@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Self-stabilizing mutual exclusion on directed graphs
D. Alstein, J.H. Hoepman, B.E. Olivier and P.I.A. van der Put
Computer Science/Department of Algorithmics and Architecture

CS-R9513 1995

Report CS-R9513
ISSN 0169-118X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Self-Stabilizing Mutual Exclusion on Directed Graphs

Dick Alstein
wsinda@win.tue.nl
Eindhoven University of Technology

Jaap-Henk Hoepman
jhh@cwi.nl
CWI Amsterdam

Bryan E. Olivier
olivier@fwi.uva.nl
University of Amsterdam

Pascale I. A. van der Put
pascale@cs.ruu.nl
Utrecht University

Abstract

This paper investigates the complexity of self-stabilizing mutual exclusion protocols for distributed systems,
where processors communicate through shared memory according to a strongly connected directed communi-
cation graph. Tchuente's approach of covering a network with one directed cycle is taken as point of departure.
This protocol requires O(nzn) states per processor together with some preprocessing. By coalescing states
a protocol requiring only O(’I’LQ) states per processor—still requiring preprocessing—is derived. Finally two
protocols based on spanning trees are considered. Combining these protocols with a self-stabilizing spanning
tree protocol yields two O(an)—where m is the maximal degree of a processor—states per processor pro-
tocols that require knowledge of processor identities. This report concludes with a full proof of the coalesced
states protocol in Lamport's Temporal Logic of Actions.

CR Subject Classification (1991): C.2.4,C4,D.13,D.2.1,D.2.4,D.4.1,D.44, D.45 F.3.1
Keywords €4 Phrases: self-stabilization, mutual exclusion, distributed control, fault tolerance, shared
memory, directed communication graphs, TLA, formal correctness proofs

Note: The last three authors were partially supported by the Dutch foundation for scientific research (NWO)
through NFI Project ALADDIN, under contract number NF 62-376

1. INTRODUCTION

In a distributed system multiple processors co-operate to perform certain tasks. A prerequisite
for achieving co-operation are protocols that implement distributed control, i.e. protocols that
reach or maintain a global objective despite the fact that processors can only access partial,
local information. Because distributed control protocols are extensively used to implement

1. Introduction 2

distributed systems, many researchers have tried to implement them efficiently. Mutual
exclusion protocols constitute a well-know example. These protocols pass a single privilege
fairly among the processors in the system. A processor requiring exclusive access to a critical
resource must request the privilege and wait for it to arrive. After a processor is done with
the privilege, it forwards the privilege to some other processor requesting it. Many solutions
to the mutual exclusion problem exist, but most of them assume that the system operates
flawlessly at all times.

One can add failure resilience to distributed control protocols by making them self-sta-
bilizing. In abstract terms a self-stabilizing protocol will, when started on a system in an
arbitrary initial configuration, reach a certain desirable legitimate configuration after a
finite number of steps. The legitimate configurations characterize the global objective that has
to be maintained in the system. Once such a legitimate configuration is reached, the protocol
will keep the system in a legitimate configuration forever. For a mutual exclusion protocol for
instance, the legitimate configurations would be those in which at most one processor holds
the privilege. In practice this means that a self-stabilizing protocol is resilient to transient
errors that change the state of some processors, but will leave the processors themselves in
working order. Since, as far as a self-stabilizing protocol is concerned, the erroneous state
just after an error might also have been its initial state, self-stabilizing protocols will recover
from such errors.

Most research on self-stabilizing protocols has focussed on systems in which part of the
state of a processor can be read by other, neighbouring, processors as if they communicated
through shared memory. An important complexity measure in this model is the number of
states per processor used by such a protocol. The distributed system is—as usual-—modelled
by a communication graph containing the processors as vertices and a directed edge between
two processors if the state of the first can be read by the second. This graph is considered
undirected if for every edge there exists an edge between the same processors in the reverse
direction as well. It is assumed that this communication graph is strongly connected.

Self-stabilization was introduced by Dijkstra [Dij74, Dij82] in the context of the mutual
exclusion problem. Dijkstra gives an O(n)-state! self-stabilizing mutual exclusion (SSME)
protocol for directed rings, a four-state protocol for an undirected chain, and a three-state
protocol for undirected rings. All his protocols are non-uniform: the protocol of at least
one processor differs from the protocol of the other processors to break the symmetry of the
system. He aslo proved that for rings of non-prime size no uniform SSME protocol can exist.
Burns and Pachl [BP89] complemented this result with a uniform SSME protocol for rings
of prime size.

Elaborating on Dijkstra’s results, Tchuente [Tch81] gives some lower bounds on the number
of states per processor for any self-stabilizing mutual exclusion (SSME) protocol on a chain
or a ring. He also extends Dijkstra’s results to SSME protocols for arbitrary graphs in two
ways: by covering a graph with a ring?, and by covering a graph with chains and rings that all
share at least one common node. The resulting protocols require knowledge of the coverings,

!Unless stated otherwise, an z-state protocol should be read as z-state-per-processor protocol.
2Here a ring is a cyclic path in the graph that may visit nodes more than once, and may traverse edges
more than once.

2. Model & notation 3

and therefore require some preprocessing.

For undirected graphs, many SSME protocols have been developed. There the focus has
been on optimizing the time needed to reach a legitimate configuration and the time needed
to pass the privilige from one processor to the other. Of special interest to us is a SSME
protocol for arbitrary undirected graphs based on spanning trees, by Dolev et. al. [DIM93].
They introduce the notion of a fair protocol combination to combine a self-stabilizing spanning
tree protocol with a SSME algorithm for tree-shaped graphs to obtain a SSME protocol for
arbitrary graphs. The resulting protocol only requires one a priori special node and can even
handle topological changes, as long as the diameter and the maximal degree of the graph do
not exceed the limits assumed by the protocol.

To summarize: space efficient self-stabilizing mutual exclusion protocols for undirected
graphs exist, but for arbitrary directed graphs only Tchuente’s covering with a directed ring
can be used. This requires O(n?") states per processor in the worst case. Our contribution
is twofold. First we reduce the number of states needed to cover a graph with a virtual
ring to O(n?) by coalescing states on the processors. Recall that this cover still needs to be
computed beforehand. Secondly, we present two new protocols using roughly O(n?) states
per per processor that do not require preprocessing, but do require that processors know
their identities. Instead of a virtual ring, this protocol uses a spanning tree which can be
maintained by a separate self-stabilising protocol requiring an additional O(mD) where m is
the maximum degree of any node in the graph and D is the diameter of the graph—states per
processor. Merging both protocols using fair protocol combination yield two O(n?Dm) states
per processor protocols for self-stabilizing mutual exclusion on arbitrary, strongly connected,
directed graphs.

The structure of our paper is as follows. We begin by describing the model, give a precise
statement of the problem and introduce some notation in section 2. Section 3 discusses
Tchuente’s results from [Tch81], and is followed by section 4, in which we improve his solution
of covering a graph with a ring. Our protocols based on a spanning tree are presented in
section 5. Finally, section 6 discusses our results, and suggests ways of further research. Due
to space considerations, the proofs in this paper will only be sketched.

2. MODEL & NOTATION

We consider arbitrary strongly connected distributed systems modelled by a directed commu-
nication graph G=(V,E), with nodes veV = {0,...,n—1} and directed edges uwve E C V x V.
If uv € E, then u is an in-neighbour of v and v an out-neighbour of u. Internally, nodes can
distinguish between neighbours. We define the set of in-neighbours In(v) = {u | uv € E}.
Nodes in the system communicate with each other by reading each others state. Node v can
read the state of node w if and only if uv € E.

A configuration C € C of the system is the Cartesian product [],cy S, of states S, € S,
of all nodes v € V. Here S, is the set of all possible states of node v, and C is the set of
all possible configurations. We write C[v] for the state of node v in configuration C. A
program for a node v describes the steps it can perform, based on the state of v and the
state of its in-neighbours In(v). We model a program for a node v as a deterministic state-
transition function 6, : S, x Hueln(v) Sy — S,. A step of v in configuration C' changes the

3. Tchuente's approach 4

state of v to 6,(C) = 6,(C[v], (Clu))

and C'[u] = Cu] for all u # v. We write C = C'. A protocol consists of a program for each
node v € V.

(v)), yielding configuration C’ with C'[v] = §,(C)

ueln

All protocols assume the existence of a central daemon [Dij74]. In this model, nodes take a
step one at a time according to a fair schedule (vgvy ...), such that each v €V occurs infinitely
often in the schedule. An initial configuration Cy and a schedule (v;);>¢ induce an ezecution
(CyC1 ...) such that C; 5 Ciyq for all © > 0. This execution is fair iff the schedule is fair.
We consider normalized executions from which all void steps C; 4 Ciy1 with C; = Cj4q are
removed.

Let £ be the set of legitimate configurations, i.e. the set of configurations the distributed
systems should be in. Then a protocol is self-stabilizing to L if for all executions CyC; ...
there exists an i such that C; € £, and moreover, for all C' € £ and C” € C with C' — C", we
have C" € £ as well. In other words, a protocol is self-stabilizing to £ if in every execution a
configuration in £ is reached, and if £ is closed under transitions of the protocol.

The performance of a self-stabilizing protocol is usually measured by the number of states
per processor used by the protocol, and the rate of convergence, i.e. the worst case number of
non-void steps needed to reach a legitimate configuration. The state-per-processor measure
does not count any overhead incurred by communicating the state to the neighbour. This
cost is considered part of the topology. Of course, any critical assessment of a self-stabilizing
protocol should also consider the complexity measures related to the original problem to be
solved by the protocol. For self-stabilizing mutual exclusion protocols this would include a
bound on the time a processor may have to wait before it receives the privilege.

The problem to be solved can now be stated as follows: design a protocol, self-stabilizing
to a set L of legitimate configurations in which at most one node is privileged. Each node
should be able to determine whether it is privileged or not based on its own state and that
of its in-neighbours. A further requirement is that during an execution of the protocol, each
node gets privileged infinitely often.

We use the following notational conventions. The state of a processor is split into several
named fields. A field name of the state of v is written name[v]. Its value in a configuration
C is denoted C.name[v]. The program é, for a node v is denoted as a sequence of statements
to transform the state of v to its new state. Assignment is denoted by :=, alternatives by if
-then -else statements.

3. TCHUENTE’S APPROACH
Tchuente considers undirected (network) graphs whereas we consider directed graphs. Some
of Tchuente’s ideas are applicable to directed graphs (as will be shown).

3.1 Virtual ring
Dijkstra’s protocol for mutual exclusion applies to a unidirectional ring. A variant of this
protocol applies to an arbitrary strongly connected directed graph.

For each node v there exists a path from v to any other node in an arbitrary strongly
connected directed graph G. So it is possible to find a walk in G which contains all nodes in

3. Tchuente's approach 5

G. 3 Such a walk forms a virtual ring. Each node in G simulates (i.e. executes the program
of) one or more nodes in the (unidirectional) virtual ring G". And each virtual node in G" is
simulated by one node in G. So mutual exclusion in the virtual ring implies mutual exclusion
in the (corresponding original) arbitrary strongly connected directed graph.

S N

>]

Figure 1: Virtual Ring and Construction from Subgraphs (Worst case)

The best case example occurs when the original graph is a simple ring. The virtual ring
(with minimal number of nodes) in G is G itself. A worst case example is presented in figure 1.
The virtual ring in G is (1,n/2 4+ 1,n/24+2,...,n,2,n/24+1,n/2+2,...,n,...,n/2,n/2 +
1,n/2 4+ 2,...,n). The virtual ring contains about n?/4 nodes. It can be shown that there
exists a virtual ring G" = (V", E") for an arbitrary strongly connected directed graph G =
(V,E), where |V| =mn, s.t. n < |V"| < n?

The state of a node v in graph G should represent the states of all nodes in G" which v
simulates. Tchuente’s representation is simple. The state s, of node v is a tuple. This tuple
has as fields the states s, of all (distinct) nodes u simulated by v. In worst case n nodes
simulate ©(n?) nodes. Each simulated node u has a state consisting of a variable which has
O(n?) values in worst case. Since an arbitrary node v simulates O(n) nodes u this results in

O(n?") states per processor ((n?)™ = n?").

3.2 Construction from subgraphs

We describe another idea of Tchuente as follows. The mutual exclusion problem in a subgraph
is solved by means of a subprotocol. An protocol for the entire graph is constructed by
combining the subprotocols. Combining the subprotocols requires a so called central node
which is common to all subgraphs. Each node in G simulates one or more nodes in one or
more subgraphs G¢. And each node in a G° is simulated by one node in G. The central
node chooses which subprotocol is ‘active’. So mutual exclusion in and among the subgraphs
implies mutual exclusion in the (corresponding original) arbitrary strongly connected directed
graph. (Hierarchies of subprotocols may be considered.) Tchuente’s subprotocols are variants
of Dijkstra’s protocol. Each node in a subgraph has a state consisting of a single variable
which has a constant number of values (instead of about n' values where n' is the number of

3Consider the nodes v1 upto including v,. There exist a path from v to v, from vs to vz and a path from

v to v1, forming a (non-minimal) walk.

4. Reducing the number of states 6

nodes in the subgraph).

The best case example occurs when the original graph as a whole resembles a subgraph.
The protocol amounts to the corresponding subprotocol. Figure 1 can be viewed as a worst
case example. Node n is the central node. A subgraph in the form of a ring is presented
in the same figure. There exist (n) subgraphs of Q(n) length in this example. In worst
case n nodes simulate ©(n?) nodes in a directed graph. Since an arbitrary node v simulates
O(n) nodes wu this results in O(c™) states per processor. The worst case may be less bad in
an undirected graph. In worst case n nodes simulate an amount of nodes ranging between
Q(n -logn) and O(n?).

4. REDUCING THE NUMBER OF STATES

As in Tchuentes approach we start with a walk through the directed strongly connected graph
G = (V, E) visiting all nodes, each node is visited at most n — 1 (n = |V]) times and the
walk returns where it started. We will call each visit of a node an occurrence of this node.
Some occurrence of some node is selected as the start of the walk and is assigned a number
0. It will be called the root. If the length of the walk is ng then all occurrences are assigned
a number in Vi = {0,...,ng — 1} increasing along the walk. The function f : Vg — V gives
for each occurrence its corresponding node.

Sim(v) = {vg € Vg|f(vr) =0}
First(v) 2 min Sim (v)
Last(v) £ max Sim(v)

Sim(v) is the set of occurrences of node v, First(v) is the first and Last(v) is the last occurrence
of node v.

In Tchuentes protocol each occurrence runs the program of a processor in Dijkstra’s pro-
tocol, ending up with a total number of states per processor of O(n'y) It is our goal to reduce
this number to O(n?). In our protocol we also have a program for each occurrence of a node,
but all occurrences of a node share two variables ¢ and d, each with O(n) values. Variable
t, called ticket, corresponds to Dijkstra’s variable. Instead of associating a ticket with each
occurrence, all occurrences of a node share the ticket of the node. The variable d, called
distance, is used to tell which occurrences have this ticket and which don’t. The distance at
a node v is equal to one of the occurrences of node v: all occurrences with a smaller or equal
number as this distance have the ticket, the others do not. Formally occurrence vgr has the
ticket (t[f(vr)]) iff d[f(vr)] > vgr. It should be noted that the number of values of distance
is O(n), because a node has at most n — 1 occurrences.

The first occurrences of nodes follow Dijkstra’s protocol, the others take care of propagating
the tickets. The root will generate new tickets when its own ticket returns at its predecessor
(in the walk), i.e.

The program for vp =0 :

if (e~ 1)] = Hf(0)] Adlf(ng 1) > np 1 then
HF0)]] = Hf(0)] +1 mod (n+ 1); d[f(0)] = 0

end if

4. Reducing the number of states 7

The other first occurrences will wait for their predecessor to have a different ticket and then
copy this ticket

The program for vg # 0 and vg = First(v) for some v € V' :
if t[f(ve — 1)] # t[f(vr)] Ad[f(vr —1)] > vg — 1 then

tlf(vr)]] = tlf(vr — D)]; d[f(vr)] := vr
end if

The non-first occurrences just propagate their ticket by increasing the distance to include
themselfses

The program for vg # 0 and vg > First(v) for some v € V' :
if t[f(vg —1)] =t[f(vr)] Nd[f(vg —1)] > vg — 1 Ad[f(vr)] < vg then

d[f(vr)] = vr
end if

The behaviours must satisfy the following fairness requirement: if the central daemon gives a
turn to a processor, this processor selects one of its occurrences and executes the correspond-
ing action, as described above. A processor is required to eventually execute an occurrence
that is enabled, i.e. its guard holds. The daemon is required to eventually select a processor
that has an occurrence enabled.

In the legitimate configurations the walk can be divided in two parts. In the first part
all occurrences have the same ticket as the root, we call them Green. In the second part all
occurrences either have the previous ticket of the root or are waiting for the ticket of the
root.

Green(vg) = t[f(vr)] = t[f(0)] Ad[f(vr)] = v
Red(vr) = (d[f(vr)] 2 vr = t[f(vr)] = t[f()] =1 mod (n 4+ 1))A
(d[f(vr)] < vr = t[f(vr)] = t[f(0)])
Legal(vg) =

(VUR ur € VR ANug < vg: Green(vR))
(VuR ur € VR ANug > vp :: Red(vR))
Legitimate 2 (HvR v € Vi Legal(vR))

In a legitimate configuration, if Legal (vg) holds, only the occurrence vg+1 mod np is enabled
(theorem B.11). It will therefore eventually be executed (theorem B.12). After performing
its action Legal(vg + 1 mod ng) holds (theorem B.18). A processor can be privileged if
any of its occurrences is enabled. Or, if we want all processors to be privileged in a more
round-Robin way, if its first occurrence is enabled. Or, if we want control over the sequence
of privileges, the first occurrence is enabled and its predecessor has a ticket with the number
of this node. From the above it follows that legitimate configurations are preserved and the
privilege is passed on. If all occurrences, except the root (number 0), are disabled, then all
occurrences are Green (induction on Vj), therefore Legal(ng — 1) holds (lemma B.20) and
the root is enabled. So in any configuration some occurrence is enabled (corollary B.21).

The stabilization period consists of two phases. In the first phase the root will generate
new tickets until no other occurrence has the same ticket. This starts the second phase, in

4. Reducing the number of states 8

which the root will not generate a new ticket until all occurrences have copied its ticket, at
which moment Legal(ng — 1) holds. For both phases we will define a function that decreases
with the execution of any enabled occurrence, unless we can start the next phase. Consider
the legitimate configurations as the third phase. The ranges of these bounding functions are
finite and therefore eventually a legitimate configuration is reached. The sum of the sizes of
these ranges is an upper-bound on the number of changes of configuration before reaching a
legitimate configuration. For this reason we try to keep the ranges small.

First we exhibit a function Chaos, decreasing with the execution of any enabled occurrence
except the root. This function will be used in both phases. For convenience the root will
not be considered an occurrence in the following and execution of any occurrences implies
it is enabled. We write (#v : D(v) = P(v)) to denote the number of v s.t. D(v) and P(v)

(domain and predicate) hold.

v) = f(First(v) — 1 mod ng)
Welght(v) 2 14 (Zu cu € VA{SO)} AW (u) =v Weight(u))
Distance(v) = (#vR :wp € Sim(v) it wp < d[v])
M = (maxv:vEV::|Sim(v)\)
Rank(v) = - Distance(v) + (])\4 - Weight (1) ;ifl[:jw:isi[ww oo
Chaos = (Zv tveV o Rank(v))

Chaos consists of the sum of contributions, Rank(v), of the nodes. This contribution in turn
consists of two parts: its distance and its weight. — Distance(v) decreases with the execution
of a non-first occurrence of v (lemma B.29) and increases with at most M — 1 if the first
occurrence is executed (lemma B.30). The sum of the weight-parts decreases with at least
M with the execution of a first occurrence (lemma B.28) and stays unchanged otherwise
(lemma B.27). From this it follows that Chaos decreases with at least 1 by the execution of
an occurrence (lemma B.32).

It can be shown that 0 < Distance(v) < |Sim(v)| (lemma B.22) and therefore it follows
that n —np < (Zv :v € V i: — Distance(v) 0 (lemma B.23). It can also be shown that

0< (Zv cveV Av# f(0) Weight(v)) < n(n—1) (lemma B.26), concluding (lemma B.31)

n(n —1)

n —ng < Chaos < M - 5

Configurations in the second phase look like legitimate configurations, the walk can also be
split in two parts and all occurrences in the first part are Green. The occurrences in the
second part however need not be Red as long as they are not Green.

Stable(vpg) 2 (VuR cup €Vetup <vp & Green(uR))

The second phase starts with Stable(0) and is ended with Stable(ng — 1) being equivalent
with Legal(ng — 1) (lemma B.44). If Stable(vg) (vg < mgr — 1) holds then execution of

5. Two Protocols Based On Spanning Trees 9

occurrence vi + 1 will establish Stable(vg + 1). Furthermore all occurrences ug (including
the root) before vg (urp < vg) are not enabled. Execution of an occurrence up after vg + 1
(ur > vgr + 1) preserves Stable(vg) (lemma B.46). We conclude that if the second phase
is indeed started with Stable(0) it will run through all vy to be Stable at vg, because the
function Chaos does not allow infinitely many executions of non-root occurrences. Eventually
Stable(nr — 1) holds, ending the second phase.

The first phase starts in an arbitrary configuration and ends with Stable(0), the start of
the second phase. As long as the second phase can’t start, the function Phasel, as defined
below, will decrease.

Missing(s) = (Vv L0 € VA {F(0)} = to] £ 3) A (E[f(0)] = s = d[f(0)] = 0)
for s € {0,...,n}
Miss = (mins:s€{0,...,n} AMissing(s) :: (s — H[f(0)]) mod (n + 1))
Phasel 2 M -n - Miss+ Chaos

Since there only n nodes there can be at most n tickets so there is at least one Missing and
therefore Miss is well defined in any configuration (lemma B.37). If Miss = 0 also Stable(0)
holds (lemma B.43) (no occurrence is Green), so during the first phase Miss > 0. Let’s
assume Miss > 0. If the root executes, Miss decreases with 1 (lemma B.40). Though not
trivial to prove, the increase of Chaos is at most M -n—1 (lemma B.33) and therefore Phasel
decreases with at least 1 (lemma B.42).

The other occurrences only copy or preserve tickets so missing tickets stay missing, unless
they copy from f(0). If Miss > 0 the ticket of the root wasn’t missing anyway. Therefore
they don’t increase Miss (lemma B.39) and as already shown they decrease Chaos. Since the
range of Phasel is finite, Miss will eventually equal 0, starting the second phase.

The stabilization time can in general be bounded by O(M - n?) C O(n?). In case of a
ring and the obvious walk through it: M € O(1) and the protocol is almost equivalent with
Dijkstra’s protocol. He uses n tickets where we require n+ 1 tickets. It is possible to compute
the walk in a self-stabilizing way, by first computing the total topology in every node and
then have each node compute a ring in such a way that they will all compute the same
ring. It would be interesting whether it could also be done more space efficient. Unlike the
other protocols in this paper the read/write synchronization is limited to two processors, a
processor only reads the state of ome other processor at the time followed by a write of its
own state.

5. Two Prorocors BASED ON SPANNING TREES

Although the protocol of the previous section is very space-efficient, it has one major drawback
in that it requires preprocessing to compute the covering of the graph. In this section we
lift this restriction at the expense of space-efficiency, and present two O(n?Dm) state per
processor SSME protocols for arbitrary, strongly connected, directed graphs with n nodes,
diameter D and maximal degree m. In the following two sections we will describe two SSME
protocols, assuming that we are given a stable spanning tree for the graph. Both protocols
require roughly O(n?) states per processor. Several self-stabilizing spanning-tree protocols

5. Two Protocols Based On Spanning Trees 10

have been published, for instance by Afek et. al. [AKY90] for undirected graphs, and Dolev
et. al. [DIM93] for arbitrary communication graphs. Combining this second protocol with
one of the SSME protocols described below using fair protocol combination [DIM93] will
yield a SSME protocol for arbitrary strongly connected directed graphs. This composition
increases the state complexity by a factor of O(mD), hence the complete protocol requires
O(n?Dm) states per processor. For details on both the spanning-tree protocol and fair
protocol combination we refer to section 5.3 and Dolev et. al. [DIM93]. Throughout this
section we assume that each node has access to its identity u € {0,...,n — 1} which is stored
in some storage resilient to transient errors.

5.1 The first protocol

The central idea in this first SSME protocol is to use the root of the spanning tree as coordi-
nator. This root will continually generate numbers in the range {0,...,n — 1} in cyclic order.
Such a number indicates the next node to become privileged. All non-root nodes cooperate
to pass this number down the spanning tree. Whenever a non-root node discovers that its
identity is equal to the number held by its parent, it becomes privileged until it stores this
number in its own state.

To ensure that only one node is privileged at a time, the root is only allowed to generate
a new number if it can be sure that all nodes hold the same number. Note that in that case
the node with identity equal to this number has already used its privilege. Inspection of the
numbers held by all incoming nodes of the root alone will not guarantee this, because the
root may not be able to read all leaves of the spanning tree directly. To allow the root to
make the correct decision, all nodes are required to express their trust in the number they
hold. For a node holding a certain number, its trust roughly corresponds to the length of the
shortest path to this node starting from an arbitrary node not holding this number. Then,
once all the incoming nodes of the root express the maximal trust (D — 1), the root may be
allowed to generate the next number. The root always expresses the maximal trust for any
number it holds. Then once the root sees this number on all its incoming nodes, all with
maximal trust, it is certain that all nodes hold the same number.

5.1.1 The implementation In the protocol we assume that one node r is the root of the
spanning tree. The identity of this node is determined beforehand, for example picking the
node with identity 0. All non-root nodes u have access to their parent P(u) in the tree.
For the purpose of this section it is assumed that this information is also stored in some
non-volatile storage, but it will actually be maintained by a separate self-stabilizing spanning
tree protocol (see above).

The mutual exclusion protocol appears in figure 2. In this protocol the externally visible
state i.e. the one readable by neighbouring processors of each processor u is divided into
two fields: num[u] with values in {0,...,n — 1}, and trustu] with values in {0,...,D — 1}.
A node is privileged iff the corresponding predicate is true in the current configuration. A
privileged node can choose to access its critical resource before taking the next step in the
SSME protocol, in which case it loses its privilege again.

5. Two Protocols Based On Spanning Trees 11

Node r : Privileged if (Vv € In(r) : num[v] = num[r] = r A trustjv] = D — 1)
if (Vv € In(r) : num[v] = num[r] Atrustjv] = D — 1)
then num|r] := (num|r] + 1) mod n
trustfr] == D — 1

Node u # r : Privileged if num[P(u)] = u # num][u]
num(u] := num|P (u)]
if (Yo, w € In(u) : num[v] = num|w])
then trust[u] := min({D — 1} U {trustjv] + 1| v € In(u)})
else trustjv] :=0

Figure 2: The First Mutual Exclusion Protocols

5.1.2 Proof of correctness To prove correctness we proceed as follows. First we give a
precise characterization of the legitimate configurations. We show that in these configurations
the mutual exclusion property is satisfied, and that the privilege is passed fairly among all
processors in the system. Then we show that once the system has reached a legitimate
configuration, it will remain in a legitimate configuration as long as no further errors occur.
We prove that the system is indeed self-stabilizing, by showing that the system will reach a
legitimate configuration when started from an arbitrary initial configuration.

The legitimate configurations C' must satisfy the following three conditions for each node

u. First, the number held by v must equal the one held by 7, or one less. If u holds the same
number as 7, then so must its parent and therefore all other nodes on the path from r to u
in the spanning tree.

Proper(C,u) = C.numfu] € {C.num]r],(C.num[r] — 1) mod n}

A [(u # r A C.onumu] = Conum|r]) = C.num|[P(u)] = C.num[r]]

Second, if u and all its incoming nodes hold the same number as the root r, then the trust
expressed by u should not be exaggerated.

Modest(C,u) = {(Vv € In(u) : Conum[v] = C.onum[r]) Au # r A Conumu] = C.num[r]}

= C.trustju] < min C.trustjv] +1
veln(u)

Third, if u holds the same number as the root r while some of its incoming nodes do not, the
trust expressed by u should be 0.
Honest(C,u) = {(31} € In(u) : Conum[v] # C.onumlr]) Au #r A Conum[u] = C.num[r]}
= C.trustju] =0

Observe that according to these definitions Proper(C,r), Modest(C,r) and Honest(C,r) hold
for the root r in any configuration C'. Combining these three predicates we define the legiti-
mate configurations C as exactly those that satisfy the predicate

5. Two Protocols Based On Spanning Trees 12
Legitimate(C) = (Yu € V' : Proper(C,u) A Modest(C, u) A Honest(C,u))

We start with an important proposition, stating that if the root advances in a legitimate
configuration, all nodes must hold the same value just prior to that.

Proposition 1 If (Vv € In(r) : C.num[v] = C.num|[r] A C.trustjv] = D — 1) for a legitimate
configuration C, then (Yv € V : C.num[v] = C.num|r]).

Proof: By contradiction. Suppose there is a node u € V' with C.num|u] # C.num][r]. Clearly
u & In(r). Consider the shortest path (u,vy,---,vg,r) from u to r for some k, 1 < k < D —1.
This path exists because the graph is strongly connected. Let vy = u, and take the largest
i > 0 such that C.num|v;] # C.num|r]. Then by Honest(C, v;y1) we have C.trustjvi41] = 0,
and for all j > i + 1 we have C.trustfvj;i] < C.trustfvj] + 1 by Modest(C,v;y1). Then
C.trust[vg] < k < D — 1. By the definition of the path, vg € In(r), and so for some v € In(r)
we have C.trust[v] # D — 1. This is a contradiction, and the proposition follows. O

That our protocol is indeed a mutual exclusion protocol in legitimate configurations follows
from the next lemma.

Lemma 2 (safety) In any legitimate configuration C, at most one processor is privileged.

Proof: Take any node u # r. If u is privileged in C, then C.num[u] # C.num|[P(u)] = u.
Since C' is legitimate we have Proper(C,u) and so C.numlu] = C.num|r] or C.numfu] =
(C.num|r] —1) mod n. But in the second case we must have C.num|[P(u)] = C.num/|r|, again
by Proper(C,u). We conclude C.numlu| # C.num|r| and thus u = C.num|r] for a privileged
node in a legitimate configuration C.

This implies that no other node v # r can be privileged in C. Also, if the root r
were privileged, we have (Vv € In(r) : C.num[v] = C.num|r] A C.trust[v] = D —1). Then by
proposition 1 we have (Yv € V : C.num[v] = C.num|r]). But this contradicts the fact that
C.num[u] # C.num[r] from which we conclude that the root too cannot be privileged if u # r
is privileged. O

The next lemma implies that the protocol is deadlock-free and all its executions are infinite.

Lemma 3 (no-deadlock) In any configuration C at least one processor can take a non-void
step.

Proof: Let node u hold the minimal value in its ¢rust field in configuration C. Then for
all v € In(u) trustjv] > trust[u]. If trustju] < D — 1, then if u, whether it is equal to 7 or
not, takes a step C — C', then C.trust[u] # C'.trust|u] and u would be able take a non-void
step. If trustfu] = D — 1 then, by minimality, for all nodes v trustjv] = D — 1. If for
some node u, numlu] # num[P(u)] then u is able to take a non-void step. If for all nodes
u # 1, num|u] = num[P(u)], we see that for all nodes u, num[u] = num[r]. Together with
trustju] = D — 1 we see that now the root must be able to take a non-void step. O

5. Two Protocols Based On Spanning Trees 13

Because we consider only fair executions, all processors take infinitely many steps in such
an infinite execution. That the protocol is also fair with respect to passing the privilege
among the processors is established by the next lemma.

Lemma 4 (fairness) If in a legitimate configuration C node u is privileged, then in any
execution, the next different privileged node will be (u + 1) mod n.

Proof: In the proof of the safety-property we saw that if in a legitimate configuration C node
u is privileged, then v = C.num|[r]. Consider the execution starting at C. If the root advances
for the first time after C, say in configuration C7, then for all configurations C’ with C' =
C' = C; we know that only u can be privileged. Similarly, if the root advances once more,
say in configuration Cy, then for all configurations C" with C; = C} = C" = Cs only node
(u+1) mod n can be privileged in C”. Then it remains to be shown that node (v +1) mod n
eventually becomes privileged for at least one such C”. This is guaranteed by the fact that
according to proposition 1 in configuration C; we have (Vv € V : Ci.num[v] = Cy.numlr])
and in configuration Cy we have (Vv € V : Co.num[v] = Cy.num|r]). As Cir.numlr] = u
and Cy.num|r] = (u + 1) mod n we must have an intermediate configuration in which node
(u + 1) mod n changes its value from u to (v + 1) modn. If (v + 1) modn # r then in

this configuration num[P((u + 1) mod n)] = (u 4+ 1) mod n while num[(uv + 1) mod n] = wu,
implying that node (u 4+ 1) mod n is privileged as required. If (v + 1) mod n = r, then in Cj
r is privileged. O

Note that we can weaken the privilege-condition of r to
(Vo €In(r) : numv] = num|r| A trustjv) = D — 1)

without violating the safety-property. In this case the root will be privileged every time
it generates a new number, i.e. between the time that u was privileged and the time that
(u+ 1) mod n was privileged, the root will have been privileged as well (unless (u+1) mod n
happens to equal 7).

The next lemma states that once the system reaches a legitimate configuration, it will
remain in a legitimate configuration for as long as no transient errors occur.

Lemma 5 (closure) For any legitimate configuration C, if C — C’ in any execution of the
protocol, then C' is legitimate.

Proof: We split the proof in two cases

Node r takes a step: If C.num|r] = C'.num][r] clearly Proper(C’,u) and Honest(C', u) still
hold for all uw € V, and Modest(C’,v) still holds for all v with » ¢ In(v). For those
w with 7 € In(w), notice that » must have changed its trust to n — 1, and so still
C' trust|w] < C'.trustr] which shows Modest(C’, w) for all those w as well.

If Conuml[r] # C'num|r], then C'numlr] = (C.num|r] + 1) modn and also
(Vv € In(r) : num[v] = num|r] A trust[v] = D —1). Using proposition 1 we obtain

5. Two Protocols Based On Spanning Trees 14

(Vo €V : C.num|v] = C.num]r]). Then (Vv # 7 : C".num[v] = (C'.num|r] — 1) mod n)
and thus Proper(C’,u) for all w € V' and trivially Honest(C’, u) and Modest(C’, u) for
allu e V.

Node v # r takes a step: It is easily checked that Proper(C’,u) for all u€V and Modest(C’, u)
and Honest(C’,u) for all u with v & In(u) or C.num[u] # C.num|r]. So it remains to
show that also Modest(C’, u) and Honest(C’, u) for all u with v € In(u) and C.num|u] =
C.num]r].

If (3w €lIn(u) : C.num[w] # C.num|r|), then by Honest(C,u) we have C.trustju] = 0.
Then also C'.trust[u] = 0 and trivially Honest(C’, u) and Modest(C’, u).

If Vw € In(u) : C.num|w] = C.num|r]), then by Modest(C, u) and the fact that v€ln(u)
we have C.trustfu] = C'.trust[u] < C.trust[v]. Moreover, also C.num|v] = C.num|r]
and thus C.numl[P(v)] = C.numr] by Proper(C,v), so C'.num[v] = C'.num|r] by
the protocol. This, in turn, implies (Vw € In(u) : C".num|w] = C'.num|r]) and thus
Honest(C’,u). By Modest(C,v) and the protocol we see C'.trust[v] > C.trust[v] and

thus Modest(C’, u).
O

Lemma 6 (self-stabilization) For any execution of the protocol starting in an arbitrary
configuration C, the execution will eventually reach a legitimate configuration C'.

Proof: Start the protocol in configuration C, and wait until the root takes a step for the
first time in configuration Cy: i.e. C = Oy = Cy. In C; all v € In(r) have num[v] = num|r].
Because there are n nodes and at least one such v, at least one value in {0,...,n — 1} cannot
occur on any node in Cy. Take the first such value following num/[r] in the cyclic ordering,
and call this value a. Continue the protocol until r sets num|r] = a reaching configuration
C3. Because non-root nodes only copy existing values, in C5 the root is the only node with
numlv] = a.

Now continue the execution until the root advances once more in configuration Cy, i.e.
Cy = C', setting num[r] = (a + 1) mod n. We will show that Legitimate(C’) holds. First
observe that (Vv € In(r) : Cy.numv] = a A Cy.trustjv] = D —1). Also observe that, since
in C3 no non-root node has num|[v] = a, all nodes with num|[v] = a must have taken a
step somewhere between C3 and Cy. Now let Cy.numlu] # a for some node u. Then for
any configuration C3 = C = Cj we must have C.num|u] # a. Again, like the proof of
proposition 1, consider the shortest path u,vq,..., v, r, with ¥ < D — 1 and all intermediate
nodes holding number a. Because num[vi] = a, it must have taken a step, setting trustjv] =
0. Then trust[ve] < 1 because v also took a step, and, inductively, trust[vg] < k < D — 1.
But then for some u € In(r) we have Cy.trustju] < D — 1, contrary to assumption.

We conclude that (Vv € V : Cy.num[v] = a) and thus in C’ we have num|r] = (a+1) mod n
and (Vv #r €V : C'.num[v] = a), from which Legitimate(C") easily follows. O

5.2 The second protocol
In this section we present a second protocol, also based on a spanning tree. The main
difference is that in legitimate configurations, it does not necessarily require the cooperation

5. Two Protocols Based On Spanning Trees 15

of all nodes in order to transfer the privilege to another node. In other words, it has a less
strict synchronization. The downside of the comparison is that it is slightly less space-efficient
(2n? states per node).

Like the protocol in the previous section, this protocol works by distributing a number
through a spanning tree. The number indicates the identity of the node that should get the
privilege. When that node has completed its critical section, it makes this fact known by
setting a (boolean) flag. This flag can be seen as an acknowledge. When the root node finds
that the flag has been set, it chooses the next number.

The number is distributed by letting each non-root node copy the number from its parent
in the tree. When a node “sees” that its parent carries a number that destines the privilege
to itself, it first executes the critical section. On exiting the critical section, it copies the
number and sets its flag.

Unlike the number, the value of the flag is not spread via the edges of the tree. Instead,
each node looks at the flags of all of its in-neighbours nodes. If there is a neighbour that has
the same number, it takes the logical or of this flag and its own value. By this mechanism,
a flag value of T' is diffused through the graph, and eventually reaches the root. When the
root finds that one of its in-neighbours has set its flag (and has the same number), it chooses
a new number and sets its flag to F.

Thus, it is not necessary for all nodes to take steps before the root can choose a new
number. All that is needed is that the number be copied from the root down the path in the
tree to the privileged node. When that node has finished the critical section, the flag value
of F must be copied along some path from that node to the root. A node that is not in one
of those two paths does not need to update its state.

The root chooses its new number in a round-robin fashion. In contrast with the previous
protocol, the numbers do not range from 0 to n — 1 but from 0 to n? — 1. The necessity for
this will become clear in the proof. A node ¢ is privileged only if the number of its parent
equals i(modn).

5.2.1 The implementation We first introduce some notational definitions: The state of a
node consists of a number num € {0,1,2,...,n? — 1}, and a boolean flag € {T,F}. For a
node v, P(v) denotes its parent, and Anc(v) the set of ancestors of v, i.e. those nodes u # v
for which there is a directed path within the tree from « to v. The function Dest indicates
for a certain node the destined privileged node: Dest(v) = num|[v] mod n. The protocol is
presented in figure 3.

5.2.2 Proof of correctness To prove the correctness of the protocol, we first define the set
of legitimate configurations. We then show that the legitimate configurations satisfy the
properties of mutual exclusion, and that progress and fairness are guaranteed. Next we show
that the set of legitimate configurations is closed under the steps taken by the nodes, and
finally we prove self-stabilization.

5. Two Protocols Based On Spanning Trees 16

Node r : Privileged if Dest(r) = r V (Fv € In(r) : num[v] = num|r] A flag[v])
if Dest(r) =7V (3v € In(r) : num[v] = num[r] A flag[v])
then num|r] := num|r] + 1 mod n?
flaglr] = F

Node v # r : Privileged if Dest(P(v)) = v A num|[P (v)] # num|v]
if Dest(P(v)) = v
then flag[v] :=T
else flag[v] := (u € In(v) U {v} : num[u] = num[P(v)] A flag[u])
num(v] := num[P(v)]

Figure 3: The Second Mutual Exclusion Protocol

Definition 7 A configuration C is legitimate iff it satisfies

L1 = (VveV,u€Anc(v): num|v] < num|ul)

L2 = (MoeV:(Vz:numl[v] <z < num[r] = x# v modn))

L3 = num|Dest(r)] # num[r] = ((Yv €V : num[v] = num[r] = flaglv] = F))
L4 = num[Dest(r)] = num|r] A Dest(r) # r = flag|Dest(r)] =T

In L1, the ordering < on numbers is defined as

z=<y=(y—zmodn?) <n

and x < y in L2 denotes (x < y) A (x # y), as might be expected.

Definition 7 can be intuitively understood as follows: since the numbers are distributed
downward through the tree, the ancestors of a node hold “more recent” numbers. The root
increases the number, so nodes on higher levels should hold “higher” numbers. Since the root
needs the cooperation of the destined privileged node in order to increase the number, the
number of a node can never “lag behind” more than n (L1). Also, it is prohibited that the
root increases the number before the privileged node has seen this number. Suppose that
node v has a number that is different from the one that the root holds. The ancestors of v hold
numbers in the range from num|v| to num[r]. The numbers that lie strictly “in between”
must not destine the privilege to v: if there is an ancestor u of v for which Dest(u) = v
yet num[u] # num|v], then it must be that numr] = num[u], otherwise u might overwrite
this number (by copying the number from its parent) before v sees it. L2 excludes these
configurations. Lastly, the flags must express an “acknowledge” by node Dest(r). If this
node has set its number to num|r| (i.e. completed the critical section), then its flag must be
T (L4). If it has not yet done so, then the flags of all nodes that do hold num|r] should be
F (L3).

In the following lemmas, L denotes an arbitrary legitimate configuration, C is an arbitrary
configuration (not necessarily legitimate), and d is the node that is destined to get the privilege
according to the root: d = Dest(r).

5. Two Protocols Based On Spanning Trees 17
Lemma 8 If, in L, the root r is privileged, then

1. num[d] = num]r]

2. if d #r then flagld| =T
Proof: If r is privileged, then by definition of the protocol
((Fi € Vi (numli] = numlr]) A (flagli] =T))) V (d =)

Combined with L3, the first part of the lemma follows. Applying L4 then yields the second
part. O

Lemma 9 If, in L, a non-root node v with parent p = P(v) is privileged, then

1. num[p| = num]r]

2. v=d
Proof: If v is privileged, then by definition of the protocol
Dest(p) = v A numlv] # num/|p|

Since by L1 num[v] < num|[p] < num[r] we can use L2 to obtain numlp] = num[r]. The
second part of the lemma follows directly from this. O

With lemmas 8 and 9 it is also easy to prove that in a legitimate configuration a node can
not lose its privilege while it is executing the critical section.

Theorem 10 (safety) In any legitimate configuration, at most one node is privileged.

Proof: If some non-root node v is privileged, then by lemma 9 numlv] # num[P(v)] =
num|r]. According to the protocol v = Dest(r), hence the root node is not privileged (as that
would contradict the first part of lemma 8). Furthermore, if any other node u is privileged,
then v = v, by the second part of lemma 9. O

Theorem 11 (progress) In an arbitrary execution, let the system be in configuration C.
Eventually, the system will reach a configuration C' in which the root is privileged.

Proof: We may assume that Dest(r) # r, and that r does not take a step (otherwise r
becomes privileged and we are ready).

Consider the set A = {v| num[v] = num[r] A flaglv] = T}. If A is empty in C, then
the number held by r will be distributed through the tree, node d = Dest(r) will become
privileged and set its flag to T. So eventually, the system reaches a configuration where A
is non-empty. In the configurations reachable from this configuration, A will become larger,
until it includes an incoming node of r. At this point, r becomes privileged. O

5. Two Protocols Based On Spanning Trees 18

Theorem 12 (fairness) In an arbitrary execution, let the system be in a legitimate config-
uration L. For any node v, the system will eventually reach a configuration L' in which v is
privileged.

Proof: By repeatedly applying theorem 11, we know that the system will reach a legitimate
configuration L”, in which Dest(r) = v. Since the root was privileged in the configuration
just prior to L”, there is no node i for which numl|i] = num|r|. Hence num|v] # num|[r], the
number will be distributed through the tree and eventually, v will be privileged. O

Theorem 13 (closure) If the system goes from a configuration C to configuration C', and
C is legitimate, then C' is legitimate as well.

Proof: The transition from C to C’' must be one of the following:

1. The root takes a step (increases its number)

2. The privileged node d # r takes a step (copies its number from its parent and sets its
flag to T)

3. A non-root node v # d takes a step (copies the number from its parent, and copies the
flag from an incoming node that has the same number)

We show that in all cases the requirements for a legitimate configuration remain satisfied in C’.

1. Suppose that L1 is violated in C' for a certain node i (i.e. num|r] —numl[i] > n mod n?).
Since L1 held in C and num|r] was increased by 1 in the step to C’, in C num|r] =
num[i] +n (mod n?). But since L2 also holds in C, all numbers x strictly between
num|[i] and num|r] have Dest(x) # i. Since there are n — 1 of those numbers it must be
that Dest(r) = Dest(i) = i. Applying lemma 8 results in numli] = num|r|, which is a
contradiction.

Suppose L2 were violated in C’ for a node i. Since L2 held in C and r increased its

num by 1, it must be that in C' num[i]=num|r]. Hence in C’ there is no z for which
num(i] < < num|[r], contradicting the assumption.

L3 and L4 must hold in C’, because there is no v # r for which num[v] = num/|r] (since
by L1 r held the “largest” number in C).

2. In C’', num[d] = num|[r] (lemma 9), so d satisfies L2. Tt is easily verified that L1, L3
and L4 are also satisfied in C".

3. Asin the previous case, L1 and L4 trivially hold in C’. L2 and L3 must also be satisfied,
otherwise they would already have been violated in C, by the node that v copied the
state from.

O

We must now prove self-stabilization. According to theorem 11, the root will keep on
increasing its number. We can view an execution as consisting of rounds, separated by a step

5. Two Protocols Based On Spanning Trees 19

in which the root chooses a new number. In a round, the non-root nodes may take steps, but
the state of the root does not change.

The proof that the system stabilizes from any initial configuration is based on the presence
of what may be called unoccupied numbers. Define Occ = {z| (Fv € V,v # r : num[v] = z)},
the set of occupied numbers, i.e. numbers that are present in some non-root node. Suppose
that the system starts a new round, and that the new value of num[r] is not occupied. The
root can not increase its num again until node Dest(r) has been privileged. The number held
by the root is distributed through the tree until it reaches this node. After the critical section
has been completed, the flag is set and the ‘acknowledge’ is diffused through the graph. At
the end of this round, node Dest(r) has a num equal to num|r].

The proof is split in two parts. First we prove that from any configuration, the system will
reach a configuration from which in the next n rounds, the root will choose an unoccupied
value. We then show that the configuration reached after these n rounds is legitimate.

Theorem 14 (self-stabilization) In an arbitrary execution, let the system be in configu-
ration C.

1. Eventually, the system will reach a configuration C' in which
= (Fv €V : num[r] < numlv])

2. From C', the system will eventually reach a legitimate configuration

Proof:

1. First, observe that in any configuration, there exist at least n consecutive unoccupied
numbers (since the set of numbers has size n2, and the non-root nodes hold at most
n — 1 different numbers). In C, let uy,us, ..., u, be such a row of consecutive numbers.
Second, consider the way in which Occ changes during an execution. The only steps in
which new numbers are added to Occ is when the root chooses a new number. Thus, in
any execution from C, the numbers remain unoccupied until the round in which num][r]
is equal to uy. Call the configuration just prior to the start of this round C’. In this
configuration num|r] = u; — 1 mod n?, so the only numbers = for which num[r] < z
are precisely the ones uy,uo, ..., Uy,.

2. In configuration C’, the root changes its number to u;. Since w; is unoccupied, even-
tually node v = u; mod n? will become privileged. At the end of this round, num|r]
is set to wy, which is still an unoccupied number. We can repeat this argument for
U9, U3, ..., u,. Call the configuration that is reached after these n rounds C”. Between
C'" and C"”, each non-root node has been privileged exactly once, and exactly one node
was privileged in each round.

We can now show that C” is a legitimate configuration:

5. Two Protocols Based On Spanning Trees 20

e Let v be an arbitrary non-root node, with parent p. Immediately after v was
privileged, num[v] = num/[p]. In all steps thereafter, if num|v] or num|p| changed,
then either num|[v] was set equal to num[p|, or num|[p] was set to the number of
p’s parent, which is a higher number (which can be proved by induction on p‘s
depth in the tree). Hence num[v] < num|p| in C”. Also, in C" all numbers held
by a node are within the range w1, us,...,u,. Together this yields L1.

e Immediately after some node v was privileged, num|v] = num[r] and Dest(r) = v.
From then on until C”, num|r] is incremented at most n times. Thus, L2 must

hold in C".

e In C”, there is no non-root node that has the same number as the root, hence L3

and L4 trivially hold.
O

5.8 About spanning trees € combining protocols

Several self-stabilizing spanning-tree protocols have been published, for instance by Afek
et. al. [AKY90] for undirected graphs, and Dolev et. al. [DIM93] for arbitrary communication
graphs. Since this last result matches our needs, we briefly sketch the (adapted) spanning
tree protocol of Dolev et. al.

Node r:
dist[r] < 0
P(r) « nil

Node u # 1 :
dist|u] < 1 4+ min{dist[v] | v € In(u)}
P(u) « deterministically select v € In(u) with dist[v] = min{dist[v] | v € In(u)}

Figure 4: Spanning Tree Protocols

The self-stabilizing spanning tree protocol is presented in figure 4. It will build a breadth-
first-search tree using the distance to the root of the spanning tree. The range of values that
can be assumed by field dist[u] should equal {0,..., D}, where D is an upperbound on the
diameter of the graph. To break the symmetry, one of the nodes is selected root a-priori and
forces its distance to 0. The other nodes read the distance of their neighbours, and add 1 to
the minimal value found. A selection among the nodes with minimal distance must be made
to determine the parent in the spanning tree. This selection must be deterministic to ensure
that once a complete spanning tree is computed, it remains stable provided no further errors
occur.

A subtle point that should not go unmentioned is related to storing the value for P(u).
Technically speaking the identity of any of the incoming nodes cannot be determined, because
the identity of a node is not part of the state readable by other processors. But in fact, we
are not even interested in the identity of such a node: we only need to know which of the
incoming nodes is the desired node. So in fact we only have to store a ‘port-address’, or

6. Conclusions & Further Research 21

something similar, in P(u). If m equals the maximal in-degree of any node in the graph, then
storing P (u) requires O(m) values. The proof of the protocol is straightforward, and for more
details we refer to [DIM93].

Like [DIM93]—where the notion of fair protocol composition is formally derived—we com-
pose both protocols to obtain a SSME protocol for arbitrary directed graphs. By observing
that the mutual exclusion part does not alter the part of the state used by the spanning tree
protocol, it is easily seen that any proof of this spanning tree protocol still holds for the com-
bined case. After stabilization of the spanning-tree part of the combined protocol, this part
will not influence the mutual exclusion part any more: the values stored in the P(u) will not
change. Then after stabilization of the spanning-tree part, the proof of the mutual exclusion
part can be used unaltered to prove stabilsation and correctness of the whole protocol.

The overall space-complexity of the protocol is determined by multiplying the number of
values stored in num[u], trust[u], dist[u], and P(u). This gives n- D? - m states per node. A
factor m can be saved by observing that P(u) is really a function of the state of u and is only
used and maintained locally. This means that P(u) does not have to be stored explicitly.

6. CONCLUSIONS & FURTHER RESEARCH

In this paper we investigated the complexity, in number of states per processor, of achiev-
ing self-stabilizing mutual exclusion on strongly connected directed graphs. Starting of with
Tchuente’s approach, reducing the number of states per processor needed to O(n?), we pre-
sented two protocols using O(n?D) states per processor. It would be interesting to see whether
the second protocol can be modified to work with O(n) numbers, reducing its complexity to
O(nD). In any case, we have shown an exponential improvement in space-complexity over
the best known previous protocols for mutual exclusion on directed graphs.

7. ACKNOWLEDGEMENTS

The authors wish to express their utmost gratitude to Ted Herman for the advice and guidance
he has given while he was visiting Utrecht University. Without his help this paper might never
have been written.

REFERENCES

[Aba90] ABADI, M. An axiomatization of Lamport’s temporal logic of actions. In Concur
’90. Theories of Concurrency: Unification and Extension (1990), J. Baeten and
J. Klop (Eds.), Springer-Verlag, pp. 57 69. volume 458.

[AKY90] AFEK, Y., KUTTEN, S., AND YUNG, M. Memory-efficient self stabilizing protocols
for general graphs. In 4th Int. Workshop on Distributed Algorithms (1990), pp. 15
28.

[BP89] BuUrNs, J. E.; AND PAcHL, J. Uniform self-stabilizing rings. ACM Transactions
on Programming Languages and Systems 11, 2 (1989), 330 344.

[Dij74] DuKSTRA, E. W. Self-stabilizing systems in spite of distributed control. Commu-
nications of the ACM 17, 11 (1974), 643 644.

[Dij82] DuksTrRA, E. W. Self-stabilization in spite of distributed control. In Selected
Writings on Computing: A Personal Perspective. Springer-Verlag, New York, 1982,

REFERENCES 22

pp- 41 46.

[DIM93] DoLEv, S., ISRAELI, A., AND MORAN, S. Self-stabilization of dynamic systems
assuming only read/write atomicity. Distributed Computing 7, 1 (1993), 3 16.

[Lam91] LampoRrt, L. The temporal logic of actions. DEC-SRC-report 79, 1991.

[Tch81] TCHUENTE, M. Sur lautostabilisation dans un réseau d’ordinateurs. RAIRO In-
formatique Théoretique 15, 1 (1981), 47-66.

A. A correctness proof in TLA 23

A. A CORRECTNESS PROOF IN TLA
A.1 Introduction
In this section we will substantiate our claims about the protocol, using the Temporal Logic
of Actions (TLA). A readable and extensive introduction to this proof system can be found in
[Lam91]. A complete axiomatization of its proposition part can be found in [Aba90], though
it should be noted that axiom 16 should be changed a little. Here I give a small introduction
especially intended to understand the following proof.

In TLA we have four types of formulas: (temporal) formulas, actions, state-predicates and
state-functions.

(Temporal) formulas A statement in TLA is a temporal formula and its validity is evalu-
ated on a single execution (a reflexive, transitive, linear and discrete Kripke frame). If
a formula is valid we also say that it holds. A formula is a tautology (true) if it is valid
in any execution. We will write |= ¢ if the formula phi is a tautology and write F ¢ if
we can also derive it. Both specifications and properties of protocols are formulas. We
use Greece symbols for formulas. The capital symbols are used to denote specifications
and properties and the non-capitals are used to denote arbitrary formulas. All boolean
combinations of formulas are again formulas, with their obvious semantics. If ¢ is a
formula then also O¢ and $¢ are formulas. O¢ means that ¢ is valid at any state in
the execution. ©¢ is equivalent with —0O—¢ and means that ¢ holds at some state in
the execution (possibly the current state).

Logical implication is used to express implementation. If ® is a specification and II is
a property then proving that ® = II is a tautology shows that ® satisfies the property
I1, implements a property (possibly a higher-level specification).

Actions Actions describe state transitions, i.e. their semantics is a binary relation on states.
Actions constitute the building blocks of TLA. Proving properties of specifications
mostly involves proving properties of actions, glued together with temporal logic. We
use calligraphic capitals to denote actions. We write =4 B if B is a tautology and
write -4 B if we can also give a derivation. Boolean combinations of actions are again
actions, with their obvious meaning. If A is an action then [A] and (A) are formulas.
[A] means that the next state-change (a state transition from one state to a different
state) satisfies A or there is no state-change at all. (A) is equivalent to —[-.4] and
means that there is a state-change and it satisfies A.

As a consequence [—] (where — denotes the empty relation) means there will be no
state-change at all, and we associate this with termination. Likewise (T) (where T
is the complement of the empty relation) denotes non-termination, i.e. there will be
a state-change. O[A] now means that all state-changes satisfy .A. Furthermore [A]
is equivalent with (A) V [—]. Since [T] is trivially a tautology, proving an action A
equivalent with T also proves [A] is a tautology. However it does not prove (A) a
tautology, because in addition this implies non-termination.

Predicates Predicates, also calles state-predicates, can be evaluated in a single state.
Boolean combinations of predicates are again predicates, with their obvious meaning.
We use capitals to denote arbitrary predicates or the italic font if the name consist of
more than one symbol. A predicate is also a formula (using an implicit cast), meaning

A. A correctness proof in TLA 24

that the predicate holds in the first state of the execution. If predicate P is a tautology
we will write =4 P and write -4 P if we can also give a derivation.

For example a typical specification looks like Init A O[A], the first state satisfies the
initialization predicate Init and all state-changes satisfy A. A predicate P is also (using
an implicit cast) an action, meaning a state transition from a state satisfying P to some
arbitrary state. Also a primed predicate P’ is an action, meaning a state transition from
an arbitrary state to one satisfying P. As a typical example of proving a safety property,
we might prove P A A = P’ and Init = P (as tautologies on actions) and conclude
Init NO[A] = OP is a tautology, i.e. the specification Init A O[A] satisfies property OP
(predicate P holds at any state in an execution satisfying the specification).

If A is an action then *A and oA are predicates. *A holds in a state s if there is a
state s9 (not necessary different from s;) such that the state-transition (si, s9) satisfies
A. A is the enabled predicate of A, if * A holds then A is enabled. oA is equivalent to
=% = A, but is not used very often. The most important axiom concerning the enabled
predicate is A = *A: if A is executed then A was enabled. There is not yet any
reference to the axiomatization of the enabled predicate, except for my personal notes.
Furthermore it is not clear whether this axiomatization is complete.

State-functions Just as propositional logic is connected to the real world mathematics by
the use of functions, relations and quantifiers, so is TLA. Variables and constants (also
called rigid variables) are the basic functions, in a state they may have some value, a
mathematical object like a natural number. To avoid obvious and obscuring formalities,
we will show their use with an example.

Let A be specified by ' = x4+ 1. x is a program variable and A specifies that =’ (the
value of z after the state transition) is equal to x4+ 1 (the value of x4+ 1 before the state
transition). A state transition therefore only satisfies A if x is incremented by 1. Now
consider the specification

x=0A0z" =z +1]

Obviously this specification satisfies the property O(x > 0). How do we prove this?
Init = P r=0=2z2>0
PANA=P' x>0Az' =z+1= (z>0)

Init N\OA = 0P x>0A0z' =2+1]= O(x >0)

We will use a monad structure to depict quantifiers, set operations and aggregates.

Quantifiers (Vj cje{l,...,n} = P(i,j)) means for all j = 1,...,n, P(i,j) holds, note that
1 is a free variable in this expression. Other possible quantifiers are 4 and 3!

Set operations (UZ cied{l,...,n} = S(z)) is the union of all sets S(i) for i = 1,...,n. The
other set operation is ().

Aggregates (Zz cie{l,...,n} = f(z)) is the sum of all f(i) fori =1,...,n. Other aggre-

gates are [[, max, min and # (number of).

A. A correctness proof in TLA 25

The outer parentheses will be laid out around the whole formula inside, even if this covers
more than one line. It would be more consequent if the set-notation also was changed to
explicitly denote its bound variables, however I do not have a definite choice yet, so I sticked
to the traditional notation.

Let {A(i)|]1 < i < n} be a set of actions describing some components then a standard
asynchronous composition consists of their disjunction

(Vz' cief{l,...,n}x A(i))

If component i has a set of local variables L(i) then all other components have to assert not
to use these variables, i.e.

(/\i,j 11,7 €{1,...,n} i # j = Unchanged (L(z)))

where Unchanged (L(i)) = (/\1} :v € L(i) :: Unchanged (v)) and Unchanged (v) = (v =v").

The proof structure we use is basically a list ¢1,. .., ¢, of formulas (actions or predicates),
that are all true statements. Each statement follows from previous statements using a valid
derivation rule (or are evidently true by them selfses).

To ease down the requirement of the statements to be really true, we can put all statements
in a context of hypotheses. Generalisation with a context of hypotheses is a risky business.
In this paper we use the word ‘arbitrary’ in our assumption to announce generalisation and
generalise in the prove-part (following the assumptions). So proving

(Vi cte D P(z))
will look like

()1 (¥i:ieD: P(i))
LET: ¢ € D arbitrary

PrROVE: P(i)

(2)1. ...

(2)2. ...

(2)3. Q.E.D. by (2)1 and (2)2

In this way the correctness of the application of generalisation can be easily checked at
the beginning of the proof. A similar (and closely related) problem arises in modal logic.
However there will be very few modal proofs here, so we will not digress on it.

A statement can also be derived by starting a seperate proof, possibly involving new hy-
potheses. We will not repeat already stated hypotheses at the start of these (nested) proofs.
In this paper we don’t refer to hypotheses by labels (as we do with the statements). If the
hypothesis is short, like vp < np — 1, we write it just like that. If it is too long we may write
‘by assumption’ or ‘by let of vg’.

In using lemmas sometimes the used substitution may become confusing. In these cases
we give it explicitly, like

by lemma 1.1jvg,ur = ng — 1,vEg]

Only substitution of variables bound by the outer universal quantifier is allowed this way.
Often this is followed by references to previous proven statements to fill in assumptions of

B. The TLA proof 26

the lemma. In these cases we stick to the order in the lemma (as much as possible). We
apply the existential quantifier (3-elimination) by

Let i € {1,...,n} s.t. P(i), such i exists by reference

where we refer to a statement
(Eli rie{l,...,n} P(z))

The conclusion we get from this should (of course) not have i as a free variable.
When exhibiting a case analysis (or natural induction) we announce its use with ‘by case

analysis on ... and ...” and start a seperate proof for each case, possibly preceded by state-

)

ments used in several cases. Some time we refer to the ‘op-mono of ...”, where op is one of

[, (), d, . This refers to the monotonicity of these operations. If we can derive

(*) Fa (Viziel: A= B)

then we can also derive

+ (Vi ciel A= [B]) by [J-mono on (¥*)

+ (Vi ciel (A =) by ()-mono on (*)

In case of O and < we only allow the Vi-quantor in case 7 is a rigid variable (i.e. a variable
not changed by the protocol).

In formulas we may use bulleted conjunctions and disjunctions. The purpose of this notation
is to use indentation instead of parentheses. So e.g. the following formula

N«
AV [
Vy
)

is the same as

aN(BVy)NS

B. Tue TLA PROOF
Let us start with some obvious facts about the function f and the associated notions.

(F1) k4 (VUR :vp € Vg uvRp € Sim(f(vR)))
(F2) Fa (Vor:vp € Vg i: First(f(vr)) < vg < Last(f(vp)))
Next we define the protocol in TLA style.

B. The TLA proof 27

Definition B.1
A(wvg) = A (VU v eV \{f(vr)} :: Unchanged (t[v],d[v]))

AN ifop=20
then A~ 1) = 170
Ad[f(ng —1)]=ng—1
AFO)] = t[f(0)] + 1 mod @
AdIf(0))’ =0
elseif vp = First(f(vr))
then A t[f(ux — 1) # 1{f (v)]

[
Nd[f(vp —1)] >vgp —1
A (o)) = 1]
Ad[f(vr)]" =vr
elseif v > First(f(vgr)
then A t[f(vgp — 1)]

end if
S 2 (HURZDREVRZZA(UR))

d = O[S|AWF(S)
Let us first conclude some (obvious) facts about the protocol.
(F3) ta (Yor: vk € Vi Alvg) = d[f (vR)]' = vr)
(F4) Fa (Vor:vr € VR \ {0} = A(vr) = t[f (vr)]" = t]f(vr — 1)])
(F5) ta (Yor: vr € Ve \ {0} 2 A(vg) = [£(0)]" = #[£(0)])

*xA(vg) is predicate that holds in configurations where the action A(vg) can be executed, i.e.
its guards hold. Since we will often use xA(vg), we give it explicitly.
*xA(vg) © ANvr =0= At[f(0)] =t[f(ng —1)]
ANd[f(nr—1)]=nr—1
ANvr #0Avg = First(f(v)):>/\t[f(vR)] tf(vp —1)]
[f(UR — 1)} >ovp—1
ANvrp #0ANvr # First(f(v)):>/\t[f(vR71)] t[f(vr)]
[f(’l)R — 1)} > VR — 1
Ad[f(vr)] <wvr
Note that in the third conjunct we have vp # First(f(vg)) instead of vg > First(f(vg)). By
(F1) these are equivalent.

B.1 Domain constraints

In selfstabilizing protocols it is very customary to assume domain constraints on the variables
used. If @ is a variable then a domain constraint for ¢ has the form a € A, where A is its
domain. If ® is the protocol then it must satisfy - a € A AN ® = O(a € A). In general a
selfstabilizing protocol has no initialization predicate. A domain constraint however may be

B. The TLA proof 28

assumed initially, because we can change the protocol s.t. the domain constraints are satisfied
after a step of each proces. We change the program of each processor, such that it will run
its program only when the domain constraints on its own variables is satisfied. Otherwise it
will set its own variables to some arbitrary value in their domain. When each processor has
taken at least one step, the domain constraints will hold.

Definition B.2 Domain = (Vv cveViut €{0,...,Q —1} Ad[v] € Sim(’u))
Lemma B.1 4 Domain A S = Domain’

Proof:

ASSUME: Domain A S

LET: vg € Vg s.t. A(vg) such vg exists by S
LET: v € V arbitrary

PrOVE: t[v]" €{0,...,Q — 1} Ad[v]" € Sim(v)

(1)1. Q.E.D. by case analysis on v # f(vg) and v = f(vg)
CASE: v # f(vR)
(2)1. t[v]" =t by A(vg) and v # f(vg)
€{0,...,Q —1} by Domain
(2)2. d[v]" =d[v] by A(vg) and v # f(vg)
€ Sim(v) by Domain
(2)3. Q.E.D. by (2)1 and (2)2
CASE: v = f(vg)
1. de]’ =dif(wr)]’ by v = f(on)
=UVR by (F3)[’UR = ’UR]
€ Sim(f(vr)) by (F1)[og = g
= Sim(v) by v = f(vg)
(2)2. tlv]" €{0,...,Q — 1} by case analysis on vg = 0 and v # 0
CAsE: vg =0 so A(0) and v = f(0)
(1. He]’ = [f(0))" by v = £(0)
=t[f(0)] + 1 mod @ by .A(0)
€{0,...,Q —1}
CASE: vp #0
Bt =t)] by v=flon)

=t[f(vg — 1)] by (F4)[vg := vg]
€{0,...,Q — 1} by Domain
(2)3. Q.E.D. by (2)1 and (2)2

Corollary B.2 + Domain A ® = ODomain
Proof: Follows from lemma B.1 by applying INV1. [|
Corollary B.3

F Domain N ® < Domain A O[T] AN WF(T)
where T 2 S A Domain A Domain'

B. The TLA proof 29

Proof: Follows from lemma B.1 by applying our version of INV2: if 4 I AN = I’ then
F IANON]AWFW) . |
I AOM]AWE(M)

Corollary B.4 4 Domain = (Vv cv €V i First(v) < d[v] < Last(v))

Proof: Domain implies for any v € V, d[v] € Sim(v). Therefore d[v] = vg for some vg s.t.
f(vr) = v, the corollary now follows from fact (F2).]

B.2 Privilige in a legitimate configuration
In this subsection we define the legitimate configurations and prove that only one occurrence
is enabeled in such a configuration.

Green(vg) = t[f(vg)] = t[0] Ad[f(vR)] = vk
Red(vr) 2 A d[f(on)] > vr = f (on)] = H/(0)] — 1 mod Q
A d[f(vr)] <vr = t[f(vr)] = t[f(0)]
Legal(vr) a (VuR cup € Vet ANug < vgp = Green(uR)>
ANup > v = Red(ug)

Legitimate 2 (HvR o € Vp oo Legal(vR))

Lemma B.5 4 Green(0)

Proof:

(1. 4£(0)] = L£(0) why not?

(1)2. d[f(0)] >0 by corollary B.4

(1)3. Q.E.D. by (1)1 and (1)2
|

Lemma B.6 4 (‘v’vR cvr € VR \ {0} :: Green(vg — 1) A Green(vg) = — % A(vR))

Proof:

LET: vgp € Vg \ {0} arbitrary
ASSUME: Green(vg — 1) A Green(vg)
PROVE: —x A(vg) by case analysis on vg = First(f(vgr)) and vg # First(f(vg))
CASE: vg = First(f(vg))
2)1. tlf(vr —1)]

= t[f(0)] by Green(vg — 1)
= t[f(vgr)] by Green(vg)
(2)2. Q.E.D. by vg = First(f(vg)) and (2)1
CASE: vg > First(f(vg))
(2)1. d[f(vr)] > vr by Green(vg)
(2)2. Q.E.D. by vg > First(f(vg)) and (2)1

B. The TLA proof 30
Lemma B.7 4 (VUR cvr € VR \ {0} it Red(vg — 1) A Red(vg) = — .A(UR))

Proof:

LET: vg € Vg \ {0} arbitrary
AssuME: 1. Red(vg — 1) A Red(vR)

2. xA(vg) for the sake of contradiction

PRrROVE: —
(H1. d[f(vg —1)] >vg—1 by *A(vg)
(1)2. t[f(vg —1)] = t[f(0)] — 1 mod Q by (1)1 and Red(vg — 1)
(1)3. vr = First(f(vg))

& t[f(vr)] #tf(vr —1)] by *A(vg) and vg # 0

& tf(en)] £ H(0)] —1mod @ by (1)2
(1)4. d[f(vr)] <wvgr

= t[f(vr)] = t[f(0)] by Red(vg)
= wg = First(f(vg)) by (1)3
=

d[f(vr)] > vr by Domain
(1)5. d[f(vr)] = vr
S tlf(on)) = Hf(0)] — 1mod Q by Red(up)
= wg > First(f(vg)) by (1)3 and fact (F2)
= d[f(vg)] < vgr by *A(vg) and vg # 0
(1)6. Q.E.D. by (1)4 d[f(vgr)] > vg and by (1)5 d[f(vr)] < vr
|
Lemma B.8
C Yogr UREVR\{O}
A (VuR up € VR Aug < vg = Green(uR)) A = Green(vgr) = *A(vR)
Proof:
LET: vg € Vi \ {0} arbitrary
AssuME: 1. =Green(vg)
2. (‘v’uR tup EVeR Aup < vp i Green(uR))
ProvEe: *A(vg)
(H1. d[f(vg —1)] > vp—1 by vg > 0, vg —1 < vg so Green(vg — 1)
(1)2. Q.E.D. by case analysis on vg = First(f(vgr)) and vg > First(f(vgr))
CASE: vg = First(f(vg)) so d[f(vr)] > vg by corollary B.4
(2)1. t[f(vr)] # t[f(0)] by = Green(vg) and d[f(vg)] > vgr
= t[f(vg —1)] by Green(vg —1)
(2)2. Q.E.D. by vg # 0, vg = First(f(vg)), (2)1 and (1)1
CASE: vg > First(f(vg))
1. t[f(vr)] = tlf(First(f(vr)))] by f(vr) = f(First(f(vr)))
= t[f ()] by First(f(vg)) < vg so Green(First(f(vg)))
@2) = 1/ 1) by (2)1 and Green(vg — 1)

(2)3. d[f(vg —1)] >w by Green(vg — 1)

B. The TLA proof 31

(2)4. d[f(vr)] < vgr by (2)1 and —Green(vg)
(2)5. Q.E.D. by vg # 0, vg > First(f(vgr)), (2)2, (2)3, (1)1 and (2)4
|

Lemma B.9 4 (VUR :vg € Vg it Red(vR) = ﬂGreen(vR))

Proof:

LET: vg € VR arbitrary
ASSUME: Red(vg) ANd[f(vr)] > vr

PrOVE: i[f(vr)] # t[f(0)]
(H1. t[f(vg)] = ¢t[f(0)] —1mod@ by Red(vg) and d[f(vgr)] > vr
7 tf(0)]
|
Lemma B.10 F4 Green(ng — 1) & xA(0)
Proof:
(D1, d(f(ng —1)]
< Last(f(ng —1)) by corollary B.4
= np-—1 < by Last(v) <ng—1,> by ng — 1€ Sim(f(ng —1))
(1)2. *A(0)
& Ulf(ng V] = O] Adlf(ng D] =ng 1 by deL. of A(0)
& tlf(ng = V] = (O] Ad[f(nr = 1] Z2ng -1 by ()1
< Green(ng — 1)
|

Theorem B.11
. (‘v’vR :vgr € Vi it Legal(vg) = A xA(vg + 1 mod ng))
A

A (VuR cur € VR \ {vg + 1 mod ng} :: — % A(uR))

Proof:

LET: vg € VR arbitrary
ASSUME: Legal(vg) ie. A (VuR cup € Ve Aup <wvp Green(uR))
A (VuR tup EVeR Aup > vp i Red(uR))
(H1. *A(vg +1 mod ng) by case analysis on vg = ng — 1 and vg < np —1
CASE: vg =ngr — 1o Green(ng — 1) and by lemma B.10 x.A4(0)
CASE: vp<ngp—1sovg+1modng =vrp+1

(2)1. vp+1#0 by vg € Vg so vg > 0
(2)2. (VuR cup EVRANup <wvp+1: Green(uR)) by assumption
(2)3. Red(vg+1) by assumption
(2)4. *A(vg +1) by lemma B.9, lemma B.8[vg := wr+ 1] and (2)1...(2)3

(1)2. (VuR cur € VR \ {vg + 1 mod ng} :: = A(uR))

B. The TLA proof 32

LET: ug € Vg arbitrary s.t. ug # vg + 1 mod ng

PROVE: =% A(ug) by case analysis on ug =0, 0 < ug < vg and ug > vg + 1
CASE: ugp =0sovg <np—1 (by ug #vg + 1 modng)

(3)1. Red(nr —1) by assumption and vg < np — 1
(3)2. =Green(ng — 1) by (3)1 and lemma B.9[vp := ng — 1]
(3)3. = A(0) by (3)2 and lemma B.10

Case: 0 <up <wvpg
(3)1. Green(ur — 1) A Green(upg) by assumption
(3)2. =« A(up) by ugp # 0 and lemma B.6[vg := ug]

CASE: vg+1 < up
(3)1. Red(ur — 1) A Red(up) by ugr —1 > vg and assumption
(3)2. = x A(ug) by (3)1, ug —1 > vg > 0 and lemma B.Tjvg = ug]
(1)3. Q.E.D. by (1)1 and (1)2
|

Theorem B.12 + ® A Legal(vg) = (A(vg + 1 mod ng))
Proof:

(1)1. F4 Legal(vg) = (/\uR,wR cuR,wWr € VR ANur # wpg :: *A(ugp) = — % A(wR))
ASSUME: Legal(vg)
LET: ug,wg € Vi arbitrary s.t. ug # wg
ASSUME: *A(upg)
ProveE: — % A(wg)

(2)1. ugp =vp+ 1 modng by Legal(vg), *A(ugr) and lemma B.11
(2)2. wr #vrg+1modng by (2)1 and up # wg
(2)3. Q.E.D. by Legal(vg), (2)2 and lemma B.11

(2. F (Aur : ug € Vi = Legal(vp) A [T] A= A(ug) = (A(ug)))
by (1)1 and the following theorem of which proof can obtained from the authors.
I ba P = (Nijiinj €TAT#] wAG) =~ AG))
then + (Aizi€l: P A[A]AWE(A) A=AG) = [A()])
where A= (Vz ciel A(Z))

(1)3. F Legal(vg) = *A(vg + 1 mod ng) by lemma B.11
()4, - @ = [T] by - 0¢ = ¢
(1)5. Q.E.D. by (1)4, (1)3 and (1)2

|

B.3 Staying legitimate

We have now proven that in a legitimate configuration only one occurrence is enabled and
that it will be executed next. We will now analyse what happens if it is executed, i.e. we prove
the next occurrence will become the only one enabled and that we are still in a legitimate
configuration.

Lemma B.13 4 (VUR cvr € VR\ {0} it Green(vg — 1) N A(vg) = Green(vR)')

B. The TLA proof 33

Proof:

LET: vg € Vi \ {0} arbitrary
AssuME: Green(vg — 1) A A(vg)
PrOVE: Green(vg)'

(W1, t[f(vg)]" = t[f(vr—1)] by A(vg) and vg # 0

= t[f(0)] by Green(vg — 1)

= t[fO) by (F5), A(vg) and vp # 0
(1)2. d[f(vr)]" = vg by A(vg)
(1)3. Q.E.D. by (1)1 and (1)2

Lemma B.14
4 (‘v’uR,vR tup, VR € VR Avg < up 2 Green(vg) A A(ug) = Green(vR)')

Proof:

LET: up,vg € Vi arbitrary s.t. vp < ug so up # 0
AssuME: Green(vg) N A(ug)
PrOVE: Green(vg)' by case analysis on f(vg) = f(ug) and f(vg) # f(ur)
Case: f(vg) = f(ur)

1. 1 (g 1)] = 17 (0)]

(3)1. First(f(ug)) < wgr by (F2)and f(vg) = f(ugr)
< Uup

= t[f(ur)] by A(ugr), ug # 0 and (3)1
= t[f(ve)] by flur)= f(vk)
= t[f(0)] by Green(vg)

(3)2. t[f(ur —1)]

(2)2. t[f(vr)]’ tf(ug)]’ by f(vr) = f(ur)
t[f(ur —1)] by (F4), A(ug) and up # 0
t[£(0)] by (2)1
t[f(0)]' by (F5), A(ugr) and ug # 0

dlf(ug)]" by f(vgr) = f(ug)

V2 T T L (e (
S
=

by (F3), A(ur)
VR
(2)4. Q.E.D. by (2)2 and (2)3
Cask: f(vr) # f(ur)
(2)1. Unchanged (t[f(vr)],d[f(vr)]) by A(ug) and f(ur) # f(vr)
(2)2. Unchanged (t[f(0)]) by (F5), A(ug) and ug # 0
(2)3. Q.E.D. by Green(vg), (2)1 and (2)2

Lemma B.15
4 (‘v’uR,vR cup, VR EVRAO < up <wvpg: Green(ug — 1) N A(ugr) A Red(vg) = Red(vR)')

Proof:

B. The TLA proof 34

LET: up,vr € Vi arbitrary s.t. 0 < up < vg
AssuME: Green(ur — 1) AN A(ugr) A Red(vR)
PROVE: Red(vg)’ by case analysis on f(vg) = f(ug) and f(vg) # f(ur)

Case: f(vg) = f(ur)
1 dlfR) = dlfun)]’ by f(om) = flur)
= up by (F3) and A(ug)
< VR
@2 fer) = Hf@r)’ by f(or) = flur)
= t[f(urp —1)] by (F4), A(ug) and ug > 0
= t[f(0)] by Green(up — 1)
= t[f(0)]’ by (F5), A(ug) and up >0
(2)3. Q.E.D. by (2)1 and (2)2
Case: f(vr) # f(ur)
(2)1. Unchanged (t[f(vr)], d[f(vr)] by A(ug) and f(vk) # f(ur)
(2)2. Unchanged (t[f(0)]) by (F5), A(ug) and ug > 0
(2)3. Q.E.D. by (2)1 and (2)2

The following lemma will not be used in this subsection, but in analysing the second phase.
However, since it is very similar to the previous lemmas, we give it here.

Lemma B.16
- Yugr, Vg urp,vg €E VR A0 < up :
A (= Green(urp — 1) Vur < vg) N A(ur) A ~Green(vg) = —Green(vg)'

Proof:

LET: up,vg € Vg arbitrary s.t. 0 < ug
ASSUME: 1. =Green(ug — 1) Vup < vg
2. A(ug) A = Green(vg)
PROVE: —Green(vg)' by case analysis on f(ug) # f(vg) and f(ugr) = f(vg)
(

(1)1. Unchanged (t[f(0)]) by (F5), A(ug) and ug # 0
CASE: f(’lLR) ;é f(’l)R)
(1. Unchanged (1[f (vr)), d(f (vr) by A(ur) and f(vg) # f(ur)
(2)2. Q.E.D. by = Green(vg), (1)1 and (2)1
Case: f(ur) = f(vr)
(2)1. Q.E.D. by case analysis on =Green(ur — 1) and ug < vg
CASE: = Green(up — 1)
31 d[f(ug—1)] >ur—1 by A(ug) and ug > 0

(3)2. t[f(ur —1)] # t[f(0) by = Green(up — 1) and (3)1

]
(3)3. tif(or)]" = tf(ur)’ by f(vr) = f(ur)
= t[f(ug —1)] by (F4), A(ug) and up >0
t[f(0)] by (3)2
= t[f(0)] by (1)1
(3)4. Q.E.D. by (3)3

CASE: ug < vp

B. The TLA proof 35

31 dlfer) = dfn)] by f(om) = Flur)
= ug by (F3), A(ur)
< VR
(3)2. Q.E.D. by (3)1
|
Lemma B.17 4 Legal(ng — 1) A A(0) = Legal(0)’
Proof:
AssuME: Legal(ng — 1) A A(0)
LET: vg € Vi \ {0} arbitrary, so Green(vg) by Legal(ng — 1)
PROVE: Red(vg)’ so Legal(0)" by vg € Vg \ {0} arbitrary and 4 Green(0) (lemma B.5).
Proof by case analysis on f(vg) = f(0) and f(vg) # f(0)
Cask: f(vr) = £(0)
@1 difwn)]! = dfO) by fw) = £(0)
= 0 by (F3), A(0)
< WUR by vg #0
22 4f (o)’ = 1 (0)] by f(ur) = £(0)
(2)3. Q.E.D. by (2)1 and (2)2
Case: f(vr) # £(0)
1 df) = dif(or)] by A®©) and f(ug) £ £(0)
> wpR by Green(vg)
(2)2. ilf(vr)]" = t[f(vr)] by A(0) and f(vg) # f(0)
= t[f(0)] by Green(vg)
= t[f(0)]" —1mod @ by A(0)
(2)3. Q.E.D. by (2)1 and (2)2
|

Theorem B.18
Fa (‘v’vR :vp € Vi it Legal(vg) A A(vg + 1 mod ng) = Legal(vg + 1 mod nR)')

Proof:

LET: v € Vg arbitrary
ASSUME: Legal(vg) A A(vg + 1 mod ng)
ProvE: Legal(vg + 1 mod ng)’ by case analysis on vg = ng — 1 and vg < np — 1
CASE: vg = ng — 1 by lemma B.17
CASE: vgp<ngp—1sovg+1modng =vrp+1
LET: ug € Vi arbitrary
(2)1. up <vp = Green(ur)'
ASSUME: up < vg
ProvE: Green(ug)’
(3. up <vp+1 by ugp < wg
(3)2. Green(ug) by ur < vg and Legal(vg)

B. The TLA proof 36

(3)3. Alvg+1) by A(vg + 1 mod ng)

(3)4. Q.E.D. by lemma B.14 [ur,vg = vr+ 1,ug| and (3)1...(3)3
(2)2. up =vp +1= Green(ur)'

ASSUME: up =vg +1

ProvE: Green(ug)’

(3)1. ur #0 by up =vp+1>0
(3)2. Green(ug — 1) by up — 1 =vr < wvp and Legal(vg)
(3)3. A(ug) by A(vg +1) and ugp = vg + 1
(3)4. Q.E.D. by lemma B.13 [vp := wug] and (3)1...(3)3

(2)3. up >vp+ 1= Red(ug)’
ASSUME: up > vg +1
PROVE: Red(ug)’

(3)1. 0 < vp+1 < ug

(3)2. Green(vg) by vg < vg and Legal(vg)
(3)3. A(vg+1) by A(vg + 1 mod ng)
(3)4. Red(up) by ug > vg +1 > vg and Legal(vg)
(3)5. Q.E.D. by lemma B.15 [ug,vg = vgr+ 1,ug| and (3)1...(3)4
(2)4. Q.E.D. by (2)1, (2)2, (2)3 and ug € Vg arbitrary.
|

Corollary B.19 F & A Legitimate = OLegitimate

Proof:
(H1. fF PA¢=[P'] then H PAO¢ = OP
(2)1. + PAO¢

= PAO@A(P=[P']) byFPA¢=[P]
= PAOP=I[P'])
= 0OP by rule TLA1
Rule TLA1 says
If FAPA(f =f)= P
then FOP & PAO[P = P'|s
Let f be the tuple containing all program variables used (in particular all program
variables mentioned in P), then obviously -4 P A (f' = f) = P'. Furthermore
F(P = [P']) & [P = P'] and also - [A] = [A] for any state-function f.
(1)2. Legitimate N ® = [Legitimate']
ASSUME: Legitimate A ®
LET: vg € Vi s.t. Legal(vg) such vg exists by Legitimate
ProvEe: (Legitimate') so [Legitimate'] (A(T))

(2)1. (A(vg + 1 mod ng)) by theorem B.12 and ® and Legal(vg)
(2)2. (Legal(vr) N A(vg + 1 mod ng)) by (2)1, Legal(vg) and F P A (A) < (P A A)
(2)3. (Legal(vg + 1 mod ng)’) by (2)2 and ()-mono of theorem B.18
(2)4. Q.E.D. by (2)3 a vg exists s.t. (Legal(vg)’) so (Legitimate')
(1)3. F Legitimate A O® = OLegitimate by (1)1 and (1)2

()4, FOP < @ by missing initial prediate

B. The TLA proof 37

(1)5. Q.E.D. by (1)3 and (1)4

Lemma B.20 4 (‘v’vR cop € VR \ {0} it =% A(vR)) = Legal(ng — 1)

Proof:
ASSUME: (VUR cop € VR\ {0} = =% .A(UR))
PROVE: (VUR :vRp € Vi Green(vR)) by induction on vg

CASE: vg = 0. Green(0) by lemma B.5
CASE: vg =up+1<ngsovp#0

ASSUME: (VwR cwrp € VRANwg < vp Green(wR)) induction hypothesis
PROVE: Green(vg) by case analysis on vg = First(f(vgr)) and vg > First(f(vg))
CASE: vg = First(f(vgr))
(31, d[f(vg —1)] >vp—1 by Green(vg — 1)
32 if(on)
= t[f(vg —1)] by =*xA(vr), vg # 0, vg = First(f(vg)) and (3)1
= t[f(0)] by Green(vg — 1)

(3)3. d[f(vr)]

> First(f(vg)) by corollary B.4

= R by case assumption
(3)4. Q.E.D. by (3)2 and (3)3

CASE: vg > First(f(vgr))

(31, d[f(vg —1)] >vg—1 by Green(vg — 1)
@2 ilf(on)

— f(Pirst(f(or)))] by F(or) = f(First(f (o))

= t[f(0)] by First(vg) < vg so Green(First(f(vg))
3. tlf(on)

= 0] by (32

t[f(vg —1)] by Green(vg — 1)

(3)4. d[f(vg)] > vr by = x A(vr), vg > First(f(vg)), (3)1 and (3)3
(3)5. Q.E.D. by (3)2 and (3)4

Corollary B.21 4 (EIvR tvp € Vi o *.A(vR))

Proof: If A(vg), for some v € Vi \ {0}, is enabled then the corollary holds. Otherwise it
follows by lemma B.20 that Legal(ng — 1) holds and by theorem B.11 4(0) is enabled. =

B.J The main decreasing function Chaos
In this section we define the function Chaos and show that its range is finite and execution
of any non-root occurrence decreases this function.

B. The TLA proof 38

W (v)2f(First(v) — 1 mod ng)
vIu=u # f(0) Av =W (u)
Weight (v)=1 + (Zu ru eV AvTu Weight(u))
Distance(v)é(#vR tvR € Sim(v) it vp < d[v])
Mé(max v:veV \Szm(v)\)
SDistanceé(Zv veV o Distance(v))
S Weight® (Zv e s { Weight(v) if W(v)Tw A tv] # {W (v)])

0 otherwise
Chaos=M - SWeight — SDistance

Lemma B.22 4 (Vv :v €V 1 0 < Distance(v) < |Sim(v)\)

Proof:

LET: v € V arbitrary
(1)1. Distance(v) > 0 by (#v : R(v) = P(v)) >0

(1)2. Distance(v)
= (#UR cvg € Sim(v) = vg < d[v]) by definition of Distance
< (#UR :vp € Sim(v) :: vp < Last(v)) by d[v] < Last(v)
= |Sim(v)| —1 by definition of Last
(1)3. Q.E.D. by (1)1 and (1)2
|
Lemma B.23 F4n — nig < —SDistance < 0
Proof:
(1)1. 0
> (Zv veVe fDista,nce(v)) by lemma B.22
> (Zv cv eV —|Sim(v)| + 1) by lemma B.22
= nm-—ng by |V| =n and (Zv:vEV::|Sim(v)\) =ng
(1)2. Q.E.D. by (1)1 and def. of SDistance
|

Lemma B.24 The relation T defines a spanning tree on V' with root f(0).

Proof:

(H1. F4 (Vu,v cu,v € VAvTu :: First(v) < First(u))
LET: uw,v € V arbitrary s.t. vI'u
PrROVE: First(v) < First(u)
(2)1. First(u) > 0 by vTu so u # f(0) and 0 ¢ Sim(u)

B. The TLA proof 39

(2)2. First(v)
First(W (u)) by vTu = v = W (u)
= First(f(First(u) — 1 modng)) by def. of W
= First(f(First(u) — 1)) by (2)1
< First(u) — 1 by (F2)
< First(u)
(1)2. (Vv v eV W) T =v= f(O)) by def. of relation T
(1)3. Q.E.D.

For every u there is at most one v s.t. vT'u, since v = W (u) and W is a function. By
(1)1 there are no cycles in the relation. By (1)2 every u has a parent except for f(0).
This proofs 7' makes up a spanning tree of V' with root f(0).

|
Define S(v) as the set of nodes in the subtree with root v.
Lemma B.25 4 (Vv cv €V o Weight(v) = |S(v)\)
Proof:
LET: v € V arbitrary
PROVE: Weight(v) = |S(v)|
(1)1. Q.E.D. by induction on the depth of the subtree with root v.
CAsk: depth =0 so {u € VvTu} =0 and S(v) = {v}
(2)1. Weight(v)
1+ (Zu cu€eV AvTu Weight(u))
- 1 by {u € V|[vTu} =0
= 15(v)| by S(v) = {v}

CASE: depth = e+ 1 and by induction hypothesis (Vu cu €V AvTu 2 Weight(u) = \S(u)\)
(2)1. Weight(v)
1+ (Zu cu€V AvTu Weight(u)) def. of Weight(v)
= [S(v)]
since S(v) = {v} U (Uu cu €V AvTu = S(v)) and all S(u),{v} are disjoint.
|

. n(n—1
Lemma B.26 -4 0 < SWeight < %

Proof:

(1)1. (Vv cv €V i Weight(v) > 1), since Weight(v) is the number of nodes in S(v). There-
fore SWeight > 0.
(1)2. (Vv cveV 2 (Zu cu € S) Weight(u)) < Weight(v)(Weight(v) + 1))
We prove this by induction to the depth d of the subtree with root v.
CAse: d =0
(3)1. Weight(v) =1 and S(v) = {v} and the claim follows

B. The TLA proof 40

CASE: d=e+1
LET: v1,...,v. (¢ # 0) be the children of v

LET: m = (max i:1<i<ecu: Weight(vz-)) so m > Weight(v;) fori=1,... ¢
ASSUME: (Vi 1<i<exn2 (Zu cu € S(v;) Weight(u)) < Weight(v;)(Weight(v;) + 1))

by induction hypothesis

(3)1. Weight(v) =1+ (Zz 1<i<c: Weight(vz-)) by definition of Weight
(3)2. m < (Zz 1<i<c Weight(vz-)) —(ec—1) by Weight(v;) > 1 and let of m
(3)3. 2(Su:ue) Weight(u))
= 2 Weight(v) + 2 (Zz 1<i<cex (Zu cu € S(v;) Weight(u)))
by definition of S(v)
< 2Weight(v) + (Zz 11 <i < ¢ Weight(v;)(Weight(v;) + 1))
by induc. hyp.
< 2Weight(v) +m (i1 <i < c: Weight(v;) +1)
by let of m
= 201+ (Xi: 1< < Weight(vi)) +m (i1 <i < e Weight(v;) +1)
by (3)1
< 2 (Zz 01 <i < ¢ Weight(v;) + 1) +m (Zz 11 < < ¢ Weight(v;) + 1)
byc>1
= (m+2) (Zz 11 <i < c:: Weight(v;) + 1)
< ((Tic1<i< e Weight(vi) 42— (e 1)) (Xi 1< < ¢ Weight(vi) +1)
by (3)2
= (Weight(v) +1— (¢ — 1))(Weight(v) + (¢ — 1))
by (3)1
< Weight(v)(Weight(v) + 1)
by calculation
(1)3. SWeight
< (Zu cu e VA\A{f(0)}: Weight(u)) by Weight(u) > 0
= (Zu cu € S(f(0)) Weight(u)) — Weight(f(0)) by lemma B.24 S(f(0)) =V
< Weight(f(ﬂ))(V;’eight(f(o))ﬂ) — Weight(f(0)) by (1)2
— n(r-1)
by 2lemma B.24 and lemma B.25 Weight(f(0)) =n
|
Lemma B.27

Fa (VUR :vp € VR \ {0} it A(vg) Avr > First(f(vr)) = SWeight' = SWeight)

Proof:

LET: vg € Vg \ {0} arbitrary
ASSUME: A(vg) Avg > First(f(vgr))

B. The TLA proof 41

ProvE: SWeight' = SWeight

(1)1. (Vv :v €V it Unchanged (t[v])) by A(vg) ANvr > First(f(vr))
(1)2. Q.E.D. by (1)1 and SWeight only depends on the t[]-values

|
Lemma B.28

Fa (VvR cop € VR \ {0} it A(vr) Avg = First(f(vr)) = SWeight' < S’Weight)

Proof:

LET: vg € Vg \ {0} arbitrary
AssuME: A(vgr) ANvg = First(f(vr))
PROVE: SWeight' < SWeight
LET: v = f(vg) and
SuweVAu#fO)Au#vAv#W(u):
(a) = Weight(u) if W (u)Tu A t{u] # t{W (u)]
0 otherwise
_] Weight(u) if W(u)Tu A tlu] # t[W (u)]
(b) = (Zu ru eV AvTu { 0 otherwise)
(0 = { Weight(v) if W(v)Tv A t[v] # t{W (v)]
i 0 otherwise
1. v # £(0) by v = f(vg) and First(f(vg)) =vg # 0
2. W(v)Twv by (1)1
3. f(on) # fon 1) by v = Pirst(f(vn))
4. SWeight = (a) + (b) + (¢)
(2)1. vTu = First(v) < First(u) = u #v see proof of lemma B.24
(2)2. NueV
AVu#fO)ANu#vAv#W(u)
VvV oTu
Vu=uv
& AueV
AVu#fO)ANu#vAv#W(u)
Vu#f0)Au#vAv=W(u)by (2)1 and vTu & u # f(0) ANv=W(u)
Vu# f(0)Au=wvby (1)1
& uweV Au#f(0)
(3. u# f(O)ANu#vAv#W(u)=v#W(u) = -vlu
(2)4. u# f(O)ANuFAvAv#W(u)=u#v=-(u=n0)
(2)5. Q.E.D.
by (2)2 (a) + (b) + (¢) exaclty covers all elements summed in SWeight. By (2)3 and
(2)4, (a) does not cover any element also in (b) or (¢) (and vice versa). By (2)1 (b)
does not cover any element also in (¢) and vice versa.
(1)5. SWeight' = (a)' + (b)" + (¢)’
The proof is very similar to (1)4 since it only involves reasoning about rigid variables.

(1)6. (a) = (a)’

B. The TLA proof 42

LET: u € V arbitrary s.t. u # f(0) Au # v Av # W(u)

(2)1. t[u]” = t[u] by A(vg) A f(vr) =v # u
(2)2. W (u)]" = t[W (u)] by A(vg) A f(vr) = v # W(u)
(2)3. tlu]" =t[W(u)]" & t{u] = t[W(u)] by (2)1 and (2)2
(2)4. Q.E.D. by (2)3 and Weight(u) is fixed for any u
(1)7. (b) + (¢) > Weight(v)
1. th] = t[f(vr)] by v = f(vg)
t[f(or —1)] by A(vg) Avr = First(f(vr)) # 0
= t[f(First(v) — 1)] by vg = First(v)
= t{W(v)] by def. of W
(2)2. (¢) = Weight(v) by (1)2 and (2)1
(2)3. Q.E.D. by (2)2 and (b) > 0
(1)8. (¢)' =0
1.] = tf(vr)] by v = f(vr)
= t[f(vr —1)] by A(vr) Avr = First(f(vr)) # 0
= t[f(vr —1)] by A(vg) and (1)3
= t[f(First(v) —1)]" by vg = First(v)
= t[W(v)]’ by def. of W
(2)2. Q.E.D. by (2)1
(1)9. (b)’
< (Zu tu eV AT Wez'ght(u)) by Weight(u) > 0
= Weight(v) — 1 def. of Weight(v)
< Weight(v)
(1)10. (b)" + ()" < (b) + (c by (1)8, (1)9 and (1)7
(1)11. SWeight' = (a)' +(b)" 4+ (¢)' by (1)5
= @+ 0) +(0) by (1)6
< (a)+(b) + (¢ by (1)10
= SWeight by (1)4
(1)12. Q.E.D. by (1)11

Lemma B.29
Fa (VUR :vp € VR \ {0} it A(vg) Avr > First(f(vr)) = —SDistance’ < —SDistance)

Proof:
LET: vg € Vi \ {0} arbitrary s.t. A(vg) Avg > First(f(vgr)) and let v = f(vg)
(1)1. Distance(v)
(#uR tup € Sim(v) = ug < d[v])
(#uR tup € Sim(v) = ug < d[v]) by d[v] € Sim(v) (Domain)
(#uR:uRESim(v) ::uR<vR) by dv] = d[f(vr)] < vr
by A(vr) ANvg > First(f(vr))
#Hup :up € Sim(v) = ug < d[v]') by d[v]" = vg by A(vg) ANvg > First(f(vg))

Distance(v)’

IN A

B. The TLA proof 43

(1)2. (Vu cu €V Au+# v Distance(u)' = Distance)
by A(vr) A f(vr) = v # u = d[u]’ = d[u]

(1)3. Q.E.D. by (1)1 and (1)2
|
Lemma B.30
i Yogr :wp € Vg Avg = First(f(vg)) =
A A(vg) = SDistance’ > SDistance — |Sim(f(vg))| + 1
Proof:
LET: vg € Vg arbitrary s.t. A(vg) Avg = First(f(vg)) and let v = f(vg)
(H1. dp]" = g by (F3) and A(vg)
= First(f(vr))

(1)2. Distance(v)’

= (#vR cvgp € Sim(v) vg < d[v]')

= 0 by (1)1

> Distance(v) — |Sim(v)| + 1 by lemma B.22

(1)3. (Vu cu €V Au # v Distance(u)' = Distance(u))
by A(vg) A f(vr) =v # u = d[u]’ = d[u]
(1)4. Q.E.D. by (1)2 and (1)3

Lemma B.31 -4 n —ng < Chaos < M - "("2*1)

Proof: By lemma B.23 and lemma B.26 and Chaos = M - SWeight — SDistance |

Lemma B.32 4 (‘v’vR cvp € Ve \ {0} - A(vg) = Chaos' < C’haos)

Proof:

LET: vg € Vg \ {0} arbitrary s.t. A(vg)
PROVE: Chaos' < Chaos by case analysis on vg = First(f(vg)) and vg > First(f(vr))
CASE: vg = First(f(vgr))

(2)1. Chaos'
= M - SWeight' — SDistance’
< M - (SWeight — 1) — SDistance’ by lemma B.28
< M - SWeight — M — SDistance + |Sim(f(vg))] —1 by lemma B.30
< M - SWeight — SDistance

by M > |Sim(f(vg))| for any v
= Chaos
CASE: vg > First(f(vg))

B. The TLA proof 44

Chaos'

M - SWeight' — SDistance’

M - SWeight — SDistance’ by lemma B.27
M - SWeight — SDistance by lemma B.29
Chaos

A

Lemma B.33 4 .A(0) = Chaos’ < Chaos + M -n — 1

Proof:

AssuMmE: A(0)
PROVE: Chaos' < Chaos+M -n —1
YvweV Av#fO0)Af0)Tv

Ler: (a) 2 { Weight(v) if W(v)Tw A tv] # t{W (v)]
0 otherwise
YvweV Av#fO)AN-f(0)Tv
(b =

0 otherwise
(1)1. SWeight = (a) + (b) and SWeight' = (a)’ + (b)’
The elements summed in (a) and (b) exactly cover those summed in SWeight and no
element covered by (a) is covered by (b) (and vice versa).
2. (1) = ()
LET: v € V arbitrary s.t. v # f(0) A =f(0)Tv

{ Weight(v) if W(v)Tw A tv] # t{W (v)]

(2)1. t[v]" = t[v] by A(0) and v # f(0)
(202 1[W(0)]' = W (o) by A(0) and v # £(0) A ~f(0)Tv = W(v) £ £(0)
(2)3. Q.E.D. by (2)1 and (2)2
(1)3. (a) >0 by Weight(v) > 0 for any v

(4. () < (Sv:iveVAav#f0)AFO)Tv : Weight(v))
Weight(f(0)) =1 by f(0)Tv = v # f(0)
= n-—1 by lemma B.24 and lemma B.25
(1)5. SWeight' (a)" + (b)’ by (1)1
(a) +(b)+n—1 by (1)2, (1)3 and (1)4
SWeight +n —1 by (1)1
(1)6. —SDistance’ < —SDistance + |Sim(f(0))] —1 by lemma B.30, A(0)
and 0 = First(f(0))

< —SDistance + M — 1 by |Sim(v)| < M for any v
M - SWeight' — SDistance’
M (SWeight +n — 1) — SDistance + M —1 by (1)5 and (1)6
Chaos + M -n — 1

Al

(1)7. Chaos’

Al

Lemma B.34 +4 Chaos =n —ng = (VUR cvp € VR\ {0} it =% A(UR))

Proof:

B. The TLA proof 45

ASSUME: Chaos =n —ng
LET: vgp € Vg \ {0} arbitrary
PROVE: — % A(vg) by case analysis on vg = First(f(vg)) and vg > First(f(vg))
(1)1. SDistance = ng —n A SWeight =0 by Chaos =n —ng and lemmas B.23 and B.26
(1)2. (Vor : vk € Vi 5 d[f (vR)] > vi)

LET: v € V arbitrary

PROVE: d[v] = Last(v) then the statement follows since Last(v) = max Sim(v)

(2)1. Distance(v) = |Sim(v)] — 1 by (1)1 and Distance(v) < |Sim(v)| — 1 for any v € V

(follows from Domain)

(2)2. Q.E.D. by (2)1 and Domain
(1)3. (Vv v eV o # f(0) =t = t[W(v)])

LET: v € V arbitrary

(2)1. =W (v)Tv V tv] = t[W(v)] by (1)1 and Weight(v) > 0 for any v € V
(2)2. =W(v)Tv & v = f(0) by def. of uTw
(2)3. Q.E.D. by (2)1 and (2)2

CASE: vg = First(f(vg))
1. f(on) # F(0)
for suppose f(vg) = f(0) then vg = First(f(vr)) = First(f(0)) = 0 contradictory
with vg # 0
@2 if(on)
) by (2)1 and (1)3
= t[f(First(f(vg)) — 1 mod ng)] by def. of W
t[f(vr — 1 mod ng)] by vp = First(f(vr))
t[f(vr —1)] by vr € Ve \ {0}
(2)3. Q E.D. by (2)2 and vr = First(f(vg))
CASE: vg > First(f(vgr))
1. d[f (v)] > v by (1)
(2)2. Q.E.D. by (2)1 and vg > First(f(vg)

— DN

Lemma B.35 4 Legal(ng — 1) = Chaos =n —np

Proof:

ASSUME: Legal(ng — 1) so (VvR v €EVi o Green(vR))
PrROVE: Chaos =n —npg
(1. (Yo:v eV o] = t£(0)])
LET: v € V arbitrary
(2)1. t[v]
= t[f(First(v))] by v= f(First(v))
= t[f(0)] by Green(First(v))
(1)2. (VvR cop € Vi d[f(vg)] > vR) by (VvR :vp € Vg Green(vR))
(1)3. SWeight =0
Let v € V arbitrary then by (1)1 t[v] = t[f(0)] = t[W(v)]. Since v € V arbitrary
SWeight =0

B. The TLA proof 46

(1)4. SDistance =np —n
LET: v € V arbitrary
PROVE: d[v] = Last(v) so Distance(v) = |Sim(v)| — 1 and since v € V' arbitrary
SDistance = ng —n

(2)1. djv] = d[f(Last(v))] by v = f(Last(v))
> Last(v) by (1)2
(2)2. d[v] < Last(v) by Domain
(2)3. Q.E.D. by (2)1 and (2)2
(1)5. Q.E.D. by (1)3, (1)4 and Chaos = M - SWeight — SDistance
|
Corollary B.36 4 Legal(ng — 1)
& Chaos =n —np
& (vor:vr €V \ {0} s A(vr))
Proof: Follows from lemmas B.35, B.34 and B.20. [|

B.5 First stabilization phase
In this subsection we will define the function Phasel that will decrease with the execution
of any occurrence. If it has reached its lower bound we’ve entered the second phase.

co(s) = {veV\{f(0)}t] = s}
Missing(s) = ¢(s) =0 A (t[f(0)] = s = d[f(0)] = 0)
Miss = (mins :s€40,...,Q — 1} A Missing(s) :: (s — t[f(0)]) mod Q)
Phasel = M -n- Miss + Chaos

Lemma B.37 Miss is well defined if Q > n, i.e.
FaQ >n= {(s—t[f(0)]) mod Q|s € {0,...,Q — 1} A Missing(s)} # 0

Proof:

AssumE: {(s — t[f(0)]) mod Qs € {0,...,Q — 1} A Missing(s)} =0
PrOVE: @Q <n
LET: cc(s) = {v € V|t[v] = s}
(1)1. (Vs :s€{0,...,Q — 1} ce(s) 75@)
LET: s€{0,...,Q — 1} arbitrary
PROVE: cc(s) # 0
(1. e(s) # 0V HF(0)] = 5
by the assumption we have = Missing(s)
(2)2. Q.E.D.
c(s) C ce(s), so in case ¢(s) # 0 also ce(s) # 0. In case t[f(0)] = s then f(0) € cc(s),
so also cc(s) # 0. Therefore it follows from (2)1.
(1)2. (V31,52 051,82 €{0,...,Q} 51 # s9 = cc(s1) Nee(sy) = @)
LET: s1,89 € {0,...,Q — 1} arbitrary

B. The TLA proof 47

ASSUME: ce(s1) Nece(sg) # 0 so thereisa v €V s.t. v € ¢(s1) and v € ¢(s2)
PROVE: 51 = 59

(2)1. t[v] = s1 by v € ce(sy)
(2)2. tlv] = s9 by v € cc(s2)
(2)3. Q.E.D. by (2)1 and (2)2
(3. Q < [(Us:s€{0,...,Q 1} uce(s))| by (1)1 and (1)2
< V| by (Us:s€{0,...,Q 1} zce(s)) €V
B | |

Lemma B.38 4 0 < Miss < Q

Proof: Miss = (min s:5€{0,...,Q — 1} A Missing(s) :: (s — t[f(0)]) mod Q) so since Miss
is well defined by lemma B.37 we conclude 0 < Miss <). [|

Lemma B.39 4 (VUR cvg € VR \ {0} :: A(vg) A Miss > 0 = Miss' < Miss)

Proof:

LET: vg € Vg \ {0} arbitrary
ASSUME: A(vg) A Miss > 0
PROVE: Miss' < Miss
(1)1. (Vs :s€{0,...,Q — 1} :: Missing(s) = Missing(s)')
LET: s €{0,...,Q — 1} arbitrary s.t. Missing(s)
ProvVE: Missing(s)’
(2)1. t[f(vr)]" # s by case analysis on f(vg —1) = f(0) and f(vg — 1) # f(0)
CASE: f(vg — 1) = f(0)
(31 (0)] £ 5
if t[f(0)] = s then Missing(t[f(0)]) so Miss = 0 contradicting Miss > 0
(3)2. t[f(vr)]’ t[f(vk —1)] by (F4), A(vg) and vg > 0

= t[f(0)] by f(vr —1) = f(0)
s by (3)1
Case: flog —1) # F(0)
1. tlf(vg)]" = t[f(vk —1)] by (F4), A(vg) and vg >0
#+ s by Missing(s) and f(vg — 1) # f(0)

(2)2. (Yu:ue V\{F(0)} Au# f(vg) = tu] # 5)
LeT: w eV \{f(0)} arbitrary s.t. u # f(vg)

(3)1. tlu)" = tu] by A(vg) and u # f(vg)
#+ s by Missing(s) and u # f(0)
(2)3. (Yo:0 €V \{F(0)} = tlu]’ #5) s0 c(s)" =0 by (2)1 and (2)2

(@4 df (O] = s = df(0)] =0
by case analysis on f(vg) # f(0), f(vr) = £(0) A f(vg —1) = £(0) and f(vg) =
F(0) A f(vr — 1) # £(0)

B. The TLA proof 48

Case: f(on) £ F(0)
(3)1. Unchanged (t[f(0)], d[f(0)] by A(vg) and f(vg) # f(0)
(3)2. Q.E.D. by Missing(s) and (3)1
Casg: f(vr) = f(0) A f(or = 1) = f(0)
AssumEe: t[f(0)]" =s

PROVE: —
(3)1. t[f(0)]
= t[flor=1)] by f(0) = f(vr—1)
= t[f(vr)]’ by (F4) and A(vg) and vg # 0
= tFO) by f(0) = f(vr)
= s by assumption
(3)2. Missing(t[f(0)]) by Missing(s) and (3)1
(3)3. Q.E.D. Miss = 0 by (3)2, contradicting Miss > 0

Case: f(og) = f(0) A f(ve — 1) # f(0)
AssumE: t[f(0)]" =s
PROVE: —
B tlfor 1))
= t[f(vr)]’ by (F4), A(vg) and vg # 0
= OF by o) =10

by assumption

tlf(vr)] by A(vg) and vg > First(f(vr))
t[f(0)] by f(0) = f(vr)

(3)2. ¢(s) 7é 0 by (3)1 and f(vg —1) # f(0)
(3)3. Q.E.D. by (3)2 and Missing(s)
(2)5. QE.D by (2)3 and (2)4
(1)2. ¢[f(0)]" =t[f(0)] by case analysis on f(vg) = f(0) and f(vg) # f(0)
Case: f(vg) = f(0) so vg > First(f(vgr)) by vg > 0 = First(f(0))
@)1 [f(0)]" = t[f(vr)l" by f(0) = f(vg)

21 t[f(0)]" = [f(0)] by A(vg) and f(vr) # f(0)
(1)3. {(s —t[f(0)]) mod Q|s € {0,...,Q — 1} A Missing(s)}
C {(s—t[f(0)]) mod Qs € {0,..., Q — 1} A Missing(s)'} by (1)1
C {(s—t[f(0)]") mod Q|s €{0,...,Q — 1} A Missing(s)'} by (1)2
(1)4. Q.E.D. by (1)3

Lemma B.40 4 A(0) A Miss > 0 = Miss' < Miss

Proof:

ASSUME: A(0) A Miss > 0
(1)1. (Vs :sef{0,..., Q — 1} :: Missing(s) = Missing(s)')
LET: s €{0,...,Q — 1} arbitrary s.t. Missing(s)
PROVE: Missing(s)’
(1. ¢(s)" =c(s) by A(0) so (Vu cu €V \{f(0)}:: Unchanged (t[u]))

B. The TLA proof 49

(2)2. d[f(0)]" =0 by (F3) and A(0)
(2)3. Q.E.D. by (2)1 and (2)2
(1)2. Miss'

(min s:8€{0,...,Q — 1} A Missing(s)" :: (s — t[f(0)])" mod Q)

< (mins :s€{0,...,Q — 1} A Missing(s) :: (s — t[f(0)])" mod Q) by (1)1
= (min s:5€{0,...,Q — 1} A Missing(s) :: (s — t[f(0)] — 1) mod Q) by A(0)
= Miss—1 by Miss > 0
and @ > 2
< Miss
|

Lemma B.41 F4n —ng < Phasel <M -n-(Q —1)+ M—”(”Z’l)

Proof:
(1)1. Phasel
= M -n- Miss + Chaos
> Chaos by lemma B.38
> nm—ng by lemma B.31
(1)2. Phasel
= M -n- Miss + Chaos
< M-n-(Q—1)+ Chaos by lemma B.38
< M-n-(Q 1)+ M2 by lemma B.31
|
Lemma B.42 +4 7 A Miss > 0 = Phasel’ < Phasel
Proof:
AssuME: T A Miss > 0
LET: vp € Vi s.t. A(vg) such vp exists by 7
PROVE: Phasel’ < Phasel by case analysis on vg = 0 and vg # 0
Caske: vg =0 so A(0)
(2)1. Phase1’
= M -n-Miss' + Chaos + M -n — 1
< M-n-(Miss —1)+ Chaos + M -n—1 by lemma B.33 and .A(0)
= M -n- Miss+ Chaos — 1 by lemma B.40 and A(0) A Miss > 0
= Phasel — 1
< Phasel
CASE: vp # 0
(2)1. Phasel’
= M -n- Miss' + Chaos’
< M -n- Miss + Chaos’ by lemma B.39, A(vg) and vg # 0
< M -n- Miss + Chaos by lemma B.32, A(vg) and vg # 0

Phasel

B. The TLA proof 50

B.6 Second stabilization phase

In this section we define the function Stabilized that will be greater or equal to zero during the
second stabilization phase. As long as it is greater or equal to zero and smaller than np — 1
it will not decrease and the root will also not execute. Execution of non-root nodes will
decrease the function Chaos as already proven. Since the range of Chaos is finite, eventually
Stabilized must equal ng — 1 and this implies Legal(ng — 1), i.e. we've reached a legitimate
configuration.

Stable(vg) 2 (VuR cup€Vptup <vp & Green(uR))

{ -1 if — (EIuR up € Vi i Stable(uR))

Stabilized =
(max ugr 1 ugp € Vi i Stable(uR)) otherwise

Lemma B.43 -4 Miss = 0 = Stabilized > 0

Proof:

ASSUME: Miss = 0 so Missing(t[f(0)]) and ¢(¢[f(0)]) =0 Ad[f(0)] =0
LET: up € Vg \ {0} arbitrary
PROVE: —Green(ug) then Stable(0) follows from ur € Vi \ {0} arbitrary and lemma B.5.
Proven by case analysis on f(ug) = f(0) and f(ug) # f(0)
Cask: f(ugr) = f(0)
A1 dif(u)
d[f(0)] by f(ur) = f(0)

= 0 by Miss =0
< Up by URGVR\{O}
(2)2. Q.E.D. by (2)1
Cast: f(ur) # £(0)
(1. t[f(ur)] # t[f(0)] by c(t[f(0)]) # 0 and f(ug) # f(0)
(2)2. Q.E.D. by (2)1
|
Lemma B.44 4 Stable(ng — 1) & Legal(ng — 1)
Proof:
(1)1. Stable(ng — 1)
& (VuR cup € Vi Green(uR))
< Legal(ng — 1)
|

Lemma B.45 -4 —1 < Stabilized < ng

Proof: By 0 < (max uR :ur € Vg i Stable(uR)) < np if (EUR cup € Vg o Stable(uR)).]

B. The TLA proof 51

Lemma B.46
- Yug,uR W, ur €E VR ANvp <np—1:
A Stable(vg) A A(ur) = Stable(vg)' Vv Stable(vp + 1)’
Proof:

LET: vg,ugr € Vg arbitrary s.t. vg <ng —1
AssumEe: Stable(vg) A A(ug)
PROVE: Stable(vg)' V Stable(vg + 1)’

(V1. ug > 0

ASSUME: ugr = 0 for the sake of a contradiction

PRrROVE: -

(2)1. =Green(ng — 1) by Stable(vg) ANvg <np —1
(2)2. =% A(0) by (2)1 and lemma B.10
(2)3. =.A(0) by (2)2 and F4 A= *A
(2)4. A(0) by A(ug) and up =0
(2)5. Q.E.D. by (2)3 and (2)4

(1)2. vgp < up
ASSUME: ugr < vg for the sake of a contradiction

PRrROVE: -

(2)1. 0 <up <wg by ug < vg and (1)1
(2)2. Green(ur — 1) A Green(upr) by (2)1 and Stable(vg)
(2)3. =« A(ug) by (1)1, (2)2 and lemma B.6[vg = ug]
(2)4. - A(ug) by (2)3 and F4 A= *A
(2)5. Q.E.D. by (2)4 and A(ug)

(1)3. (V’u}R cwr € VR ANwg < wp Green(wR)')
LET: wg € Vg arbitrary s.t. wrg < vp
ProvE: Green(wg)’

(2)1. Green(wg) by Stable(vg) and wr < vg
(2)2. wr <wvp <up by wgp < vg and (1)2
(2)3. Q.E.D. by lemma B.14[ur,vg = ugr,wgr], (2)2, (2)1 and A(ugr)

(1)4. (VwR cwr €E VRAwg >vp+1:: ﬂGreen(wR)')
LET: wg € Vi arbitrary s.t. wg > vgp +1
PrOVE: —Green(wg)' by case analysis on wg > ug and wg < up

(2)1. = Green(wg) by Stable(vg) and wr > vgp + 1
CASE: wgr > uR
(3)1. Q.E.D. by lemma B.16[ugr,vg = ugr,wg], (1)1, ugp < wg, A(ugr) and (2)1

CASE: wr < up
(3)1. uwrp—1 > wr—1 by case

> wR by let of wg
(3)2. = Green(ug — 1) by Stable(vg) and (3)1
(3)3. Q.E.D. by lemma B.16[ug,vg = ug,wg], (1)1, (3)2, A(ug) and (2)1
(1)5. Q.E.D. by (1)3 and (1)4.

Note that we have either Green(vg +1)" or =Green(vg + 1)’ establishing respectively
Stable(vg +1)" and Stable(vg)’.

B. The TLA proof 52

Corollary B.47 4 0 < Stabilized < ng — 1 AT = Stabilized < Stabilized'

Proof:

AssuME: 0 < Stabilized < ng —1NT

PrOVE: Stabilized < Stabilized'’

LET: vgp € Vg s.t. vgp = Stabilized N vg < nr — 1 so also Stable(vg). Such vg exists by
0 < Stabilized < np — 1.

LET: ug € Vg s.t. A(ug). Such ug exists by 7

(1)1. Q.E.D.
By lemma B.46 we have Stable(vg)’ V Stable(vg+ 1)’ and therefore Stabilized' > v =
Stabilized

B.7 Temporal Glue

In this subsection we will glue all the previous mathematical reasoning together to get the
wanted temporal statements. We call a protocol, specified by the formula ® selfstabilizing
with respect to the legitimate configurations specified by L if and only if we can show the
following:

F® e O
FoAL=0OL
Fo&= <L

If we also want to show some bound (bound) on the stabilisation time (expressed in configu-
ration changes) we should prove the following instead of the third condition:

F® A time = 0 A O[time’ = time 4+ 1] = O(L A time < bound)

where time is (of course) a variable not occuring in @, it is a so called history variable. The
first condition states that ® does not specify an initialisation predicate. The second condition
states the safety part of the proof and has already been shown in corollary B.19. For the
third condition we mainly use the following rule, that can be derived from the Lattice-rule
in TLA:
If FANAP=Q ' V(f'<fAP"
and F4 b < f <ub
where the range of f is a subset of ZZ and b, ub € Z

then + O(N A time' = time + 1) = (P A time < ts ~ Q A time < ts + ub — Ib)

We refer to this rule as the t-Lattice-rule.

Theorem B.48 + ® A time = 0 A O[time’ = time + 1] = O(Legitimate A time < tPhasel +

tPhase2)
where tPhasel = M-n-(Q—l)—I—M@—I—nR—n—i—l
tPhase? = M@—I—n}g—n—i—l

B. The TLA proof 53

Proof
(H1. F & = 0(7)
(2)1. F4 (EUR tvp € VR i *A(?)R)) by corollary B.21
(2)2. F 4 xT by (2)1 and Domain
(2)3. FOxT by (2)2
(2)4. F[T)ANWF(T) AT = O(T)
This follows from the same rule as used in the proof of theorem B.12:
I FaP= (Nisjiig €TNI# 5 #Al) = - % A(j))
then + (Aizi €l P ALA]AWE(A)AxAG) = (A(0)))
where A= (Vz i€l A(z))
Take P = T and I = {1}, then the condition is trivially satisfied. The conclusion
follows by taking A(1) = 7.
(2)5. T|ANWE(T)ANOxT = 0O(T) by O-mono on (2)4
(2)6. Q.E.D. by (2)3, (2)5 and ® = O[T A WF(T).
(1)2. O A Oftime" = time + 1]

= O(T)AO[time' = time +1] by (1)1
< O(T)Altime' =time+1]) by Op A Oy < O(éd AY)
< O(T Atime' =time+1)) by (A) A [B] & (AAB)
(1)3. F time = 0 AT A time' = time + 1) = O(Stabilized > 0 A time < tPhasel)
(2)1. T A Miss > 0
= Phasel’ < Phasel by lemma B.42
= Miss' =0V (Phasel’ < Phasel A Miss' > 0) by lemma B.38
(2)2. O(T Atime' = time + 1) = (Miss > 0 A time = 0 ~ Miss = 0 A time < tPhasel)
by the t-Lattice-rule, (2)1 and lemma B.41
(2)3. time = 0 = (Miss > 0 A time = 0) V O(Miss = 0 A time < tPhasel)
by tPhasel > 0 and F ¢ = O¢
(2)4. time = 0 AO(T A time' = time + 1) = O(Miss = 0 A time < tPhasel)
by (2)2 and (2)3
(2)5. Q.E.D. by (2)4 and lemma B.43
(1)4. + Stabilized > 0 A time < tPhasel A O(T A time' = time + 1) =
O(Legitimate A time < tPhasel + tPhase2)
(2)1. T A0 < Stabilized < ngr —1 = 0 < Stabilized’ <nr—1 by corollary B.47 and
lemma B.45
(2)2. 0 < Stabilized < np —1 = - % A(0)
Let vg = Stabilized and assume 0 < vp < ng— 1 so Stable(vg) and since vp < ng —1
we have = Green(ng — 1) and by lemma B.10 we conclude — % .4(0).
(2)3. T N0 < Stabilized < np — 1
= (EIUR cvp € VR\ {0} = A(UR)) A0 < Stabilized < np — 1 by (2)2
= 0 < Stabilized' <np—1A Chaos' < Chaos
by (2)1 and lemma B.32
= Stabilized' =ngr — 1V (0 < Stabilized" < nr — 1A Chaos’ < Chaos) by logic
(2)4. O(T A time' = time + 1) = (0 < Stabilized < ngp — 1 A time < tPhasel ~»
Stabilized = np — 1 A time < tPhasel + tPhase2)

C. Concluding remarks 54

by t-Lattice-rule, (2)3 and lemma B.31
(2)5. Stabilized > 0 A time < tPhasel

=V 0 < Stabilized < nrp — 1A time < tPhasel

V O(Stabilized = np — 1 A time < tPhasel + tPhase2)

by lemma B.45 and tPhase2 > 0.

(2)6. Stabilized > 0 A time < tPhasel N O{(T A time' = time + 1) =
O(Stabilized = ng — 1 A time < tPhasel + tPhase2)

by (2)5 and (2)4

(2)7. Q.E.D. by lemma B.44 and (2)6.
(1)5. Q.E.D.
by (1)1 ... (1)4.

This proves the third and last requirement of a selfstabilizing protocol.

C. CONCLUDING REMARKS

If the original graph G was already a ring and we take ngp = n and f(i) = i, we get M = 1, and
the stabilization time is O(n?). This is the same stabilization time Dijkstra gave. Actually
our protocol does essentially the same as Dijkstra’s protocol. However the bound of O(n?)
can not be smaller in general, due to the following example. Consider the following graph,
where both r and ¢ are in @().

o
i

Ul u2 u3 Ur-2 Ur-1

\/'
|

In a covering ring of this graph, the nodes Uy, ..., U, must be used to connect (the images
of) any two nodes V; and Vj}, so ng € Q(n?). In the picture below a covering ring is shown.
The dashed arcs denote a copy of the chain Uy,...,U,. So each U; simulates a node in each

dashed arc, and the First(U;) is in the first (leftmost) dashed arc. Lets say that a ticket of
wp is valid if d[f(wg)] > wg. Also call wg — 1 mod ng, the predecessor of wg. Lets take V3
as the root node.

AN VA AN V4 N V2 AN V4
O —=0 O%O%O O%O%O O%O% LI '%O%O O
Vi ULU \p, ULUr g ULUr ve Ulur

The first occurrences (first arc) will always copy a valid ticket from their predecessor in the
first arc, if it is unequal to their own ticket. The other occurrences will only increase their

C. Concluding remarks 55

distance in any of the other dashed arcs, if the ticket of their predecessor equals their own
and is valid. Now consider the following scenario. First all nodes in the first arc copy the root
value (one by one of course). Now instead of travelling through the second arc, this value is
present in V. and valid. So the simulating nodes can increase their distance immediately to
the last arc (one by one of course). Now the root can generate a new ticket (since its ticket
has returned at ng — 1, and it is again copied by the first arc. Now this ticket has been
waiting in V._1, so the nodes can increase their distance one by one through the last two
arcs. Again the root generates a new ticket, the first arc copies it, and this ticket was waiting
in V._9. And so on. Finally we end up with a ticket waiting in V5, only then the protocol has
stabilized. We now have had ¢ — 1 € Q(n) separate root tickets. The first (from V;) travels
through the first and last arc. The second (from V) travels through the first and last two
arcs. In general the i-th travels through the first and last i arcs. So each value travels (on
the average) through Q(n) arcs. Each arc has Q(n) length, so in total we have established a
scenario that takes Q(n3) stabilization time.

One might suggest that we should have sticked closer to the colors blue and white, used
in Dijkstra’s original proof. Dijkstra used a history variable to color its nodes. Initially each
node was white. If the root generated a new ticket it became blue and if another node copied
a blue ticket it became blue too. First of all one should prove that this indeed is a history
variable, which would not be very difficult, but still. Note however that a blue node is also
green and that this is actually the property Dijkstra uses of blue when he concludes that
when eventually all nodes are blue, the configuration is legitimate. Furthermore our proof
more precisely shows what happens to the chaos in the white nodes. One could imagine that
there exists a scenario for the white nodes to stay white but still execute once in a while.
Due to the decreasing chaos this is not the case. The advantage of blue and white is that
there would be no need for the second phase. However the overhead of proof for the second
phase is very small, since its proof coincides very much with the proof of staying legitimate
once a legitimate configuration has been reached.

In an earlier version of our proof we assumed that the root node had only one occurrence.
In this case the root only needed to generate a new ticket out of n possible tickets, where as
it now needs n + 1 possible tickets. In transforming our proof we made a slight mistake in
lemma B.43 and had to correct this by changing the definition of Missing(s) (to include the

part t[f(0)] = s = d[f(0)] = 0).

