
Fuzzy Private Matching (Extended Abstract)

Łukasz Chmielewski1 Jaap-Henk Hoepman1,2

1 Radboud University Nijmegen, the Netherlands, emails: {lukaszc,jhh}@cs.ru.nl
2 TNO, the Netherlands, email: jaap-henk.hoepman@tno.nl

Abstract
In the private matching problem, a client and a server

each hold a set of n input elements. The client wants to pri-
vately compute the intersection of these two sets: he learns
which elements he has in common with the server (and noth-
ing more), while the server gains no information at all. In
certain applications it would be useful to have a fuzzy pri-
vate matching protocol that reports a match even if two el-
ements are only similar instead of equal.

We consider this fuzzy private matching problem, in a
semi-honest environment. First we show that the original
solution proposed by Freedman et al. [9] is incorrect. Sub-
sequently we present two fuzzy private matching protocols.
The first, simple, protocol has a large bit message complex-
ity. The second protocol improves this, but here the client
incurs a O(n) factor time complexity.

1 Introduction
In the private matching problem [9], a client and a server

each hold a set of elements as their input. The size of the
set is n and the type of elements is publicly known. The
client wants to privately compute the intersection of these
two sets: the client learns the elements it has in common
with the server (and nothing more), while the server obtains
no information at all.

In certain applications, the elements (think of them as
words consisting of letters, or tuples of attributes) may not
always be accurate or completely known. For example, due
to errors, omissions, or inconsistent spelling, entries in a
database may not be identical. In these cases, it would be
useful to have a private matching algorithm that reports a
match even if two entries are similar, but not necessarily
equal. Such a private matching is called fuzzy, and was in-
troduced by Freedman et al. [9]. Elements are called similar
(or matching) in this context if they match on t out of T let-
ters at the right locations.

Fuzzy private matching (FPM) protocols could also be
used to implement a more secure and private algorithm of

This research is/was partially supported by the research program Sen-
tinels (www.sentinels.nl), project JASON (NIT.6677). Sentinels is
being financed by Technology Foundation STW, the Netherlands Orga-
nization for Scientific Research (NWO), and the Dutch Ministry of Eco-
nomic Affairs.

biometric pattern matching. Instead of sending the com-
plete template corresponding to say a scanned fingerprint, a
fuzzy private matching protocol could be used to determine
the similarity of the scanned fingerprint with the templates
stored in the database, without revealing any information
about this template in the case that no match is found.

All known solutions for fuzzy private matching, as well
as our own protocols, work in a semi-honest environment.
In this environment participants do not deviate from their
protocol, but may use any (additional) information they ob-
tain to their own advantage.

Freedman et al. [9] introduce the fuzzy private matching
problem and present a protocol for 2-out-of-3 fuzzy private
matching. We show that, unfortunately, this protocol is in-
correct (see Section 3): the client can “steal” elements even
if the sets have no similar elements in common.

Building and improving on their ideas, we present two
protocols for t-out-of-T fuzzy private matching (henceforth
simply called fuzzy private matching or FPM for short).
The first, simple, protocol has time complexity O(n

(
T
t

)
)

and bit message complexity O(n
(
T
t

)
(T log |D| + k)) (pro-

tocol 3). The second protocol is based on linear secret
sharing and has a much better bit message complexity
O(nT (log |D| + k)) (protocol 5). Here the client incurs
a O(n2

(
T
t

)
) time complexity penalty. Note that this is only

a factor n worse than the previous protocol. We also present
a simpler version of protocol 5 (protocol 4) to explain the
techniques used incrementally. This protocol has a slightly
worse bit message complexity.

Note that, contrary to intuition, fuzzy extractors and se-
cure sketches ([5]) cannot be used to solve FPM problem.

Indyk and Woodruff [14] present another approach for
solving fuzzy private matching, using the computation of
the Hamming distance together with generic techniques like
secure 2-party computations and oblivious transfer. Generic
multi-party computation and oblivious transfer are consid-
ered not to be efficient techniques. Therefore, based on the
protocol from [14], we design protocols based on compu-
tation the Hamming distance that do not use secure 2-party
computation. One protocol is efficient for small domains of
letters (protocol 6 version 1) and the second protocol uses

Bit Com-
plexity
(Õ)

Time Com-
plexity1

Bit Complexity
(O)

[9] (corrected),
Fig.3 protocol

n
(T

t

)
O(n

(T
t

)
) n

(T
t

)
(T log |D|+

k)

SFE protocol n2T Õ(n2T) n2Tk log |D|
[14] nT 2+n2 Õ(nT 2+n2) — 2

Fig.4 protocol n2T O(n2T
(T

t

)
) n2T (log |D|+k)

Fig.5 protocol nT O(n2T
(T

t

)
) nT (log |D| + k)

Fig.6 protocol
v13

|D|nT +

n2(T − t)

O(|D|nT +
n2(T − t))

|D|nTk +
n2(T − t)
(T log |D| + k)

Fig.6 protocol
v24

n2T n2T oblivi-
ous transfer
calls

n2T oblivious
transfer calls

1 For the sake of simplicity time complexities are given roughly in
numbers of efficient operations (e.g., secret sharing’s reconstructions,
encryptions, polynomial’s evaluations etc.); we also report here only the
complexity of the slowest participant
2 the authors of the paper do not give exact complexity in the O notation.
3 protocol with subroutine from first paragraph of section 6.1.
4 protocol with subroutine equality-matrix from Figure 7.

Figure 1. Results overview

oblivious transfer (protocol 6 version 2). The major draw-
back of the first protocol is a strong dependence on the size
of the domain of letters. The main weakness of the second
protocol is its high complexity – in the protocol there are
n2 · T oblivious transfer calls. We present these protocols
mainly to show that other approaches to solve the fuzzy pri-
vate matching problem exist as well.

We compare our protocols to existing solutions using
several complexity measures in Table 1. One of these com-
plexity measures is the Õ notation used for the bit mes-
sage complexity in [14]. This notation is defined as fol-
lows. For functions f and g, we write f = Õ(g) if

f(n, k) = O
(
g(n, k) logO(1)(n) · poly(k)

)
, where k is

the security parameter. This notation hides certain factors
like a strong dependence on the security parameter k (e.g.
k3), and is therefore less accurate than the standard big-O
notation. We prefer this measure for the plain message com-
plexity, where we restrict the bit size of the messages to be
linear in k.

Related work can be traced back to private equality test-
ing [2, 7, 9, 17] in the 2-party case, where each party
has a single element and wants to know if they are equal
(without publishing these elements). Private set intersec-
tion [9, 17, 15] (possibly among more than two parties) is
also related. In this problem the output of all the partic-
ipants should be the intersection of all the input sets, but
nothing more: a participant should gain no knowledge about
elements from other participant’s sets that are not in the in-
tersection.

Similarly related are the so called secret handshaking
protocols [13, 1, 4]. They consider membership of a secret

group, and allow members of such groups to identify fel-
low group members without giving away their group mem-
bership to non-members and eavesdroppers. We note that
the (subtle) difference between secret handshaking and set-
intersection protocols lies in the fact that a set-intersection
protocol needs to be secure for arbitrary element domains
(small ones in particular), whereas group membership for
handshaking protocols can be encoded using specially con-
structed secret values taken from a large domain.

Privacy issues have also been considered for the approx-
imation of a function f among vectors owned by several
parties. The function f may be Euclidean distance ([6], [8],
[14]), set difference ([9]), Hamming distance ([6], [14]), or
scalar product (reviewed in [10]).

Our paper is structured as follows. We formally define
the fuzzy private matching problem in Section 2, and in-
troduce our system model, some additional notation, and
primitives there as well. Then in Section 3 we present the
solution from [9] for 2-out-of-3 fuzzy private matching and
show where it breaks down. Section 4 contains our first pro-
tocol for t-out-of-T fuzzy private matching that uses tech-
niques similar to the ones used in [9]. Then we present our
second protocol based on linear secret sharing in Section 5.
Finally, Section 6 presents two protocols based on the com-
putation of a Hamming distance.

2 Preliminaries

In this section, we introduce the fuzzy matching problem
as well as the mathematical and cryptographic tools that we
use to construct our protocols.

2.1 Fuzzy Private Matching Problem Definition

Let a client and a server each own a set of words. A
fuzzy private matching protocol is a 2-party protocol be-
tween a client and a server, that allows the client to compute
the fuzzy set intersection of these sets (without leaking any
information to the server).

To be precise, let each word X = x1 . . . xT in these sets
consist of T letters xi from a domain D. Let X = x1 . . . xT

and Y = y1 . . . yT . We define X ≈t Y (X and Y match on
t letters) if and only if t ≤ |{k : xk = yk ∩ (1 ≤ k ≤ T)}|.

The input and the output of the protocol are defined as
follows. The client input is the set X = {X1, . . . XnC

} of
nC words of length T , while the server’s input is defined
as Y = {Y1, . . . YnS

} of nS words of length T . Both the
client and the server have also in their inputs nC , nS , T and
t. The output of the client is the set {Yi ∈ Y |∃Xi ∈ X :
Xi ≈t Yj}. This set consist of all the elements from Y that
match with any element from the set X . The server’s output
is empty (the server does not learn anything). Usually we
assume that nC = nS = n. In any case, the sizes of the
sets are fixed and a priori known to the other party (so the
protocol does not prevent learning the size of the set).

2

2.2 Adversary Models

We prove correctness of our protocols only against com-
putationally bounded (with respect to a security parameter
k) and semi-honest adversary, meaning the the parties fol-
low the protocol but may keep message histories in an at-
tempt to learn more than is prescribed. Here we provide the
intuition and the informal notion of this model, the reader is
referred to [11] for full definitions. To simplify matters we
only consider the case of only two participants, the client
and the server.

We have chosen the semi-honest model for a few rea-
sons. First of all, there had not been made any “really” ef-
ficient solution for FPM problem in any model. Secondly,
our protocols seem to be secure against malicious clients
and the only possible attacks are on the correctness of the
protocols by malicious servers. Moreover in [12, 3, 16],
it is shown how to transform a semi-honest protocol into a
protocol secure in the malicious model. Further, [16] does
this at a communication blowup of at most a small factor of
poly(k). Therefore, we assume parties are semi-honest in
the remainder of the paper (however we are aware that the
mentioned generic transformations are not too efficient).

We leave improving protocols to work efficiently in ma-
licious environment and proofs that the protocols from this
paper are secure against malicious clients for future work.

In the model with a semi-honest adversary, both parties
are assumed to act accordingly to the protocol (but they are
allowed to use all information that they collect in an unex-
pected way to obtain extra information). The security defi-
nition is straightforward in our particular case, as only one
party (the client) learns the output. Following [9] we divide
the requirements into:
1) The client’s security – indistinguishably: Given that the
server gets no output from the protocol, the definition of the
client’s privacy requires simply that the server cannot distin-
guish between cases in which the client has different inputs.
2) The server’s security – comparison to the ideal model:
The definition ensures that the client does not get more or
different information than the output of the function. This
is formalized by considering an ideal implementation where
a trusted third party TTP gets the inputs of the two parties
and outputs the defined function. We require that in the real
implementation of the protocol (one without TTP) the client
learn the same information as in the ideal implementation.

Due to space constraints our proofs are informal, pre-
senting only the main arguments for correctness and secu-
rity.

2.3 Additively Homomorphic Cryptosystem

In all our protocols we use a semantically secure, ad-
ditively homomorphic public-key cryptosystem, e.g., Pail-
lier’s cryptosystem [18]. Let {·}K denote the encryption
function with the public key K. The homomorphic cryp-

tosystem supports the following two operations, which can
be performed without the knowledge of the private key:
1) Given the encryptions {a}K and {b}K , of a and b, one
can efficiently compute the encryption of a + b, denoted
{a + b}K := {a}K +h {b}K

2) Given a constant c and the encryption {a}K , of a, one
can efficiently compute the encryption of c · a, denoted
{a · c}K := {a}K ·h c
These properties hold for suitable operations +h and ·h de-
fined over the range of the encryption function. In Paillier’s
system, +h is a multiplication and ·h is an exponentiation.
Remark: The domain R of the plaintext of the homomor-
phic cryptosystem in all of our protocols (unless specified
differently) is defined as follows: R should be larger than
DT (or in some protocols D) and a uniformly random ele-
ment from R should be in DT (or D) with negligible prob-
ability. This property can be satisfied by representing an el-
ement a ∈ DT (or in some protocols a ∈ D) by ra = 0k||a
in R. The domain R should be a field (e.g., Zq for some
prime q).
Operations on encrypted polynomials: We represent
any polynomial p of degree n (on some ring) as the or-
dered list of its coefficients: [α0, α1, . . . αn]. We de-
note the encryption of a polynomial p by {p}K and de-
fine it to be the list of encryptions of its coefficients:
[{α0}K , {α1}K , . . . {αn}K].

Many various operations can be performed on such en-
crypted polynomials. We use the following operation: given
an encryption of a polynomial {p}K and some x one can ef-
ficiently compute a value {p(x)}K . This follows from the
properties of the homomorphic encryption scheme:

{p(x)}K =

{
n∑

i=0

αi · xi

}
K

=

n∑
h

i=0

{αi ·xi}K =

n∑
h

i=0

{αi}K ·h xi

2.4 Linear Secret Sharing

Some of our protocols use t-out-of-T secret sharing. The
secret s is split into T secret shares si, such that any com-
bination of at least t such shares can be used to reconstruct
s. Combining less than t individual shares gives no infor-
mation whatsoever about the secret.

A Linear t-out-of-T Secret Sharing (LSS) scheme is a
secret sharing scheme with the following property: given t
shares si (of secret s), and t shares ri (of secret r) on the
same indices, using si + ri one can reconstruct the sum of
the secrets s+r. One such LSS scheme is Shamir’s original
secret sharing scheme [19].

3 The Original FPM Protocol
Freedman et al. [9] proposed a fuzzy private matching

protocol for the case where T = 3 and t = 2 (see Fig-
ure 2). Unfortunately, their protocol is incorrect. Intuitively
the protocol works because if Xi ≈2 Yj then, say, x2

i = y2
j

and x3
i = y3

j . Hence P2(x2
i) = P2(y2

j) = ri and P3(x3
i) =

3

1. The client chooses a private key sk, a public key K and parameters for the
additively homomorphic encryption scheme and sends K and the parameters to
the server.

2. The client:

(a) chooses, for every i (such that 1 ≤ i ≤ nC), a random value ri ∈ R.
(b) creates 3 polynomials: P1, P2, P3 over R (where polynomial Pj is used to

encode all letters on the jth position) defined by the set of equations ri =
P1(x

1
i) = P2(x

2
i) = P3(x

3
i), for 1 ≤ i ≤ nC .

(c) uses interpolation to calculate coefficients of the polynomials (P1, P2, P3)
and sends their encryptions to the server.

3. For each Yj (such that 1 ≤ j ≤ nS), the server responds to the client: {r ·
(P1(y

1
j) − P2(y

2
j)) + Yj}K , {r′ · (P2(y

2
j) − P3(y

3
j)) + Yj}K , {r′′ ·

(P1(y
1
j)−P3(y

3
j))+Yj}K , where r, r′, r′′ are fresh random values in R.

This uses the properties of the homomorphic encryption scheme including the
encrypted polynomials explained in Section 2.3.

4. If the client receives an encryption of an encoding of Yi, which is similar to any
word from his set X , then he adds it to the output set.

Figure 2. Original FPM protocol

P3(y3
j) = ri so P2(y2

i) − P3(y3
j) = 0. Then the result

{r′ · (P2(y2
j) − P3(y3

j)) + Yj}K sent back by the server
simplifies to {Yj}K (the random value r′ is canceled by the
encryption of 0) which the client can decrypt. If Xi and Yj

do not match, the random values r, r′ and r′′ do not get can-
celed and effectively blind the value of Yj in the encryption,
hiding it to the client.

There is however a problem with this approach. Con-
sider the following input data. The input of the client
is {[1, 2, 3] , [1, 4, 5]}, while the input of the server is
{[5, 4, 3]}. Then in step 2c of the protocol, the polyno-
mials are defined (by the client) in the following way:
P1(1) = r1 ∩ P1(1) = r2, P2(2) = r1 ∩ P2(4) = r2

and P3(3) = r1 ∩ P3(5) = r2. But now we see that,
unless r1 = r2 (which is unlikely when they are both
chosen at random), P1 remains undefined! Freedman et
al. do not consider this possibility. However, if we try
to remedy this problem by setting r1 = r2 we run into
another one. Among other things, the server computes
{r′ · (P2(y2

i) − P3(y3
i)) + Yi}K , which, in this particular

case equals {r′ · (P2(4)−P3(3)) + [5, 4, 3]}K . This equals
{r′ · (r2 − r1) + [5, 4, 3]}K , which by equality of r1 and
r2 reduces to {[5, 4, 3]}K . In other words, the client learns
[5, 4, 3] even if this value does not match any of the ele-
ments held by the client. This violates the requirements of
the fuzzy private matching problem: if a semi-honest client
happens to own a set of tuples with a property similar to the
counterexample above, it learns a tuple of the server.

4 A Polynomial Based Protocol

The protocol of the previous section can be fixed, but in
a slightly more elaborate way. Our solution works for any
T and t, and is presented in Figure 3. In the protocol we
use the following definition. Let σ be a combination of t
different indices σ1, σ2, . . . , σt from the range {1, . . . , T}
(there are

(
T
t

)
of those). For a word X ∈ DT , define

σ(X) = xσ1 || · · · ||xσt (i.e., the concatenation of the let-
ters in X found at the indices in the combination). We now

1. The client chooses a private key sk, a public key K and parameters for the
additively homomorphic encryption scheme and sends K and the parameters to
the server.

2. For every combination σ of t out of T indices the client:

(a) constructs a polynomial:
Pσ(x) = (x − σ(X1)) · (x − σ(X2)) · · · (x − σ(XnC

)) of degree

nC with domain DT and range R.
(b) sends {Pσ}K (the encrypted polynomial) to the server.

3. For every Yi ∈ Y , 1 ≤ i ≤ nS , and every received polynomial {Pσ}K

(corresponding to the combination σ) the server:

(a) evaluates polynomial {Pσ}K at the point σ(Yi) to compute {wσ
i }K =

{r ∗ Pσ(σ(Yi)) + Yi}K , where r ∈ R is always a fresh random value.
(b) sends {wσ

i }K to the client.

4. The client decrypts all received messages. If for such a decryption wσ
i ≈t Xj

for any Xj ∈ X , then he adds wσ
i to the output set.

Figure 3. Polynomial Based Protocol

discuss the correctness, security and complexity of this pro-
tocol.
Correctness: In the protocol, the client produces

(
T
t

)
poly-

nomials Pσ of degree nC . Every polynomial represents one
of the combinations σ of t letters from T letters. In fact,
the roots of the polynomial Pσ are σ(Xi). It is easy to see
that if X ≈t Y then σ(X) = σ(Y) for some combination
σ. Hence, if Xi ≈t Yj then Pσ(σ(Yj)) = 0 for some Pσ

received and evaluated in step 3a. When that happens, the
encryption of Yj is sent to the client. Later on, the client
can recognize this value by the convention that values in
DT are represented in R using a 0k prefix. Otherwise (if
Yj does not match with any element from X) all the values
sent to the client contain a random blinding element r (and
therefore their decryptions are in Y with negligible proba-
bility).
Security: The client’s input data is secure because all the
data received by the server is encrypted (using a semanti-
cally secure cryptosystem). Hence the server cannot dis-
tinguish between different client’s inputs. The privacy of
the server is protected because the client only learns about
those elements from Y that are also in X , and because (by
semi-honesty) it does not send specially constructed poly-
nomials to cheat the server. If an element yi ∈ Y does not
belong to X then a random value is sent by the server (see
the correctness proof above).
Complexity: The messages being sent in this protocol
are encryptions of plaintexts from the domain R, i.e.,
O(T log |D|+k) bits. In the protocol client sends

(
T
t

)
poly-

nomials of degree nC , and the server answers nS times for
every polynomial. Hence, it totals to O((nS + nC) · (T

t

) ·
(T log |D| + k)) bit complexity, and O((nS + nC) · (

T
t

)
)

time complexity.

5 Secret Sharing Based Protocols

The number of messages sent in the previous protocol is
very large. Therefore, we now present two protocols solv-
ing the FPM problem based on linear secret sharing that
trade a decrease in message complexity for an increase in

4

time complexity. Both work in the model with a semi-
honest adversary. First we describe the simple (but slow)
protocol and later the faster, improved one. We present the
simple version mainly to facilitate the understanding of the
improved protocol.

5.1 A Simple Version of the Protocol

The simple protocol is presented in Figure 4. The idea
behind the protocol is the following. The server encrypts all
its words Yj using separate symmetric keys skj and sends
the results to the client. The protocol then proceeds to reveal
key skj to the client only if there is a word Xi such that
Xi ≈t Yj .

Every word Xi of the client is matched with each word
Yj of the server one by one. To this end, the client first sends
each letter of Xi to the server, encrypted to the public key
of the server separately.

Upon reception of the encrypted letters for Xi, the server
does the following for each word Yj in his set (using the
subroutine find-matching(i,j)). Firstly the server pre-
pares secret key (skj for corresponding word Yj) for the
symmetric encryption scheme (e.g., AES), and sends the en-
crypted Yj to the client. Then it prepares t-out-of-T random
secret shares s1, . . . , sT such that s = 0k||skj . Share si is
"attached" to the i-th letter of word Yj , so to speak. Note
that each time a new word Xi from the client is matched
with Yj , fresh secret shares are generated to avoid an attack
similar to the one described in section 3.

Using the homomorphic properties of the encryption
scheme, the server then computes for each encrypted letter
{xw

i }K it received, the value vw = {((xw
i −yw

j) ·r+sw)}K

(using a fresh random value r each time, and encrypting yw
j

to the public key K). Note that vw = {sw}K if and only if
xw

i = yw
j .

Finally, the server sends v1, . . . , vT back to the client.
The client decrypts these values, and if Xi ≈t Yj , then by
the observation in the previous paragraph, among the de-
crypted values there are at least t shares sw from which skj

and therefore Yj can be reconstructed.
Due to space constraints we skip the proofs of correct-

ness and security, and the complexity analysis of the proto-
col from Figure 4 (they can be found in the full version of
this paper).
Remark on the Complexity: The main impact on the mes-
sage complexity of the protocol is the fact that the subrou-
tine find-matching is called nCnS times. Hence the
complexity of the protocol is quadratic with respect to the
size of the inputs. This complexity is improved to a linear
one by the protocol 5.

5.2 An Improved Protocol

We can improve the message complexity by combining
the idea of using secret sharing (protocol 4) with the idea of
encoding all characters at position w using a polynomial Pw

1. The client generates sk, K and parameters for the additively homomorphic
cryptosystem and sends K and the parameters to the server.

2. For each Xi ∈ X

(a) The client encrypts each letter xw
i of Xi and sends {xw

i }K to the server.
(b) For each Yj ∈ Y , run the protocol find-matching(i,j).
find-matching(i,j):

1. The server generates skj and parameters for the symmetric cryptosystem and
sends parameters to the client.

2. The server sends ŷj = Eskj
(Yj) to the client.

3. The server prepares t–out–of–T secret shares [s1, s2, . . . sT] with secret
0k||skj , where k is the security parameter.

4. For every letter yw
j in Yj , the server computes:

vw = (({xw
i }K −h {yw

j }K) ·h r) +h {sw}K which equals
{((xw

i − yw
j) · r + sw)}K , where r is always a fresh, random value from

the domain of plaintext.
5. The server sends [v1, v2, . . . vT] to the client.
6. The client decrypts the values and checks whether it is possible to reconstruct

the secret 0k||z from them. In order to do that, he needs to try all possible
combinations of t among the T decrypted (potential) shares. If it is possible
and Decz(ŷj) ≈t Xi then he adds Decz(ŷj) to his output set.

Figure 4. Simple protocol

(protocol 2). The resulting protocol for FPM is presented in
Figure 5. It consists of two phases: a polynomial phase, and
a ticket phase.

The polynomial phase runs as follows. As in the pre-
vious protocol, words are first sent encrypted to the client,
while the key skj is encoded using a secret sharing scheme
such that when the client has a word matching on letter w,
it obtains share sj

w.
However, we now encode the shares at letter position w

using a polynomial Pw defined by:
(P w(yw

1) = s1
w)∩ (P w(yw

2) = s2
w)∩ . . .∩ (P w(yw

n) = sn
w)

(where, for technical reasons, at least random point is added
to ensure privacy in the case xw

i �= yw
j). This polynomial is

sent to the client to allow him to recover share si
w for each

letter xw
i = yw

j . In fact, it is sent encrypted to the client;
more about this later.

We need to avoid the problem discussed in section 3 with
the original FPM protocol. Observe that the above defini-
tion of Pw is only valid if we require that si

w = sj
w when-

ever yw
i = yw

j . This means that, as we proceed through
to the list of words Yj of the server constructing secret
shares for key skj , we accumulate restrictions on the possi-
ble share values we can use. In the extreme case, for some
word Yj , T shares could already be fixed! If T was the to-
tal number of shares, then skj would be fixed and we would
have the same leakage of information discussed in section 3.

We solve this problem by adding an extra shares
sj

T+1, . . . (that are in fact sent to the client in the clear!)
and changing the parameters of the secret sharing scheme,
as follows. We observe that if at most T shares can get
fixed as described above, the best we can do is create a
(T + 1)-out-of-(T + x) scheme. This ensures that an ar-
bitrary skj can actually be encoded by the secret sharing
scheme, even given T fixed shares. The x extra shares are
given away "for free" to the client. Now to ensure that the
client needs at least t letters that match word Yj in order to

5

be able to reconstruct skj form the shares it receives, we
need t = T + 1 − x i.e., x = T + 1 − t.

In other words, we use a (T + 1)-out-of-(2 · T + 1 − t)
secret sharing scheme where for each word Yj : the first T
shares are encoded using polynomials P 1, . . . , PT , and the
remaining T + 1− t shares are given the client in the clear.
If Xi ≈t Yj , then the client obtains at least t shares using
the polynomials P 1, . . . , PT . Combined with the T + 1 −
t shares it got for free, it owns at least T + 1 shares that
allow it to reconstruct the secret. Note, however, that when
it obtains the shares by evaluating the polynomial for the
letters in Xi, it does not know to which Yj these shares
actually correspond. So in fact to actually reconstruct the
secret, it needs to combine these shares with each group of
free T + 1 − t shares corresponding to Y1 up to Yn one by
one.

This works, but it still leaves the leakage of information
problem discussed in section 3 when several different words
held by the client each match on some characters of a word
Yj held by the client, such that t shares for skj are released
even though no single word of the client actually matches
Yj . This problem is solved in the ticket phase, as follows.

In fact, the polynomials sent by the server to the client
are encrypted using the homomorphic encryption scheme.
Therefore, when evaluating the polynomials for a word Xi,
the client only obtains the encrypted shares corresponding
to it. These are useless by themselves. The client needs
the help of the server to decrypt these shares. In doing so,
the server will enforce that the shares the client receives in
the end actually correspond to a single word in the client set
(and not a mix of shares obtained using letters from different
words as in the attack described in the previous paragraph).

The server enforces this using so-called tickets (hence
the name: ticket phase). Tickets are in fact (T + 1)-out-of-
(2 · T + 1 − t) random secret shares for the secret 0. The
clients sends groups of encrypted shares (blinded by ran-
dom values) that he got for every word Xi to the server. The
server, for every group of shares received from the client,
decrypts these shares and adds the tickets shares. The re-
sult is sent back to the client, who unblinds the result (sub-
tracting the random value). Because of the linear property
of the secret sharing scheme, the secret corresponding to
the shares the client receives in the end (that are the sum
of the original share and the ticket share) has not changed.
But if the client tries to combine different shares obtained
form different words, the shares of the tickets hidden within
them no longer match and reconstruction of the secret is
prevented.

Due to space constraints we skip the proofs of correct-
ness (that is essentially similar to the discussion above) of
the protocol from Figure 5. This proof can be found in the
full version of this paper.
Security: The privacy of the client’s input data is secure

Polynomial Phase:
1. The server prepares sk, K and parameters for the additively homomorphic

cryptosystem and sends K and the parameters to the client.
2. For all Yj ∈ Y , the server generates skj and parameters for the symmetric

cryptosystem and sends parameters to the client. Later the server sends ŷj =

Eskj
(0k||Yj) to the client.

3. For all Yj ∈ Y , the server prepares [T +1]–out–of–[2·T −t+1] secret shares
[sj

1, sj
2, . . . sj

2·T−t+1] with the secret 0k||skj , where k is the security
parameter. If yw

j = yw
m then sj

w = sm
w .

The server sends [sj
T+1, . . . sj

2·T−t+1] to the client.
4. The server prepares T polynomials (for w = 1 to T) of degree n :

(a) The polynomial is defined in the following way:
((P w(yw

1) = s1
w)∩(P w(yw

2) = s2
w)∩ . . . (P w(yw

n) = sn
w))

The number of points is increased to n +1 by adding random points (at least
one random point is added).

(b) The server computes the coefficients of the polynomials and encrypts each
polynomial {P w}K and sends it to the client.

5. The client evaluates T polynomials (for w = 1 to T) on each letter of each
word (for i = 1 to n): {vw

i }K = {P w(xw
i)}K . If xw

i = yw
m then

vw
i = sm

w .
6. The client blinds the results vw

i with a random values rw
i and sends them to the

server: {vw
i + rw

i }K .
Ticket Phase:
7. For i = 1 to n, the server prepares [T + 1]–out–of–[2 · T − t + 1]

secret shares [τi
1, τi

2, . . . τi
2·T−t+1] with secret 0. Later he sends

[τi
T+1, . . . τi

2·T−t+1] to the client.
8. For i = 1 to n and for w = 1 to T , the server decrypts the received messages

Dsk({vw
i + rw

i }K) and sends (vw
i + rw

i + τi
w) to the client.

9. The client unblinds them (by subtracting rw
i) obtaining qw

i .
If xw

i = yw
m then qw

i = sm
w + τi

w .
10. For i = 1 to n and j = 1 to n, the client checks if it is possible to recon-

struct the secret 0k||z from: [q1
i , q2

i , . . . qT
i , sj

T+1 + τi
T+1, sj

T+2 +

τi
T+2, . . . sj

2·T−t+1 + τi
2·T−t+1].

In order to do that, the client needs to try all possible combinations of t shares
among the T decrypted q shares (the rest of the shares is the same during re-
constructions). If it is possible and for any ŷj , Decz(ŷj) = 0k||a, and a
matches Xi then he adds a to his output set.

Figure 5. Improved protocol

because all of the data received by the server (in step 6 of
the polynomial phase) is of the form: vw

i + rw
i , where rw

i is
a random value from the domain of the plaintext. Hence the
server cannot distinguish between different client inputs.

The privacy of the server is protected because the client
receives correct secret shares of some skj (corresponding
to Yj ∈ Y) if and only if there is an element Xi ∈ X such
that Xi ≈t Yj . In the polynomial phase, the client receives
encrypted polynomials and n groups with T − t + 1 shares
([si

T+1, . . . si
[2·T−t+1]]) of [T + 1]–out–of–[2 · T − t + 1]

secret sharing scheme. Hence, there is no leakage of in-
formation in the polynomial phase. The client receives in-
formation in plaintext in steps 7 and 8 of the ticket phase.
In this situation, the client has at least T + 1 correct se-
cret shares during step 8 and he can reconstruct the secret
0k||skm (and therefore, Ym).

If there is no such element in X to which Yj is similar,
then the client receives no more than t shares in every group
qi of potential shares: qw

i = τi
w + sj

w (where i is an index
of the received group of potential shares). The other values
(for incorrect letters) include Pw(yw

j) that cannot be deter-
mined. It is caused by the fact that the client does not know
enough points (degree of the polynomial is n + 1 and the
client can know only n points) defining the polynomial and

6

at least one unknown point is random. This is exactly the
situation like in a polynomial based secret sharing scheme
when not enough shares are known. The client cannot re-
construct skj for any group separately (by the secret sharing
assumption), because he has less than T + 1 correct secret
shares. Of all the shares, (T − t + 1) come from values that
are sent in plaintext. For every group of shares, τ values are
different and therefore make every received group of shares
independent. The probability that a random value from R is
a correct share is negligible. Therefore, the probability that
the client can recover illicit information is also negligible.
Complexity: In step 2 the server sends n messages en-
crypted by the symmetric encryption scheme that are from
the domain O(log |D|T + k) (that is O(n(T log |D| + k))
bits). Later in step 3 the server sends O(nT) unen-
crypted messages from the domain O(k + log |D|) (that
is O(nT (log |D| + k)) bits). In step 4 the server sends
encryptions of T polynomials of degree n. This totals to
O(nT (log |D| + k)) bits. For every received polynomial,
the client computes n values and sends them encrypted to
the server (again O(nT (log |D| + k)) bits). In the ticket
phase, in step 8, the server sends O(nT) unencrypted mes-
sages, that is O(nT (log |D|+ k)) bits. Hence, the bit com-
plexity of the entire protocol totals to: O(nT (k+log |D|)+
n(k + log |D|T)) = O(nT (k + log |D|)).

The main part of the server time complexity is preparing
2n times [T +1]–out–of–[2 ·T − t+1] secret shares. Since
producing (2·T−t+1) secret shares can be done efficiently,
the time complexity of the server is reasonable. The crucial
part for the time complexity of the client is step 10 (which is
performed n2 times). In this step the client checks whether
he can reconstruct the secret Yj . This verification costs

(
T
t

)
reconstructions (and one reconstruction can be done effi-
ciently). The total number of reconstructions is in the order
of O(n2

(
T
t

)
), which is the major drawback of this protocol.

6 Hamming Distance Based Protocol

In this section we present two protocols solving the FPM
problem based on computing the encrypted Hamming dis-
tance: one that is simple and efficient for small domains
and another that uses oblivious transfer. The difference
between them is only the implementation of the subrou-
tine equality-matrix (the frame of the protocol is the
same for both of them). Firstly we describe the simple pro-
tocol and later the one using oblivious transfer.

A technique to compute the encrypted Hamming dis-
tance to solve the FPM problem has been introduced in [14].
However, the protocol in that paper uses generic 2-party
computations together with oblivious transfer, making their
approach less practical.

Our protocol (see Figure 6) works as follows. The server
first obtains, using the subroutine equality-matrix,
a 3-dimensional matrix f(w, i, j) containing the encrypted

1. The client prepares sk, K and the parameters for the additively homomorphic
cryptosystem and sends K and the parameters to the server.

2. Run subroutine equality-matrix. After this subroutine the server has ob-
tained the following matrix:

f(w, i, j) =

{ {0}K , for xw
i = yw

j

{1}K , for xw
i �= yw

j
,

where w ∈ {1, . . . T} and i, j ∈ {1, . . . n}
3. For each Xi ∈ X and Yj ∈ Y :

(a) the server computes {∆(Xi, Yj)}K = {∑ T
w=1 f(i, j, w)}K and, for

� = 0 to T − t, sends {(∆(Xi, Yj)− �) ·r +(0k||Yj))}K to the client.
Here r is always a fresh, random value.

(b) The client decrypts all T − t messages and if any plaintext is in DT and
matches any word from X , then the client adds this plaintext to the output
set.

Figure 6. Hamming distance based protocol

equality test for the w-th letter in words Xi and Yj (where
{0}K denotes equality and {1}K denotes inequality). The
server sums the entries in this matrix to compute the en-
crypted Hamming distance dj

i = ∆(Xi, Yj) between the
words Xi and Yj . Subsequently, the server sends Yj blinded
by a random value r multiplied by dj

i − �, for all 0 ≤ � ≤
T − t. If 0 ≤ dj

i ≤ T − t, then for some � the value Yj

is not blinded at all. This allows the client to recover Yj .
Otherwise Yj is blinded by some random value for every �,
and the client learns nothing.

6.1 Implementing Subroutine equality-matrix

The first method to implement the subrou-
tine equality-matrix is as follows. The client
sends the letters of all his words to the server as encrypted
vectors dw

i : {0, . . . |D| − 1} (where i ∈ {1, . . . nC} and
w ∈ {1, . . . T}) such that dw

i (v) = {1}K if v = xw
i , and

dw
i (v) = {0}K otherwise. This process can be described

as sending encryptions of unary encoding of the letters
of all his words. Subsequently the server defines the
matrix as f(w, i, j) = dw

i (yw
j). The main drawback of

this method is that its bit complexity includes a factor
O(|D| · n · T + n2 · (T − t)). However, the protocol
is simple, and for small domains D (e.g., ASCII letters)
it is efficient. For constant size D and T ≈ t the bit
complexity of the protocol reduces to Õ(n2 +n ·T) (which
is significantly better than the bit complexity of the protocol
from [14] in this situation).

The second implementation of the subroutine is shown
in Figure 7. This implementation uses 1–out–of–q oblivious
transfer. An oblivious transfer is a 2-party protocol, where
a client has a vector of q elements, and the server chooses
any one of them in such a way that the server does not learn
more than one, and the client remains oblivious to the value
the server chooses. Such an oblivious transfer protocol is
described in [17]. The fastest implementation of oblivious
transfer works in time Õ(1).

The second version of the subroutine
equality-matrix uses such an oblivious transfer
in the following way. Let dw

i be the unary encoding of
xw

i as defined above (in the description of the first method

7

1. The client generates vectors dw
i : [0, . . . |D| − 1] (where i ∈ {1, . . . nC}

and w ∈ {1, . . . T}) such that: dw
i (v) = 1 if v = xw

i , and dw
i (v) = 0

otherwise.
2. The matrix f is defined in the following way (for all i, j ∈ {1, . . . n} and

w ∈ {1, . . . T}):

(a) The client picks a random bit bw
i,j .

(b) The server and the client perform 1–out–of–|D| oblivious transfer as follows.
The client constructs hw

i,j , which is a vector [0, . . . |D| − 1] as follows:
hw

i,j = [dw
i (0) ⊕ bw

i,j , dw
i (1) ⊕ bw

i,j , . . . dw
i (|D| − 1) ⊕ bw

i,j].
The server wants to obtain a value from the vector hw

i,j with an index yw
j .

For that they perform the oblivious transfer protocol (where the server has
an index and the client an array). Subsequently, the server obtains the value
h = hw

i,j(y
w
j).

(c) The client sends {bw
i,j}K to the server.

(d) f(w, i, j) =

{ {bw
i,j}K , for h = 0

{1 − bw
i,j}K , for h = 1

Figure 7. equality-matrix

of implementation). The client chooses a random bit
bw
i,j . Next he constructs a vector hw

i,j which contains all
bits of dw

i , each blinded by the random bit bw
i,j . In other

words hw
i,j [x] = dw

i (x) ⊕ bw
i,j . Using an oblivious transfer

protocol, the server requests the yw
j -th entry in this vector,

and obtains dw
i (yw

j) ⊕ bw
i,j . By the obliviousness, the

client does not learn yw
j , and the server does not learn any

other entry. Subsequently, the client sends the encryption
{bw

i,j}K to the server. Based on this the server constructs
f(w, i, j) = {dw

i (yw
j)}K as explained in the protocol.

Corollary: These protocols are in general less efficient in
bit complexity than the improved protocol based on secret
sharing (see Section 5.2, Figure 5). The first protocol is
efficient for small domains, but significantly less efficient
for large ones. In the second protocol there are n2 · T
oblivious transfer calls. Moreover, at this stage, we do not
foresee a way to improve these protocols. However, the
protocols are interesting because they do not use generic
2-party computations. Furthermore, the techniques being
used contain novel elements especially in the subroutine
equality-matrix, that presents a technique for obtain-
ing the encryption of a single bit using only one oblivious
transfer.

7 Summary and Future Work

In this paper we have presented a few protocols solving
the FPM problem. The most efficient one works in a linear
bit complexity with respect to the size of the input data and
the security parameter. This is a significant improvement
over existing protocols. The improvement comes at an ex-
pense of a factor n increase in time complexity (but only at
the client).

Currently, we are investigating how to speed up the time
complexity of the client by using error correcting coding
techniques.

References
[1] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon,

and H.-C. Wong. Secret handshakes from pairing-based key

agreements. In 24th IEEE Symposium on Security and Pri-
vacy, page 180, Oakland, CA, May 2003.

[2] F. Boudot, B. Schoenmakers, and J. Traoré. A fair and effi-
cient solution to the socialist millionaires’ problem. Discrete
Applied Mathematics, 111(1–2):23–36, 2001.

[3] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Univer-
sally composable two-party and multi-party secure compu-
tation. In STOC, pages 494–503, 2002.

[4] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret hand-
shakes from ca-oblivious encryption. In In Advances in
Cryptology - ASIACRYPT 2004: 10th International Confer-
ence on the Theory and Application of Cryptology and Infor-
mation Security, volume 3329, pages 293–307, December
2004.

[5] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy
extractors: How to generate strong keys from biometrics
and other noisy data. Cryptology ePrint Archive, Report
2003/235, 2003.

[6] K. Du and M. Atallah. Protocols for secure remote database
access with approximate matching. In the First Workshop
on Security and Privacy in E-Commerce, November 2000.

[7] R. Fagin, M. Naor, and P. Winkler. Comparing information
without leaking it. Communications of the ACM, 39(5):77–
85, 1996.

[8] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss,
and R. N. Wright. Secure multiparty computation of approx-
imations. Lecture Notes in Computer Science, 2076:927+,
2001.

[9] M. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Advances in Cryptology —
EUROCRYPT 2004., pages 1–19, 2004.

[10] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On pri-
vate scalar product computation for privacy-preserving data
mining. Lecture Notes in Computer Science, 3506:104–120,
2004.

[11] O. Goldreich. Secure multi-party computation. Cambridge
University Press, 2002.

[12] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or a completeness theorem for protocols with
honest majority. In STOC, pages 218–229. ACM, 1987.

[13] J.-H. Hoepman. Private handshakes. In 4th Eur. Symp. on
Security and Privacy in Ad hoc and Sensor Networks, 2007.

[14] P. Indyk and D. Woodruff. Polylogarithmic private approxi-
mations and efficient matching. In The third Theory of Cryp-
tography conference 2006, volume 3876 of LNCS, pages
245–264, 2006.

[15] L. Kissner and D. Song. Privacy-preserving set operations.
In Advances in Cryptology — CRYPTO 2005, pages 68–80,
2005.

[16] M. Naor and K. Nissim. Communication complexity and
secure function evaluation. CoRR, cs.CR/0109011, 2001.

[17] M. Naor and B. Pinkas. Oblivious transfer and polynomial
evaluation. In Thirty-First Annual ACM Symposium on the
Theory of Computing, pages 245–254, May 1999.

[18] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Advances in Cryptology —
EUROCRYPT 1999., pages 223–238, May 1999.

[19] A. Shamir. How to share a secret. In Communications of the
ACM, vol. 22, n.11, pages 612–613, November 1979.

8

