
Off-line Karma: A Decentralized Currency

for Peer-to-peer and Grid Applications

Flavio D. Garcia and Jaap-Henk Hoepman

Institute for Computing and Information Science,
Radboud University, Nijmegen, The Netherlands.

{flaviog,jhh}@cs.ru.nl

Abstract. Peer-to-peer (P2P) and grid systems allow their users to
exchange information and share resources, with little centralised or hier-
archical control, instead relying on the fairness of the users to make
roughly as much resources available as they use. To enforce this balance,
some kind of currency or barter (called karma) is needed that must be
exchanged for resources thus limiting abuse. We present a completely
decentralised, off-line karma implementation for P2P and grid systems,
that detects double-spending and other types of fraud under varying ad-
versarial scenarios. The system is based on tracing the spending pattern
of coins, and distributing the normally central role of a bank over a pre-
determined, but random, selection of nodes. The system is designed to
allow nodes to join and leave the system at arbitrary times.

Keywords Decentralised systems, micropayments, free-riding, security,
grid, peer-to-peer.

1 Introduction

Peer-to-peer (aka. P2P) networks like BitTorrent [9], Gnutella [15] and
Freenet [8], and grid systems like XGrid [1] are distributed systems without
centralised control or hierarchical organisation. Given this flat structure,
these systems scale very well when the number of nodes increases. Scalab-
ility is important, given the fact that the Internet is still growing expo-
nentially and more people have permanent Internet connections.

Grid systems capitalise on the observation that computer resources
are usually very badly distributed in both time and space, and that al-
most all of them are wasted most of the time. CPU cycles are maybe
the best example of this. In an ideal grid system, the whole Internet con-
stitutes a huge supercomputer with practically unlimited resources, that
members can use as long as they contribute to it as well. Projects like
seti@home, folding@home and distributed.net have shown that a large
set of common desktop computers can provide a tremendous amount of

2 Flavio D. Garcia and Jaap-Henk Hoepman

computing power. Even though they receive no direct benefit, users par-
ticipate in such projects because they associate themselves with the goals
of the project. If such large scale computations are for an uncompelling
cause, it is not easy to find people willing to donate their CPU time.

Also, many P2P networks suffer form the ‘free-riders’ problem where
users only occasionally connect to the network to use the resources offered
by it, but do not donate any resources themselves. Adar and Huberman [3]
performed a traffic study on the Gnutella network revealing that 70% of
the users share no files at all. To counter such problems, ‘currencies’ of
some sort have been proposed to reward users contributing to the system
and that can be used as payment when the resources of the network are
used.

This paper extends our earlier work in this area [12,11]. We refer to
those papers for a more in depth discussion of the state of the art, and only
briefly summarise it here. Several P2P systems use some kind of digital
currency to enforce contribution and optimise resource distribution. All
these systems use a central bank or broker to track each user’s balance
and transactions. Micropayment schemes [20,13,19] seem to be especially
suitable for such a task. However, these schemes are centralised and the
load of the central broker grows linearly with the number of transactions.
It is clear that when scalability is of primary concern, a central bank or
broker constitutes both a bottleneck as well as a single point of failure.

At the moment, the only distributed currency we are aware of that is
fully decentralised is KARMA [23]. In that system, the bank for a user is
distributed over a bank set of r users, that all need to be on-line, and that
are all involved in all transactions between their “owners”. This incurs a
large overhead, especially in cases where the transaction rate is high.

Another interesting approach is PPay [24]. PPay is a lightweight mi-
cropayment scheme for P2P systems. In PPay the issuer of the coin is
responsible for keeping track of it. With every transaction the issuer of
the coin updates a pointer to the new owner, in a secure manner. The
main drawback with PPay is that it uses a central server (called broker)
when the issuer of a coin is off-line. Therefore, in certain situations PPay
converges to a system with a centralised accounting bank.

1.1 Our Contribution

We present a completely decentralised, off-line karma implementation
for dynamic P2P and grid systems, that detects double-spending and
other types of fraud under varying adversarial scenarios. Previous work
of us [12,11] focused on the static case. The system is based on the tracing

Off-line Karma 3

of the spending pattern of coins, and distributing the normally central role
of a bank over a predetermined, but random, selection of nodes. Trans-
actions between users do not require the cooperation of this distributed
bank — this is more efficient, but as a result double spending cannot
be prevented. Instead, karma coins need to be occasionally reminted to
detect fraud. The system is designed to allow nodes to join and leave the
system at arbitrary times.

We focus on the payment for CPU cycles as an application of our
techniques, and show how a special minting technique allows us to ini-
tialise the system and provide its users with coins in a quite autonomous
fashion. Coins correspond to CPU cycles, and the bag of coins owned by
a user corresponds, in a sense, to a battery charged with CPU cycles. The
battery is initially empty, and can be charged by minting coins. Minting
takes quite a few CPU cycles. Alternatively, a coin can be obtained by
performing roughly the same amount of work, but for another user. Ex-
tensions of our protocols to trade coins for other resources are certainly
possible, and only involves initialising the system with a set of coins in a
different manner.

We design our system on top of an arbitrary overlay network which
provides certain services as described in Section 2.

The remainder of this paper is organised as follows. Section 2 discusses
the model and notation used throughout the paper. We describe the sys-
tem objectives and the capabilities of the adversary in Section 3. Then we
present our karma implementation in Section 4, first for a static network
and then the dynamic case. Finally, Section 5 discusses methods for early
double-spending detection, and Section 6 presents our conclusions and
directions for further research.

2 System Model

In the context of this paper we want to stay abstracted from the un-
derlying overlay network. We are going to model common characteristics
that apply to routing overlays like CAN [18], Chord [22], Pastry [21] and
Tapestry [25] as in [5], were the reader can find also a nice and brief
description of each system. In this abstract model, every node that joins
the system is assigned a uniform random identifier u from the identifier
space Π. We assume that the overlay network provides primitives for both
user look-up and message routing. Furthermore, for each possible identi-
fier u (whether u is part of the network or not) the overlay network can
efficiently and reliably compute the neighbour set ℵr(u), which consist

4 Flavio D. Garcia and Jaap-Henk Hoepman

of all on-line nodes close to u. The definition of close varies in each of
the above mentioned systems, although it is always well-defined. We also
assume that communication within this set is efficient, because nodes
keep updated routing information of their neighbours. Given that the
node identifiers are distributed randomly, any neighbour set represents a
random sample of all participating nodes [5].

Off-line Karma requires every user to have his own public key pair
(PK, SK) and a certificate that binds the public key with a node identi-
fier. This may be provided by a trusted Certification Authority (aka. CA).
We want to remark that the CA is only needed when a new user joins the
system. After that communication with the CA is no longer needed.

Routing information in the overlay network is kept updated, in prac-
tise, by node join and node leave messages and periodic queries and fingers
to detect when a node suddenly disconnects. This mechanism introduces
propagation and update delays. This is, in fact, a discrete approximation
of an ideal situation where any modification in the network topology is in-
stantaneously detected by the overlay network. We assume such an ideal
situation, and leave responsibility for emulating this ideal functionality
in an efficient fashion to the overlay network. We also assume that node
joins and leaves are atomic operations.

We also assume that the overlay network is capable of safely distrib-
uting a blacklist of banned users. Whenever a user detects fraud and has
a proof of that, he can submit it to the overlay network which makes this
information available to every user. How to implement the distribution of
blacklist securely is beyond the scope of this paper.

2.1 Notation

We write {m}u for u’s signature on message m, Cu for u’s certificate, and
validSig(m, u, Cu) for the function that checks u’s certificate Cu, and if
valid uses the key in Cu to verify a signed message m.

We also use a multisignature scheme. A multisignature scheme [17,16]
is a signature scheme where a set R of users sign a message. A multisig-
nature {m}R for a message m has the same properties as if each user in R
concatenates his own traditional public key signature to m, the only dif-
ference is that a multisignature is more efficient in size and in verification
time (comparable to a single signer Schnorr’s signature scheme). Unlike a
threshold signature scheme however, it does not provide anonymity. We
define CR = {Ci : i ∈ R} and validSig(m, R, CR) is the function that
checks the certificates and verifies the multisignature.

Off-line Karma 5

Security of our system is parameterised by a security parameter s. All
cryptographic primitives we use satisfy the requirement that the advant-
age of the adversary breaking them is less than 2−s. We show that the
advantage breaking our karma system is at most that large too.

For describing protocols we adopt the notation a → b : m → m′

denote that Alice sends a message m to Bob which he receives as m′.
Also a : f means Alice computes f . If f is a predicate, Alice verifies
f ≡ true and aborts if not.

3 System Objectives and Threat Model

3.1 Threat Model

We consider a set of n users U of which at most t are under control
of the adversary. In the context of P2P networks, there is an important
difference in the difficulty for an adversary between adding new corrupted
users to the system and getting control over chosen users. Therefore, we
also define 0 ≤ c ≤ t to be the number of corrupt users chosen by the
adversary after they joined the overlay network. Then, when c = t we give
the adversary full control over which nodes in the overlay get corrupted,
while for c = 0 the adversary is only able to get a randomly chosen set of
corrupted users of size t.

Furthermore, we assume that the adversary cannot make excessively
many nodes join and leave the system, or let some nodes join and leave
in a very high frequency (in attempts to mount sybil attacks, to use them
as strawmen, or to overcome the random assignment of node identifiers).
In fact, we do not allow the adversary any control over when nodes join
the system. In practise, this could be achieved by requiring nodes to pay
each time they register, or making node joins a time-intensive procedure
(e.g., by requiring them to compute a moderately hard, memory bounded
function [2,10]).

3.2 System Objectives

We note that for any system offering off-line currency, double-spending
prevention is generally speaking not possible, unless extra assumptions
(e.g., special tamper proof hardware) are made. As we are designing an
off-line system, we only require double spending detection. We do not con-
sider issues like fair exchange or coin stripping. We focus on the payment
itself and not on the exchange of coins for goods.

Then, the requirements on a usable, off-line and decentralised, karma
system for P2P and grid applications are the following.

6 Flavio D. Garcia and Jaap-Henk Hoepman

Scalability Transaction cost should be independent of the size of the
network.

No centralised control The system should not rely on one or several
central, special, nodes (e.g., banks or brokers) and should not require
any predetermined hierarchy. We do allow a centralised registration
procedure.

Load Balance The overhead of the protocol is, on average, evenly dis-
tributed over the peers.

Availability Transactions among users can be processed uninterrupted
even when users join or leave the system.

Double-spending detection The system must detect double-spending,
and for every double spent coin, a fraudulent user should be blacklis-
ted.

4 The Off-Line Karma Protocol

4.1 Informal Description

To implement the CPU cycles battery metaphor presented in the intro-
duction, a user can mint coins by finding collisions on a hash function (a
la hashcash [4]). This rather expensive minting process is preferred over
giving an initial amount of free coins to new users, as in that case the
system becomes vulnerable to users changing their identities after spend-
ing those coins. A minted coin contains the name of the minting user as
well as a sequence number (limiting the number of coins a single user can
mint). User identity and sequence number together constitute the unique
coin identity. Coins also contain a time stamp recording the time they
were minted.

The coins are transferable [6]. A user can pay for resources by trans-
ferring a coin to another user. The sender signs the coin, and the receiver
verifies this signature and stores the coin (with signature) for further use.
With every transfer, a coin is extended with another signature. Thus, the
sequence of signatures on a coin record the payment history of that coin.
Double-spending is detected by comparing the history of two coins with
the same coin identity, and the culprit (or his accomplice) will be found
at the node where both histories fork. This check is performed whenever a
coin is reminted. Fraudulent nodes are blacklisted, together with a proof
of their misbehaviour (namely two signatures of the fraudulent node over
the same coin). This prevents unfair blacklisting.

Every once in a while (but at least before the coin expires), coins
must be reminted. Reminting is used to detect double-spending, and at

Off-line Karma 7

the same time to reduce the size of the coin by removing its history. In
classical systems, reminting is done by a central bank. Here the function
of the bank is distributed over a set of users on the network called the
reminters for the coin. The set of reminters is constructed in such a way
that

– at least one of the reminters is a non-corrupted node, and
– all honest reminters possess the history of previously reminted coins

with the same identity.

We first describe the static case where we assume to have a set of n
users which are always on-line and later, in Section 4.3 we describe the
modifications needed for handling dynamic networks, where users join
and leave at arbitrary times.

4.2 Off-Line Karma for Static Networks

Minting Let h1 : A → C and h2 : B → C be hash functions, and suppose
every user is allowed to mint 2q karma coins. A user u has to spend some
CPU time finding a collision y satisfying: h1(x) = h2(y) and x 6= y, with

x = u||sn
︸ ︷︷ ︸

coinId

||ts

where sn is the serial number |sn| ≤ q and ts is a time stamp. This is
an expensive but feasible operation, for suitable functions h1 and h2. In
analogy with the monetary system, imagine that the cost of the metal
needed for minting a coin is greater than its nominal value. We define the
new karma coin as

k0 = 〈x, y〉

Spending To spend a coin, a user u transfers ownership of it to the mer-
chant m, by putting a signature over the coin together with the merchant
identity m and a random challenge z it receives from the merchant. The
random challenge is included to avoid uncertainty about who is the traitor
in the case where a user spends the same coin twice at the same user.
Otherwise, a fair user might look like the double-spender (unless he keeps
a history of received coins forever). Concretely, suppose that the user s
owns the coin ki and wants to spend it at the user m. Then, the last one
sends a random challenge z to the first one who computes:

ki+1 = {ki, z, m, Cu}u

and sends it to m.

8 Flavio D. Garcia and Jaap-Henk Hoepman

Reminting To prevent the coins to grow unreasonably large and to bound
the amount of history that needs to be kept, coins must be reminted
regularly, at least within the time to live T . This bank functionality is
performed by a random but predefined set of users Rk. The selection of
this set must be done in such a way that

– each user is responsible for reminting roughly the same amount of
coins (load balance) and

– at least one honest user is a member of the remint set.

Whenever a user u has to remint a coin k, he sends it to each user in
the remint set Rk = ℵr(h(id(k))). Here the hash function is used as a
consistent mapping from the coin identifier space to Π. Each user in Rk

must verify the authenticity of k and store it in his local history database.
If the verification succeeds, the reminters will create a multisignature

knew = {XY(k), ts, Rk, CRk
, u}Rk

for the new coin with the same coin identifier and owner, but with a new
time stamp (XY() extracts the collision out of k). If the verification fails,
either because the coin is invalid or because a coin with the same identifier
and time stamp was already reminted, the reminters will audit the coin
and trace back the cheater in the signature chain.

Protocol Description.

Minting For a user u:
Initially: Ku := ∅; snu := 0
snu := snu + 1
ts := now()
x := u||snu||ts
Find y satisfying: h1(x) = h2(y)
k := 〈x, y〉
Ku := Ku ∪ {k}

Spending User u spends a coin at
merchant m:
m : pick nonce z
m → u : z
u : select k ∈ Ku

u → m : {k, z, m, Cu}u → k′

m : check(m, k′, z)
u : Ku := Ku\{k}
m : Km := Km ∪ {k}

where now() returns the current time and Ku is the bag of coins of user u

Reminting User u remints a coin k = {k̃, z, u, Cs}s:
u : R = ℵr(h(id(k)))
u → ri : k, now(), R → k′, t′, R′ ∀i : ri ∈ R
ri : t′ ≈ now()
. R′ = ℵr(h(id(k′)))

Off-line Karma 9

. check(u, k′,⊥)

. verifyHistory(k′)

. knew = {XY(k′), t′, R′, C ′

R, u}
R ↔ u : {knew}R → kR (this is a three-round protocol)
u : checkBase(u, kR)

check(u, k, z) :
if isBase(k) then checkBase(u, k)
else {k′, z′, u′, Cs}s := k
. return (z′ = z ∨ z = ⊥) ∧ u′ = u
. ∧ validSig(k, s, Cs)∧ check(s, k′,⊥)

checkBase(u, k):
if isReminted(k) then

. {k′, newts, R′, CR, u′}R := k

. return u′ = u ∧ R′ = R = ℵr(h(id(k′)))

. ∧newts ∈ [now() − T, now()]

. ∧ validSig(k, R, CR)
else

. 〈x, y〉 := k

. u′||sn||ts := x

. return h1(x) = h2(y) ∧ u′ = u

. ∧ ts ∈ [now() − T, now()]

audit(k, k′):
{. . . {k0, z1, u1, C0}u0

. . . , zm, um, Cm−1}um−1 := k
{. . . {k′

0, z
′

1, u
′

1, C
′

0}u′

0
. . . , z′m′ , u′

m′ , C ′

m′−1}um′−1 := k′

for(i = 1 to min(m, m′)) do

. if(zi 6= z′i ∨ ui 6= u′

i) then return ui−1

verifyHistory(k):
Hcoin := {k′ ∈ H| id(k) = id(k′) ∧ ts(k) = ts(k′)}
foreach k′ ∈ Hcoin do

. B := B ∪ {audit(k, k′)}
H := H ∪ {k}
return Hcoin= Ø

where B is the set containing all the blacklisted users and H is the set of
all reminted coins.

Security Analysis. We will show that our protocol is secure by showing
that for every double-spent coin, a corrupted node is blacklisted.

10 Flavio D. Garcia and Jaap-Henk Hoepman

Lemma 1. Let r be the size of the remint set R. If r > γs + c, for some
constant γ, then the probability that R contains no honest nodes is less
than 2−s.

Proof. Since c nodes can be corrupted by the adversary at will, r > c.
So we need to see how large the probability is that the remaining r − c
nodes happen to be taken form from the remaining t− c corrupted nodes
when constructing the set R. We define a random variable X equal to
the number of honest nodes in R, given that c nodes in R are already
corrupted. We want

P (X = 0) < 2−s (1)

were s is our security parameter. As t < n we have

P (X = 0) =

(
t−c
r−c

)

(
n−c
r−c

) <

(
t − c

n − c

)r−c

and we want
(

t − c

n − c

)r−c

< 2−s

{ t−c
n−c < 1}

r − c ≥ log t−c

n−c

2−s

r ≥ −s
(

log t−c

n−c

2
)

+ c .

This completes the proof. ⊓⊔

Lemma 2. Given a coin k, t = ts(k), there is no relevant information
in k after t + T .

Proof. The proof is split in two cases.

– If k is never double-spent in the period [t,t+T] then there is no relevant
information at all.

– If k is double-spent first at time t′ with t < t′ < t + T then:
• If k is reminted before t’ then the new coin k̂ with ts(k̂) > t

contains the proof of double-spending and therefore there is no
relevant information in k.

• If k was not reminted before t′ then both double-spent coins k1 and
k2 must be reminted at least once before t + T (they would expire
otherwise). Then any double-spending attested by k is detected
before t + T . ⊓⊔

Off-line Karma 11

Theorem 1. Whenever a coin is double-spent, that coin expires or one
corrupted node is identified.

Proof. Whenever a coin is double-spent, both coins have the same iden-
tifier and time stamp. It is not possible for an adversary to change any of
them: in case of a just minted coin they are protected by being part of the
collision of the hash functions; and in the case of a re-minted coin it is not
possible for an adversary to forge the multisignature, given that Lemma 1
ensures that there is always a fair user in every remint set. Then, coins
with the same identifier must be sent to the same remint set before their
expiration time, otherwise they expire and the condition of the theorem
holds. Therefore, at least one fair user u̇ must receive both coins before
its expiration time. Let ki1 and ki2 be the first remint request of each ver-
sion of the double-spent coin ki, received by u̇ after the double-spending.
Then, u̇ detects fraud and calls audit(ki1 , ki2). audit first checks whether
the signatures are valid. It is clear that a user endorsing a coin with an
invalid signature or that is improperly minted is faulty (he should have
checked it). If that is not the case, then the coin is fairly minted and
id(ki1) = id(ki2), at least the first user endorsing the coin is the same in
ki1 and ki2 . Therefore, and given the fact that both coins are different,
there must be one user in the signature chain that transferred the coin
to two different users (or to the same user twice). In this case the userIds
inside of the signature are different (or the nonces are different), which
constitutes a proof of double-spending. ⊓⊔

4.3 Handling Dynamic Networks

In a static network, the remint set Rk for a coin k never changes. That
makes easy to verify that a given coin was fairly reminted at some point
in the past, as verifying a remint set is as trivial as checking Rk =
ℵr(h(id(k))).

In a dynamic network, it is not possible to be so restrictive while
defining a valid remint set. Otherwise every time a user uo ∈ Rk is off-
line, the coin k cannot be reminted, and therefore may expire. On the
other hand, the selection of the users in R should somehow be predefined
in order to limit the influence of the adversary, and at least allow the
validity of the remint set to be reliably determined at a later time (unless
we require r > t, which trivially implies that at least one fair node is in
the remint set).

As a solution we define a valid remint set for a coin k, as the closest r
users to h(id(k)) in the identifier space, that are on-line at remint time.

12 Flavio D. Garcia and Jaap-Henk Hoepman

Then the verification of the fairness of a remint set is difficult, given that
the verifier has no information about the state of the network at remint
time. An adversary could try to unfairly construct a remint set with only
nodes that are under his control, by claiming that all other (fair) users
were off-line at remint time. We are going to prevent this kind of attack
by taking the density of the set R as an indicator for the authenticity of
the coin. We define the density as

d(Rk) = max
i∈Rk

|i − h(id(k))| .

Let us assume that the density of the overlay network does not change
very fast. Meaning that it is very unlikely, in a worldwide network with
a large amount of users, to have big fluctuations in the amount of users
connected to it, in short periods of time. Let α be the maximal rate of
change for the density of the overlay network, i.e. if T is the maximal
time to live for a coin, and d(t) is the density at time t, then for all t′

between t and t + T , we have 1
αd(t) ≤ d(t′) ≤ αd(t).

We call a remint set acceptable (for a coin) if it satisfies our constraints
on the remint set, and does not contain members beyond the boundaries
specified by the density. In such a scenario, an adversary does not have
much freedom while selecting the users in R without drastically increasing
d(r).

Another issue that needs to be addressed in a dynamic network is the
history transfer between users. The neighbourhood Rk for a coin k should
keep as an invariant the history of any reminted coin within the period
[ts(k), ts(k)+T]. Given that the history consists of signed coins, it is not
possible for an adversary to forge it. Therefore, a joining user can just
renew its history by querying its neighbours for it.

checkBase(u, k):
if isReminted(k) then

. {k′, newts, R′, CR, u′}R := k

. return u′ = u ∧ R′ = R

. ∧newts ∈ [now() − T, now()]

. ∧ d(R) ≤ α d(now())

. ∧ validSig(k, R, CR)
else

. 〈x, y〉 := k

. u′||sn||ts := x

. return h1(x) = h2(y)

. ∧u′ = u ∧ ts ∈ [now() − T, now()]

Off-line Karma 13

The only modification that remains, with respect to the static version,
is the function checkBase, which now verifies the density of the remint
set, instead of the equality with the neighbourhood.

Security Analysis. We analyse security of the dynamic protocol similar
to the static case.

Proposition 1 (Hoeffding bound). For a hyper-geometrically distri-
buted random variable X, representing the number of successes among n
draws, with probability p of success we have [14,7]

P (X ≥ np + g) ≤ e−2g2/n

Lemma 3. Let p = t−c
n−c , fix β such that c ≤ βr, and suppose β+α2p < 1.

If r ∈ O
(

α2s
(1−β−pα2)2

)

, then any acceptable remint set contains at least

one honest node with probability 1 − 2−s.

Proof. The remint set is fixed at remint time t. The adversary needs to
pick r nodes for the remint set such that it does not violate the accepta-
bility condition d(R) ≤ αd(t′), which is checked the next time the coin is
reminted at time t′ ≤ t + T . At t′, the density d(t′) ≤ αd(t) This means
that at time t it can, at best, select r nodes from the first α2r nodes from
the root of the coin and then take control over c of them. It is successful
if among these α2r nodes there are r − c faulty ones.

Let X be a random variable representing the number of faulty nodes
in such a sample of α2r nodes from all n nodes (t− c of which are faulty).
Then the adversary is successful if X ≥ r − c. X is distributed according
to the hyper-geometric distribution, with p = t−c

n−c , and we are interested
in bounding

P (X ≥ r − c) ≤P (X ≥ r − βr) {β + α2p < 1}

= P (X ≥ pα2r + (r − βr − pα2r)) {Hoeffding bound}

≤ e−2(r−βr−pα2r)2/α2r = e−2r(1−β−pα2)2/α2

which we want to be less than 2−s. Then, by taking logarithms

log2 e(−2r(1 − β − pα2)2/α2) < −s

and hence

r ≥
α2s

2(1 − β − pα2)2 log2 e

which completes the proof. ⊓⊔

14 Flavio D. Garcia and Jaap-Henk Hoepman

Lemma 4. In every remint set, fair nodes can always transmit their re-
mint history to another fair node before leaving.

Proof. As a corollary of Lemma 3 and given the assumption that node
joins and leaves are atomic operations, at least two fair nodes must be
in a valid remint set, whenever a fair node is going to leave it. This fact,
together with the secure routing assumption over the overlay network,
implies that fair users can always transmit their remint history to another
fair node before leaving.

Theorem 2. Whenever a coin is double-spent, that coin expires or one
corrupted node is identified. (the proof in Theorem 1 also applies here)

5 Early Double-spending Detection

In some scenarios double-spending detection might not be good enough.
This is the case when an adversary is able to add new corrupted nodes
easily. It is possible for a corrupted user who owns a karma coin, to spend
it many times and very quickly, especially when the coin is just minted
(or reminted). Although those actions are eventually going to be detected,
this is not going to happen until the first two remint-request of this coin
are submitted. This user of course is going to be punished, but then the
adversary might get another Id and repeat this operation. To counteract
this kind of attacks, besides making it harder for an adversary to get
new ids, it is possible to detect double-spending early. As a first line of
defence, when a user receives a new coin, he performs a search over the
coins he possess looking for duplicated identifiers. In case he succeeds,
the double-spender is immediately blacklisted. The probability of finding
a duplicated coin just like that is small, especially when the number of
copies is not too big. To improve this, we introduce coin attractors to
the system. An attractor is a user, whose hashed id is the closest to the
hashed id of the coin. Then, when a user s wants to spend a coin at the
merchant m, s searches over his coins for the one which has the minimum
distance with the merchant’s hashed id,

kd = min
k∈Ks

|h(m) − h(id(k))| ,

and pays with it. Even thought faulty nodes may avoid sending coin to
attractors, eventually a good node will do so. At that point the attractor
will detect the double spending.

Off-line Karma 15

6 Conclusions

We have presented a completely decentralised, off-line karma implement-
ation for P2P and grid systems, that detects double-spending and other
types of fraud under varying adversarial scenarios. This is, so far, the
first system for truly off-line karma coins, which can be used in highly
dynamic peer-to-peer networks and grid systems. Our system outperforms
previously proposed system of similar characteristics, under certain scen-
arios. In particular, we are able to completely replace a central bank by a
distributed remint set whose size is roughly proportional to the security
parameter s.

Several interesting research questions remain. For instance, the length
of a coin increases with every transaction, and involves several public-
key cryptographic operations. This is quite heavyweight, in contrast with
micropayment schemes that are usually associated with the kinds of value
transfers we consider here. One open area of research is to investigate the
use of micropayment techniques in off-line scenarios like karma. Another
question is whether the use of trusted computing enabled nodes allows
for more efficient implementations of karma.

References

1. Xgrid website. http://www.apple.com/acg/xgrid/.

2. M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-
bound functions. In Proceedings of the 10th NDSS, pages 25–39, San Diego, CA,
Feb. 2003. Internet Society.

3. E. Adar and B. A. Huberman. Free riding on gnutella. First Monday, 5(10), Oct
2000. http://firstmonday.org/issues/issue5_10/adar/index.html.

4. A. Back. Hashcash - a denial of service counter-measure. http://www.

cypherspace.org/hashcash, Mar. 1997.

5. M. Castro, P. Druschel, A. J. Ganesh, A. I. T. Rowstron, and D. S. Wallach.
Secure routing for structured Peer-to-Peer overlay networks. In Proceedings of the
5th OSDI, Operating Systems Review, pages 299–314, New York, Dec. 9–11 2002.
ACM Press.

6. D. Chaum and T. P. Pedersen. Transferred cash grows in size. In R. A. Rueppel,
editor, Advances in Cryptology—EUROCRYPT 92, volume 658 of LNCS, pages
390–407. Springer-Verlag, 1992.

7. V. Chvtal. The tail of the hypergeometric distribution. Discrete Mathematics,
25(3):285–287, 1979.

8. I. Clarke, O. Sandberg, B. Wiley, and H. Hong. Freenet: a distributed anonymous
information storage and retrieval system. In International Workshop on Design
Issues in Anonymity and Unobservability, pages 311–320, 2000.

9. B. Cohen. Incentives build robustness in bittorrent. In Proceedings of the Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, 2003.

16 Flavio D. Garcia and Jaap-Henk Hoepman

10. C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting
spam. In D. Boneh, editor, Advances in Cryptology – CRYPTO ’ 2003, volume
2729 of LNCS, pages 426–444. International Association for Cryptologic Research,
Springer-Verlag, 2002.

11. F. D. Garcia and J.-H. Hoepman. Off-line karma: Towards a decentralized currency
for peer-to-peer and grid applications (brief abstract). In Workshop on Secure
Multiparty Computations (SMP), Amsterdam, The Netherlands, Oct. 7–8 2004.

12. F. D. Garcia and J.-H. Hoepman. Off-line karma: A decentralized currency for
static peer-to-peer and grid networks. In 5th Int. Networking Conf. (INC), 2005.
(to appear).

13. S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The MilliCent
protocol for inexpensive electronic commerce. In Fourth International Conference
on the World-Wide-Web, pages 603–618, MIT, Boston, Dec. 1995. O’Reilly.

14. W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc., 58:13–30, 1963.

15. P. Kirk. Gnutella. http://rfc-gnutella.sourceforge.net.
16. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: exten-

ded abstract. In P. Samarati, editor, Proceedings of the 8th CCS, pages 245–254,
Philadelphia, PA, USA, Nov. 2001. ACM Press.

17. K. Ohta and T. Okamoto. Multi-signature scheme secure against active insider
attacks. In IEICE Transactions on Fundamentals of Electronics Communications
and Computer Sciences, pages E82–A(1): 21–31, jan 1999.

18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
Content-Addressable network. In R. Guerin, editor, Proceedings of the ACM SIG-
COMM 2001 Conference (SIGCOMM-01), volume 31, 4 of Computer Communic-
ation Review, pages 161–172, New York, Aug. 27–31 2001. ACM Press.

19. R. L. Rivest. Peppercoin micropayments. In A. Juels, editor, Proceedings Financial
Cryptography ’04, volume 3110 of LNCS, pages 2–8. Springer, Feb 2004.

20. R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment
schemes. In M. Lomas, editor, Proceedings 1996 International Workshop on Secur-
ity Protocols, volume 1189 of LNCS, pages 69–87, Cambridge, United Kingdom,
Apr 1997. Springer-Verlag.

21. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329–350, Nov. 2001.

22. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 149–160. ACM Press, 2001.

23. V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: a secure eco-
nomic framework for peer-to-peer resource sharing. In Proceedings of the Work-
shop on the Economics of Peer-to-Peer Systems, Berkeley, California, 2003. Papers
published on Website: http://www.sims.berkeley.edu/research/conferences/
p2pecon/index.html.

24. B. Yang and H. Garcia-Molina. PPay: micropayments for peer-to-peer systems.
In V. Atluri and P. Liu, editors, Proceedings of the 10th ACM Conference on
Computer and Communication Security (CCS-03), pages 300–310, New York, Oct.
27–30 2003. ACM Press.

25. B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and J. D. Kubiatow-
icz. Tapestry: A global-scale overlay for rapid service deployment. IEEE J-SAC,
22(1):41–53, January 2004.

