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Abstract. We show that, contrary to common belief, Dijkstra’sK-state mutual exclusion
algorithm on a ring also stabilizes when the numberK of states per process is one less than
the numberN+1 of processes in the ring. We formalize the algorithm and verify the proof
in PVS, based on Qadeer and Shankar’s work. We show thatK = N is sharp by giving a
counter-example forK = N − 1.
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1. Introduction

Dijkstra introduced the notion of self-stabilization in his seminal paper [Dijkstra
1974]. A distributed system is said to be self-stabilizing if it satisfies the following
two properties:
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(1) convergence: starting from an arbitrary state, the system is guaranteedto
reach a stable state;

(2) closure: once the system reaches a stable state, it cannot become unstable
anymore.

A system with the property of self-stabilization can have the advantages of fault
tolerance, robustness for dynamic topologies, and straightforward initialization.

Consider a system with a number of processes sharing a commonresource (usu-
ally called critical section). Given an arbitrary initial state of the system, there
might be more than one process enabled to access the common resource. The
problem of mutual exclusion is to guarantee that the common resource will not be
accessed by more than one process simultaneously. Self-stabilizing algorithms for
mutual exclusion make sure that each infinite run of the system reaches a stable
state where exactly one process is enabled; and from then on,mutual exclusion of
the common resource is guaranteed.

In [Dijkstra 1974], Dijkstra presented three self-stabilizing algorithms for mutual
exclusion on a ring network: an algorithm withK-state processes, an algorithm
with four-state processes, and an algorithm with three-state processes. Regarding
their correctness, he wrote:
◦ “For brevity’s sake most of the heuristics that led me to find them, together

with the proofs that they satisfy the requirements, have been omitted, [...]”.
After more than ten years, Dijkstra [1986] published a proofof self-stabilization
of his algorithm with three-state processes, and acknowledged that the verification
was actually not trivial.

In this paper, we focus on Dijkstra’s algorithm withK-state processes. We con-
sider a system ofN + 1 processes, numbered from 0 throughN, arranged in a
unidirectional ring. Each processpi has a counterv(i) that can hold a value from
0 to K − 1. Each process can observe its own counter value and the counter value
of its anti-clockwise neighbor.p0 is a distinguished process that is enabled when
v(0) = v(N), and when enabled, it can increment its counter by 1 moduloK. Each
processpi for i = 1, . . . ,N is enabled whenv(i) , v(i − 1), and when enabled, it
can update its counter value so thatv(i) = v(i − 1). Thus the behavior of the system
can be presented as follows:
Dijkstra’s K-state algorithm for mutual exclusion.Let processesp0, . . . , pN form
a unidirectional ring, where the counter for each processpi holds a valuev(i) ∈
{0, . . . ,K − 1}.
◦ if v(0) = v(N), thenv(0) := (v(0)+ 1) modK;

◦ if v(i) , v(i − 1) for i = 1, . . . ,N, thenv(i) := v(i − 1).
The system is said to be in astablestate if it contains exactly one enabled process,
which can be interpreted as holding a token. This token can bepassed along the
ring network; a process can access the common resource only when it holds the
token.

This algorithm has been proved correct by different proof methods for self-
stabilization, e.g. [Varghese 1992], [Tel 1994] and [Theel2000]. It attracted much
attention from the formal verification community. There aretwo distinct traditions
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in automatic verification: theorem proving and model checking. Merz [1998] for-
malized the algorithm and proved it correct in Isabelle/HOL [Nipkow et al.2002].
Qadeer and Shankar [1998] applied PVS [Owreet al.1992] to prove its correctness.
Later on, Kulkarniet al. [1999] also proved its correctness using PVS in a differ-
ent fashion. Model checking techniques were applied to thisalgorithm in [Shukla
et al.1997] and [Tsuchiyaet al.2001]. Shuklaet al. [1997] verified whether the
algorithm converges to stable states from a given initial state in SPIN [Holzmann
1990] for systems with processes up to fifty. Tsuchiyaet al. [2001] described the
algorithm in SMV [McMillan 1993] and verified the property ofself-stabilization
for systems with any possible initial state and 3≤ N ≤ 8. Due to the state ex-
plosion problem, this approach has some restrictions: it cannot be directly used
for any possible initial state, and/or it can only prove the algorithm correct with a
limited number of processes and states.

However, all these proofs only showed correctness of the algorithm under a
stronger condition, namely the algorithm is correct ifK > N. This also happened
in Schneider’s survey paper on self-stabilization [Schneider 1993]. The only ex-
ception we could find is [Kulkarniet al.1999]. Although they proved the algorithm
correct forK > N, almost at the end of the paper, they stated:
◦ “it is possible to prove stabilization whenK ≥ N– we will need to redo only

the proofs that depend on this assumption, namely Lemmas 6.4, 6.6, 6.8.”
However, the validity of this claim is not clear, especiallytheir formulation of
Lemma 6.4 is false whenK = N.

Judging from the literature, it seems to be a common belief that Dijkstra’s K-
state mutual exclusion algorithm on a ring only stabilizes whenK > N. But in
fact, Dijkstra gave a note after presenting the solution with K-state machines in
[Dijkstra 1974] as follows:
◦ “Note 1. [...] the relationK ≥ N is sufficient.”

A brief informal proof sketch was given by himself in [Dijkstra 1982]. In addition,
he said:
◦ “(and for smaller values ofK counter examples kill the assumption of self-

stabilization.)”
We note that, ifK = N, there should be at least three processes in the ring;

namely, ifK = N = 1, then clearlyp0 is always enabled andp1 is never enabled.
If K > N, then the algorithm also works for a ring with two processes.

In this paper, we formally prove that ifN > 1, thenK ≥ N is sufficient for the
stabilization of Dijkstra’sK-state mutual exclusion algorithm. For the condition
K > N, the proofs in [Varghese 1992], [Tel 1994], [Qadeer and Shankar 1998],
[Merz 1998] and [Kulkarniet al.1999] used the classic pigeonhole principle. The
proof for K = N becomes considerably more complicated, since the pigeonhole
principle cannot be simply applied for any state of the algorithm. This will be
explained in detail in Section 3. Our proof, which is different from the proof sketch
in [Dijkstra 1982], has been checked in PVS.

The rest of the paper is structured as follows. In Section 2, we show that Dijk-
stra’sK-state mutual exclusion algorithm on a ring also stabilizeswhen the number
of states per process is one less than the number of processeson the ring, namely
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K ≥ N. We formalized the algorithm and checked our proof in PVS. Our verifica-
tion in PVS is based on [Qadeer and Shankar 1998], we reused their formalization
of the algorithm and most of their lemmas. We present the crucial lemmas of our
PVS verification in Section 3. In Section 4, we show thatK ≥ N is sharp by a
counter-example, which was missing in [Dijkstra 1982]. We conclude this paper in
Section 5.

2. Proof of Self-Stabilization

We give the proof that Dijkstra’sK-state mutual exclusion algorithm on a ring sta-
bilizes whenK ≥ N > 1. First we prove the closure property for self-stabilization
(see Proposition 1).

L 1. In each state of the algorithm, there is at least one enabled process.

P. We distinguish two cases:
◦ for all i ∈ {1, . . . ,N}, v(i) = v(0). In particular,v(0) = v(N), which impliesp0

is enabled;

◦ otherwise, there exists aj ∈ {1, . . . ,N} such thatv( j) , v(0), and for all
i ∈ {1, . . . , j − 1}, v(i) = v(0). Sincev( j) , v( j − 1), p j is enabled.

Lemma 1 implies that no run of the algorithm ever deadlocks, as in each state the
enabled process(es) can “fire”, meaning that the counter value is updated.

P 1. Once in a stable state, the system will remain in stable states.

P. We assumepi is the only enabled process in some stable state. It is easy to
see that whenpi fires, it makes itself disabled, and it makes at mostpi ’s clockwise
neighbor enabled. By Lemma 1, in each state of the algorithm,there exists at least
one enabled process. Therefore, after the firing ofpi , the clockwise neighbor ofpi

is the only enabled process, so the system remains in a stablestate.�

We proceed to prove the convergence property for self-stabilization (see Theo-
rem 1).

L 2. In each infinite run of the algorithm, p0 fires infinitely often.

P. Given a state, consider the sum over all elements{N − i | i ∈ {1, . . . ,N} ∧
pi is enabled}. Clearly, when a nonzero process fires, this sum strictly decreases.
Furthermore, for each state, this sum is at least 0. Hence, ineach infinite run,p0

must fire infinitely often.�

D 1. Thelegitimate statesare those states that satisfy v(i) = x for all i < j
and v(i) = (x− 1) modK for all j ≤ i ≤ N, for some choice of x< K and j≤ N.

Note that a legitimate state is stable, as onlyp j is enabled.
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T 1. Let N > 1. Even if K= N, Dijkstra’s K-state mutual exclusion algo-
rithm for N+ 1 processes stabilizes.

P. By Lemma 1, no run of the algorithm ever deadlocks. By Lemma 2, in
each infinite run of the algorithmp0 fires infinitely often.

Let N > 1. We prove that each infinite run of the algorithm visits a legitimate
state. Consider the case wherep0 fires for the first time. Then just before that,
v(0) = v(N) = y for somey, and the new value ofv(0) becomes (y + 1) modK.
Now consider the case whenp0 fires again. Then just before that,v(0) = v(N) =
(y+1) modK. In order forpN to change its counter value fromy to (y+1) modK,
it must have copied (y + 1) modK from its anti-clockwise neighborpN−1. This
moment must have occurred afterp0 changed its counter value tov(0) = (y +
1) modK. But then, just afterpN copies (y+1) modK from pN−1, we actually have
v(N− 1) = v(N) = (y+ 1) modK. In other words, sinceN > 1 implies thatpN−1 ,

p0, two different nonzero processes hold the same counter value (y + 1) modK.
Then theN nonzero processes hold at mostN − 1 different counter values from
{0, . . . ,K − 1}. WhenK ≥ N (so in particular whenK = N), then at this point
in time there is anx < K that does not occur as the counter value of any nonzero
process in the ring.

Sincep0 fires infinitely often, eventuallyv(0) becomesx. The other processes
merely copy counter values from their anti-clockwise neighbors, so at this point no
other process holdsx. The next timep0 fires,v(N) = v(0) = x. The only way that
pN gets the counter valuex is if all intermediate processes have copiedx from p0.
We conclude that all processes have the counter valuex, which is a legitimate state.
�

Dijkstra [1982] gave a specific scenario to show that the system will definitely
reach a legitimate state, afterp0 has been enabled forN times. In most cases, a
legitimate state can be detected earlier than in that scenario, as shown in the above
proof.

3. Mechanical Verification in PVS

Qadeer and Shankar [1998] presented a detailed descriptionof a mechanical verifi-
cation in PVS of stabilization of Dijkstra’sK-state mutual exclusion algorithm.
Although they only checked the correctness of the algorithmunder the condi-
tion K > N, their PVS formalism and proof could for a large part be reused,
which saved us much effort and gave us many insightful thoughts on the veri-
fication in PVS. (The URLftp://ftp.cs.york.ac.uk/pub/pvs/examples/
self-stability/ contains their PVS formalization and proofs.)

First, we present Qadeer and Shankar’s claims to sketch their proof skeleton.
Then we show the lemma that we had to adapt for our proof. The algorithm satisfies
the following properties, for each state of the system, and each infinite run from
this state:

I. there is always at least one enabled process;

II. the number of enabled processes never increases;



6 W.J. FOKKINK, J.-H. HOEPMAN, J. PANG

III. the enabledness of each process is eventually toggled;

IV. p0 eventually takes on any counter value belowK (follows by Property III);
These properties require no restriction on the relation betweenN andK. Property
I corresponds to Lemma 1. Property II follows the fact that when a process fires, it
makes itself disabled, and it makes at most its clockwise neighbor enabled. Prop-
erty III is a more general version of Lemma 2. Qadeer and Shankar’s PVS proof of
these first four properties could be (more or less) reused by us directly.

V. eventually the system will reach a state, where there is some valuex belowK
such thatv(i) , x for all i ∈ {1, . . . ,N} (follows by Property IV, and the proof
of Theorem 1);

VI. eventually the system will reach a state withv(0) = x, andv(i) , x for all
i ∈ {1, . . . ,N}; then p0 is disabled untilv(i) = v(0) for all i ∈ {1, . . . ,N}
(follows by Property V);

VII. the system is self-stabilizing (follows by propertiesVI, I, and II).
The proof of Property V uses the pigeonhole principle, whichstates that if each of
n+ 1 pigeons is assigned to one ofn pigeonholes, then some hole must contain at
least two pigeons. This principle was also formulated and proved in [Qadeer and
Shankar 1998].

Let S(v) denote the set{x < K | ∃i ∈ {1, . . . ,N}(v(i) = x)}. The following lemma
corresponds to Property V. It states that the nonzero processes do not contain all
the possible counter values.

L 3. (Lemma 4.13 in [Qadeer and Shankar 1998]) If K> N, then∃x < K(x <
S(v)).

Under the conditionK > N, this can be informally proved as follows [Qadeer
and Shankar 1998]: there areN nonzero processes, and hence at mostN distinct
counter values at these processes; if there areK (K > N) possible counter values,
then there must be somex < K that is not the counter value at any nonzero process.

If we relax the condition toK ≥ N, the above proof fails, because the pigeon-
hole principle does not apply when the number of pigeons equals the number of
pigeonholes.

Starting from this point, we assume thatK ≥ N > 1. We defineT(v) to denote the
set{x < K | ∃i ∈ {1, . . . ,N − 1}(v(i) = x)}. In the following lemma the pigeonhole
principle does apply.

L 4. ∃x < K(x < T(v)).

P. T(v) contains at mostN − 1 distinct counter values at processes fromp1

to pN−1. If there areK (K ≥ N) possible counter values, then there must be some
x < K with x < T(v). �

To check the proof of Lemma 4 in PVS, we could simply follow thePVS proof
steps of Lemma 3 in [Qadeer and Shankar 1998]. Now we introduce an extra
lemma.

L 5. v(N) ∈ T(v) =⇒ S(v) = T(v).
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P. This is straightforward by the definitions ofS(v) andT(v). �

In PVS, Lemma 5 could be proved by using existing PVS libraries for the finite
cardinalities. Now we present the main lemma for our PVS proof, corresponding
to Lemma 3 in [Qadeer and Shankar 1998] (Property VI).

L 6. Each infinite run of the algorithm eventually reaches a statewhere the
nonzero processes do not contain all the possible counter values.

P. We know from Property III thatpN will eventually fire. By the algorithm,
we then havev(N) = v(N − 1), so thatv(N) ∈ T(v). By Lemma 5,S(v) = T(v). By
Lemma 4, we can find anx < K with x < T(v), sox < S(v). �

After proving Lemma 6, and reusing (more or less) the lemmas and the PVS
proof steps for properties VI and VII in [Qadeer and Shankar 1998], we could
mechanically prove self-stabilization of Dijkstra’sK-state algorithm in PVS.

4. K = N is Sharp
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Fig. 4.1: A counter-example: a ring withK = N − 1

In this section, we give a counter-example showing that a smaller value of K
would kill self-stabilization. For example, in Fig. 4.1 (which assumes thatN ≥ 3),
we have a system withK = N − 1, meaning that each process can have a counter
value {0, . . . ,N − 2}. Consider the initial state shown at the top left-hand side of
Fig. 4.1, in whichp0, . . . , pN−2 hold counter values from 0 toN − 2, pN−1 holds
counter value 0, andpN holds counter value 1. By the algorithm,p1, . . . , pN are
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enabled, so the number of enabled processes isN. (In Fig. 4.1, black processes are
enabled.)

We have a run as follows:
Step 1:pN fires and makesp0 enabled;

Step 2:pN−1 fires and makespN enabled;

. . . . . .

StepN − 1: p2 fires and makesp3 enabled;

StepN: p1 fires and makesp2 enabled;

StepN + 1: p0 fires and makesp1 enabled.
From the initial state, after the aboveN + 1 steps (all processes have fired only
once), the system ends in a state where the counter values of the processes are
symmetric (moduloN − 1) to the initial state, so it still hasN enabled processes.
This scenario can be executed infinitely often without breaking the symmetry. So
the system will never reach a legitimate state. Note that thegiven scenario only
deals with the caseK = N − 1, it can be straightforwardly generalized for other
cases withK < N. ThusK = N is sharp!

5. Conclusion

Judging from the literature on self-stabilization, it seems to be a common belief
that Dijkstra’sK-state algorithm on a ring stabilizes whenK > N. In this paper
we show that, contrary to this common belief, the algorithm also stabilizes when
the number of states per process is one less than the number ofprocesses on the
ring (namelyK = N). Our proof was formalized and checked in PVS, based on
[Qadeer and Shankar 1998]. We have given a counter-example showing thatK = N
is indeed sharp.

One important fact (Lemma 6) used in our proof is that the nonzero processes do
not contain all the possible counter values. By this observation, together with the
fact that each process is infinitely often enabled, we can prove that each infinite run
of the algorithm will reach a legitimate state. For the caseK > N, this fact can be
proved using the pigeonhole principle, as is done in [Varghese 1992], [Tel 1994],
[Qadeer and Shankar 1998], [Merz 1998] and [Kulkarniet al.1999]. For the case
K = N in this paper, we choose the moment thatpN is enabled and fires, which
makesv(N) = v(N − 1). After that we can apply the pigeonhole principle. Another
important fact (Lemma 1) is that whenever the system reachesa stable state, it will
remain in stable states. Thus we have proved the properties for self-stabilization.

Regarding the verification in PVS, we downloaded the PVS codeand proof by
Qadeer and Shankar. Following their proof steps in PVS, we simply added a new
definition ofT(v), proved two new lemmas (Lemma 4 and Lemma 5), and adapted
one lemma as Lemma 6. The whole verification did not take too much effort.
First, we spent a few days to understand the formalism and proof in [Qadeer and
Shankar 1998]. Since the PVS system, including PVS libraries, has been updated
after 1998, the downloaded PVS proof could not be simply rerun. We made some
adaptions to make their PVS proof work again. After that, when we had the idea to
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prove (as shown in Section 2) the algorithm correct under theconditionK = N, the
proof was completely checked in PVS within one day. The dump file containing
our PVS formalization and proofs can be found at the URLhttp://www.lix.
polytechnique.fr/˜pangjun/stabilization/.
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