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Abstract

In the long-lived renaming problem — a generaliza-
tion of the classical one-time renaming problem — n
processors with unique names ranging over a source
name space {0,...,S — 1} repeatedly acquire and re-
lease unique names from a (smaller) destination name
space {0, ..., D — 1}. Tt is assumed that at most k out of
n processors concurrently request or hold names. An ef-
ficient renaming protocol provides a useful front-end for
protocols whose time complexity depends on the size of
the name space containing the participating processes.

We consider long-lived renaming in the context of
asynchronous, shared-memory multiprocessing systems
that provide only read and write operations. A renam-
ing protocol is fast iff the time complexity of acquiring
and releasing a name is polynomial in £ and independent
of n and S. We present a wait-free, read/write proto-
col for long-lived renaming that achieves a destination
name space of size O(k?) with time complexity O(k?).
If S is polynomial in k, we further improve the time-
complexity to O(klogk). This shows, for the first time,
that fast, read/write protocols for long-lived renaming
exist. Part of our wait-free solution uses mutual exclu-
sion tournament trees, where we apply hashing based
on polynomials over finite fields to avoid blocking. This
technique may be of general interest.

1 Introduction

In the one-time renaming problem [ABND*90, BNDS89,
BG93, PPTV94], n processes with unique identifiers in
the range {0,...,S — 1} obtain distinct names from the
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smaller range {0,...,D — 1} at most once. The long-
lived renaming problem generalizes the one-time renam-
ing problem by allowing processes to repeatedly acquire
and release names. It is assumed that at most k& out of
n processes acquire or hold names concurrently.

An efficient renaming protocol is a useful front-end for
protocols whose time complexity depends on the size of
the name space containing the participating processes.
In particular, Moir and Anderson have shown that the
overhead associated with accessing a resilient shared ob-
ject can be reduced by combining a long-lived renaming
protocol with a shared object implementation for fewer
processes [AM94]. Efficient renaming protocols can also
be useful, for example, in Unix-based multiprocessing
systems. In such systems, processes have unique iden-
tifiers from a large range, but the number of processes
that run concurrently is much smaller. Thus, if a group
of processes participate in a computation whose time
complexity is dependent on the size of the name space
containing those processes, then using a renaming pro-
tocol to reduce the size of that name space can dramat-
ically improve performance.

We consider long-lived renaming protocols for asyn-
chronous, shared-memory, multiprocessing systems.
The long-lived renaming problem has been considered
in this context by Moir and Anderson [MA94], and in
message-passing systems by Bar-Noy et al. BNDKP91].
We call a renaming protocol fast iff acquiring and releas-
ing a name takes time O(p(k)) where p is a polynomial
that is independent of both n, the total number of pro-
cesses, and S, the size of their original name space. For
systems supporting primitives such as TestédSet, Moir
and Anderson present renaming protocols that are both
fast and long-lived. However, protocols that employ
such strong operations are not as widely applicable or as
portable as protocols that employ only reads and writes.
We are therefore motivated to study fast, long-lived re-
naming protocols that use only read and write opera-
tions. Moir and Anderson’s only read/write, long-lived
renaming protocol, hereafter called MA, is not fast: it
yields a name space of size k(k + 1)/2 with time com-
plexity O(kS).

In this paper, we present two long-lived renaming pro-
tocols: SPLIT and FILTER. These two protocols, com-
bined with the non-fast protocol MA [MA94], yield the
first fast and long-lived renaming protocol that is based
on reads and writes. Our protocol renames k processes



to a name space of size k(k + 1)/2, with time complex-
ity O(k3). If the size S of the original name space is
polynomial in k, protocol FILTER on its own renames
k processes to a name space of size O(k?) with time-
complexity O(klogk). We now present a brief descrip-
tion of the SPLIT and FILTER protocols, before present-
ing them in detail.

The SPLIT protocol uses a collection of building
blocks called “splitters”. Each splitter, if accessed by
at most £ processes concurrently, dynamically partitions
these processes into three output sets, each of which con-
tains at most £ — 1 processes. SPLIT employs a k-deep
tree of splitters. Each leaf of the tree corresponds to a
single name. A process p acquires a name by traversing
the tree from the root to a leaf, accessing one splitter
at each level. The splitter accessed at each level below
the root is determined by the output set assigned by the
splitter accessed at the previous level. After proceeding
through k — 1 levels of the tree, a process is guaranteed
to be in an output set that contains no other processes.
Accessing a single splitter takes constant time. Thus,
SPLIT renames to a name space of size 3*~1 with time
complexity O(k). A process releases a name by releasing
each of the splitters it accessed. This also takes O(k)
time, so the SPLIT renaming protocol is fast.

FILTER is based on a set of mutual exclusion tourna-
ment trees — one for each destination name. In order
to acquire a name, a process p competes for each of a
set IV, of names by participating in the mutual exclu-
sion tree associated with each name in N,. We present
a modified version of Peterson and Fischer’s mutual ex-
clusion tournament trees [PF77] that enables a process p
to compete for all of the names in IV, “in parallel”. N, is
chosen in such a way that, while process p is attempting
to acquire a name, there is always an ¢ € IV, for which
no other process contends concurrently. This is achieved
by the use of a special hashing technique that is based on
unique polynomials over a finite field [EFF85]. Because
there is always some tree T in which p is participating
alone, the FIFO property of the mutual exclusion en-
sures that next time p participates in tree T', p makes
progress towards the critical section of T'. Therefore, p
can eventually acquire a name.

Usually the size S of the source name space is
bounded from above by a function f of k. If f € O(k€),
then FILTER renames to a name space of size O(c?k?)
in time O(klogk). If f = 3*~1, then FILTER renames
to a name space of size 2k* in time O(k®). If f = 2k*,
FILTER renames to a name space of size 72k? in time
O(klogk). Using protocol Ma [MA94] we can further
reduce the size of the name space to k(k +1)/2 in time
O(k?). In practice we can assume f € O(3F), so the first
stage implemented by SPLIT is unnecessary.

The remainder of the paper is organized as follows.
Section 2 contains definitions used in the paper. In Sec-

tions 3 and 4, we present the SPLIT and FILTER pro-
tocols, respectively. Concluding remarks appear in Sec-
tion 5.

2 Definitions

We consider an asynchronous, shared memory, multi-
processing environment in which n processes commu-
nicate through shared variables that can be atomically
read or written by any process. Each process p has
a unique identifier from the set {0,...,5 — 1}, where
S >n.

An operation pair (E,R) on a shared object OBJ
consists of two operations E (for Enter) and R (for
Release). A process p that accesses an object OBJ via
an operation pair (E,R) is required to alternately exe-
cute E and R on OBJ, p’s first operation on OBJ must
be E(OBJ). The following predicates describe p’s posi-
tion in its access cycle for object OBJ.

Inside(OBJ,p): p has completed E(OBJ), but has not
yet started R(OBJ), and

Using(OBJ,p): p is executing E(OBJ) or R(OBJ), or
Inside(OBJ, p) holds.

Initially, = Using( OBJ, p) holds.

A solution to the long-lived renaming problem con-
sists of a wait-free implementation of the operation pair
(GetName(p),ReleaseName(p)) on a renaming object
RN that is shared by n processes. In order to ob-
tain a name from {0,...,D — 1}, process p executes
GetName(p) and assigns the return value to name,.
A process releases the name it holds by executing
ReleaseName, thus freeing this name for later use by
another process. Note that (GetName,ReleaseName) is
an operation pair, so a process is required to release a
name before it tries to acquire another name.

It is assumed that at most k processes concurrently
access RN. The implementation of GetName and
ReleaseName is required to ensure that distinct pro-
cesses p and g do not hold the same name concurrently.
That is, the following assertion is required to be an in-
variant:

p # q and Inside(RN,p) and Inside(RN,q)

implies name, # name,.

We measure the time complexity of our implementa-
tions by giving an upper bound on the number of shared
memory accesses performed by any operation execution.
We call a renaming protocol fast if both GetName and
ReleaseName have time-complexity polynomial in k and
independent of S, the size of the original name space,
and n, the total number of processes.

In our protocols, we use « to denote assignment,
name to denote local variables, NAME to denote shared



variables, and name for keywords. Each labelled state-
ment in our figures is assumed to be executed atomi-
cally. Note that each such statement contains at most
one access of a shared variable.

For strings s of finite length over a finite alphabet, we
use |s| to denote their length, (sb) to denote the result
of appending symbol b to string s, s[1:k] to denote the
string consisting of the first k& symbols of s, and s[i]
to denote the ith symbol of s (for example, s[1] is the
first symbol of s). Also, we use A" to denote the set
of h-length strings over alphabet A and AS* to denote
the set of such strings of length at most h. Finally,
(#z : 2 € X :: P(z)) denotes the number of z € X such
that P(z) holds, and || X|| denotes the cardinality of X.

3 Renaming to 3*~! Names

In this section, we present the SPLIT protocol, which,
for any S, renames to 3* — 1 names with time com-
plexity O(k). SPLIT uses a “building block” similar to
the one employed by Moir and Anderson [MA94]. Pro-
cesses accessing our building block, which is presented
in Section 3.1 below, are dynamically partitioned into
three output sets, denoted —1, 0 and 1. The building
block ensures that, if at most £ processes access a build-
ing block concurrently, then each output set contains at
most £ — 1 processes at any time. A process leaves a
group by “releasing” the building block. We now define
the building block formally, and show how it is used to
implement long-lived renaming.

An implementation of building block B consists of
paired operations Enter(B,p), returning —1, 0, or 1,
and Release(B,p). In defining the correctness condition
below for building block B, we use e,(B) to denote the
value returned by the most recent call to Enter(B,p).
The implementation of B is required to ensure that,
if at most £ processes concurrently access B, then the
following assertion is an invariant for all d € {—1,0,1}:

(#p:: Inside(B,p) A ep(B)=d) < (.

Protocol SpLIT, shown in Figure 1, uses a tree of
depth & — 1 of building-blocks to rename k processes.
Each interior node has three children — one for each of
the output sets —1, 0, and 1. Each node in the tree is
labelled by a string from {—1,0,1}<*¥~1. The building
block at the root is labelled as B.. Each other building
block B is labelled as (sd), where s is the label of B’s
parent, and d is —1, 0, or 1, depending on which output
set B is associated with. Thus, the leaves of the tree
are labelled by strings of length & — 1 over the alpha-
bet {—1,0,1}. To simplify reasoning later, we consider
such a leaf to be vacuous building block, used by the
processes reaching it.

In order to acquire a name, process p starts at the root
of the tree, and then traverses the tree until it reaches

B(
—-1 1
0
[Bo_]
-1 1 : -1 1
0 : 0
[B-i-1] [Bowo| [B-u| [Bia]  [Bwo |  [Bu |

Local variables (static):
s€{-1,0,1}sk"1

e€{-1,0,1};

T
GetName(p) :

s —¢€;

forj «— 1tok—1
do e — FEnter(Bs,p) ;

s «— (se); (* Append e to s *)
return 3 ; (* Compute name from path *)
ReleaseName(p) :

for j «— k—1 downto 1
do Release(Bs,p) ;
s — s[l:]s| = 1] ; (* Discard last label in s *)

Figure 1: Renaming protocol SPLIT for process p

a leaf. At each level h, p chooses the child in level h+1
associated with the output set returned by the building
block accessed at level h. The label s of the leaf reached
is used to compute the name to be returned as follows:

k—1

5= Z(l + s[i])3* ! .

i=1
As the depth of the tree is k — 1, the properties of the
building block guarantee that no other process is cur-
rently holding the same name. To release a name, a
process simply releases all building blocks it accessed in
acquiring that name.

Lemma 1 For all s € {—1,0,1}<*71, the following as-
sertion is an invariant.

(#p :: Using(Bs, p)) < k — |s].

Proof: By induction on |s|. For |s| =0 (i.e. s =€),
the lemma holds by assumption that at most k processes
concurrently hold or attempt to acquire names. We
inductively assume that the lemma holds for all strings
over {—1,0,1} of length at most m. Let s be any string
over {—1,0,1} of length m + 1, and set ¢ = s[1:m]. By
the inductive hypothesis, the following assertion is an
invariant.

(#p:: Using(By,p)) <k — [t]

We assume that the building block B; is correct. There-
fore, the correctness condition for the building block im-



plies that the following property is an invariant.

(#p :: Inside(By,p) A ep(Bi) =s[m+1]) <k—|t| —1.

It is easy to show that Using(Bs,p) implies
Inside(By,p) A ep(Bi) = sim + 1]. Therefore

(4 Using(By,p) <k — [t —1 =k — |3
is an invariant. [ |

In the next section, we present a wait-free implementa-
tion of building block B. This implementation performs
O(1) shared accesses per operation, which allows us to
prove the following theorem.

Theorem 2 Protocol SPLIT implements wait-free,
long-lived renaming to 3*~1 names in time O(k), and
hence is fast.

Proof: Given that each building block B can be im-
plemented in a wait-free manner, it is easy to see that
SPLIT is wait-free. As

k—1
5= (1+sl])3" <3471,
=1

SPLIT yields a name space of size 3*~1. Also, it is easy
to show that s # t implies 3 # ¢. Thus, if p has name
5, then p is in building block B,. Therefore, Lemma 1
implies that distinct processes do not concurrently hold
the same name. The building block implementation pre-
sented in Section 3.1 performs at most 9 shared vari-
able accesses per operation. Each operation of SPLIT
accesses k — 1 building blocks. Thus, SPLIT is a fast,
long-lived renaming protocol. [ |

3.1 Implementing the “Splitter”

In this section, we present a building block B, which
partitions processes into three sets, —1, 0, and 1. In or-
der to join a set, process p calls Enter(B, p) and joins the
output set associated with the value returned. Later,
p leaves that set by calling Release(B,p). As stated
earlier, the implementation is required to ensure that,
provided at most ¢ processes concurrently access the
building block, no output set contains more than ¢ — 1
processes at any time. The building block implementa-
tion appears in Figure 2.

In accessing the building block, processes attempt to
pass “advice” to each other about which output set can
be safely joined. For example, if a process p chooses set
1, then p can safely advise another process to join set
—1 because all processes are not in set —1. Similarly,
if p leaves set 1, then p can advise another process to
join set 1. Because of the difficulty of correctly pass-
ing advice between asynchronous processes using only
read and write operations, the building block employs
an “interference detection” mechanism that allows the
advice to be incorrect in all but one special case. In
this special case, described below, the processes execute

Shared multi-writer variables:
LAST € {0,...,S —1};
ADVICE[1] € {L,-1,1} ; initially 1
ADVICE[2] € {—1,1} ; initially 1
Local variables (static):
advice € {-1,1} ;
adv2 € {true, false} ;

Enter(B,p) :

2: advice — ADVICE[1] ;

3: if advice = L then advice — ADVICE[2] ;
4: ADVICE[1] « —advice ;

5: adv2 — (LAST =p) ;

6: if adv2 then ADVICE[2] « —aduvice ;

T if LAST=»p

then return advice ;
else return 0 ;

8: (* Working Section *)

Release(B, p) :
9: if LAST=»p

10: then ADVICE[1] « advice ;
11:  if —adv2 then ADVICE[1] « L ;
12: (* Remainder Section *)

Figure 2: Process p’s code for building block B

Enter “sequentially” (the steps of one process are not
interleaved with those of another). This lack of inter-
leaving allows correct advice to be passed between the
processes in the special case, thereby ensuring that each
output set contains at most £ — 1 processes at any time.
Below, we describe the building block implementation
in more detail, before giving a correctness proof.

LAST stores the identifier of the last process to en-
ter the building block. Process p writes its identifier to
LAST upon entry, and reads it again at line 7 before
deciding on a return value. If p reads LAST # p (i.e.,
p detects “interference” from another process), then p
returns 0, otherwise p returns advice. It is easy to show
that at most £ — 1 processes are in output set 0 at any
time. To see why this is so, observe that if £ processes
are inside the building block, then the last process g to
assign LAST reads LAST = ¢ (does not detect any inter-
ference). In this case, g returns advice, which is easily
shown to be non-zero. Thus, if £ processes are inside
the building block, then at least one of the processes is
not in output set 0.

To see that at most £ — 1 processes are in output set
1 at any time is more complicated (the case for set —1
is symmetric). First, note that if £ processes are in out-
put set 1, then each process p read LAST = p at line
p.7. This is only possible if £ processes execute Enter
“sequentially” — that is, each process executes step 7
before the following process executes step 1. Consider



the second-to-last process g to execute Enter. Because
q detects no interference, and because ¢ joins group 1,
it is easy to show that g assigns —1 to ADVICE[1] and
ADVICE[2] at steps 4 and 6 respectively. Informally, this
represents advice to the last process p to join set —1.
If this advice remains until p executes Enter, then it is
easy to see that p joins output set —1, contradicting the
assumption that all £ processes are in set 1 concurrently.
A key property in the correctness proof presented below,
is that when p executes Fnter in this scenario, ¢’s ad-
vice is intact. This property is based on the observation
that, apart from the £—1 processes already in an output
set after ¢ executes step 7, at most one process accesses
the building block concurrently before p executes 1. Be-
cause none of the remaining £ — 1 processes take any
steps in this interval, it is straightforward to show that
ADVICE[1] = —1 or ADVICE[1] = L A ADVICE[]2] = -1
holds when p begins executing Enter. In either case, p
joins set —1, and therefore does not violate the correct-
ness condition for the building block. We now present
a formal correctness proof for the building block.

3.2 Correctness of the Building Block

In this section, we assume that (#p:: Using(B,p)) < ¢
holds throughout a fixed, but arbitrary execution (mod-
elled by =) of the building block implementation shown
in Figure 2. To show that the implementation is cor-
rect, we prove that, for each d € {—1,0, 1}, the following
assertion is an invariant.

(#p :: Inside(B,p) N ep(B)=d)<f—1.

In the following, we use p to denote both process p
and an invocation of Enter(B,p) and the correspond-
ing Release(B,p). In the rare instances where we con-
sider different invocations by the same process, we dis-
tinguish the invocations (e.g., using p and p'). We use
ep(B) to denote the value returned by invocation p of
Enter(B,p); p.£ denotes the atomic action of executing
line ¢ by invocation p; and p@f means that the next
line to be executed by process pis £. For a specific invo-
cation, we use Using(B,p) (respectively, Inside(B,p))
to indicate that p is using (resp., inside) B during that
invocation. Finally, advice, denotes the value of local
variable advice held by processor p during this particu-
lar invocation.

The following claim is used to prove the above prop-
erty for d = 0.

Claim 3 For an arbitrary invocation p, e,(B) = 0 iff
there exists an invocation q such that p.1 = ¢.1 = p.7.

Proof: If there is a ¢ such that p.1 = ¢.1 = p.7, then
at line 7, p reads LAST # p and e,(B) = 0, otherwise p
reads LAST = p and e,(B) # 0. [ |

For the case where d = —1 or d = 1 we first prove the
following lemma.

Lemma 4 Let d # 0. Suppose that at some point there
are £ — 1 invocations p1,...,pe—1 with p;@Q{8,...,10}
and e,,(B) = d, and there is an invocation q with ¢q@4
and p;.7 = q.1 for 1 <i <l —1. Then advice, = —d

Proof: Without loss of generality, let p;.1 = p;y1.1 for
1<i<{-2. By Claim 3and ep,(B) #0for1 <i < /-1
we also have p;.7 = p;41.1 for 1 < i< ¢ — 2. In other
words, p1,...,pe—1 must have entered sequentially. To-
wards a contradiction, suppose that at time ¢ for the first
time the conditions of the lemma hold, but advice, = d.

There are four cases for the last write to ADVICE[1]
before ¢ reads it. Either there is some invocation r
writing ADVICE[1] after p,—;1 did (case 1, 2, and 3
below), or not (case 4 below). If some invocation r
writes ADVICEJ[1] after py—1 but before g reads it, it
writes ADVICE[1] in line 10 (case 1), in line 11 (case 2),
or in line 4 (case 3). In the first three cases, by
(#p :: Using(B,p)) < £, r must finish before ¢ starts.
Hence if r executes line 10 or 11 then 7.10,7.11 = q.1.
Also in these three cases, as e,, ,(B) # 0, by Claim 3
we have either 7.1 = py—1.1 or py—1.7 = r.1.

1. For some 7, py_1.4 = 7.10 = ¢.2. Then ¢ reads
ADVICE[1] = advice, = d. If at line 9, LAST =r
then also at line 7 and 5. Hence e.(B) = d.
But then at a time t' < t we have an earlier bad
case contrary to assumption. For if p;_1.7 = r.1
then at time t' where r@Q4 we have advice, = d
and still p;@{8,...,10} and e, (B) = d for
t=1,...,£—1. And if .1 = py_1.1 (the only
other case, see above) as LAST = r at line 9 we
must have r.9 = py_;.1. But then at time ¢’
where p;_1@4 we have advice,, , = d by assump-
tion that ep,_,(B) = d and still p;@Q{8,...,10} and
ep,(B) = d for ¢ = 1,...,£ — 2 and (because
pe—1-4 = r.10) also rQ{8,...,10} and e.(B) =d.

2. For some r, py_1.4 = r.11 = ¢q.2. Then ¢ reads
ADVICEJ1] = L and hence reads ADVICE[2] = d at
line 3. Then this value is written there by ps_1.
But then e,, ,(B) = —d, a contradiction. To see
why pe—1 is the last to write ADVICE[2], let us
suppose to the contrary that there is a =’ with
pe—1.6 = r'.6 = ¢.3. Because r executes line 11,
it does not execute line 6, so 7' # r. As by as-
sumption r is the last to write ADVICE[1] at line
11, 7.2 = r.11. By (#p:: Using(B,p)) < £ then
also .6 = 7.1, and using p;_1.6 = r'.6 we get
pe—1.1 = r.1. Again by (#p:: Using(B,p)) < /£
then r reads LAST = r at line 5 thus setting
adv2, = true, contrary to the assumption that r
executes step 11.

3. For some r # py_1, pp—1.4 = 14 = ¢.2. As we
have (#p :: Using(B,p)) < {,if pg_1.7=r.1 thenr
reads LAST = r at line 9 and execute line 10. But
then r.10 = ¢.2; this is case 1 above. Now consider
r.1 = py_1.1 (the only other case, see above). By



pi—1-4 = 14 we get 7.1 = py_1.1 = .5, hence r
reads LAST # r at line 5. Then adv2, = false and
r executes line 11. But then .11 = ¢.2; this is case
2 above.

4. q reads from ADVICE[1] what p,_; writes there
(i.e., none of the above cases) at py_1.4 (because
pe—1@{8,...,10}, py—1 did not execute line 10 yet).
As ep, ,(B) =d this must be —d, a contradiction.

This completes the proof of Lemma 4. [ |

Theorem 5 For each d € {—1,0,1}, the following as-
sertion is invariant.

(#p :: Inside(B,p) A ey(B)=d)<{—1.

Proof: Suppose for d = 0 the theorem does not
hold. Then (#p :: Inside(B,p) A ep(B)=0) = £ at
some point. Of all these invocations p, let ¢ be the last
to write LAST in step 1 (i.e., p # g implies p.1 = ¢.1).
Then by (#p:: Using(B,p)) < £ there is no invoca-
tion r such that ¢.1 = r.1 = ¢.7. Hence by Claim 3,
eq(B) # 0, a contradiction.

Towards a contradiction in the case where d = —1
or d =1, suppose (#p :: Inside(B,p) A ep(B)=d) =/
at some point. Then similar to the proof of Lemma 4,
by Claim 3 pi,...,p; must have entered sequentially,
ie. pi.7 = pip1.1 for 1 <¢ <€ —1. Then at p,@4 we
have p;@{8,...,10} and e,;(B) =d for 1 <i< (-1
and hence by Lemma 4 advice,, = —d. This contradicts

em(B) =d. |

4 Reducing the Name Space

In this section, we present the long-lived renaming pro-
tocol FILTER. An instance of the FILTER protocol is
specified by two parameters d and z. Given k and S,
any choice of d and z satisfying several requirements
(described in Section 4.1 below) yields a long-lived re-
naming algorithm. In particular, if § < 3% — 1 (which
can be achieved using SPLIT), then d and z can be cho-
sen so that FILTER renames to a name space of size 2k*
with time complexity O(k®). Also, for S = 2k*, d and =
can be chosen so that FILTER renames to a name space
of size 72k? with time complexity O(klogk). In Sec-
tion 4.4 we explain how these instances can be used to
achieve renaming to k(k + 1)/2 names with O(k3) time
complexity. We now give a brief overview of the FILTER
protocol, before presenting it in detail.

FILTER uses a collection of mutual exclusion tour-
nament trees — one tree T,, for each name m in
{0,...,D — 1} (recall that D is the size of the destina-
tion name space). In order to acquire a name m using
the FILTER protocol, a process p competes in the mutual
exclusion tree T,, associated with that name.

The use of mutual exclusion in a wait-free protocol
might seem counterintuitive. However, as described in

detail below, each process p competes “in parallel” for
each of a set IV, of names. This is achieved by the use of
a modified version of Peterson and Fischer’s [PF77] mu-
tual exclusion trees. The modification allows a process
to detect that it is blocked in one tree, and to attempt
to acquire another name from N, by continuing to com-
pete in another tree associated with that name. The
collection of sets IV, is constructed using a special hash-
ing technique involving polynomials over a finite field,
such that no set is covered by the union of k — 1 others.
Collections with that property were studied by Erdés
et al. [EFF85, BLS93]. In our application this property
ensures that, at any time, there is some name m € N,
for which p is competing alone.

Section 4.1 below explains this hashing technique in
detail. Then, in Section 4.2, we present the modified
mutual exclusion tree and the FILTER protocol. Cor-
rectness of the protocol is proven in Section 4.3. Finally,
in Section 4.4, we discuss the performance of FILTER un-
der different assumptions on the relationship between S
and k.

4.1 Hashing Names to Sets of Names

The hashing technique used to assign a set of names to
each process uses two parameters d and z, which are
chosen based on particular values of &k and S. As is
discussed later, the choices of d and z for given values
of k and S influence the time and space complexity of
the resulting instance of the FILTER protocol, as well as
the size of the destination name space.

We now show how the set of names N, for which pro-
cess p competes, is defined, and state the constraints on
the parameters d and z as we proceed. First, let GF(z)
be a finite field, with z a prime (i.e., the elements of the
field range over the set {0,...,z — 1}). Each process p
is assigned a polynomial Q,(z) = agz? +--- a1z + ag of
degree d over GF(2) (0 < a; < z, and multiplication and
addition are performed modulo z), such that the poly-
nomials assigned to distinct processes differ in at least
one coeflicient. If

S < Zd+1 , (1)

this can be achieved by assigning, for each process p,
and for each i, 0 <i < d, a; = (p div 2%) mod =.

We define np(z) = z %+ ¢ + Qp(z) and define
N, ={np(0),...,n,(2d(k—1)—1)}. Because Qp(z) < z
and Qq(y) < z, it follows that np(z) = nye(y) if z =y
and Q,(z) = Qq(y). Thus, there are 2d(k — 1) distinct
names in N,. Also, for distinct polynomials @), and @,
of degree d over a finite field GF(z) with z prime, there
are at most d values of z such that Q,(z) = Q4(z)
[Coh74]. Recall that for p # ¢q, @, and @, are distinct.
Then

z>2d(k—1) (2)

implies [N, N Ny|| < d.



Furthermore, suppose P is an arbitrary set of k — 1
processes such that p € P. Then there are at most
d(k — 1) names n,(z) € N, which are also a member of
some N, with ¢ € P. As ||N,|| = 2d(k — 1), this implies
that there exist at least d(k—1) names n,(i) € N, which
are not a member of any N, with ¢ € P.

In the FILTER protocol presented in the next sec-
tion, process p competes only for names in /V,. Because
at any time while p is attempting to acquire a name,
at most k — 1 other processes acquire or hold names,
the property above implies that at any time, there are
d(k—1) names in N, for which no other process is com-
peting. This property is crucial in proving that process p
can always acquire a name. Note that if we had required
z > d(k—1) a similar argument would have shown that
there is at least one name in IV, for which no other pro-
cess is competing. However, taking z > 2d(k — 1) allows
us to arrive at a better bound on the time complexity in
Theorem 10, at the expense of a small increase in size
of the resulting name space.

The largest name competed for by any p is the maxi-
mum of ny(z) = zxz+Qp(x) over all p and all z ranging
over 0 < z < 2d(k — 1) — 1. Clearly Qp(z) is bounded
by z, so this shows that no process competes for a
name larger than 22d(k — 1). Thus, an instance of the
FILTER protocol specified by d and z achieves a desti-
nation name space of size

D=22d(k—1) . (3)

To achieve the smallest destination name space possible,
d and z should be chosen to minimize z2d(k — 1), while
satisfying (1) and (2) and the requirement that z be
prime. In Section 4.4, we discuss various settings of
d and z and the resulting name-space size for several
combinations of £k and S. We now present the FILTER
protocol.

4.2 Protocol FILTER in Detail

For each name m € {0,...,D — 1}, FILTER uses a bi-
nary mutual exclusion tournament tree T, of [logS]
levels. The leaves are at level 1 and the root is at level
[log S1. Each node in tree Ty, is a distinct two-process
mutual exclusion block ME with two “inputs” labelled 0
for left and 1 for right. Process names in {0,...,5 — 1}
are mapped one-one to the 2M°€5T > § “inputs” of the
mutual exclusion blocks at level 1.

In order to compete in a tournament tree T,,, process
p begins by entering the ME block connected to the
input to which p’s name maps. It passes to ME the
direction 8 of this input. When p reaches the critical
section of that ME block, p proceeds to the parent of the
leaf and enters the ME block at that node, passing as a
parameter (3 the direction from which it came. Process
p continues up the levels of the tree until it reaches the
critical section at the root. As shown in Lemma 6 below,

Enter(ME, 3) :
if R[1 — ] = nil then R[3] «— true
else R[] — BOR[L-7];
if R[L— 3] #nil then R[] — B8®R[L—J| ;

Check(ME, 3) :
return (R[1 - 8] = nil) v (8. (R[6] # R[1 — B])) ;

Release(ME, 3) :
R[B] « nil ;

Figure 3: The 2-process mutual exclusion block ME.

p is guaranteed to be the only process in the critical
section of the ME at the root of T}, at this point, so p
can safely acquire name m.

To allow processes to compete in several mutual ex-
clusion trees “in parallel”, each node in the mutual ex-
clusion trees contains a modified version of the two-
process mutual exclusion algorithm of Peterson and
Fischer [PF77]. Peterson and Fischer’s algorithm is
split into three procedures, Enter, Check, and Release,
and uses multi-writer variables to avoid the costly search
for an opponent. Except for these modifications, both
algorithms are essentially the same. The three proce-
dures are shown in Figure 3. In this figure, we use @ to
denote ezclusive or, and V to denote disjunction. We
set true =1 and false = 0.

Processes enter a mutual exclusion block ME either
from the left (0) or from the right (1) subtree, as in-
dicated by the parameter 8. In order to compete in a
particular two-process mutual exclusion block ME from
direction 3, process p calls Enter(ME, 3) and then re-
peatedly calls Check(ME, 3) until Check returns true.
At this point p is in the critical section of ME. Later, p
calls Release(ME, ) in order to release ME.

Because processes are mapped one-one to the inputs
of the ME blocks at level 1, and because a process must
reach the critical section of one ME block before ac-
cessing that block’s parent, no two processes concur-
rently compete in any ME block from the same direc-
tion. Thus, each two-process ME block is accessed by
at most two processes concurrently, one with 8 =0 and
the other with 8 = 1. This is the essence of the cor-
rectness proof, presented in Lemma 6 below, for each
mutual exclusion tree.

Having described the tournament trees and the mu-
tual exclusion blocks they use, we can now explain pro-
tocol FILTER. Process p competes “in parallel” in all
the mutual exclusion trees associated with names in N,
(as defined in Section 4.1 above). This is achieved by
proceeding through a tree as far as possible (until a call
to Check returns false) and then switching to the tree
for the next name. This is repeated until a name has
been acquired (by reaching the critical section of the



repeat (* this starts a new round *)
forall i € {0,...,2d(k — 1) — 1} do
if p did not enter tree n,(z) yet
then Enter tree n,(z) at the appropriate leaf.
Let £ be the last entered level of tree ny(7).
while ¢ # [log S| and checking ME at level £ in
tree ny () returns true
do Let £ + £+ 1 and enter ME at level 2.
if £ = [log S| and checking ME at level £ in
tree ny(7) returns true
then Return name n,(7)
until a name was found

Figure 4: FILTER protocol for process p.

tree for that name), or all names have been tried. In
the latter case, process p then returns to the tree for p’s
first name and tries all the trees again. This is repeated
until p acquires a name.

To release a name (not shown in Figure 4), process
p releases all mutual exclusion blocks it entered when
acquiring the name, including blocks in which p did not
reach the critical section. Mutual exclusion blocks must
be released in reverse of the order in which they were
entered, i.e, the last block entered must be released first.

To see that p eventually acquires a name using pro-
tocol FILTER, recall that the set of trees competed for
by p is chosen in such a way that, at any time, one of
the trees in p’s set is not being accessed by any other
process (provided at most k processes request or hold
names concurrently) . Suppose that at some point ¢, p
is competing for name m, and no other process is com-
peting for name m. If p fails to acquire a name, then
p eventually tries to proceed in tree T;,. Because there
was no other process competing for 7,,, at time ¢, the
FIFO property of the 2-process mutual exclusion algo-
rithms ensures that p is able to proceed at least one level
in T,,. Repeating this argument, p eventually reaches
the critical section of some tree, and therefore acquires
a name. This argument is the essence of FILTER’s cor-
rectness proof, which is presented in the next section.

4.3 Correctness Proof for FILTER

We say that a process p is in tree T,, at level £ if it has
started entering ME at that level and has not yet started
releasing that ME. Similarly, a process p is in tree T, at
level [log S + 1 if it has acquired and not yet released
name m. We say that a process p is in tree Tp, if it is in
T, at some level. We assume that there are at most k
processes in all the trees at any time. A process p starts
a new round whenever p attempts to advance in the tree
for name n,(0). We say a process is stuck at round r in
tree T,, at level ¢ if in two successive rounds » — 1 and
r, checking ME at level £ in tree T}, returns false. We
call a process p € S a wvisitor of mutual exclusion block

ME in tree T, iff p enters T}, at one of the leaves of the
subtree rooted at ME.

The following lemma states that T, is indeed a tour-
nament tree.

Lemma 6 For all m € {0,...,D —1} and all £ with
0 < ¢ < [logS] and all ME at level £ in tree Ty, no two
different visitors p,q € {0,...,S — 1} of ME can be in
T, at level £+ 1.

Proof: Suppose the lemma does not hold for some
tree T,,. Towards a contradiction pick the minimal ¢
for which two or more visitors of some ME at level £ are
in Ty, at level £ + 1. By assumption that at most one
process enters a leaf ME from any direction, £ > 0.
Then for all ¢/ < £, we have for all ME' at level
£ in tree T,, that no two different visitors p,q €
{0,...,5 — 1} can be in T}, at level £/ + 1. Then there
at most two processors p, ¢, visitors of ME, concurrently
accessing ME: one with 8 = 0, the other with g = 1.
Now the original proof of mutual exclusion can be ap-
plied to show that at most one process can win [PF77].
This contradicts that both are in T}, at level £. [ |

Lemma 7 If p is stuck in round r in tree T,, at level
£, then there is another process q # p in tree Ty, at the
start of the r-th round of p.

Proof: Let ME be the mutual exclusion at level £ in
tree Ty, played by p. Let us write R, for the variable
written by p in ME, and R, for the variable read by
p and written by its opponent. Let 8 be the direction
of p. As p is stuck in round r in tree T, at level £,
its check of ME in round r returns false. At that time,
then, RI’D # nil. Hence, there is a process ¢ that writes
R}, while entering ME before p reads R;,, and ¢ does not
release ME until after p reads R;. Such ¢ must, using
Lemma 6, have direction 1 — 3.

As p is stuck in round r, p checks ME in round » — 1,
which implies that during round 7, p (and by Lemma 6
no other process either) does not write and thus change
R,, and that R, # nil. Let r, be the value of R, during
round r. Suppose ¢ enters T,, after p starts round r.
Then upon entering ME it reads r, # nil from R, and
thus sets R, to (1 — 3) ® rp. Then if p checks ME in
round r, p reads (1—3)®r, from R, (which corresponds
to R;,) and evaluates 8 @ (1, # ((1 — B) @ r})) yielding
true for arbitrary 8 and r,, contrary to assumption that
p is stuck in round r. Hence, q is in T, before p starts

round 7. [ |

The following proposition states that for different pro-
cesses p and q, there are at most d trees that are tried by
both of them. It is an easy consequence of the discussion
in Section 4.1.

Proposition 8 If p # g, then |N, N N,|| < d.



Lemma 9 For every process p, as long as p is not at
level [log ST+ 1 in some tree Ty, in every round p ad-
vances to a higher level in at least d(k — 1) trees.

Proof: Let r be an arbitrary round. By assumption
at most k — 1 processes other than p can be in any tree
at the start of round r. Proposition 8 then implies that
at the start of round r there is a process ¢ # p in at
most d(k — 1) trees p is trying. By Lemma 7, p is stuck
in round r in at most d(k — 1) trees it tries. As p plays
2d(k — 1) trees per round, the lemma follows. [ |

Theorem 10 Protocol FILTER implements wait-free,
long-lived renaming to 22d(k — 1) names in time

O(dklog S) using O(zdkS) variables.

Proof: By Lemma 6, a name obtained by p is not
obtained by any other processes for as long as p holds
that name. Hence the protocol is a renaming proto-
col. As there are no restrictions on the execution of the
protocol—except for the fact that at most k& processes
are contending for, or in fact have, a name—processes
may repeatedly get and release a name. Hence the pro-
tocol is long-lived. There are D trees, each containing
roughly 2S5 mutual exclusion blocks ME that each use
2 variables. By Section 4.1 we have D = 22d(k — 1), so
FILTER uses O(zdkS) variables. The maximum number
of shared variable accesses performed by any process
before it gets a name is computed as follows. Because
a process p plays in at most 2d(k — 1) trees, it can ad-
vance at most 2d(k—1)[log S| times. Suppose a process
p executes a Check 3d(k — 1) times. If it loses 2d(k — 1)
or more of them, then there is a round in which p is
stuck in at least d(k— 1) trees it is trying, contradicting
Lemma 9. We conclude that for every 3d(k—1) Check’s
performed, a process wins at least d(k — 1) of them.
Then after at most 6d(k — 1)[log S calls of Check, each
taking 1 shared access, process p obtains a name. A pro-
cess will Enter the 2d(k—1)[log S| mutual-exclusions at
most once, at the cost of 4 shared accesses. Clearly, re-
leasing all played mutual exclusion blocks takes no more
time than entering them. This shows that the protocol
is wait-free, with time complexity O(dklogS). [ ]

4.4 Using FILTER

In this section, we discuss how the FILTER protocol can
be used. First, the choice of d and z given k and S influ-
ences its time complexity, its space complexity, and the
size of the destination name space. To demonstrate this,
we consider various examples of k£ and S, and show how
d and z can be chosen to satisfy the requirements out-
lined in Section 4.1. At the end of this section, we dis-
cuss how instances of filter (parameterized by d and z)
can be combined with each other, and with other long-
lived renaming protocols, to successively reduce the size
of the destination name space.

In the following paragraphs, we consider various rela-
tionships between k and S. For each case, we give nearly
optimal choices for d and z that satisfy the requirements
set out in Section 4.1 and give the space and time com-
plexity of the resulting protocol, along with the size of
the destination name space.

S < ck: Let d = k and 2 prime such that 2k(k—1)+c <
z < 4k(k — 1) + 2¢. This satisfies (1) and (2) and
yields D < [4k(k — 1) + 2¢]2k(k — 1) < 8k* + 4ck?.
The time complexity of the resulting protocol is
O(k?) and the space complexity is O(k*c*).

S <3k 1: If weset d = (k —2)/2 we get, by equation
(2) in Section 4.1, z > k? — 3k + 2. As for any a
there is a prime between a and 2a [Che52], we select
k% < z < 2k%. Then 2%t > (k2)(#=2)/2)+1 = pk,
As k¥ > 3%=1 if k > 1, this satisfies equation (1),
and, by equation (3), D < 2k%(k —2)(k—1) < 2k*.
The time complexity of the resulting protocol is
O(k®) and the space complexity is O(k*3F).

S < klog"k: Pick d = log°k and z a prime such that
2klog®k < z < 4klog®k. This again satisfies (1)
and (2) and yields D < 8k(k — 1)log®klog‘k.
The time complexity of the resulting protocol
is O(klog®*t'k) and the space complexity is
O(k?t1og" k 1og?° k).

S < k°: Select d = ¢ and let z be a prime such that
2¢(k—1) < z <4c¢(k—1). This also satisfies (1) and
(2) and yields D < 4e(k — 1)2¢(k — 1). The time
complexity of the resulting protocol is O(klogk)
and the space complexity is O(k°*2).

S <2k*: Letussetd=3. Then z > 6(k—1) by equa-
tion (2), so let us pick 6k < z < 12k and z a prime.
Then z4+! > (6k)* > 2k* satisfying equation (1).
For the size of the destination name-space we now
find D < 12k6(k — 1) < 72k?. The time complexity
of the resulting protocol is O(klog k) and the space
complexity is O(k*).

This analysis shows that if the size of the source name

space is polynomial in k, then FILTER renames to a

name space of size O(c?k?) in time O(klogk). Only if

the size of the source name space becomes exponential
in k will FILTER require O(k®) time. In all cases, the

space complexity is never much bigger than S.

Renaming protocols can be nested in order to repeat-
edly reduce the size of the name space. To see this,
observe that after acquiring a name from a particular
long-lived renaming protocol, a process can then use the
acquired name to access another long-lived renaming
protocol. The latter protocol can have a source name
space the same size as the destination name space of
the former. In fact, several long-lived renaming proto-
cols can be chained together in this fashion.

To see how this combining approach can be helpful,
observe that for § = k'°8° % and S = ¢*, applying FILTER
twice yields D € O(k?) with no asymptotic increase in



the time or space complexity listed above. Unfortu-
nately, Proposition 3.4 of Erdds et al. [EFF85] shows
that multiple applications of protocol FILTER will not
lead to a name space smaller than k(k + 1)/2. To actu-
ally reach a name space of k(k + 1)/2 one might apply
protocol MA on the last name space obtained, at the
expense of increasing the time complexity to O(k?).

For arbitrary values of S and k a destination name
space of k(k+1)/2 can be achieved by combining SPLIT,
the second and last instances of FILTER given above,
and finally Moir and Anderson’s protocol MA. This
approach yields the following result.

Theorem 11 Long-lived renaming from a source name
space of size S to a destination name space of size k(k+
1)/2 can be achieved with time complexity O(k®) and
space complezity O(k* min(3F, S)).

5 Concluding Remarks

As discussed previously, renaming to a smaller name
space results in lower overhead. Thus, we are mo-
tivated to seek renaming protocols whose destination
name spaces are as small as possible. Herlihy and
Shavit [HS93] have shown that one-time renaming
(and hence long-lived renaming) cannot be solved in
a wait-free manner using atomic reads and writes un-
less D > 2k — 1. For one-time renaming this bound
is tight [BG93, MA94]; for long-lived renaming the
best upper bound known is D € O(k?), independent
of whether the implementation is fast or not [MA94]. It
would be interesting to close this gap, either by finding
a long-lived renaming protocol with a smaller destina-
tion name space, or by showing that this is impossible.
It would also be interesting to determine whether the
fastness requirement has any influence on these bounds.
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