A (preliminary) note on privacy friendly public
transport ticketing”*

Jaap-Henk Hoepman

In this note we ask ourselves whether it is possible to design a privacy
friendly system to pay for public transportation.

We study three possible approaches, and explain how they work in an
easy to understand manner, and analyse their properties and discuss
their strengths and weaknesses.

This note is for a large part based on our experiences with the Dutch
OV chipcard system, and recent proposals for updates to that system
[4]. The trigger to write it is a recent court case concerning the lack of
privacy of this nationwide system for paying for public transportation,
and especially the fact that the so-called anonymous OV chipcard is really
not anonymous.

1 Preliminaries

1.1 Stakeholders and system model

We assume a system that supports many modes of transportation. This
means we distinguish several public transport operators (PTOs) that offer
public transport services. Users travelling by public transport make trips
that may consist of several legs each using a different mode of trans-
portation offered by a different PTO. A central clearinghouse provides the
public transport ticketing infrastructure (or at least the APIs to connect
to this infrastructure), handles payments from banks initiated by users,
and distributes financial compensation to the PTOs for services rendered.

Users have a digital token that enables them to travel by public transport.
Instead of relying on a smart card (to store tickets or other information
needed to verify whether someone is entitled to a certain mode of public
transportation) we may also assume most people own a sufficiently
modern and capable smartphone, and are willing to use it for public
transport (even though in privacy terms an ill configured smartphone is
like having a never sleeping Stasi agent in your pocket).

* Thu Sep 5 14:28:35 2019 +0200 / ae529f1 / ov-pet-note.md


https://privacyfirst.nl/aandachtsvelden/mobiliteit/item/1155-rechtszaak-over-privacy-anonieme-ov-chipkaart.html

1.2 Requirements:

The system should satisfy the following loosely formulated requirements.

Users should pay for trips, where the fare depends on when and
where one travels, as well as on the distance travelled, and where
users can subscribe to receiving reduced fares (during certain times
of the day, or on certain tracks).

Public transport operators should receive compensation for their
services, which (partly) depends on all the actual trips that used part
of their infrastructure. In other words, the amount of compensation
can depend on how many passengers travelled on which particular
track on which day.

The system should be privacy friendly: no party should be able to
link any number of trips to each other (as belonging to one, unknown,
person) or to any one particular person. In other words, the previous
requirement only allows the PTO to learn how many passengers
travelled a certain track at a certain time of the day, not who they
were, or whether they were the same people that set out on some
other trip earlier.

The system should be secure: it should prevent or detect fraud by
users (e.g. fake tickets, pay less than the required fare) and prevent
fraud by operators (e.g. claiming more trips than actually took place
over their infrastructure).

The system should be fast enough to process large volumes of trav-
ellers at peak hours. Checking travellers by conductors should take
less than a second. Checking in or out to enter or exit public trans-
port (like in the Dutch OV chipcard system, the London Oystercard
system, or many other metro and bus systems in the world) should
take only a few hundred milliseconds at most.

The system should be user friendly (whatever that may mean...).

1.3 Threat model

We assume users are willing to actively defraud the system (travelling
by public transport by paying less than required or nothing at all), if the
probability of being caught is low. They will buy fraudulent smart cards
or root their smartphones and install fraudulent apps if there is a clear
benefit. This means that in terms of smartphones we cannot assume
any trusted environment to store secrets, in other words the device and
the app are untrusted from the PTO perspective. For smart cards we



assume that they can be used to store secrets and keep them confidential,
preventing their users from accessing them.

We assume banks, PTOs and the central clearinghouse will actively (and
collectively) try to break privacy and recover trip details from their users,
using any information they can get their hands on. They are untrusted
from the user perspective.

We do assume however that PTOs do not try to break privacy by writ-
ing their apps in such a way that the information provided by the user
through the app, but shielded from the central PTO servers by the pro-
tocol, is surreptitiously sent to the PTOs regardless. The PTOs could in
theory do this. We can mitigate this by offering third party (open source)
apps, requiring external audits and analysis, or through the vetting pro-
cedures enforced by the smart phone app stores. (This is another reason
why we cannot assume that the smartphone or app can store secrets.)

We assume that PTOs will try to defraud the system and claim more
compensation from the central clearinghouse than warranted. The clear-
inghouse is trusted, in the sense that it does not favour one PTO over
the other, and that at the of the day all money received must be spent
(on compensating PTOs or the cost of running the clearinghouse and its
ticketing infrastructure). Audits can be used to ensure this.

We assume the cryptographic primitives used cannot be broken, and
that entities keep their secrets secret (unless they could benefit from not
doing so).

1.4 Other assumptions

We assume secure, i.e. authenticated and encrypted, connections with
all banks, public transport operators and the clearinghouse. Clearly the
user is not authenticated (although the token of the user may be verified
to be authentic).

We assume fares are course enough to ensure that the price associated
with a trip does not reveal the actual trip itself. For example, trip prices
could be set at fixed amounts for every ten kilometres travelled, with a
fixed ceiling fare for all trips longer than a certain distance. (Care should
be taken to ensure that for every possible fare the number of different
trips with that fare is sufficiently high to guarantee a reasonable degree
of anonymity.)



We also assume that local, immediate device to device, communication is
using only ephemeral identifiers (if any) to prevent linking devices over
longer periods of time. This means WiFi or Bluetooth are using properly
randomised MAC addresses, or random anti-collision identifiers if NFC is
used. This also implies that we assume apps do not have access to any
other permanent, unique, device specific identifier!.

For normal (long range) internet connections between the smartphone
and the servers of the public transport operator or the bank we cannot
make such an assumption: it is rather trivial to track users based on their
often fixed IP addresses. 2.

The tacit assumption in this work is that it is a lot safer, from a privacy
perspective, to collect personal data locally on the user device, instead
of centrally on the servers of the service providers. Clearly a malicious
public transport app can collect and upload all this personal data surrep-
titiously anyway. The assumption (see above) is that this cannot or will
not happen.

There are many practical constraints that limit what we would ideally
like to do. For instance, there already is a more or less standardised way
to initiate and handle payments from bank accounts (called iDeal in the
Netherlands), that has to be used but is unfortunately not very privacy
friendly: in the end the payment intermediary or the payee (in our case
the PTO or the clearinghouse) receives the transaction details, including
the bank account details of the payer (in our case the user).

I The operating systems of these smartphones should, could and sometimes

actually do prevent apps from having access to such a persistent identifier.
Preventing the app itself to generate such an identifier itself and store it
locally is of course not possible (although audits may reveal this).
Users could mitigate this risk using a Virtual Private Network (VPN): in the
case the PTO servers only see the IP address of the VPN provider, and would
need the cooperation of the VPN provider to obtain the IP address of the
user. This makes tracking or tracing users a lot harder (but certainly not
impossible). One meta conclusion of this work is that we need an efficient,
frictionless, way to provide sender anonymity on the Internet, similar to the
use of randomised MAC addresses that can be used on local networks. A VPN
is too weak (the VPN provider sees everything its users do), yet Tor is too
strong (there is no need to protect against a NSA like adversary) given the
impact on performance. If randomised client IP addresses could be used by
default to set up a TCP connection between a client and a server, that would
already provide a tremendous boost in privacy on the Internet as servers can
no longer trace their users based on their IP address.

N


https://www.torproject.org

1.5 Core technology 1: partially blind signatures

One of the core problems in trying to make public transport ticketing
privacy friendly is the need to provide a clear separation between the
actual payment (which, when involving a bank account, is necessarily
identifying), the payment receipt (from which this identifying information
should be stripped), or the transportation ticket (that contains the trip
details).

Taking a transportation ticket as an example, we need something that
allows us to securely issue tickets anonymously, which can then be used
only once by a user, and can subsequently be redeemed by the public
transport operator (see also [7]).

We use partially blind signatures as the core technology to implement
such tickets. A blind signature allows a user to obtain a signature on a
message from a signer, without the signer actually learning the message
being signed. Moreover, the signed message cannot be traced back to
when it was signed: the issuer cannot correlate the signatures it created
with signatures later provided for verification. In other words, the sig-
nature also needs to be untraceable. Essentially, the user transforms
the signature after issuing to avoid such linking. Blind signatures were
invented by David Chaum [3], who also provided the following nice
metaphor. A blind signature is like sending a message inside a sealed
envelope to the signer, where the inside of the envelope is covered with
carbon paper. This means that if the signer stamps (with a fixed stamp)
the envelope from the outside with its signature, the carbon paper trans-
fers this signature to the secret message inside the envelope. When the
signer returns the still sealed envelope (proving it didn’t see the message)
all the user needs to do is to open the envelope to obtain the blindly
signed message.

A partially blind signature allows the signer to add some known infor-
mation to the message. In other words: part of the message to be signed
is secret and provided by the user. The other part of the message to be
signed is known and provided by the signer. After the blind signature
protocol, the user has a valid signature from the signer on the whole
message consisting of both the secret user-provided attributes3 and the
known signer-provided attributes (and these cannot be separated, nor
can any of the attributes be changed without invalidating the signature).

3 An attribute is an arbitrary piece of information, typically a piece of personal
data, like your date of birth, or your current location.



Efficient partially blind signatures exist [1, 5].

1.6 Core technology 2: attribute based credentials

We use an attribute based credential (ABC) scheme, where users can
request credentials containing attributes from issuers, and can show a
subset of these attributes to relying parties at a later time.

Credentials are the secure containers of these attribute, meaning that
users cannot create valid credentials themselves, nor can they change
the contents and in particular the attribute values contained in these
credentials. This ensures that relying parties can indeed rely on the
validity of the attribute values being shown to them.

ABCs are also privacy friendly. Multiple showings of attributes in a
credential are unlinkable to their originating credential (provided the
attributes themselves are not uniquely identifying or linkable). This
in particular prevents the issuer to link subsequent showings of the
credentials it issued. Moreover, users can choose to selective disclose only
a subset of all attributes contained in a credential, hiding the values of
the undisclosed attributes to the relying party.

Often, attribute based credentials are based on zero knowledge proofs.
The trick being that the user proves in zero knowledge that it has a
credential with valid signature and the necessary attributes, without
actually revealing the credential itself. This by definition guarantees
unlinkability. Interactive zero knowledge proofs have the additional
property that they are deniable, meaning that the verifier cannot convince
someone else that a particular prover proved a statement. Non-interactive
zero knowledge proofs (typically used for ABCs) do not have this property
and are undeniable [6]. For many applications this is a good thing, as it
allows the logs of the verifiers to be audited.

The ABC scheme we use here should have the following additional prop-
erties.

It should be possible to request a credential where some of the attribute
values are set by the user and hidden from the issuer. In other words,
the issuer must be able to sign a credential without learning the attribute
values of some of the attributes, without allowing the user to change
these attribute values afterwards. These attributes are called blinded.

Certain credentials can be marked for one-time use at time of issuing.
This means the credential can only be shown once at a relying party.



After that the credential becomes invalid and any subsequent showings
will fail. One time use can be achieved, for example, by adding a random
sequence number to a credential as a blindly issued attribute (ensuring
issuer unlinkablity), which must be shown at all times and becomes
blacklisted the first time it is used. Partially blind signatures can also
be used as one time credentials, by the way (and are also undeniable,
like non-interactive zero knowledge based credentials). In what follows
we use partially blind signatures instead of full blown one-time use
credentials, as we believe these to be more efficient.

Idemix [8] is an ABC scheme that satisfies all of our requirements (and is
based on non-interactive zero knowledge proofs and therefore undeni-
able).

2 Solution 1: Emulating paper tickets

Of course one way to achieve privacy in public transport ticketing is to
emulate the traditional use of paper public transport tickets. The basic
idea is to first buy the ticket online, and subsequently use it for public
transport later, in such a way that the account used to pay for the ticket
cannot be linked to the actual trip being made.

2.1 Detailed protocol

We assume the user has a smartphone with a public transport app
installed. Below we discuss variations to the protocol that allow a smart
card to be used. We furthermore assume the app contains a database
with all possible trips that can be made by public transportation, and the
corresponding prices to be paid.

The protocol to obtain a ticket now runs as follows.

- The user selects the trip she wishes to make, and the date she wishes
to make the trip.

- The app calculates the fare for the trip and then redirects the user to
the payment app (associated with her bank account) to start payment
of this fare.

- If the payment is successful, the app receives a payment receipt
(which contains the amount paid) signed by the bank as confirmation



of this. This receipt should not contain identifying information?, but
should contain a sequence number to prevent reuse. The paid fare is
collected by a clearinghouse that later redistributes the paid fares to
the PTO based on submitted receipts.

- The app sends this receipt (which contains the price paid) to the
public transport operator to request the issuing of the ticket. The
ticket is issued using a partially blind signature. When requesting the
ticket to be issued the actual trip details (trip start, trip end and date)
as well as a random serial number are requested as blind attributes
(to ensure the PTO does not learn these when issuing the ticket). This
prevents the PTO from linking actual trip details to the payment
receipt or with a device identifier or the IP address of the device. The
fourth attribute in the ticket is the (unblinded) price paid for the
ticket, added by the PTO based on the payment receipt. So a ticket
is a one-time use credential containing the following four attributes:
the three blind (hidden) attributes start, end and data, as well as the
(known) price.

Public transport operators need to verify that all users that travel with
them have a valid ticket. The conductor uses a smartphone for that
purpose. The user sends the ticket (revealing all attributes, i.e. trip
start, trip end, date, serial number, and price) with its (partially blind)
signature. The smartphone of the conductor verifies whether the trip
requires the user to be in this train/metro/bus/tram/etc., whether the
price corresponds to the trip, and whether today corresponds to the
ticket date. It also invalidates the signature, so that it cannot be used
again®.

The PTO is reimbursed based in the payment receipts it submits to the
clearinghouse.

4 Relatively little harm is done when the receipt does contain identifiable
information, as the ticket is issued blindly anyway, and we more or less
assume the clearinghouse, PTOs and banks collude.

> This means that the random serial number must be sent by the conductor to
the PTO back office. Conductors must therefore be online, also to get updated
about invalided credentials by other conductors. As tickets are only valid
for a single day, PTOs may choose to forfeit on this strict form of checking
(hence relaxing system requirements), relying on the fact that ticket can still
only be used (perhaps multiple times) on a single day.



2.2 Extensions

Instead of relying on users having smartphones, tickets could actually
be printed on paper®, or be stored on smart cards instead. In this case,
a ticket kiosk needs to be used to allow users to select the ticket they
need, allow them to pay (by cash or card), and to print the ticket or issue
the ticket to the smart card. In the latter case, conductors need to carry
NFC enabled smartphones that allow them to scan the smart card and
read the ticket (with its signature) from the smart card. This is certainly
possible with current (high-end) smart cards [REF].

2.3 Analysis

To what extent does this solution fit the requirements set out above?

Users obviously pay for their trips, and the fare depends on the distance
travelled. Conductors and sufficiently high fines are necessary to keep
users honest and disincentivise travelling without a valid ticket.

Public transport operators get paid based on the payment receipts they
collect when issuing tickets. To get (statistical) information about actual
trips made they need to have enough conductors to check the tickets
of all their passengers when travelling (as this is the only time when
the actual trip details are revealed). If multiple PTOs are involved in a
particular trip, proper reimbursement can only be achieved if the app
splits up the trip in different legs, one for each PTO the user needs to
travel with.

The level of privacy protection is quite good but not perfect. In the setup
described, the PTOs, clearinghouse and the bank could learn how many
tickets you buy, and for which amount (ie for which distance), if it would
try to identify you based on your IP address or device identifier’. Even
if PTOs and banks collude, they would not be able to link bank account
holders with actual trips made, but timing analysis linking payment times
with ticket issuing times could be used by the PTO to be more certain
about your identity. If you usually buy your tickets on the same day or

6 This may sound silly or even childish, but in fact when trying to emulate
something and doing something digitally analogous to how it was done
physically, one always has to consider the option that the original, physical,
approach simply works better.

7 Note however that we assume that the device operating system prevents the
app from having access to such a unique and persistent identifier.



the day before your trip, your PTO could learn when you travel. The PTO
could learn whether you are using public transport a lot, or not8. Many
short trips on the same day may reveal you are in a city; certain patterns
of distances may correspond to popular tourist routes (and hence reveal
the city you are in). This limited level of privacy protection may already
be a threat for people that engage in civil disobedience, like the Hong
Kong protesters or the Extinction Rebellion activists. All these problems
can be avoided if users can use cash to buy tickets, at special digital
kiosks.

Communication between the user and conductor smartphone uses
ephemeral identifiers. This means ticket inspection reveals no personal
information: the zero knowledge proof only reveals the ticket price and
the trip details, but no personal identifier.

If we can guarantee that there is no way for remote servers to identify
the devices that connect to them (because persistent device specific
identifiers are blocked by the device operating system, and because users
are told to use a VPN for additional privacy protection), then there is in
no longer a need to blind the trip details from the PTO when requesting
a ticket to be issued. However, this would require an additional change
to the protocol to ensure that the receipt send to the PTO as proof of
payment cannot later be used to retrieve the personal details of the bank
account holder through which the ticket was paid (when PTO and banks
decide to collude). In fact, a partially blind signature could be used for
this purpose where the user provides a blind random sequence number
and the bank provides the known amount paid. This implies a (major)
change to the payment API (which we deemed impractical above). But it
would allow the PTO to obtain perfect information about all trips people
set out on, while still keeping these people anonymous.

The system is secure: tickets are only issued by the PTO when given a
payment receipt for a certain amount, signed by a bank. Only banks can
create such a signed proof of payment. The amount paid for a ticket
is checked by the conductor when inspecting a ticket. Only PTOs can
create a valid ticket (signed in partially blind fashion). This signature is
also checked by the conductor. Finally the conductor checks whether the
ticket entitles a person to travel when and where the conductor inspected
her ticket. Failure of one of these tests means the ticket is invalid. The
sequence number of the ticket (embedded to guarantee one-time use)

8 If the bank issues the tickets instead, the bank could collect this information
and would for sure know it is you.

10



is checked in real-time with an online database of sequence numbers
of already inspected tickets. If the sequence number is already in the
database, the ticket is invalid. Otherwise, the sequence number is added
to the database.

The system is also secure in terms of preventing PTO fraud: PTOs are
reimbursed based on signed payment receipts for actual amounts paid
by the users. Only banks can sign these receipts. Collected tickets (that
include the fare paid) together with their valid signatures can be used to
cross validate this.

The only relatively time critical step is the inspection of the tickets by
the conductor. This involves a simple signature verification step which
should not consume a lot of time (if both conductor and traveller have
sufficiently modern smartphones).

The system is not really easy to use, as it forces users to buy tickets in
advance.

2.4 How to deal with failures?

Dealing with failures is always a challenge, but this is particularly the
case in privacy friendly protocols where often the link between a user
and her actions is deliberately broken. This means extra care needs to
be taken to create some evidence that allows an entity to challenge a
failure, while not eroding the privacy of the users. Below we describe
some possible failures, and how they could be dealt with. See also [7] for
additional measures that can be taken.

The user pays, but does not receive a payment receipt If banks keep
a copy of the payment receipt, they can always reissue it on request.
As a payment receipt can only ever be used once, there is no harm in
giving it twice to a user.

The user wants to cancel a payment The user can return the payment
receipt (which contains a unique sequence number) to the bank to
rewind the transaction. The bank then forwards the payment receipt
to all PTOs signalling not to accept this payment receipt when a user
requests a ticket to be issued. Also, the transfer of money from the
bank to the PTO will be reversed.

The user submits a payment receipt, but does not receive a ticket
If the PTO keeps a copy of the last message it sent in the ticket
issuing protocol, tied to the payment receipt against which it was
issued, the user can request the PTO to resend this message (and

11



thus complete the issuing protocol to guarantee she receives the
ticket). This should only be done, of course, if she can hand over the
correct payment receipt. Again having two exact copies of the same
blindly signed ticket offers no advantage to the user: she can only
use one of the copies. If the issuing protocol fails earlier, the PTO
is sure that no ticket was issued at all, so in that case the payment
receipt is considered unclaimed and can be used to request issuing a
completely new ticket.

The user submits a payment receipt, but receives an valid but incorrect ticket
This can happen if the user entered the wrong trip details, or if
some internal error caused the wrong ticket to be issued. The user
can ‘return’ the ticket to the PTO, essentially running the showing
protocol normally run when a conductor inspects the ticket. This
invalidates the ticket. Using the same payment receipt she can start
restart the issuing step, now with the correct trip details (assuming
the fare is the same).

The user wishes to cancel a ticket issued to her After ‘returning’ the
ticket the PTO as described in the previous case, she can then proceed
to cancel the payment to the bank.

The user submits a payment receipt, but receives an invalid ticket
This is more tricky. Ideally the issuing protocol should guarantee
that a valid ticket is issued. If this is impossible, at least the issuer
should somehow be able to tell, from the logs, that the user indeed
did not receive a valid ticket. Otherwise bogus claims for invalid
tickets could be submitted. This all very much depends on the
particular issuing protocol used.

A valid ticket fails conductor inspection Ideally this should not hap-
pen. However, the user or conductor device may malfunction, and
the communication between the two devices may be erroneous. If the
ticket is valid, and the user app operates correctly, the user should at
some point be able to convince the PTO she had a valid ticket when
travelling.

The app crashes or malfunctions Reinstalling the app should be possi-
ble without loosing any stored tickets, or turning them invalid.

The user looses or deletes a ticket There is no way to recover from this
situation. (Loosing a ticket could happen when inadvertently deleting
the whole app together with all its data.)

We note that it is theoretically possible to create a kind of trapdoor
within the tickets. Suppose the user would use a secret root value to
derive, in a deterministic but irreversible manner (using a cryptographic

12



hash function for example), the random sequence number that makes
the ticket one-time use. Then the user can at a later time prove it was
her that used a certain ticket. This may be useful to resolve disputes. But
such a construction also carries a grave privacy risk as this secret value
can be used to undo all privacy protection in the system.

3 Solution 2: Pay as you go, with credit on device

Another approach to achieving privacy in public transport ticketing is to
pay as you go, where you have some stored value or credit securely kept
on your device to pay for your trips. This aims to emulate the traditional
way of paying for (short) public transportation trips by cash with a few
coins.

Such so called stored value card systems already exist in fact, e.g. OV
chipcard in the Netherlands, the Oyster card in London and the Octopus
card in Hong Kong. They record the credit as a simple counter value, and
therefore require the use of a smart card to protect this counter value
against tampering by the user?. The system is similar to (and actually
arose from) payphone cards (that were popular in the late twentieth
century). To further prevent or detect fraud, these existing schemes use
a fixed unique identifier in practice, and copy the balance on the card
as well as information about past trips to a central server. This means
that such systems are never anonymous but pseudonymous at best, and
the real identity of the user can easily be attached to the fixed identifier
through, for example, a bank transaction used to top up the credit on the
card, or a customer support inquiry whenever something goes wrong.

To turn this idea into a privacy friendly architecture, the credit on the
device needs to be stored in such a way that the device itself no longer

9 Because the device essentially needs to store something that has a significant
monetary value — a credit maximum of 100 euro is not unreasonable for a
national public transport system if you want people to travel several times
without having to top up after every trip — it needs to be protected from
malicious users. This means a smartphone is not the ideal device to use
here, as it typically has few defences against tampering by its owner. Smart
cards, that have such tamper proof or tamper evident features, fare much
better in context where the system provider needs to be protected against
malicious users. Smart cards were also used for payphone cards, are used as
SIM cards for mobile phones, and have even been used for a national smart
card payment system in the Netherlands: Chipknip and Chipper (which both
sadly got scrapped several years ago).

13


https://en.wikipedia.org/wiki/OV-chipkaart
https://en.wikipedia.org/wiki/OV-chipkaart
https://en.wikipedia.org/wiki/Oyster_card
https://en.wikipedia.org/wiki/Octopus_card
https://en.wikipedia.org/wiki/Octopus_card
https://en.wikipedia.org/wiki/Chipknip
https://en.wikipedia.org/wiki/Chipknip

needs to be trusted. This obviates the need for tamper proof or tam-
per evidence features, and more importantly scraps the need for fixed
identifiers and additional centralised bookkeeping.

3.1 Detailed protocol

Again we assume the user has a smartphone with a public transport app
installed, but a smart card could be used just as well.

We furthermore assume that there is a way to check in (i.e to record
the location where you start your trip) and to check out (i.e. to record
the location where you end your trip). Traditionally this is done with
turnstiles or poles on the platform that need to be tapped with the public
transport card. Smartphones with NFC can also be used similarly!?. When
you check in, the system verifies that you have enough credit to make a
trip. The actual fare is calculated and automatically deducted from your
device as soon as you check out.

Credit on the device is represented by a signed token (c, s), issued by a
central clearinghouse using a partially blind signature scheme, containing
the credit ¢ as the known value, and a random serial number s generated
by the device as the blindly signed value.

Users first load some credit on the device using the following protocol.

- The public transport app redirects the user to the payment app
(associated with her bank account) to start payment of the amount
she wishes to add to her credit.

- If the payment is successful, the app receives a payment receipt
(which contains the amount paid) signed by the bank as confirmation
of this. This receipt should not contain identifying information, but
should contain a sequence number to prevent reuse. The paid fare is

10 When smartphones with GPS are used, a location fence (for known train
stations for example) can trigger a potential check in or check out that needs
to be confirmed on the phone. Such a ‘be-in be-out’ approach is currently
being considered in the Netherlands. But as the management of credit in this
case involves a long range Internet connection between the smartphone of
the user and servers of the PTO, privacy can no longer be guaranteed (unless
the user uses a VPN). Alternatively, Bluetooth beacons can be used instead
to reliably determine presence at a known public transport location. These
can also be used as the first, anonymous, hop in the connection with the
necessary backend infrastructure to issue tickets.

14


https://www.stateninformatie.provincie-utrecht.nl/Vergaderingen/Commissie-Milieu-Mobiliteit-en-Economie/2015/16-november/13:00/Ingekomen-brief-Tweede-Kamer-Visie-op-OV-betalen/2015MME133-02-Bijlage-Tweede-Kamer-Visie-op-OV-betalen.pdf
https://www.stateninformatie.provincie-utrecht.nl/Vergaderingen/Commissie-Milieu-Mobiliteit-en-Economie/2015/16-november/13:00/Ingekomen-brief-Tweede-Kamer-Visie-op-OV-betalen/2015MME133-02-Bijlage-Tweede-Kamer-Visie-op-OV-betalen.pdf

collected by a clearinghouse that later redistributes the paid fares to
the PTO based on the actual trips being made.

- The app sends this receipt (which contains the price paid) to the
clearinghouse to request the issuing of the credit token with credit c.

- The user device generates a random s and joins clearinghouse server
in the joint protocol for the partial blind signature on the new credit
token (c, s), hiding s from the clearinghouse.

- The user device stores this credit token.

If the user already has some credit on the device, then the following
additional steps need to be taken right after the payment step.

- The users sends the credit token to the clearinghouse server

- The clearinghouse server verifies the signatures on the token, and
verifies that s is fresh (not used or spent before)

- The clearinghouse server adds the current credit to the paid amount
and is ready to issue a new credit token for the new credit ¢ (sup-
ported for this by the clearinghouse server) .

The protocol to check in (between a user device and a local check-in
device) then runs as follows.

- The user sends the credit token to the check-in device

- The check in device verifies the signature on the token, checks that
the stored value is larger than some minimum credit required, and
checks that the serial number s is fresh. If that is the case it sends
the serial number s to the central clearinghouse server to mark it as
used, so that it can not be used again to check in.

- The check in device returns a check in token (signed by the PTO)
which contains the current location, time, and the serial number s in
the credit token.

The protocol to check out (between a user device and a local check-out
device) then runs as follows.

- The users sends the check in token and the credit token to the check
out device.

- The check out device verifies the signatures on both tokens, validates
the time on the check in token, and checks that s is also included in
the check in token (no freshness is checked here).

- Based on the check in location and the current location the check
out device (in cooperation with the central clearinghouse) computes
the fare f and is ready to issue a new credit token for the credit

c'=c-f.

15



- The user device generates a new random s’ and joins the check out
device (helped by the clearinghouse) in the joint protocol for the
partial blind signature on the new credit token (c’,s’), hiding s’
from the clearinghouse. The clearinghouse creates the signature, and
keeps a record of the deducted fare f for reimbursement purposes.
The check out device also creates a check out token with its signature,
that contains the current location, time, and the sequence number s
in the credit token.

- The user device stores this new credit token. The user device also
logs the check in and check out tokens (with PTO signature) in a local
trip history (that can be consulted to resolve disputes).

The conductor needs to verify that every person travelling has a valid
check in token on their device that corresponds to their current location
and mode of transport. For that purpose the conductor device essentially
runs the same protocol as the check out device, except for the issuing a
new token step.

The PTO logs all check in and credit tokens submitted during check
out, together with the check out location, to claim benefits for services
offered. These claims are verified against the record of deducted fares
maintained by the central clearinghouse.

3.2 Analysis

Does this solution fit the requirements mentioned in the introduction?

Provided the minimum credit necessary to check in exceeds the max-
imum possible fare (for the longest possible trip) when checking out,
the protocol guarantees that users pay for their trips. Once credit drops
below zero, users can no longer check in. Conductors and sufficiently
high fines again are necessary to keep users honest and disincentivise
travelling without checking in. They are also necessary when untrusted,
dishonest, devices fail to behave correctly when checking out.

If it can somehow be physically guaranteed (using turnstiles for example)
that users must check in to enter public transport, and must check out
to leave public transport, conductors are no longer necessary (although
they are of course still of paramount importance to guarantee safety and
well being on the public transport).

Public transport operators get paid based on their own check in and
check out logs, crosschecked with the fare deduction logs collected

16



by the central clearinghouse when it issues updated credit tokens for
users that check out. This ensures that public transport operators get
compensated for their efforts, but cannot claim more than they are
entitled to.

The level of privacy offered is probably better compared to the previous
solution. Payment is the only step that involves a fixed identifier (through
the bank account). If you could top up your credit with cash using public
transport ticket vending machines, even that form of tracking disappears.
If you top up the credit on your device with larger amounts, there is
much less correlation between the times you top up credit and the time
you travel by public transport. PTOs learn less, and are no longer able to
track when and how often you travel (through the ticket buying patterns
revealed in solution 1). The banks still learn how much you travel, in
terms of the amount of money you spend on public transportation, unless
you use cash. Only check ins and check outs are linked (through the
same serial number in the credit token). Fresh credit tokens are issued
with new random serial numbers, that are kept secret when the credit
token is issued. This breaks the link between past and current credit
tokens. Unfortunately there is one issue that complicates the analysis:
the actual credit on your token stays the same between check out and
check in. This allows the PTO to link a check in with a particular credit
to an earlier check out with the same credit. Now the number of possible
credit values is not so large (10.000 if we assume a credit between 0 and
100 euro, measured in cents), and the number of people travelling large
(in the order of millions). Moreover, a certain credit value at check out
may occur many times over a larger period of time, and there is no way
to tell for a PTO which of these previous check outs corresponds to the
current check in with that same credit value. We suspect therefore that
the privacy impact is insignificant.

A pay as you go approach with credit on the card has the potential of
significant improvements in terms of usability as well. The fact that you
no longer need to buy a ticket beforehand is the major benefit of this
approach. However, it does require users to explicitly check in and check
out for each and every trip (which takes a lot of getting used to), and
to have sufficient credit on their tokens. Errors should be easy to fix or
graciously dealt with!!.

11 This is absolutely not the case with the OV chipcard system in the Netherlands
where forgetting to check out means you pay the maximum price, and by
forgetting to check you risk a significant fine (depending on the conductor).

17



3.3 How to deal with failures?

With credit stored on the token, the solution is more fragile and risky
for the user. Payment related failures can be dealt with as in solution 1.
Other failures are discussed below.

Dispute resolution depends on clear information about what happened
about the time a failure occurred. Unfortunately, due to their privacy
friendly nature, the protocols retain very little useful information by
themselves. Adding timestamps to local logs of each protocol step, by
the clearinghouse, the PTO, and the user device will help compare logs
in case of disputes (and detect possible fraud). Creating append only
logs (using hash chaining techniques) increases their integrity, especially
if occasional public commitments to the current state of the log are
recorded. A hash of the log on a user device can be submitted when
checking in and checking out, and be included in the check in and check
out token (that are signed by the PTO). This poses no linkability as the
log will be updated with every check in and check out, provided such
updates always contain some private information from the user device
(e.g. the serial number used in the next credit token).

Check in fails If it is a communication error in the first step, the user
can try again. Otherwise, if the credit token fails to verify the user
needs to start a dispute resolution (if she believes the credit token
should be valid). If the credit token is accepted, but subsequent steps
fail, dispute resolution should clear the recorded serial number for
the credit token from the clearinghouse database to ensure it is valid
the next time the user checks in.

Check out fails If it is a communication error, the user can try again.
Otherwise, if the credit token fails to verify the user needs to start a
dispute resolution (if she believes the credit token should be valid).
If the check in token is not accepted, dispute resolution needs to
determine whether the user actually tried to check in earlier, or did
not. If the user did not get an error when checking in, for sure the
PTO log will contain the serial number of the current credit token.

User does not receive updated credit token This can happen when the
user tops up the credit on the device, or when checking out. Retained
messages for the credit token issuing protocol may help repair a

Neither is easy to fix: platforms do not have check in poles to quickly jump
out and back into the train for example. What is worse: there is no way for
users to check whether they checked in or not: PTOs offer no device or service
to quickly do so on the platforms or in the trams or busses.

18



failed run of the credit token (similar to what was discussed for
solution 1). If it can be determined that the credit token was really
not issued at all, a new credit token can be issued.

Fare dispute After checking out user discovers that the fare paid does
not correspond to the fare due for the trip made. The user should
submit a piece of the log with all entries involving the check in and
corresponding check out for this trip (which should follow each other
immediately in the user device log, and are thus linked through the
internal hash chain). This is then matched with the corresponding
logs of the PTO and clearinghouse. Any discrepancy can be compen-
sated by adding it to the current credit on the device by issuing a new
credit token. This can be done even after the user has made other,
more recent, trips.

4 Solution 3: Pay as you go, paying later

Given the potential benefits of pay as you go, it is interesting to investi-
gate this idea further. It would especially be nice to allow users to pay
for their trips afterwards, instead of having to lock significant funds on
the device itself. Also it would be nice to make checking in and out easier
or more ‘forgiving’. Introducing a pay later option creates a risk for PTOs
as users may fail to pay their debts, so mitigation strategies need to be
considered.

The basic idea is use the approach from solution 2, allowing negative
credit. The main risk is that users use their token up to the maximum
debit, and then throw away the old token (or deinstall the app) and then
obtain a fresh one with a balance of zero. To counter such sybil-like
attacks, obtaining a token should be hard, or should even be tied to
your identity. In the latter case the issuer of the tokens can maintain a
database of people to which a token has already be issued, and can start
asking questions when someone repeatedly requests a new token.

But this is not as straightforward as it seems, because ideally we want to
allow arbitrary third parties to provide public transport apps (to increase
trust in the privacy properties of the system).

One idea is that any (third party) app must be ‘blessed’, by the clearing-
house, with an ‘admission credential’. In other words, a user can install
any app he or she desires, but all protocols outlined above first verify
whether the user has a valid admission credential. The user can obtain

19



this credential, through the app, by registering the app with the clear-
inghouse!2. This registration process requires the user to prove his or
her identity (for example using a government wide electronic identity
scheme like DigiD in the Netherlands).

The credential used for this purpose is special, because it can be black-
listed: the clearinghouse keeps information about all credentials it issued
so that when a user wants to obtain a new admission credential (because
he or she claims to have lost their phone, reinstalled the app or whatever),
then the previous admission credential becomes blacklisted. Information
about the blacklisted credential is sent to all PTOs so that when they
check whether some user has a valid admission credential (in the first
step of each protocol), this will fail for all blacklisted credentials. Note
however that this will not deteriorate the privacy protection offered by
the protocols, at least not for users without blacklisted credentials: for
every credential that is not blacklisted, the PTOs have no way to trace or
link valid admission credentials that are not yet blacklisted. The exact
privacy properties depend on the specific method to blacklist creden-
tials: a naive scheme might allow the clearinghouse to share blacklisting
information about all users to the PTO to make them all traceable. The
most privacy friendly scheme doesn’t even allow blacklisted users to be
linked or identified [2].

5 Subscriptions, reductions, season tickets etc.

Subscriptions or season tickets, that offer reduced fares, can also be
supported as follows.

When using smart cards as tokens this is very easy: the outside of the
card contains a picture (binding card holder to the card) and encodes
the type of subscription. The type of subscription is also embedded in
the card itself as an attribute based credential (that is revealed when
buying a ticket or when checking in or checking out) and used to compute
the fare, and used by the conductor to verify the fare with the actual
trip (when inspecting the ticket in solution 1), or to verify the check in
(when inspecting check ins, in solution 2 and 3). Using attribute based
credentials to encode subscriptions or entitlements to reduced fares
retains the overall privacy properties of the system.

12 However, there should be a way to tie this credential to the specific device
being used, to prevent cloning. See also the discussion in the next section on
a way to sidestep this problem.

20



To support subscriptions or season tickets when smartphones are used
as a token, more care needs to be taken. The subscription itself is again
easily embedded as an additional credential. But if the public transport
app used is not trusted (which is the case if it is running on untrusted
hardware, or if it is provided by an arbitrary third party), then there is a
risk that people share a single subscription among each other. In other
words, there needs to be a way for the conductor to verify whether the
subscription credential shown alongside a ticket actually belongs to the
user showing it, without making this person linkable. The easiest and
most secure as well as privacy friendly approach is probably to stick
to a traditional physical pass with a picture of the holder (with certain
security features that make counterfeiting hard enough) that travellers
need to show in order to prove they have a certain subscription and are
eligible for a reduced fare!3.

Alternatively, we can prevent the cloning and sharing of such credentials
by making them also one-time use. Instead of encoding a subscription as
a persistent attribute based credential, it is encoded as a subscription
token using a partially blind signature with a blind serial number and a
known description of the type of subscription. Whenever the subscription
token is used (when checking in, or buying a ticket), the current one is
invalidated using the serial number, and a fresh one is issued. This way,
copying a subscription token means a user gives it away: she can no
longer use it herself. It does still allow a few users to share a credential
‘serially’: one person can use it at a time, and after use give it to someone
else to use.

13 The second meta conclusion of this work is that there is a need to make apps
(or data in apps) uncloneable, so that they can be used in similar contexts and
with similar properties as smart cards. Moreover, there should be a secure
way to establish that the person holding the phone and/or using the app
is indeed the owner of the phone (and not someone that uses the phone
with permission of the real owner). These properties are also mandatory to
increase the security of attribute credentials, in particular to prevent the
attributes in them being pooled or shared. This seems challenging if at the
same time we want the apps to be open source... One idea is to use either
the SIM card present in most smartphones (but this requires cooperation with
the mobile network operators), or to use the secure modules present in most
smartphones.

21



6 Conclusions

In this (preliminary) note we explored some options to implement pri-
vacy friendly ticketing for public transport. We show that this certainly
possible, with certain constraints (or issues that deserve further study).

Starting point is the observation that from a privacy perspective it is
better to collect personal data locally on the user device, instead of
centrally on the servers of the service providers.

Three different approaches (buying tickets beforehand, pay as you go,
and pay after you went) have been studied. We show that these can be
implemented with reasonably good privacy properties, under reasonably
practical assumptions. In particular we show that an untrusted smart-
phone can be used as the ‘token’ to carry tickets or travel credit. This
allows third parties to provide the apps for that purpose, which should
increase the (perceived) trust of the overall system. At the very least it
offers users a real choice.

For the third, pay after you went, solution (where users pay afterwards
after making one or more trips), public transport operators bear a risk
that requires further study.

Also, there are rather strict requirements on the maximum checking in
and checking out time (in the order of 200-300 milliseconds); actual im-
plementations of the protocols proposed are necessary to verify whether
these requirements can be met.

Finally, further analysis of the possible ways in which these protocols
can fail and how that affects the user experience (and PTO risks) is also
required.

7 Acknowledgements

I'd like to thank Hanna Schraffenberger and Sietse Ringers for useful
comments and suggestions.

References

[1] Masayuki Abe and Tatsuaki Okamoto. “Provably Secure Partially
Blind Signatures”. In: Advances in Cryptology - CRYPTO 2000, 20th
Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 20-24, 2000, Proceedings. 2000, pp. 271-286.

22



(2]

(3]

[4]

[5]

6]

[7]

(8]

Jan Camenisch and Anna Lysyanskaya. “Dynamic Accumulators and
Application to Efficient Revocation of Anonymous Credentials”. In:
Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 2002, Proceedings. 2002, pp. 61-76.

David Chaum. “Blind Signatures for Untraceable Payments”. In: Ad-
vances in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara,
California, USA, August 23-25, 1982. 1982, pp. 199-203.

Nationaal Openbaar Vervoer Beraad (NOVB). “Visie OV Betalen. Een
verkenning naar de OV betaaltechnieken van de toekomst”. http:
//cooperatieovbedrijven.nl/wp-content/uploads/2019/05 /Visie-
OV-Betalen.pdf. Dec. 2014.

Tatsuaki Okamoto. “Efficient Blind and Partially Blind Signatures
Without Random Oracles”. In: Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings. 2006, pp. 80-99.

Rafael Pass. “On Deniability in the Common Reference String and
Random Oracle Model”. In: Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings. 2003, pp. 316-
337.

Stuart G. Stubblebine, Paul F. Syverson, and David M. Goldschlag.
“Unlinkable serial transactions: protocols and applications”. In: ACM
Trans. Inf. Syst. Secur. 2.4 (1999), pp. 354-389.

IBM Research Ziirich Team. Specification of the Identity Mixer Cryp-
tographic Library. report. Version 2.3.4. Ziirich: IBM Research.

23


http://cooperatieovbedrijven.nl/wp-content/uploads/2019/05/Visie-OV-Betalen.pdf
http://cooperatieovbedrijven.nl/wp-content/uploads/2019/05/Visie-OV-Betalen.pdf
http://cooperatieovbedrijven.nl/wp-content/uploads/2019/05/Visie-OV-Betalen.pdf

	A (preliminary) note on privacy friendly public transport ticketing
	Preliminaries
	Stakeholders and system model
	Requirements:
	Threat model
	Other assumptions
	Core technology 1: partially blind signatures
	Core technology 2: attribute based credentials

	Solution 1: Emulating paper tickets
	Detailed protocol
	Extensions
	Analysis
	How to deal with failures?

	Solution 2: Pay as you go, with credit on device
	Detailed protocol
	Analysis
	How to deal with failures?

	Solution 3: Pay as you go, paying later
	Subscriptions, reductions, season tickets etc.
	Conclusions
	Acknowledgements


