(u) if W (u)Tu ^ t[u] 6= t[W (u)]0 otherwise 1CA(b) = Pu : u 2 V ^ vTu :: (Weight(u) if W (u)Tu ^ t[u] 6= t[W (u)]0 otherwise !(c) = (Weight(v) if W (v)Tv ^ t[v] 6= t[W (v)]0 otherwiseh1i1. v 6= f(0) by v = f(vR) and First(f(vR)) = vR 6= 0h1i2. W (v)Tv by h1i1h1i3. f(vR) 6= f(vR � 1) by vR = First(f(vR))h1i4. SWeight = (a) + (b) + (c)h2i1. vTu) First(v) < First(u)) u 6= v see proof of lemma B.24h2i2. ^ u 2 V^ _ u 6= f(0) ^ u 6= v ^ v 6=W (u)_ vTu_ u = v, ^ u 2 V^ _ u 6= f(0) ^ u 6= v ^ v 6=W (u)_ u 6= f(0) ^ u 6= v ^ v =W (u) by h2i1 and vTu, u 6= f(0) ^ v =W (u)_ u 6= f(0) ^ u = v by h1i1, u 2 V ^ u 6= f(0)h2i3. u 6= f(0) ^ u 6= v ^ v 6=W (u)) v 6=W (u)) :vTuh2i4. u 6= f(0) ^ u 6= v ^ v 6=W (u)) u 6= v) :(u = v)h2i5. Q.E.D.by h2i2 (a) + (b) + (c) exaclty covers all elements summed in SWeight . By h2i3 andh2i4, (a) does not cover any element also in (b) or (c) (and vice versa). By h2i1 (b)does not cover any element also in (c) and vice versa.h1i5. SWeight 0 = (a) 0 + (b) 0 + (c) 0The proof is very similar to h1i4 since it only involves reasoning about rigid variables.h1i6. (a) = (a) 0

B. The TLA proof 42Let: u 2 V arbitrary s.t. u 6= f(0) ^ u 6= v ^ v 6=W (u)h2i1. t[u] 0 = t[u] by A(vR) ^ f(vR) = v 6= uh2i2. t[W (u)] 0 = t[W (u)] by A(vR) ^ f(vR) = v 6=W (u)h2i3. t[u] 0 = t[W (u)] 0 , t[u] = t[W (u)] by h2i1 and h2i2h2i4. Q.E.D. by h2i3 and Weight(u) is �xed for any uh1i7. (b) + (c) �Weight(v)h2i1. t[v] = t[f(vR)] by v = f(vR)6= t[f(vR � 1)] by A(vR) ^ vR = First(f(vR)) 6= 0= t[f(First(v)� 1)] by vR = First(v)= t[W (v)] by def. of Wh2i2. (c) =Weight(v) by h1i2 and h2i1h2i3. Q.E.D. by h2i2 and (b) � 0h1i8. (c) 0 = 0h2i1. t[v] 0 = t[f(vR)] 0 by v = f(vR)= t[f(vR � 1)] by A(vR) ^ vR = First(f(vR)) 6= 0= t[f(vR � 1)] 0 by A(vR) and h1i3= t[f(First(v) � 1)] 0 by vR = First(v)= t[W (v)] 0 by def. of Wh2i2. Q.E.D. by h2i1h1i9. (b) 0� �Pu : u 2 V ^ vTu :: Weight(u)� by Weight(u) � 0= Weight(v)� 1 def. of Weight(v)< Weight(v)h1i10. (b) 0 + (c) 0 < (b) + (c) by h1i8, h1i9 and h1i7h1i11. SWeight 0 = (a) 0 + (b) 0 + (c) 0 by h1i5= (a) + (b) 0 + (c) 0 by h1i6< (a) + (b) + (c) by h1i10= SWeight by h1i4h1i12. Q.E.D. by h1i11Lemma B.29`A �8vR : vR 2 VR n f0g :: A(vR) ^ vR > First(f(vR))) �SDistance 0 < �SDistance�Proof:Let: vR 2 VR n f0g arbitrary s.t. A(vR) ^ vR > First(f(vR)) and let v = f(vR)h1i1. Distance(v)= �#uR : uR 2 Sim(v) :: uR < d[v]�< �#uR : uR 2 Sim(v) :: uR � d[v]� by d[v] 2 Sim(v) (Domain)� �#uR : uR 2 Sim(v) :: uR < vR� by d[v] = d[f(vR)] < vRby A(vR) ^ vR > First(f(vR))= �#uR : uR 2 Sim(v) :: uR < d[v] 0 � by d[v] 0 = vR by A(vR) ^ vR > First(f(vR))= Distance(v) 0

B. The TLA proof 43h1i2. �8u : u 2 V ^ u 6= v :: Distance(u) 0 = Distance�by A(vR) ^ f(vR) = v 6= u) d[u] 0 = d[u]h1i3. Q.E.D. by h1i1 and h1i2Lemma B.30`A 8vR :vR 2 VR ^ vR = First(f(vR)) ::A(vR)) SDistance 0 � SDistance � jSim(f(vR))j+ 1!Proof:Let: vR 2 VR arbitrary s.t. A(vR) ^ vR = First(f(vR)) and let v = f(vR)h1i1. d[v] 0 = vR by (F3) and A(vR)= First(f(vR))h1i2. Distance(v) 0= �#vR : vR 2 Sim(v) :: vR < d[v] 0 �= 0 by h1i1� Distance(v)� jSim(v)j + 1 by lemma B.22h1i3. �8u : u 2 V ^ u 6= v :: Distance(u) 0 = Distance(u)�by A(vR) ^ f(vR) = v 6= u) d[u] 0 = d[u]h1i4. Q.E.D. by h1i2 and h1i3Lemma B.31 `A n� nR � Chaos �M � n(n�1)2Proof: By lemma B.23 and lemma B.26 and Chaos =M � SWeight � SDistanceLemma B.32 `A �8vR : vR 2 VR n f0g :: A(vR)) Chaos 0 < Chaos�Proof:Let: vR 2 VR n f0g arbitrary s.t. A(vR)Prove: Chaos 0 < Chaos by case analysis on vR = First(f(vR)) and vR > First(f(vR))Case: vR = First(f(vR))h2i1. Chaos 0= M � SWeight 0 � SDistance 0� M � (SWeight � 1)� SDistance 0 by lemma B.28� M � SWeight �M � SDistance + jSim(f(vR))j � 1 by lemma B.30< M � SWeight � SDistanceby M � jSim(f(vR))j for any v= ChaosCase: vR > First(f(vR))

B. The TLA proof 44Chaos 0= M � SWeight 0 � SDistance 0= M � SWeight � SDistance 0 by lemma B.27< M � SWeight � SDistance by lemma B.29= ChaosLemma B.33 `A A(0)) Chaos 0 � Chaos +M � n� 1Proof:Assume: A(0)Prove: Chaos 0 � Chaos +M � n� 1Let: (a) �= 0B@Pv :v 2 V ^ v 6= f(0) ^ f(0)Tv ::(Weight(v) if W (v)Tv ^ t[v] 6= t[W (v)]0 otherwise 1CA(b) �= 0B@Pv :v 2 V ^ v 6= f(0) ^ :f(0)Tv ::(Weight(v) if W (v)Tv ^ t[v] 6= t[W (v)]0 otherwise 1CAh1i1. SWeight = (a) + (b) and SWeight 0 = (a) 0 + (b) 0The elements summed in (a) and (b) exactly cover those summed in SWeight and noelement covered by (a) is covered by (b) (and vice versa).h1i2. (b) 0 = (b)Let: v 2 V arbitrary s.t. v 6= f(0) ^ :f(0)Tvh2i1. t[v] 0 = t[v] by A(0) and v 6= f(0)h2i2. t[W (v)] 0 = t[W (v)] by A(0) and v 6= f(0) ^ :f(0)Tv)W (v) 6= f(0)h2i3. Q.E.D. by h2i1 and h2i2h1i3. (a) � 0 by Weight(v) � 0 for any vh1i4. (a) 0 � �Pv : v 2 V ^ v 6= f(0) ^ f(0)Tv :: Weight(v)�= Weight(f(0))� 1 by f(0)Tv) v 6= f(0)= n� 1 by lemma B.24 and lemma B.25h1i5. SWeight 0 = (a) 0 + (b) 0 by h1i1� (a) + (b) + n� 1 by h1i2, h1i3 and h1i4= SWeight + n� 1 by h1i1h1i6. �SDistance 0 � �SDistance + jSim(f(0))j � 1 by lemma B.30, A(0)and 0 = First(f(0))� �SDistance +M � 1 by jSim(v)j �M for any vh1i7. Chaos 0 = M � SWeight 0 � SDistance 0� M(SWeight + n� 1)� SDistance +M � 1 by h1i5 and h1i6= Chaos +M � n� 1Lemma B.34 `A Chaos = n� nR) �8vR : vR 2 VR n f0g :: : � A(vR)�Proof:

B. The TLA proof 45Assume: Chaos = n� nRLet: vR 2 VR n f0g arbitraryProve: : � A(vR) by case analysis on vR = First(f(vR)) and vR > First(f(vR))h1i1. SDistance = nR � n ^ SWeight = 0 by Chaos = n� nR and lemmas B.23 and B.26h1i2. �8vR : vR 2 VR :: d[f(vR)] � vR�Let: v 2 V arbitraryProve: d[v] = Last(v) then the statement follows since Last(v) = maxSim(v)h2i1. Distance(v) = jSim(v)j � 1 by h1i1 and Distance(v) � jSim(v)j � 1 for any v 2 V(follows from Domain)h2i2. Q.E.D. by h2i1 and Domainh1i3. �8v : v 2 V :: v 6= f(0)) t[v] = t[W (v)]�Let: v 2 V arbitraryh2i1. :W (v)Tv _ t[v] = t[W (v)] by h1i1 and Weight(v) > 0 for any v 2 Vh2i2. :W (v)Tv , v = f(0) by def. of uTvh2i3. Q.E.D. by h2i1 and h2i2Case: vR = First(f(vR))h2i1. f(vR) 6= f(0)for suppose f(vR) = f(0) then vR = First(f(vR)) = First(f(0)) = 0 contradictorywith vR 6= 0h2i2. t[f(vR)]= t[W (f(vR))] by h2i1 and h1i3= t[f(First(f(vR))� 1 mod nR)] by def. of W= t[f(vR � 1 mod nR)] by vR = First(f(vR))= t[f(vR � 1)] by vR 2 VR n f0gh2i3. Q.E.D. by h2i2 and vR = First(f(vR))Case: vR > First(f(vR))h2i1. d[f(vR)] � vR by h1i2h2i2. Q.E.D. by h2i1 and vR > First(f(vR))Lemma B.35 `A Legal (nR � 1)) Chaos = n� nRProof:Assume: Legal (nR � 1) so �8vR : vR 2 VR :: Green(vR)�Prove: Chaos = n� nRh1i1. �8v : v 2 V :: t[v] = t[f(0)]�Let: v 2 V arbitraryh2i1. t[v]= t[f(First(v))] by v = f(First(v))= t[f(0)] by Green(First(v))h1i2. �8vR : vR 2 VR :: d[f(vR)] � vR� by �8vR : vR 2 VR :: Green(vR)�h1i3. SWeight = 0Let v 2 V arbitrary then by h1i1 t[v] = t[f(0)] = t[W (v)]. Since v 2 V arbitrarySWeight = 0

B. The TLA proof 46h1i4. SDistance = nR � nLet: v 2 V arbitraryProve: d[v] = Last(v) so Distance(v) = jSim(v)j � 1 and since v 2 V arbitrarySDistance = nR � nh2i1. d[v] = d[f(Last(v))] by v = f(Last(v))� Last(v) by h1i2h2i2. d[v] � Last(v) by Domainh2i3. Q.E.D. by h2i1 and h2i2h1i5. Q.E.D. by h1i3, h1i4 and Chaos =M � SWeight � SDistanceCorollary B.36 `A Legal(nR � 1), Chaos = n� nR, �8vR : vR 2 VR n f0g :: : � A(vR)�Proof: Follows from lemmas B.35, B.34 and B.20.B.5 First stabilization phaseIn this subsection we will de�ne the function Phase1 that will decrease with the executionof any occurrence. If it has reached its lower bound we've entered the second phase.c(s) �= fv 2 V n ff(0)gjt[v] = sgMissing(s) �= c(s) = ; ^ (t[f(0)] = s) d[f(0)] = 0)Miss �= �min s : s 2 f0; : : : ; Q� 1g ^Missing(s) :: (s� t[f(0)]) mod Q�Phase1 �= M � n �Miss + ChaosLemma B.37 Miss is well de�ned if Q > n, i.e.`A Q > n) f(s� t[f(0)]) mod Qjs 2 f0; : : : ; Q� 1g ^Missing(s)g 6= ;Proof:Assume: f(s� t[f(0)]) mod Qjs 2 f0; : : : ; Q� 1g ^Missing(s)g = ;Prove: Q � nLet: cc(s) �= fv 2 V jt[v] = sgh1i1. �8s : s 2 f0; : : : ; Q� 1g :: cc(s) 6= ;�Let: s 2 f0; : : : ; Q� 1g arbitraryProve: cc(s) 6= ;h2i1. c(s) 6= ; _ t[f(0)] = sby the assumption we have :Missing(s)h2i2. Q.E.D.c(s) � cc(s), so in case c(s) 6= ; also cc(s) 6= ;. In case t[f(0)] = s then f(0) 2 cc(s),so also cc(s) 6= ;. Therefore it follows from h2i1.h1i2. �8s1; s2 : s1; s2 2 f0; : : : ; Qg :: s1 6= s2) cc(s1) \ cc(s2) = ;�Let: s1; s2 2 f0; : : : ; Q� 1g arbitrary

B. The TLA proof 47Assume: cc(s1) \ cc(s2) 6= ; so there is a v 2 V s.t. v 2 c(s1) and v 2 c(s2)Prove: s1 = s2h2i1. t[v] = s1 by v 2 cc(s1)h2i2. t[v] = s2 by v 2 cc(s2)h2i3. Q.E.D. by h2i1 and h2i2h1i3. Q � j �Ss : s 2 f0; : : : ; Q� 1g :: cc(s)� j by h1i1 and h1i2� jV j by �Ss : s 2 f0; : : : ; Q� 1g :: cc(s)� � V= nLemma B.38 `A 0 � Miss < QProof:Miss = �min s : s 2 f0; : : : ; Q� 1g ^Missing(s) :: (s� t[f(0)]) mod Q� so sinceMissis well de�ned by lemma B.37 we conclude 0 � Miss < Q.Lemma B.39 `A �8vR : vR 2 VR n f0g :: A(vR) ^Miss > 0) Miss 0 � Miss�Proof:Let: vR 2 VR n f0g arbitraryAssume: A(vR) ^Miss > 0Prove: Miss 0 � Missh1i1. �8s : s 2 f0; : : : ; Q� 1g :: Missing(s)) Missing(s) 0 �Let: s 2 f0; : : : ; Q� 1g arbitrary s.t. Missing(s)Prove: Missing(s) 0h2i1. t[f(vR)] 0 6= s by case analysis on f(vR � 1) = f(0) and f(vR � 1) 6= f(0)Case: f(vR � 1) = f(0)h3i1. t[f(0)] 6= sif t[f(0)] = s then Missing(t[f(0)]) so Miss = 0 contradicting Miss > 0h3i2. t[f(vR)] 0 = t[f(vR � 1)] by (F4), A(vR) and vR > 0= t[f(0)] by f(vR � 1) = f(0)6= s by h3i1Case: f(vR � 1) 6= f(0)h3i1. t[f(vR)] 0 = t[f(vR � 1)] by (F4), A(vR) and vR > 06= s by Missing(s) and f(vR � 1) 6= f(0)h2i2. �8u : u 2 V n ff(0)g ^ u 6= f(vR) :: t[u] 6= s�Let: u 2 V n ff(0)g arbitrary s.t. u 6= f(vR)h3i1. t[u] 0 = t[u] by A(vR) and u 6= f(vR)6= s by Missing(s) and u 6= f(0)h2i3. �8v : v 2 V n ff(0)g :: t[v] 0 6= s� so c(s) 0 = ; by h2i1 and h2i2h2i4. t[f(0)] 0 = s) d[f(0)] 0 = 0by case analysis on f(vR) 6= f(0), f(vR) = f(0) ^ f(vR � 1) = f(0) and f(vR) =f(0) ^ f(vR � 1) 6= f(0)

B. The TLA proof 48Case: f(vR) 6= f(0)h3i1. Unchanged (t[f(0)]; d[f(0)] by A(vR) and f(vR) 6= f(0)h3i2. Q.E.D. by Missing(s) and h3i1Case: f(vR) = f(0) ^ f(vR � 1) = f(0)Assume: t[f(0)] 0 = sProve: ?h3i1. t[f(0)]= t[f(vR � 1)] by f(0) = f(vR � 1)= t[f(vR)] 0 by (F4) and A(vR) and vR 6= 0= t[f(0)] 0 by f(0) = f(vR)= s by assumptionh3i2. Missing(t[f(0)]) by Missing(s) and h3i1h3i3. Q.E.D. Miss = 0 by h3i2, contradicting Miss > 0Case: f(vR) = f(0) ^ f(vR � 1) 6= f(0)Assume: t[f(0)] 0 = sProve: ?h3i1. t[f(vR � 1)]= t[f(vR)] 0 by (F4), A(vR) and vR 6= 0= t[f(0)] 0 by f(vR) = f(0)= s by assumptionh3i2. c(s) 6= ; by h3i1 and f(vR � 1) 6= f(0)h3i3. Q.E.D. by h3i2 and Missing(s)h2i5. Q.E.D. by h2i3 and h2i4h1i2. t[f(0)] 0 = t[f(0)] by case analysis on f(vR) = f(0) and f(vR) 6= f(0)Case: f(vR) = f(0) so vR > First(f(vR)) by vR > 0 = First(f(0))h2i1. t[f(0)] 0 = t[f(vR)] 0 by f(0) = f(vR)= t[f(vR)] by A(vR) and vR > First(f(vR))= t[f(0)] by f(0) = f(vR)Case: f(vR) 6= f(0)h2i1. t[f(0)] 0 = t[f(0)] by A(vR) and f(vR) 6= f(0)h1i3. f(s� t[f(0)]) mod Qjs 2 f0; : : : ; Q� 1g ^Missing(s)g� f(s� t[f(0)]) mod Qjs 2 f0; : : : ; Q� 1g ^Missing(s) 0 g by h1i1� f(s� t[f(0)] 0) mod Qjs 2 f0; : : : ; Q� 1g ^Missing(s) 0 g by h1i2h1i4. Q.E.D. by h1i3Lemma B.40 `A A(0) ^Miss > 0) Miss 0 < MissProof:Assume: A(0) ^Miss > 0h1i1. �8s : s 2 f0; : : : ; Q� 1g :: Missing(s)) Missing(s) 0 �Let: s 2 f0; : : : ; Q� 1g arbitrary s.t. Missing(s)Prove: Missing(s) 0h2i1. c(s) 0 = c(s) by A(0) so �8u : u 2 V n ff(0)g :: Unchanged (t[u])�

B. The TLA proof 49h2i2. d[f(0)] 0 = 0 by (F3) and A(0)h2i3. Q.E.D. by h2i1 and h2i2h1i2. Miss 0= �min s : s 2 f0; : : : ; Q� 1g ^Missing(s) 0 :: (s� t[f(0)]) 0 mod Q�� �min s : s 2 f0; : : : ; Q� 1g ^Missing(s) :: (s� t[f(0)]) 0 mod Q� by h1i1= �min s : s 2 f0; : : : ; Q� 1g ^Missing(s) :: (s� t[f(0)]� 1) mod Q� by A(0)= Miss � 1 by Miss > 0and Q � 2< MissLemma B.41 `A n� nR � Phase1 �M � n � (Q� 1) +M n(n�1)2Proof:h1i1. Phase1= M � n �Miss + Chaos� Chaos by lemma B.38� n� nR by lemma B.31h1i2. Phase1= M � n �Miss + Chaos� M � n � (Q� 1) + Chaos by lemma B.38� M � n � (Q� 1) +M n(n�1)2 by lemma B.31Lemma B.42 `A T ^Miss > 0) Phase1 0 < Phase1Proof:Assume: T ^Miss > 0Let: vR 2 VR s.t. A(vR) such vR exists by TProve: Phase1 0 < Phase1 by case analysis on vR = 0 and vR 6= 0Case: vR = 0 so A(0)h2i1. Phase1 0= M � n �Miss 0 + Chaos +M � n� 1� M � n � (Miss � 1) + Chaos +M � n� 1 by lemma B.33 and A(0)= M � n �Miss + Chaos � 1 by lemma B.40 and A(0) ^Miss > 0= Phase1 � 1< Phase1Case: vR 6= 0h2i1. Phase1 0= M � n �Miss 0 + Chaos 0� M � n �Miss + Chaos 0 by lemma B.39, A(vR) and vR 6= 0< M � n �Miss + Chaos by lemma B.32, A(vR) and vR 6= 0= Phase1

B. The TLA proof 50B.6 Second stabilization phaseIn this section we de�ne the function Stabilized that will be greater or equal to zero during thesecond stabilization phase. As long as it is greater or equal to zero and smaller than nR � 1it will not decrease and the root will also not execute. Execution of non-root nodes willdecrease the function Chaos as already proven. Since the range of Chaos is �nite, eventuallyStabilized must equal nR � 1 and this implies Legal(nR � 1), i.e. we've reached a legitimatecon�guration.Stable(vR) �= �8uR : uR 2 VR :: uR � vR , Green(uR)�Stabilized �= 8<: �1 if : �9uR : uR 2 VR :: Stable(uR)��max uR : uR 2 VR :: Stable(uR)� otherwiseLemma B.43 `A Miss = 0) Stabilized � 0Proof:Assume: Miss = 0 so Missing(t[f(0)]) and c(t[f(0)]) = ; ^ d[f(0)] = 0Let: uR 2 VR n f0g arbitraryProve: :Green(uR) then Stable(0) follows from uR 2 VR n f0g arbitrary and lemma B.5.Proven by case analysis on f(uR) = f(0) and f(uR) 6= f(0)Case: f(uR) = f(0)h2i1. d[f(uR)]= d[f(0)] by f(uR) = f(0)= 0 by Miss = 0< uR by uR 2 VR n f0gh2i2. Q.E.D. by h2i1Case: f(uR) 6= f(0)h2i1. t[f(uR)] 6= t[f(0)] by c(t[f(0)]) 6= ; and f(uR) 6= f(0)h2i2. Q.E.D. by h2i1Lemma B.44 `A Stable(nR � 1), Legal(nR � 1)Proof:h1i1. Stable(nR � 1), �8uR : uR 2 VR :: Green(uR)�, Legal(nR � 1)Lemma B.45 `A �1 � Stabilized < nRProof: By 0 � �max uR : uR 2 VR :: Stable(uR)� < nR if �9uR : uR 2 VR :: Stable(uR)�.

B. The TLA proof 51Lemma B.46`A 8vR; uR :vR; uR 2 VR ^ vR < nR � 1 ::Stable(vR) ^A(uR)) Stable(vR) 0 _ Stable(vR + 1) 0!Proof:Let: vR; uR 2 VR arbitrary s.t. vR < nR � 1Assume: Stable(vR) ^A(uR)Prove: Stable(vR) 0 _ Stable(vR + 1) 0h1i1. uR > 0Assume: uR = 0 for the sake of a contradictionProve: ?h2i1. :Green(nR � 1) by Stable(vR) ^ vR < nR � 1h2i2. : � A(0) by h2i1 and lemma B.10h2i3. :A(0) by h2i2 and `A A) �Ah2i4. A(0) by A(uR) and uR = 0h2i5. Q.E.D. by h2i3 and h2i4h1i2. vR < uRAssume: uR � vR for the sake of a contradictionProve: ?h2i1. 0 < uR � vR by uR � vR and h1i1h2i2. Green(uR � 1) ^Green(uR) by h2i1 and Stable(vR)h2i3. : � A(uR) by h1i1, h2i2 and lemma B.6[vR := uR]h2i4. :A(uR) by h2i3 and `A A) �Ah2i5. Q.E.D. by h2i4 and A(uR)h1i3. �8wR : wR 2 VR ^ wR � vR :: Green(wR) 0 �Let: wR 2 VR arbitrary s.t. wR � vRProve: Green(wR) 0h2i1. Green(wR) by Stable(vR) and wR � vRh2i2. wR � vR < uR by wR � vR and h1i2h2i3. Q.E.D. by lemma B.14[uR; vR := uR; wR], h2i2, h2i1 and A(uR)h1i4. �8wR : wR 2 VR ^ wR > vR + 1 :: :Green(wR) 0 �Let: wR 2 VR arbitrary s.t. wR > vR + 1Prove: :Green(wR) 0 by case analysis on wR > uR and wR � uRh2i1. :Green(wR) by Stable(vR) and wR > vR + 1Case: wR > uRh3i1. Q.E.D. by lemma B.16[uR; vR := uR; wR], h1i1, uR < wR, A(uR) and h2i1Case: wR � uRh3i1. uR � 1 � wR � 1 by case> vR by let of wRh3i2. :Green(uR � 1) by Stable(vR) and h3i1h3i3. Q.E.D. by lemma B.16[uR; vR := uR; wR], h1i1, h3i2, A(uR) and h2i1h1i5. Q.E.D. by h1i3 and h1i4.Note that we have either Green(vR + 1) 0 or :Green(vR + 1) 0 establishing respectivelyStable(vR + 1) 0 and Stable(vR) 0 .

B. The TLA proof 52Corollary B.47 `A 0 � Stabilized < nR � 1 ^ T) Stabilized � Stabilized 0Proof:Assume: 0 � Stabilized < nR � 1 ^ TProve: Stabilized � Stabilized 0Let: vR 2 VR s.t. vR = Stabilized ^ vR < nR � 1 so also Stable(vR). Such vR exists by0 � Stabilized < nR � 1.Let: uR 2 VR s.t. A(uR). Such uR exists by Th1i1. Q.E.D.By lemma B.46 we have Stable(vR) 0 _Stable(vR+1) 0 and therefore Stabilized 0 � vR =StabilizedB.7 Temporal GlueIn this subsection we will glue all the previous mathematical reasoning together to get thewanted temporal statements. We call a protocol, speci�ed by the formula � selfstabilizingwith respect to the legitimate con�gurations speci�ed by L if and only if we can show thefollowing:` �, 2�` � ^ L) 2L` �) 3LIf we also want to show some bound (bound) on the stabilisation time (expressed in con�gu-ration changes) we should prove the following instead of the third condition:` � ^ time = 0 ^2[time 0 = time+ 1]) 3(L ^ time � bound)where time is (of course) a variable not occuring in �, it is a so called history variable. The�rst condition states that � does not specify an initialisation predicate. The second conditionstates the safety part of the proof and has already been shown in corollary B.19. For thethird condition we mainly use the following rule, that can be derived from the Lattice-rulein TLA:If `A N ^ P) Q 0 _ (f 0 < f ^ P 0)and `A lb � f < ubwhere the range of f is a subset of ZZ and lb; ub 2 ZZthen ` 2hN ^ time 0 = time + 1i) (P ^ time � ts ; Q ^ time � ts + ub � lb)We refer to this rule as the t-Lattice-rule.Theorem B.48 ` �^ time = 0^2[time 0 = time + 1]) 3(Legitimate ^ time � tPhase1 +tPhase2)where tPhase1 �= M � n � (Q� 1) +M n(n�1)2 + nR � n+ 1tPhase2 �= M n(n�1)2 + nR � n+ 1

B. The TLA proof 53Proof:h1i1. ` �) 2hT ih2i1. `A �9vR : vR 2 VR :: �A(vR)� by corollary B.21h2i2. `A �T by h2i1 and Domainh2i3. ` 2 � T by h2i2h2i4. ` [T] ^WF(T) ^ �T) 2hT iThis follows from the same rule as used in the proof of theorem B.12:If `A P) �Vi; j : i; j 2 I ^ i 6= j :: �A(i)) : � A(j)�then ` �Vi : i 2 I :: P ^ [A] ^WF(A) ^ �A(i)) hA(i)i�where A �= �Wi : i 2 I :: A(i)�Take P = > and I = f1g, then the condition is trivially satis�ed. The conclusionfollows by taking A(1) = T .h2i5. 2[T] ^WF(T) ^2 � T) 2hT i by 2-mono on h2i4h2i6. Q.E.D. by h2i3, h2i5 and �) 2[T] ^WF(T).h1i2. � ^2[time 0 = time + 1]) 2hT i ^2[time 0 = time + 1] by h1i1, 2(hT i ^ [time 0 = time + 1]) by 2� ^2 , 2(� ^), 2(hT ^ time 0 = time + 1i) by hAi ^ [B], hA ^ Bih1i3. ` time = 0 ^2hT ^ time 0 = time + 1i) 3(Stabilized � 0 ^ time � tPhase1)h2i1. T ^Miss > 0) Phase1 0 < Phase1 by lemma B.42) Miss 0 = 0 _ (Phase1 0 < Phase1 ^Miss 0 > 0) by lemma B.38h2i2. 2hT ^ time 0 = time + 1i) (Miss > 0 ^ time = 0; Miss = 0 ^ time � tPhase1)by the t-Lattice-rule, h2i1 and lemma B.41h2i3. time = 0) (Miss > 0 ^ time = 0) _3(Miss = 0 ^ time � tPhase1)by tPhase1 � 0 and ` �) 3�h2i4. time = 0 ^2hT ^ time 0 = time + 1i) 3(Miss = 0 ^ time � tPhase1)by h2i2 and h2i3h2i5. Q.E.D. by h2i4 and lemma B.43h1i4. ` Stabilized � 0 ^ time � tPhase1 ^2hT ^ time 0 = time + 1i)3(Legitimate ^ time � tPhase1 + tPhase2)h2i1. T ^ 0 � Stabilized < nR � 1) 0 � Stabilized 0 � nR � 1 by corollary B.47 andlemma B.45h2i2. 0 � Stabilized < nR � 1) : � A(0)Let vR = Stabilized and assume 0 � vR < nR�1 so Stable(vR) and since vR < nR�1we have :Green(nR � 1) and by lemma B.10 we conclude : � A(0).h2i3. T ^ 0 � Stabilized < nR � 1) �9vR : vR 2 VR n f0g :: A(vR)� ^ 0 � Stabilized < nR � 1 by h2i2) 0 � Stabilized 0 � nR � 1 ^ Chaos 0 < Chaosby h2i1 and lemma B.32) Stabilized 0 = nR � 1 _ (0 � Stabilized 0 < nR � 1 ^ Chaos 0 < Chaos) by logich2i4. 2hT ^ time 0 = time + 1i) (0 � Stabilized < nR � 1 ^ time � tPhase1 ;Stabilized = nR � 1 ^ time � tPhase1 + tPhase2)

C. Concluding remarks 54by t-Lattice-rule, h2i3 and lemma B.31h2i5. Stabilized � 0 ^ time � tPhase1) _ 0 � Stabilized < nR � 1 ^ time � tPhase1_ 3(Stabilized = nR � 1 ^ time � tPhase1 + tPhase2)by lemma B.45 and tPhase2 � 0.h2i6. Stabilized � 0 ^ time � tPhase1 ^2hT ^ time 0 = time + 1i)3(Stabilized = nR � 1 ^ time � tPhase1 + tPhase2)by h2i5 and h2i4h2i7. Q.E.D. by lemma B.44 and h2i6.h1i5. Q.E.D.by h1i1 : : : h1i4.This proves the third and last requirement of a selfstabilizing protocol.C. Concluding remarksIf the original graphG was already a ring and we take nR = n and f(i) = i, we getM = 1, andthe stabilization time is O(n2). This is the same stabilization time Dijkstra gave. Actuallyour protocol does essentially the same as Dijkstra's protocol. However the bound of O(n3)can not be smaller in general, due to the following example. Consider the following graph,where both r and c are in �(n).
V1

V2

Vc

Ur U1 U2 U3 Ur-2 Ur-1
. . ..

.
.

In a covering ring of this graph, the nodes U1; : : : ; Ur must be used to connect (the imagesof) any two nodes Vi and Vj , so nR 2
(n2). In the picture below a covering ring is shown.The dashed arcs denote a copy of the chain U1; : : : ; Ur. So each Ui simulates a node in eachdashed arc, and the First(Ui) is in the �rst (leftmost) dashed arc. Lets say that a ticket ofwR is valid if d[f(wR)] � wR. Also call wR � 1 mod nR, the predecessor of wR. Lets take V1as the root node.
UrU1 UrU1 UrU1UrU1

. . .
V1 V2 V3 V4 VcThe �rst occurrences (�rst arc) will always copy a valid ticket from their predecessor in the�rst arc, if it is unequal to their own ticket. The other occurrences will only increase their

C. Concluding remarks 55distance in any of the other dashed arcs, if the ticket of their predecessor equals their ownand is valid. Now consider the following scenario. First all nodes in the �rst arc copy the rootvalue (one by one of course). Now instead of travelling through the second arc, this value ispresent in Vc and valid. So the simulating nodes can increase their distance immediately tothe last arc (one by one of course). Now the root can generate a new ticket (since its tickethas returned at nR � 1, and it is again copied by the �rst arc. Now this ticket has beenwaiting in Vc�1, so the nodes can increase their distance one by one through the last twoarcs. Again the root generates a new ticket, the �rst arc copies it, and this ticket was waitingin Vc�2. And so on. Finally we end up with a ticket waiting in V2, only then the protocol hasstabilized. We now have had c � 1 2
(n) separate root tickets. The �rst (from V1) travelsthrough the �rst and last arc. The second (from Vc) travels through the �rst and last twoarcs. In general the i-th travels through the �rst and last i arcs. So each value travels (onthe average) through
(n) arcs. Each arc has
(n) length, so in total we have established ascenario that takes
(n3) stabilization time.One might suggest that we should have sticked closer to the colors blue and white, usedin Dijkstra's original proof. Dijkstra used a history variable to color its nodes. Initially eachnode was white. If the root generated a new ticket it became blue and if another node copieda blue ticket it became blue too. First of all one should prove that this indeed is a historyvariable, which would not be very di�cult, but still. Note however that a blue node is alsogreen and that this is actually the property Dijkstra uses of blue when he concludes thatwhen eventually all nodes are blue, the con�guration is legitimate. Furthermore our proofmore precisely shows what happens to the chaos in the white nodes. One could imagine thatthere exists a scenario for the white nodes to stay white but still execute once in a while.Due to the decreasing chaos this is not the case. The advantage of blue and white is thatthere would be no need for the second phase. However the overhead of proof for the secondphase is very small, since its proof coincides very much with the proof of staying legitimateonce a legitimate con�guration has been reached.In an earlier version of our proof we assumed that the root node had only one occurrence.In this case the root only needed to generate a new ticket out of n possible tickets, where asit now needs n + 1 possible tickets. In transforming our proof we made a slight mistake inlemma B.43 and had to correct this by changing the de�nition of Missing(s) (to include thepart t[f(0)] = s) d[f(0)] = 0).

