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Abstract. We show that, contrary to common belief, Dijkstr&sstate mutual exclusion
algorithm on a ring also stabilizes when the numef states per process is one less than
the numbeN + 1 of processes in the ring. We formalize the algorithm andy#re proof

in PVS, based on Qadeer and Shankar’s work. We showkthatN is sharp by giving a
counter-example fok = N — 1.
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1. Introduction

Dijkstra introduced the notion of self-stabilization irstéeminal paper [Dijkstra
1974]. A distributed system is said to be self-stabilizihg satisfies the following
two properties:
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(1) convergence starting from an arbitrary state, the system is guaranteed
reach a stable state;

(2) closure once the system reaches a stable state, it cannot becorablens
anymore.

A system with the property of self-stabilization can have #uvantages of fault
tolerance, robustness for dynamic topologies, and stifaigtard initialization.

Consider a system with a number of processes sharing a comasouarce (Usu-
ally called critical section). Given an arbitrary initialage of the system, there
might be more than one process enabled to access the comsmmae The
problem of mutual exclusion is to guarantee that the comraeaurce will not be
accessed by more than one process simultaneously. Selfzitg algorithms for
mutual exclusion make sure that each infinite run of the syseaches a stable
state where exactly one process is enabled; and from thenunal exclusion of
the common resource is guaranteed.

In [Dijkstra 1974], Dijkstra presented three self-statiilg algorithms for mutual
exclusion on a ring network: an algorithm wikstate processes, an algorithm
with four-state processes, and an algorithm with thretegieocesses. Regarding
their correctness, he wrote:

o “For brevity’s sake most of the heuristics that led me to finem, together
with the proofs that they satisfy the requirements, have loeeitted, [...]".

After more than ten years, Dijkstra [1986] published a prob$elf-stabilization
of his algorithm with three-state processes, and acknayel@dhat the verification
was actually not trivial.

In this paper, we focus on Dijkstra’s algorithm withstate processes. We con-
sider a system oN + 1 processes, numbered from O througharranged in a
unidirectional ring. Each process has a countey(i) that can hold a value from
0toK — 1. Each process can observe its own counter value and théecaatue
of its anti-clockwise neighborpg is a distinguished process that is enabled when
v(0) = v(N), and when enabled, it can increment its counter by 1 mokulBach
processp; fori = 1,...,N is enabled when(i) # v(i — 1), and when enabled, it
can update its counter value so thi@) = v(i — 1). Thus the behavior of the system
can be presented as follows:

Dijkstra’s K-state algorithm for mutual exclusioh.et processegy, ..., py form
a unidirectional ring, where the counter for each proggdsolds a valuev(i) €
{0,...,K-1}.

o if v(0) = v(N), thenv(0) := (v(0) + 1) modK;

o if v(i) #w(i—1)fori=1,...,N, thenv(i) := v(i — 1).
The system is said to be inséablestate if it contains exactly one enabled process,
which can be interpreted as holding a token. This token capalssed along the
ring network; a process can access the common resource &y itvholds the
token.

This algorithm has been proved correct byfelient proof methods for self-
stabilization, e.g. [Varghese 1992], [Tel 1994] and [TH2@00]. It attracted much
attention from the formal verification community. There twe distinct traditions
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in automatic verification: theorem proving and model chegkiMerz [1998] for-
malized the algorithm and proved it correct in Isah@lleL [Nipkow et al.2002].
Qadeer and Shankar [1998] applied PVS [Oetal.1992] to prove its correctness.
Later on, Kulkarniet al.[1999] also proved its correctness using PVS inféedi
ent fashion. Model checking techniques were applied toatgerithm in [Shukla
et al.1997] and [Tsuchiyaet al.2001]. Shuklaet al.[1997] verified whether the
algorithm converges to stable states from a given initialesin SPIN [Holzmann
1990] for systems with processes up to fifty. Tsucheyal.[2001] described the
algorithm in SMV [McMillan 1993] and verified the property sélf-stabilization
for systems with any possible initial state and<3N < 8. Due to the state ex-
plosion problem, this approach has some restrictions: nhctbe directly used
for any possible initial state, afat it can only prove the algorithm correct with a
limited number of processes and states.

However, all these proofs only showed correctness of therithgn under a
stronger condition, namely the algorithm is corredkif> N. This also happened
in Schneider’s survey paper on self-stabilization [Sctieeil993]. The only ex-
ception we could find is [Kulkarret al.1999]. Although they proved the algorithm
correct forK > N, almost at the end of the paper, they stated:

o “itis possible to prove stabilization whet > N— we will need to redo only
the proofs that depend on this assumption, namely Lemma$.6.46.8.”
However, the validity of this claim is not clear, especiatheir formulation of
Lemma 6.4 is false wheld = N.

Judging from the literature, it seems to be a common beligf Ehjkstra’'s K-
state mutual exclusion algorithm on a ring only stabilizéseewK > N. But in
fact, Dijkstra gave a note after presenting the solutiorhWitstate machines in
[Dijkstra 1974] as follows:

o “Note 1. [...] the relatiorK > N is suficient.”

A brief informal proof sketch was given by himself in [Dijkat1982]. In addition,
he said:
o “(and for smaller values oK counter examples kill the assumption of self-
stabilization.)”

We note that, ifK = N, there should be at least three processes in the ring;

namely, ifK = N = 1, then clearlyp is always enabled ang is never enabled.
If K > N, then the algorithm also works for a ring with two processes.

In this paper, we formally prove that M > 1, thenK > N is suficient for the
stabilization of Dijkstra’sK-state mutual exclusion algorithm. For the condition
K > N, the proofs in [Varghese 1992], [Tel 1994], [Qadeer and &ani998],
[Merz 1998] and [Kulkarniet al. 1999] used the classic pigeonhole principle. The
proof for K = N becomes considerably more complicated, since the pigémnho
principle cannot be simply applied for any state of the atgor. This will be
explained in detail in Section 3. Our proof, which istdrent from the proof sketch
in [Dijkstra 1982], has been checked in PVS.

The rest of the paper is structured as follows. In Section@show that Dijk-
stra’sK-state mutual exclusion algorithm on a ring also stabilizben the number
of states per process is one less than the number of procassles ring, namely
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K > N. We formalized the algorithm and checked our proof in PVS: @uifica-
tion in PVS is based on [Qadeer and Shankar 1998], we reuse&ddhmalization
of the algorithm and most of their lemmas. We present theigriemmas of our
PVS verification in Section 3. In Section 4, we show tKat= N is sharp by a
counter-example, which was missing in [Dijkstra 1982]. Wadude this paper in
Section 5.

2. Proof of Self-Stabilization

We give the proof that Dijkstra’&-state mutual exclusion algorithm on a ring sta-
bilizes whenK > N > 1. First we prove the closure property for self-stabiliaati
(see Proposition 1).

Lemma 1. In each state of the algorithm, there is at least one enabtedgss.

Proor. We distinguish two cases:
o forallie{l,...,N},v(i) = v(0). In particulary(0) = v(N), which impliespg
is enabled,;

o otherwise, there exists pe {1,...,N} such thatv(j) # v(0), and for all
iefl,...,j—1},v(i) = v(0). Sincev(j) # V(j — 1), pj is enabled.

Lemma 1 implies that no run of the algorithm ever deadlocksnaach state the
enabled process(es) can “fire”, meaning that the countaevalupdated.

ProrosiTion 1. Once in a stable state, the system will remain in stable state

Proor. We assumgy; is the only enabled process in some stable state. Itis easy to
see that whem; fires, it makes itself disabled, and it makes at n@'st clockwise
neighbor enabled. By Lemma 1, in each state of the algorithare exists at least
one enabled process. Therefore, after the firing; pthe clockwise neighbor gf

is the only enabled process, so the system remains in a stalde ]

We proceed to prove the convergence property for selfistation (see Theo-
rem 1).

Lemma 2. In each infinite run of the algorithm,gdires infinitely often.

Proor. Given a state, consider the sum over all elem@Nts i |i € {1,...,N} A
p; is enabled. Clearly, when a nonzero process fires, this sum strictlyedees.
Furthermore, for each state, this sum is at least 0. Hene=gah infinite runpg
must fire infinitely oftend

DermniTion 1. Thelegitimate stateare those states that satisffilv= x for all i < j
and (i) = (x—1) modK forall j <i < N, for some choice of x Kand j< N.

Note that a legitimate state is stable, as gnlys enabled.
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Tueorem 1. Let N> 1. Even if K= N, Dijkstra’s K-state mutual exclusion algo-
rithm for N + 1 processes stabilizes.

Proor. By Lemma 1, no run of the algorithm ever deadlocks. By Lemmia 2
each infinite run of the algorithrpg fires infinitely often.

Let N > 1. We prove that each infinite run of the algorithm visits atletate
state. Consider the case wheygfires for the first time. Then just before that,
v(0) = v(N) = y for somey, and the new value of(0) becomesy(+ 1) modK.
Now consider the case whamp fires again. Then just before thatf0) = v(N) =
(y+1) modK. In order forpy to change its counter value froyro (y+ 1) modK,
it must have copiedy(+ 1) modK from its anti-clockwise neighbopy_1. This
moment must have occurred aftps changed its counter value 1g0) = (y +
1) modK. Butthen, just aftepy copies ¢+1) modK from py-1, we actually have
V(N - 1) = v(N) = (y+1) modK. In other words, sincél > 1 implies thatpy_1 #
po, two different nonzero processes hold the same counter waluelY modK.
Then theN nonzero processes hold at médst 1 different counter values from
{0,...,K = 1}. WhenK > N (so in particular wherK = N), then at this point
in time there is arx < K that does not occur as the counter value of any nonzero
process in the ring.

Since pg fires infinitely often, eventually(0) becomes. The other processes
merely copy counter values from their anti-clockwise nbigis, so at this point no
other process holds The next timepg fires,v(N) = v(0) = x. The only way that
pn gets the counter valueis if all intermediate processes have copiefdom po.
We conclude that all processes have the counter valwhich is a legitimate state.
O

Dijkstra [1982] gave a specific scenario to show that theesgswill definitely
reach a legitimate state, aftpg has been enabled fot times. In most cases, a
legitimate state can be detected earlier than in that sicersarshown in the above
proof.

3. Mechanical Verification in PVS

Qadeer and Shankar [1998] presented a detailed descrgdtaomechanical verifi-
cation in PVS of stabilization of Dijkstra'&-state mutual exclusion algorithm.
Although they only checked the correctness of the algoritimder the condi-
tion K > N, their PVS formalism and proof could for a large part be rduse
which saved us muchftert and gave us many insightful thoughts on the veri-
fication in PVS. (The URLftp://ftp.cs.york.ac.uk/pub/pvs/examples/
self-stability/ contains their PVS formalization and proofs.)

First, we present Qadeer and Shankar’s claims to sketch phedf skeleton.
Then we show the lemma that we had to adapt for our proof. Juithm satisfies
the following properties, for each state of the system, aahenfinite run from
this state:

I. there is always at least one enabled process;
II. the number of enabled processes never increases;
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lll. the enabledness of each process is eventually toggled;

IV. po eventually takes on any counter value beldwfollows by Property IIl);
These properties require no restriction on the relatioweenN andK. Property
| corresponds to Lemma 1. Property Il follows the fact thaewh process fires, it
makes itself disabled, and it makes at most its clockwisghter enabled. Prop-
erty lll is a more general version of Lemma 2. Qadeer and Sir&nRVS proof of
these first four properties could be (more or less) reusedclojractly.
V. eventually the system will reach a state, where therensesealuex below K
such thaw(i) # xfor alli € {1,..., N} (follows by Property 1V, and the proof
of Theorem 1);

VI. eventually the system will reach a state witf®) = x, andv(i) # x for all
i € {1,...,N}; thenpg is disabled untilv(i) = v(0) for alli € {1,...,N}
(follows by Property V);
VII. the system is self-stabilizing (follows by properti®$, I, and II).
The proof of Property V uses the pigeonhole principle, whitdtes that if each of
n+ 1 pigeons is assigned to oneropigeonholes, then some hole must contain at
least two pigeons. This principle was also formulated amgul in [Qadeer and
Shankar 1998].
Let S(v) denote the sdix < K | 3i € {1,..., N}(v(i) = X)}. The following lemma
corresponds to Property V. It states that the nonzero psesedo not contain all
the possible counter values.

Lemma 3. (Lemma4.13 in [Qadeer and Shankar 1998]) IBKN, thendx < K(x ¢
S(V)).

Under the conditiorK > N, this can be informally proved as follows [Qadeer
and Shankar 1998]: there axenonzero processes, and hence at nhbsiistinct
counter values at these processes; if there&kafi€ > N) possible counter values,
then there must be sormxe< K that is not the counter value at any nonzero process.

If we relax the condition t > N, the above proof fails, because the pigeon-
hole principle does not apply when the number of pigeonslsegha number of
pigeonholes.

Starting from this point, we assume tiat- N > 1. We defin€T (v) to denote the
set{x < K |3ie{l,...,N—1}(v(i) = xX)}. In the following lemma the pigeonhole
principle does apply.

Lemma 4. Ix < K(x ¢ T(V)).

Proor. T(v) contains at mos — 1 distinct counter values at processes frpm
to pn-1. If there areK (K > N) possible counter values, then there must be some
x< Kwithx¢ T(Vv). O

To check the proof of Lemma 4 in PVS, we could simply follow €S proof
steps of Lemma 3 in [Qadeer and Shankar 1998]. Now we intedurc extra
lemma.

LemMa 5. V(N) € T(v) = S(V) = T(V).
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Proor. This is straightforward by the definitions 8{v) andT(v). O

In PVS, Lemma 5 could be proved by using existing PVS libsafa the finite
cardinalities. Now we present the main lemma for our PVS fproarresponding
to Lemma 3 in [Qadeer and Shankar 1998] (Property VI).

Lemma 6. Each infinite run of the algorithm eventually reaches a stakere the
nonzero processes do not contain all the possible countaesa

Proor. We know from Property 11l thapy will eventually fire. By the algorithm,
we then have/(N) = v(N — 1), so that(N) € T(v). By Lemma 5S(v) = T(v). By
Lemma 4, we can find ax < K with x ¢ T(v), sox ¢ S(v). O

After proving Lemma 6, and reusing (more or less) the lemnmasthe PVS

proof steps for properties VI and VIl in [Qadeer and Shank298], we could
mechanically prove self-stabilization of Dijkstr&ksstate algorithm in PVS.

4. K = N is Sharp

Po Po
PN O P P
PN-1 P2 P2
PN-2 P3 p3
Inital state Step: 2 -
i
Po Po
PN O P P
PN-1 P2 O e
PN-2 P3 P3
Step:N+1 - Step:N -— Step:N-1

Fig. 4.1 A counter-example: aringwitK = N -1

In this section, we give a counter-example showing that alemealue of K
would kill self-stabilization. For example, in Fig. 4.1 (igh assumes that > 3),
we have a system witk = N — 1, meaning that each process can have a counter
value{0,...,N — 2}. Consider the initial state shown at the top left-hand side o
Fig. 4.1, in whichpy, ..., pn-2 hold counter values from O tN — 2, py-1 holds
counter value 0, an@y holds counter value 1. By the algorithmp,..., py are
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enabled, so the number of enabled processHls (i Fig. 4.1, black processes are
enabled.)
We have a run as follows:

Step 1:py fires and makegp enabled;
Step 2:pn-1 fires and makegy enabled;

StepN - 1: p, fires and makegs enabled,;
StepN: p; fires and makeg, enabled;

StepN + 1: po fires and makeg; enabled.

From the initial state, after the abowe+ 1 steps (all processes have fired only
once), the system ends in a state where the counter valué® girdbcesses are
symmetric (moduld\ — 1) to the initial state, so it still hall enabled processes.
This scenario can be executed infinitely often without biregkhe symmetry. So
the system will never reach a legitimate state. Note thagthen scenario only
deals with the cas& = N — 1, it can be straightforwardly generalized for other
cases withK < N. ThusK = N is sharp!

5. Conclusion

Judging from the literature on self-stabilization, it seeto be a common belief
that Dijkstra’sK-state algorithm on a ring stabilizes wh&n> N. In this paper
we show that, contrary to this common belief, the algoritiso &tabilizes when
the number of states per process is one less than the numpevoafsses on the
ring (namelyK = N). Our proof was formalized and checked in PVS, based on
[Qadeer and Shankar 1998]. We have given a counter-exaimpharsgy thatK = N

is indeed sharp.

One important fact (Lemma 6) used in our proof is that the romprocesses do
not contain all the possible counter values. By this obsenvatogether with the
fact that each process is infinitely often enabled, we cavegtftat each infinite run
of the algorithm will reach a legitimate state. For the cése N, this fact can be
proved using the pigeonhole principle, as is done in [Vasght992], [Tel 1994],
[Qadeer and Shankar 1998], [Merz 1998] and [Kulkaghal. 1999]. For the case
K = N in this paper, we choose the moment tpatis enabled and fires, which
makesv(N) = v(N — 1). After that we can apply the pigeonhole principle. Anothe
important fact (Lemma 1) is that whenever the system reagls¢sble state, it will
remain in stable states. Thus we have proved the propeotieelf-stabilization.

Regarding the verification in PVS, we downloaded the PVS @dkproof by
Qadeer and Shankar. Following their proof steps in PVS, wgplyi added a new
definition of T(v), proved two new lemmas (Lemma 4 and Lemma 5), and adapted
one lemma as Lemma 6. The whole verification did not take tochmefort.
First, we spent a few days to understand the formalism anof imdQadeer and
Shankar 1998]. Since the PVS system, including PVS libsahas been updated
after 1998, the downloaded PVS proof could not be simplyrredle made some
adaptions to make their PVS proof work again. After that, mve had the idea to
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prove (as shown in Section 2) the algorithm correct undecdinglitionK = N, the
proof was completely checked in PVS within one day. The dutepchntaining
our PVS formalization and proofs can be found at the URltp://www.1lix.

polytechnique.fr/ pangjun/stabilization/.
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