
Privacy Friendly E-Ticketing For Public
Transport?

Jaap-Henk Hoepman1,2

1 Radboud University Nijmegen, Email: jhh@cs.ru.nl
2 University of Groningen

Abstract. This paper studies how to implement a privacy friendly
form of ticketing for public transport in practice. The protocols de-
scribed are inspired by current (privacy invasive) public transport
ticketing systems used around the world. The first protocol emulates
paper based tickets. The second protocol implements a pay-as-you-go
approach, with fares determined when users check-in and check-out.
Both protocols assume the use of a smart phone as the main user de-
vice to store tickets or travel credit. We see this research as a step
towards investigating how to design commonly used infrastructure
in a privacy friendly manner in practice, paying particular attention
to how to deal with failures.

1 Introduction

At the turn of the century, several countries transitioned from paper based
tickets for public transport to electronic forms of ticketing, either for pub-
lic transport in a metropolitan area like the London Underground (the so-
called Oyster card3) and Hong Kong public transport (the Octopus Card4),
or for all public transport in an entiry country (like the OV-chipkaart5 in
the Netherlands). These e-ticketing systems are typically based on contact-
less smart cards. Some of these systems exhibit significant weaknesses in
terms of security [11] (because the smart cards used need to be cheap and
therefore contain weaker security features) and privacy [14] (because these
smart cards often contain a unique fixed identifier [12, 19]).6

? Version: Fri Jan 22 10:58:06 2021 +0100 / arXiv / ov-pet.tex
3 https://oyster.tfl.gov.uk/
4 https://www.octopus.com.hk/en
5 https://www.ov-chipkaart.nl/
6 Note that these security weaknesses are not necessarily easily exploitable in prac-

tice [24].

https://oyster.tfl.gov.uk/
https://www.octopus.com.hk/en
https://www.ov-chipkaart.nl/

In this paper we focus on the privacy issues in e-ticketing for public
transport. This problem has been studied in the past for e-ticketing in par-
ticular [15, 16], but also for related problems like electronic toll collection
systems [10] or more general road pricing systems [17]. Compared to the
work of Heydt-Benjamin et al. [15, 16] (which relies on anonymous e-cash
and anonymous credentials as building blocks) we use (partially) blind sig-
natures instead to create either unlinkable travel tickets or unlinkable travel
credit. This makes the protocols less complex and more efficient as there is
no need to spend several e-cash coins to pay the exact fare. Moreover, our
approach is inspired by the work of Stubblebine et al. [22], which studied
unlikable transactions in practice, with a particular focus on dealing with
failures.

We present two privacy friendly e-ticketing protocols for public trans-
port. The first protocol emulates paper based tickets. The second protocol
implements a pay-as-you-go approach, with fares determined when users
check-in and check-out. Both protocols assume the use of a smart phone as
the main user device to store tickets or travel credit, without relying on any
tamper-proof component. We wish to stress that this means that we put no
trust assumptions on the device the user uses to pay for public transport.
In both cases we pay particular attention to possible failures and how to
graciously deal with them.

The remainder of the paper is structured as follows. We introduce the
system model, requirements, threat model and other assumptions in sec-
tion 2. We discuss protecting privacy in practice in section 3, especially the
assumption to use smartphones as the primary user device. Section 4 dis-
cusses the primitives used in our protocols, that are then presented in section
5 and section 6. Our conclusions are presented in section 7.

2 Problem statement

We assume a system that supports many modes of transportation. This means
we distinguish several public transport operators (PTOs) that offer public
transport services. Users (U) travelling by public transport make trips that
may consist of several legs each using a different mode of transportation
offered by a different PTO. Inspectors on the trains and busses verify that ev-
erybody on board has a valid ticket. A central public transport clearinghouse
(PTC) provides the public transport ticketing infrastructure (or at least the
APIs to connect to this infrastructure), and distributes financial compensa-
tion to the PTOs for services rendered. Separate payment service providers
(PSPs) handle payments from banks initiated by users.

2

Users have a digital token that enables them to travel by public trans-
port. Instead of relying on a smart card (to store tickets or other information
needed to verify whether someone is entitled to a certain mode of pub-
lic transportation) we assume most people own a sufficiently modern and
capable smartphone, and are willing to use it for public transport (we will
discuss this further in section 2.2). Any entity (in particular any of the PTOs)
can offer an app for this purpose.

2.1 Requirements

Any public transport ticketing scheme for the model outlined above should
satisfy the following requirements.

– Users should pay for trips, where the fare depends on when and where a
user travels, the distance travelled, and whether the user has subscribed
to a public transport pass that offers reduced fares (during certain times
of the day, or on certain tracks).

– Public transport operators should receive compensation for their ser-
vices, which (partly) depends on all the actual trips made bu users that
traversed part of their infrastructure. In other words, the amount of
compensation can depend on how many passengers travelled on which
particular track on which day.

– The scheme should be privacy friendly: no party should be able to link
any number of trips to each other (as belonging to one, unknown, per-
son) or to any one particular person. In other words, the previous re-
quirement only allows the PTO to learn how many passengers travelled a
certain track at a certain time of the day, not who they were, or whether
they were the same people that set out on some other trip earlier.

– The scheme should be secure: it should prevent or detect fraud by users
(e.g. creating fake tickets, paying less than the required fare) and pre-
vent fraud by operators (e.g. claiming more trips than actually took
place over their infrastructure). Travelling without a valid ‘ticket’ should
be discouraged by regular inspection and appropriate fines.

– The scheme should be fast enough to process large volumes of travellers
at peak hours. Checking travellers by conductors should be fast, e.g.,
take less than a second. Checking in or out to enter or exit public trans-
port (like in the London Oystercard system or the Dutch OV-chipkaart
system) should take only a few hundred milliseconds at most.

We note that the timing constraints mentioned in the last requirement are
important in practice, but performance measurements are unfortunately out
of scope for this paper.

3

2.2 Threat model

We assume users may try to actively defraud the system (travelling by pub-
lic transport while paying less than required or nothing at all), if the prob-
ability of being caught is low. They will root their smartphones and install
fraudulent apps if there is a clear benefit. This means that in terms of smart-
phones we cannot assume any trusted environment to store secrets (we rule
out the possibility that a public transport app gets to use a secure enclave on
the smartphone). In other words: the device and the app are untrusted from
the PTO perspective. This means our system is weaker than one relying on
smart cards that can be used to store secrets and keep them confidential,
preventing their users from accessing (and perhaps copying) them.

We assume banks, PSPs, PTOs and the PTC will actively (and collec-
tively) try to break privacy and recover trip details from their users, using
any information they can get their hands on. They are untrusted from the
user perspective.

We do assume however that PTOs do not try to break privacy by writing
their apps in such a way that the information provided by the user through
the app, but shielded from the central PTO servers by the protocol, is sur-
reptitiously sent to the PTOs regardless. The PTOs could in theory do this.
We can mitigate this by offering third party (open source) apps, requiring
external audits and analysis, or through the vetting procedures enforced by
the smartphone app stores. (This, by the way, is another reason why we
cannot assume that the smartphone or app can store secrets.)

We assume that PTOs will try to defraud the system and claim more
compensation from the PTC than warranted. The PTC is trusted, in the sense
that it does not favour one PTO over the other, and that at the of the day
all money received must be spent (on compensating PTOs or on the cost of
running the clearinghouse and its ticketing infrastructure). Audits can be
used to ensure this.

We assume the cryptographic primitives used cannot be broken, and that
entities keep their secrets secret (unless they could benefit from not doing
so).

2.3 Other assumptions

We assume secure, i.e. authenticated and encrypted, connections between
all entities. Clearly the user is not authenticated. We assume fares are course
enough to ensure that the price associated with a trip does not reveal the
actual trip itself. For example, trip prices could be set at fixed amounts for
every ten kilometres travelled, with a fixed ceiling fare for all trips longer

4

than a certain distance. (Care should be taken to ensure that for every pos-
sible fare the number of different trips with that fare is sufficiently high to
guarantee a reasonable degree of anonymity.)

We also assume that local device to device communication is using only
ephemeral identifiers (if any) to prevent linking devices over longer peri-
ods of time. This means WiFi or Bluetooth are using properly randomised
MAC addresses, or random anti-collision identifiers if NFC is used. This also
implies that we assume apps do not have access to any other permanent,
unique, device specific identifier.7

For normal (long range) internet connections between the smartphone
and the servers of the other entities we cannot make such an assumption:
it is rather trivial to track users based on their often fixed IP addresses. We
discuss this in the next section.

3 Protecting privacy in practice

Protecting privacy in practice is a major challenge, for several reasons. First
of all, practical considerations may rule out certain solutions or may make it
impossible to make simplifying assumptions. For example a complex tariff
system may lead to a situation where particular fares correspond to one
or perhaps only a few particular trips. This is not the case when the tariff
system is very simple (e.g., two or three different zones in a metro network).

This issue is exacerbated when people are forced to pay for individ-
ual trips separately (see the first protocol that emulates paper tickets in
section 5) while the payment protocol is not anonymous. Except for cash
payments (and certain privacy friendly crypto currencies perhaps) existing
and widely accepted payment methods (credit card, debit card or e-banking
apps) are account based and thus identifying.

Even if this were not the case, the protocols detailed below rely exten-
sively on Internet connectivity that by its very nature is identifying. Strate-
gies to shield the user’s IP address from the other parties involved in the
ticketing system (like using Tor [9] or mix networks [7])) should be used,
but are probably impractical to use extensively and reliably at scale. Then
again, letting users use a trusted VPN would solve most of the problems as
this would hide all users behind the IP address of the VPN provider. We will
have something more to say about this later on.

7 The operating systems of these smartphones should, could and sometimes actually
do prevent apps from having access to such a persistent identifier. Preventing the
app itself to generate such an identifier itself and store it locally is of course not
possible (although audits may reveal this).

5

The biggest paradox, from a privacy perspective, is of course the use of a
smartphone as the basic user device for buying, storing and using tickets. On
the one hand it is an entirely personal device, capable enough to orchestrate
the interactions with all other parties using complex privacy friendly proto-
cols, with the possibility of a nice user friendly interface to boot. Moreover,
people expect their smartphone to support their day to day activities, like
paying in shops, these days. This makes a smartphone the natural, in fact
unavoidable, choice as the user device.8 But clearly the use of smartphones
comes with severe privacy risks. By design, mobile phone operators know
the approximate location of all their subscribers (and can zoom in using
a process called triangulation). With GPS, standard on smartphones, loca-
tion is also readily available to the phone itself as well as all apps that were
granted permission to location services. With the increasing complexity of
smartphones and the huge app ecosystem, users have very little reason to
trust their smartphone or to expect it to protect their privacy.

With these caveats in mind we follow a pragmatic approach in this paper,
aiming for a strong enough technical protection of privacy under reasonable
assumptions. No coalition of PSPs, PTOs and the PTC can link trips9 to users,
beyond what can be ascertained by observing the financial transactions of
the users, knowledge of the tariff structure, and (partial) apriori knowledge
of the travel patterns of a subset of these users. We do not solely rely on tech-
nical mechanisms however, but also depend on legal, societal and market
incentives to keep the different stakeholders in check. All measures com-
bined should ensure that the cost of obtaining privacy sensitive information
in general outweighs the (business) benefit.

The tacit assumption in this work is that it is much safer, from a privacy
perspective, to collect personal data locally on the user device, instead of
centrally on the servers of the service providers. Clearly a malicious public
transport app can collect and upload all this personal data surreptitiously.
The assumption is that this cannot or will not happen.

4 Primitives

Our protocols for privacy friendly ticketing for public transport are based
on three primitives, that we will describe in this section: partially blind sig-

8 Although a fall back option should always be available those people that cannot
afford to own a (recently modern) smartphone.

9 Either as bought in the protocol that emulates paper based tickets, or as implied
by check-in and corresponding check-out events

6

natures, attribute based credentials, and a mechanism to implement a form
of privacy friendly payment with receipt.

4.1 Partially blind signatures

Blind signatures were introduced by David Chaum almost four decades ago
[6], as the fundamental building block to implement a form of untraceable
digital cash. His proposal was to represent each digital coin as a unique se-
rial number blindly signed by the issuing bank. The unique serial number
embedded in the coin would prevent double spending, while the blind sig-
nature over the coin would guarantee both untraceability (by not knowing
which coin was signed) and unforgeability (by signing the coins in the first
place).

In the protocols below we use a generalisation of this idea called partially
blind signatures, introduced by Abe and Fujisaki [1] and further investigated
and optimised by Abe and Okamoto [2, 20]. In a partially blind signature
scheme the messages to be signed consists of a secret part (only known to
the user) and a public part (known to both the user and the signer). Issuing
a blind signature involves an interactive protocol between the user and the
signer, where the user blinds the secret in order to hide it from the signer.

In the protocols below we use these partially blind signatures to issue
receipts and/or tickets where the receipt number or the trip details are kept
secret. Because such receipts and tickets are only used once (in fact, we need
to enforce that they are not used more than once), using simple signatures
instead of full blown attribute based credentials (to be discussed further
on) suffices. When describing our protocols we write [secret |public]k when
issuing a blind signature over secret part secret and public part public (us-
ing private key k of the signer to sign it), and write [secret |public]k when
subsequently using it (revealing both the secret and the public part).

Two faces of blindness Chaum explained blind signatures intuitively by
showing how a blind signature could be implemented in a traditional, non
digital, setting using carbon paper inside paper envelopes. To obtain a blind
signature on a secret message, a user could send the message inside a sealed
envelope to the signer, with the inside of the envelope covered with carbon
paper. The carbon paper ensures that if the signer signs the envelope from
the outside, the carbon paper transfers this signature to the secret message
inside the envelope. When the signer returns the still sealed envelope (prov-
ing it didn’t see the message) all the user needs to do is to open the envelope
to obtain the blindly signed message.

7

This intuitive explanation clearly shows that the message stays hidden
from the signer. But this by itself is not enough to prevent a bank from trac-
ing a digital coin signed this way, even if it prevents the bank from learning
its serial number. In fact, if the bank signs each envelope in a slightly differ-
ent way, and remembers which way of signing it used to sign each envelope,
it can link actual signatures on messages to the particular envelope on which
he put the exact same signature.

In other words, in order to guarantee untraceability (sometimes also
called unlinkability), blind signatures need to guarantee two separate blind-
ness properties:

message hiding The message to be signed is hidden from the signer.
signature unlinkability Given a final blind signature on a message, the

signer cannot determine when it generated that particular signature.

To see that these are indeed different properties, observe that a scheme
where signing the cryptographic hash of message m (without revealing m
itself to the signer) is message hiding but clearly not unlinkable. In the pro-
tocols below we rely on both these properties to hold. Most (partially) blind
signature schemes in fact satisfy both of them. This is in particular the case10

for the schemes of Abe and Okamoto [2, 20] (but not for the blind signature
scheme underlying the Idemix attribute based credential scheme [18, 4]).

Dealing with failures In the protocols below, partially blind signatures are
used to represent receipts received after a successful payment, or as pub-
lic transport tickets received in exchange for a valid receipt. In both cases
a kind of ‘fair exchange’ [21] is required between a user and a signer, and
there should be a way to recover from errors in case messages are dropped,
connections fail, or system components crash, to ensure that either the ex-
change takes place completely, or that the exchange is cancelled and both
parties return to the state before they started the exchange.

Recall from section 2.2 that we assume users to be malicious while ser-
vice providers (the signers in this case) are honest (but curious). This as-
sumption makes it possible and relatively easy to implement a fair exchange
in this particular case. Details will vary depending on the particular blind
signature scheme used.

10 The (partial) blindness property is defined using a game where two messages m0

and m1 are randomly assigned to two users (based on a random bit b). Each user
then requests a blind signature on its message from the signer. The signer is then
given both signatures (and for each the corresponding message) and asked to
guess the value of b. If it could distinguish which signature corresponds to which
user, it could for sure determine the value of b.

8

For example, the partial blind signature scheme of Okamoto [20] con-
sists of the following phases when creating the blind signature [s | p]k .

1. The user blinds the secret part s using some randomness ru as b =
blind(s, ru) and sends this to the signer.

2. The user proves to the signer that she knows s and ru used to construct
blind(s, ru) using a three messages zero-knowledge protocol. The sign-
ing protocol aborts if this proof fails.

3. The signer generates some randomness rs and creates an intermediate
signature i = intermediate(b, p, rs, k) using its private key k over the
blinded information b received from the user, the public part p of the to
be signed message, and the randomness rs it just generated. The signer
sends this intermediate signature to the user.

4. The user transforms this intermediate signature i to the final partially
blind signature [s | p]k . The user acknowledges this to the signer

Both the user and the signer keep a record of the values of all local variables
used and messages exchanged during the signing protocol, and keep track
of when they aborted the protocol. Current values of local variables must
be safely stored before sending any message that depends on them. If both
parties successfully complete the protocol, both can destroy the record for
the protocol.

Observe that the only dispute that can occur is when a user claims not
to have received a blind signature in return for a payment or a receipt.11

Then the following cases have to be considered.

– If the signer aborts before sending i = intermediate(b, p, rs, k) (the in-
termediate signature), then the protocol can be restarted from scratch.
This results in a different blind signature, possibly for a different blind
secret input s, but the same public input p. But since it is guaranteed
that the sender never sent the intermediate signature, we are certain
the user was never able to obtain a blind signature in the aborted run.

– If the signer aborted after generating the intermediate signature i =
intermediate(b, p, rs, k) (and this intermediate signature may or may not
have been received by the user), then the protocol must be picked up
from this point, with the user using the stored values for the variables
used in step 1 and 2 (which should exist by assumption that local vari-
ables must be safely stored before sending messages that depend on

11 This uses the fact that the signer is honest. The idea is that if the signer claims
not to have received the payment or the receipt, then any clearing and settlement
of the payment or use of such a receipt will be detected later, and would lead to
legal measures.

9

them. This means that the previously generated intermediate signature
intermediate(b, p, rs, k) is sent to the user. This results in possibly a dif-
ferent blind signature, but for the same blind secret input s and same
public input p that were used in the aborted run.

We conclude that the above sketched dispute resolution protocol allows the
user to obtain a valid blind signature of her choice (if the dispute resolution
protocol itself does not abort of course), while guaranteeing that a (dis-
honest) user is never able to obtain two different blind signatures for two
different values s and s′.

4.2 Attribute based credentials

Partially blind signatures allow the user to hide (part of) the contents of a
message to be signed, but must always reveal the full contents of the signed
message to allow the signature to be verified. This means that such signa-
tures only break the link between the signing and the verification of the
messages, meaning that the act of signing and the act of verifying is unlink-
able. Unfortunately, any two acts of verification can still be linked (using
the unique data embedded in each signature).

For so-called multi-show unlinkability full blown attributed based cre-
dentials are required [18, 4]. We will not go into the details here, but only
describe the functionality offered by such credentials, and the privacy prop-
erties they entertain. Such attributed based credentials are used in the pro-
tocols below to implement travel passes and seasonal tickets that offer re-
duced fares and that, by their very nature, are on the one hand tied to a
particular person while on the other hand need to be presented continually
to claim a reduced fare.

An attribute based credential is a secure container for one or more at-
tributes a1, . . . , am. Credentials are bound to a particular person, and the
attribute(s) it contains describe certain properties of that person. (In the
current context, it describes the eligibility to certain fare reductions, for ex-
ample because the person is more than 65 years old, or because the person
is a student.) The values for the attributes are negotiated by the requesting
person and the issuer I (under the assumption that the issuer knows or can
verify that a particular property holds for the person to which the creden-
tial is being issued). The issuer also signs the credential, to prevent fraud.
We write CI (a1, . . . , am) for the resulting credential that the person obtains.
Typically the credential also contains a hidden private kU key known only to
the user that is hidden from the issuer when the credential is being issued,
somewhat similar to how partially blind signatures work. Tying this private

10

key to the credential and requiring its use when showing the credential later
(see below) aims to prevent users from sharing their credentials to commit
fraud (e.g., when a student allows her younger, non student, brother to use
her credential to obtain a reduced fare ticket). We note that such techniques
to bind people to their credentials are not fool proof [4].

To prove a certain attribute, the user engages in a so called interactive
showing protocol with a verifier using one or more of such credentials. This
showing protocol is typically selective: the user can decide which attributes
to reveal to (and which ones to hide from) the verifier. This means that
the verifier never gets to see the full credential, which would be a bad idea
anyway as every credential signature is unique and therefore would allow
subsequent uses of the same credential by the same user to be linked. As we
want multi show unlinkability, the user and the verifier instead engage in an
(interactive) zero knowledge protocol where the user proves to the verifier
that she owns a credential signed by a certain issuer, containing a selection
of the revealed attributes Ar ⊆ {a1, . . . , am}. This proof also requires the user
to know the embedded private key kU (without revealing it of course). This
reveals the issuer and the attribute values, and nothing more, to the verifier.
We write kU, CI (a1, . . . , am)↔ I , Ar ⊆ {a1, . . . , am} (where the left hand side
shows the input of the user, and the right hand side shows what the verifier
learns (provided it knows the public key of the issuer needed to verify the
proof).

4.3 Privacy friendly payment with receipt

A basic mechanism used throughout our protocols is the possibility to pay a
certain fare f to a payment service provider (PSP) and to receive a receipt
R for this payment in return.12 The receipt can subsequently be used at a
(public transport) service provider to pay for transport. The idea is that such
a payment mechanism can be implemented in many different (more or less
privacy friendly) ways, with only the receipt being standardised for use in
the protocols below.

To maximise privacy protection in case the payment itself is less privacy
friendly, the receipt R = [rs | f]kPSP

is a blind signature over the public fare
f paid as well as a blind receipt sequence number rs provided by the user,
signed by the payment service provider PSP that processed the payment. To
make explicit at which particular service the receipt can be used, the name of

12 The PSP could be your bank (provided it knows how to issue receipts as explained
below), or a separate entity that lets bank process the payment and generates a
receipt when the payment was successful.

11

the service can be added, blindly, by the user as well. The user should ensure
that each receipt has a different sequence number. This sequence number
is used to prevent reuse of receipts: the sequence numbers in redeemed
receipts are recorded as spent. (Which also shows why users have every
reason to ensure that sequence numbers are indeed different.)

Using a blind signature in this way guarantees that users cannot create
fake receipts, while the receipt sequence number cannot be linked to the
payment (and hence to the user making the payment). Users are expected
to properly protect their receipts and keep them securely stored until use.

In the protocols below, the paid fare is first collected by the PSP, then for-
warded to a public transport clearinghouse (PTC) that later redistributes the
paid fares to the PTOs based on submitted receipts the PTOs have collected.
Each fare is recorded by the payment service provider (PSP) as a separate
payment transaction for the specified amount with the clearinghouse as the
recipient. If the payment transaction involves the bank account of the user
(see below), care should be taken to not include the bank account details of
the user in the transaction towards the clearinghouse. This happens more or
less automatically if the PSP is a separate entity independent of the bank (in
which case the transaction will transfer the fare amount from the user bank
account to that of the PSP). If the bank itself serves as PSP, an internal bank
offset account should be used that aggregates individual payments to the
PTC with only the daily or weekly totals being transferred to the actual PTC
account. This prevents the clearinghouse from learning the bank account
(and hence the identity) of all people travelling with public transport, in-
cluding how often they travel and an indication of the distance they travel
(given that the fare is often a good indication of this).

One possible way to implement payment when using a smartphone based
public transport ticketing app is to redirect the payment phase to a separate
payment app on the user’s smartphone, and let PSP forward the resulting
receipt back to the transport ticketing app. A more privacy friendly option
is to allow travellers to pay with cash at designated kiosks at public trans-
port stations. Or to support the payment of fares using some kind of online
privacy friendly payment scheme (like Digicash [8], or Zcash [3]).

4.4 Notation

When describing the knowledge acquired by parties involved in the (figures
depicting the) protocols below, we use expressions like (a, b, c) to denote
that a party learns the values a, b, and c, and moreover learns that they are
linked and thus belong together. Values in different tuples are not linked,
but can however be correlated based on their actual values: if a party learns

12

learns (rs, f)

[T, ts | f]kPTO

[T, ts | f]kPTO

[T, ts | f]kPTO

[rs | f]kPSP

sender anonymous

not anonymous

knows (U , Û , f , T, rs, ts)

learns (f , U , Û)

f

kPSP

[rs | f]kPSP

learns (T, ts, f)

kPTO

[rs | f]kPSP

learns (Û , rs, f), (T, ts, f)

Fig. 1. Protocol emulating paper tickets

a specific fare f was paid by user U (i.e., it knows (U , f)) and later sees a
ticket with that particular fare for a trip T (i.e., it also knows (〈r, d〉, f), then
it may conclude user U travelled route r on date d. We use Û to denote the
possibly static IP network address of the user visible to the other parties.13

5 Solution 1: Emulating paper tickets

One way to achieve privacy in public transport ticketing is to emulate the
traditional use of paper tickets in public transport. The basic idea is to first
buy the ticket online, and subsequently use it for public transport later, in
such a way that the financial transaction used to pay for the ticket can-
not be linked to the actual trip being made. The protocol assumes that the
public transport app on the user’s smartphone contains a database with all
possible trips that can be made by public transportation, together with the
corresponding fares to be paid.

5.1 Detailed protocol

The protocol, graphically represented in figure 1, runs as follows.

13 This equals the VPN server address or the Tor exit node address in case any of
these services are used by the user.

13

Phase 1: Obtaining a ticket

– The user selects the route r she wants to travel, and the day d on
which she wishes to travel. This defines the trip T = 〈r, d〉.

– The user calculates the fare f = fare(T) for the trip. (Incorrectly
calculated fares will be detected later.)

– The user starts a payment for this fare, and receives a receipt R =
[rs | f]kPSP

in return. (See section 4.3 above for details.) The paid
fare is credited to the PTC account.

– The user sends this receipt to the PTO. The PTO verifies the signa-
ture on the receipt, and submits it for clearing and settlement to the
PTC. The PTC also checks the signature on the receipt, and checks
whether a receipt with sequence number rs has been submitted be-
fore. If so, the receipt is rejected. Otherwise, the PTC accepts the
receipt and records rs as submitted.

– The user engages in a partially blind signature issuing protocol with
the PTO in order to obtain a ticket T for the trip. The user blindly
provides the trip T as well as a blind and fresh ticket sequence num-
ber ts. The PTO provides the (unblinded) fare f present in the re-
ceipt it received in the previous step. As a result the user receives
the ticket T = [T, ts | f]kPTO

, signed by the PTO.

Phase 2: Travelling by public transport Public transport operators need
to verify that all users that travel with them have a valid ticket, with
the correct fare. The traveller and the ticket inspector engage in the
following protocol for that purpose.

– The user sends the ticket T = [T, ts | f]kPTO
(revealing all its con-

tents) to the ticket inspector. One way to do so in a sender anony-
mous fashion is to let the public transport app display the ticket as a
QR code on the smartphone display, and let the inspector scan this
QR code. Many public transport operators use similar schemes to
inspect ‘home print’ paper based tickets.

– The ticket inspector verifies the signature on the ticket, whether
fare f is correct for trip T = 〈r, d〉, whether the ticket sequence
number ts is not invalidated, whether the date d in trip T is today,
and whether the route r in trip T covers the leg (of the total trip)
where the ticket inspector asks the user to provide a ticket. If the
user cannot provide a valid ticket, a fine is issued.

– The ticket inspector verifies the ticket with the PTO. The PTO also
checks the signature on the ticket, and checks whether a ticket with
sequence number ts has been submitted before. If so, the ticket is
rejected. Otherwise, the PTO accepts the ticket and records ts as

14

submitted. (If trips consist of several legs, the same ticket should be
accepted for different legs of the trip.)

Note that the fact that ticket sequence numbers must be verified and in-
validated in real time implies that the equipment of the inspector must
be online. As tickets are only valid for a single day, PTOs may choose
to forfeit on this strict form of checking (hence relaxing system require-
ments), relying on the fact that ticket can still only be used (perhaps
multiple times) on a single day.

Phase 3: Clearing and settlement PTOs are reimbursed based on the pay-
ment receipts received in phase 1, after submitting them to the clearing-
house PTC. For each receipt, the PTC verifies the signature, and verifies
that the sequence number in the receipt rs is yet unclaimed. If so, the se-
quence number is recorded as claimed, and the PTC proceeds to pay the
fare specified in the receipt to the PTO. Otherwise the claim is rejected.

5.2 Analysis

To what extent does this solution fit the requirements set out above?
Users obviously pay have to for their trips, and the fare depends on the

distance travelled. Inspectors and sufficiently high fines are necessary to
keep users honest and disincentivise travelling without a valid ticket.

Public transport operators get paid based on the payment receipts they
collect when issuing tickets. To get (statistical) information about actual
trips made they need to have enough conductors to check the tickets of all
their passengers when travelling (as this is the only time when the actual
trip details are revealed). If multiple PTOs are involved in a particular trip,
proper reimbursement can only be achieved if the app splits up the trip in
different legs, one for each PTO the user needs to travel with.

The level of privacy protection is reasonable, depending on the prop-
erties of the network being used. The protocol prevents trip details to be
linked to users, in the following sense: for all the tickets a particular PTO
sells for a particular fare f it learns the set of IP addresses of users that
bought a ticket for this particular fare on the one hand, and the set of trips
made for this fare (through inspection) on the other hand, but it can never
link a particular user address to a particular trip.

In the setup described, the PSP and PTOs could however learn how many
tickets you buy, and for which amount (ie for which distance), if they would
try to identify you based on your (fixed) IP address. Note that this problem
becomes much less significant if the payment receipts issued by the PSP can
be used for many different types of purchases, i.e., if they are used as a
type of generic digital currency. Even if PTOs and PSP collude, they would

15

not be able to link users with actual trips made, but timing analysis linking
payment times with ticket issuing times could be used by the PTO to be more
certain about your identity. If you usually buy your tickets on the same day
or the day before your trip, your PTO could learn when you travel. The
PTO could learn whether you are using public transport a lot, or not. Many
short trips on the same day may reveal you are in a city; certain patterns of
distances may correspond to popular tourist routes (and hence reveal the
city you are in). This limited level of privacy protection may already be a
threat for people that engage in protests or civil disobedience, like the Hong
Kong protesters or the Extinction Rebellion activists. All these problems can
be avoided if users can use cash to buy tickets, at special digital kiosks.

Communication between the user and inspector is sender anonymous.
This means ticket inspection reveals no personal information.

The system is secure: tickets are only issued by the PTO when given a
payment receipt for a certain amount, signed by a bank. Only banks can cre-
ate such a signed proof of payment. The amount paid for a ticket is checked
by the conductor when inspecting a ticket. Only PTOs can create a valid
ticket (signed in partially blind fashion). This signature is also checked by
the conductor. Finally the conductor checks whether the ticket entitles a
person to travel when and where the conductor inspected her ticket. Failure
of one of these tests means the ticket is invalid. The sequence number of the
ticket (embedded to guarantee one-time use) is checked in real-time with
an online database of sequence numbers of already inspected tickets. If the
sequence number is already in the database, the ticket is invalid. Otherwise,
the sequence number is added to the database.

5.3 Dealing with failures and disputes

Dealing with failures is always a challenge, but this is particularly the case
in privacy friendly protocols where often the link between a user and her
actions is deliberately broken. This means extra care needs to be taken to
create some evidence that allows an entity to challenge a failure, while not
eroding the privacy of the users. Below we describe some possible failures,
and how they could be dealt with. See also [22] for additional measures
that can be taken, and the general strategy to deal with failures during the
issuing of blind signatures (like users not receiving a payment receipt af-
ter payment, or not receiving a ticket after submitting a payment receipt)
outlined in section 4.1.

The user wants to cancel a payment The user can return the payment re-
ceipt (which contains a unique sequence number) to the PSP to rewind

16

the transaction. The PSP then forwards the payment receipt to the PTC
signalling not to accept this payment receipt when a user requests a
ticket to be issued. Also, the transfer of money from the bank to the
PTC will be reversed.

The user receives a valid but incorrect ticket This can happen if the user
entered the wrong trip details, or if some internal error caused the
wrong ticket to be issued. The user can ’return’ the ticket to the PTO, es-
sentially running the showing protocol normally run when a conductor
inspects the ticket. This invalidates the ticket. Using the same payment
receipt she can start restart the issuing step, now with the correct trip
details (assuming the fare is the same).

The user wishes to cancel a ticket issued to her After ’returning’ the ticket
the PTO as described in the previous case, she can then proceed to can-
cel the payment to the bank.

The user receives an invalid ticket This is more tricky. Ideally the issuing
protocol should guarantee that a valid ticket is issued. If this is impossi-
ble, at least the issuer should somehow be able to tell, from the logs, that
the user indeed did not receive a valid ticket. Otherwise bogus claims
for invalid tickets could be submitted. This all very much depends on
the particular issuing protocol used.

A valid ticket fails conductor inspection Ideally this should not happen.
However, the user or conductor device may malfunction, and the com-
munication between the two devices may be erroneous. If the ticket is
valid, and the user app operates correctly, the user should at some point
be able to convince the PTO she had a valid ticket when travelling.

The app crashes or malfunctions This can be mitigated by ensuring that
the app can be reinstalled without loosing any stored tickets, or turn-
ing them invalid. This requires operating system support, e.g., allowing
data to be restored from data associated with a previous install of the
application.

The user looses or deletes a ticket There is no way to recover from this
situation. (Loosing a ticket could happen when inadvertently deleting
the whole app together with all its data.)

5.4 Variations and extensions

Using actual paper tickets, or smart cards Instead of relying on users hav-
ing smartphones, tickets could actually be printed on paper,14 or be stored

14 This may sound pedantic, but in fact when trying to emulate something digitally
based on how it was done physically, one always has to consider the option that
the original, physical, approach simply works better.

17

on contactless smart cards instead. In this case, a ticket kiosk needs to be
used to allow users to select the ticket they need, allow them to pay (by
cash or card), and to print the ticket or issue the ticket to the smart card. In
the first case, the ticket (with its signature) is printed as QR code, which the
inspectors can scan with their smartphone. In the second case, inspectors
need to carry NFC enabled smartphones that allow them to scan the smart
card and read the ticket (with its signature) from the smart card. This is
certainly possible even with cheap smart cards (as it is not involved in any
complex cryptographic operation: the inspector checks the signature locally
on the device, and the blind signature is generated by the kiosk where the
user buys the ticket). Paper tickets can also be obtained at home through
a website (web app) that essentially emulates the functionality of the user
smartphone app with respect to obtaining a ticket, but at the end of this
phase prints the ticket as a QR code instead of storing it.

Supporting seasonal tickets Reduced fares for public transport pass sub-
scribers or holders of seasonal tickets can be catered for in a privacy friendly
manners using attribute based credentials, in which case the attributes in
the credential encode the fare reductions the holder is entitled to. The user
can obtain such a credential using a protocol similar to that of buying a sin-
gle ticket, except that in the last step the PTO issues a full blown credential
instead.15

The issuing protocol would run like this.

– The user selects which type of seasonal ticket she wishes to buy. This
defines a set of attributes a1, . . . , am that define which type of reduction
she is entitled to.

– The user calculates the total price f for this seasonal ticket.
– The user starts a payment for this amount, and receives a receipt R =
[rs | f]kPSP

in return. (Again see section 4.3 above for details.) The paid
amount is credited to the PTC account.

– The user sends this receipt to the PTO. The user also sends the list of at-
tributes a1, . . . , am to the PTO. The PTO verifies that the price f present
in the receipt corresponds to the amount due for this particular set of
attributes. The PTO verifies the signature on the receipt, and submits it
for clearing and settlement to the PTC. The PTC also checks the signa-
ture on the receipt, and checks whether a receipt with sequence number

15 A simple blind signature as used for ordinary tickets will not do as the credential
will have to be shown multiple times while retaining the desired privacy proper-
ties.

18

rs has been submitted before. If some of these tests fail, the receipt is
rejected. Otherwise, the PTC accepts the receipt and records rs as sub-
mitted.

– The user and the PTO engage in a credential issuing protocol for this set
of attributes. As a result the user receives the credential CPTO(a1, . . . , am),
signed by the PTO.

Such a credential can subsequently be used to travel by public transport
with a reduced fare. Interestingly enough, the credential is actually irrele-
vant when buying a ticket (except that the user needs to apply the correct
fare reduction based on the particular credential she owns), because the
PTO blindly issues a ticket for a particular fare without learning the actual
trip the ticket is for. Correctness of the fare paid is only verified at inspection
time, when the inspector gets to see the full ticket containing both the trip
and the corresponding fare. To prove that the user is entitled to a reduced
fare, the inspection protocol needs to incorporate verification of the neces-
sary attributes in the credential as well. As the original inspection protocol
is sender anonymous, the credential verification protocol needs to be sender
anonymous as well. This can be achieved by using a fully non-interactive cre-
dential showing protocol. Idemix [18], for example, uses a non-interactive
proof of knowledge, but relies on a verifier generated nonce to guarantee
freshness of the proof. Such a verifier generated nonce would be hard to
incorporate in our setting, as it would require the equipment of the inspec-
tor to send something to the user device (which would either break sender
anonymity or would require cumbersome approaches where the user needs
to also scan a QR code on the inspector device). Luckily there is a way out
of this dilemma: we can use the cryptographic hash of the randomly cho-
sen ticket sequence number ts already present in the ticket as the nonce
instead. The fact that in this case the nonce is generated by the prover is not
a problem but actually a feature: the proof is now neatly tied to the ticket
for which a reduced fare is claimed, and the original ticket inspection pro-
tocol already ensures that the same ticket sequence number cannot be used
twice. This forces the user to pick a fresh sequence number.16

A problem with the approach outlined above is that there is nothing
inherently preventing users to pool and share a single credential (offering
reduced fares) with a group of users that each ’prove’ possession of the

16 Note that the user is by no means forced to select the ticker sequence number ran-
domly. Hashing it to derive the actual nonce to be used in the credential showing
protocol however ensures that the protocol remains secure when the underlying
credential showing protocol relies on actual randomness (and not merely fresh-
ness) of the nonce.

19

credential to the inspector when necessary. Unless the private key associated
with the credential is securely embedded in the user device (using e.g., a
piece of trusted hardware to ensure that even the device owner cannot get
access to it), this by itself does prevent such credential pooling attacks. This
is a general problem of attribute based credentials, and indeed a problem
of online digital identity management in general as securely binding actual
persons to their online credentials is hard [4].17

6 Solution 2: Pay as you go, with credit on device

A fundamentally different, and increasingly popular approach for letting
people pay for public transportation is to store credit on a contactless smart
card serving as a public transport pass. People can (re)charge their passes
at special kiosk (essentially transferring money from their bank account to
their public transport pass) and subsequently pay when entering or leaving
their chosen mode of transportation. This typically involves ‘checking in’ at
a gate or turnstile when entering the station, or on the platform or in the bus
itself, and ‘checking out’ when arriving at the destination or when changing
connections. When people check-in, a check is performed to see whether
there is enough credit left on the card. If so the location of the check-in is
recorded on the card. When checking out, this check-in location is retrieved,
and based on the check-out location the fare is computed and deducted from
the credit on the card. To detect fare dodgers that travel without checking in,
inspection on the trains or the bus is often still necessary, because it is hard to
enforce an air-tight system that forces people to check-in or check-out at all
times. The main challenge in implementing such a scheme is to ensure that
the check-out operation is performed as fast and reliably as possible (given
that at busy transportation hubs many people have to the check-out at the
same time, and that a transaction involving a contactless public transport
pass is prone to interference and failures).

If current public transportation pass systems would actually work as just
described, there would be no need to study privacy friendly forms of public
transport ticketing: if all that the cards contain is user credit, there would
not by any privacy issues with such a system. Unfortunately, this is not the
case. All systems mentioned above involve cards with unique serial numbers
that are recorded when checking in and when checking out, and stored in

17 Even embedding the private key in a secure enclave does not strictly speaking
prevent the owner of the smartphone to share the phone itself with others (al-
though it is surely not an enticing proposition to be without your private phone
for several hours).

20

a central database. As these serial numbers are static, this allows users to
be singled out and their public transportation travel patterns to be recorded
over the years. What’s worse: these passes are almost always bound to a
particular user (either because they are tied to a personal public transport
account, or simply because they were recharged using the bank account of
the user). The main reason for adding such tracing of passes is to be able to
detect fraud and block passes that appear to be spending more credit than
they should be spending based on the amounts used to charge them.

Here we aim to emulate such a credit-based system in a privacy friendly
manner, without needing to rely on tamper proof hardware or secure exe-
cution environments to prevent users from committing fraud by tampering
with the credit on their tokens (i.e., their smartphones) in their possession.

6.1 Detailed protocol

Each user maintains travel credit on their own device. As the device is not
assumed to be trusted or tamper resistant, care must be taken to ensure that
users cannot create counterfeit credit, or spend more than they have credit.
Therefore, travel credit C = [cs | v]kPTC

is represented by a blind signature of
the Public Transport Clearinghouse PTC over the secret (blinded) sequence
number cs and the known credit value v. Once the credit token is used, the
sequence number cs becomes known. In the protocol below the PTC uses
this to record the ’state’ of such a token as either checked-in or spent.

We assume in this protocol that check-in and check-out use a sender
anonymous form of communication, for example by using near field com-
munication with a randomised anti-collision identifier. The protocol runs as
follows.

Phase 1: Obtaining credit

– The user starts a payment for the amount v she wishes to obtain
credit for, and receives a receipt R = [rs | v]kPSP

in return. (See sec-
tion 4.3 above for details.) The paid amount is credited to the PTC
account.

– The user can use this receipt to add the credit to her device when
checking out (see phase 3 below).18

Phase 2: Check-in to start a trip

– The user sends her credit token C = [csi | vi]kPTC
to the check-in de-

vice.
18 A separate protocol between the user device and the PTC to add credit is also

possible, but is not discussed here.

21

kPTO

kPTC

[csi | vi]kPTC

[csi+1 | vi+1]kPTC

[csi ,`, t]kPTO

[csi ,`, t]kPTO
[rs | v]kPSP

accept/reject

sender anonymous

not anonymous

[csi+1 | vi+1]kPTC

learns
(`, t)
(csi , vi , f , rs, v, vi+1)

learns (U , Û , v)

v

kPSP

[rs | v]kPSP

learns (csi ,`, t)

[csi | vi]kPTC

f , csi , [rs | v]kPSP

[csi ,`, t]kPTO

[csi ,`, t]kPTO

learns
(csi , vi ,`, t , f , . . .
. . . , checkout location, rs, v, vi+1)

Fig. 2. Protocol “pay as you go”

– The check-in device verifies the signature on the credit token, checks
that the stored value vi is larger than some minimum credit re-
quired,19 and submits it to the PTC. The PTC verifies the signature
on the credit token, and checks whether csi is recorded as spent
or checked-in. If so, the credit token is rejected. Otherwise it is ac-
cepted and the PTC records csi as checked-in, and records the asso-
ciated value vi necessary when issuing a new credit token at check
out.

– The check-in device sends the user a check-in token I = [csi ,`, t]kPTO
,

containing the check-in location `, the check-in time t and the credit
token sequence number csi , all signed by the PTO. The PTO logs

19 This is necessary to prevent users to accrue (too much) negative credit by checking
in with hardly any credit and going on an expensive trip.

22

the tokens for bookkeeping purposes. The user stores the check-in
token.

Phase 3: Check out to finish a trip
– The user sends her check-in token I = [csi ,`, t]kPTO

to the check-out
device.

– If the user wants to add additional credit to her device, she also
submits a receipt R = [rs | v]kPSP

obtained earlier.
– The check-out device verifies the signatures on both tokens, and

validates the time on the check-in token (i.e., checks whether the
check-in time t and check-in location ` make sense given the check-
out time and the check-out location).

– Given the check-in time t , the check-in location `, the check-out
time and the check-out location, the check-out device computes the
fare f .

– The check-out device then submits the fare f, the credit sequence
number csi , and the (optional) receipt [rs | v]kPSP

to the PTC. (The
PTO signs this transfer). The PTC also verifies the signature on the
receipt, and checks whether csi is recorded as checked-in. If not, the
check in is rejected. Otherwise it is accepted and the PTC records
csi as spent. The PTC retrieves the associated credit vi (stored when
the credit token was submitted at check-in) and computes the new
credit vi+1 = vi + v − f. (Negative credit is possible, but controlled
through the credit check at check-in.)

– The user engages in a partially blind signature issuing protocol with
the PTC, using the check-out device as a relay, in order to obtain
an updated credit token Ci+1. The user provides a blind and fresh
credit sequence number csi+1. The PTC provides the (unblinded)
credit value vi+1 it just computed. As a result the user receives the
new credit token Ci+1 = [csi+1 | vi+1]kPTC

.
– The PTC proceeds to pay the fare to the PTO. (This can be done in

bulk.)
– The user stores the new credit token. The user also logs the check-in

in a local trip history (that can be consulted to resolve disputes). It
may verify locally whether the deducted fare is correct.

Phase 4: Inspection The inspector needs to verify that every person trav-
elling has a valid check-in token.

– The user sends her check-in token [csi ,`, t]kPTO
to the inspector.

– The inspector verifies the signatures on the token, validates the time
on the check-in token (i.e., checks whether the check-in time t and
check-in location ` make sense given the inspection location, and
submits the check-in token to the PTC. The PTC also verifies the

23

signature on the check-in token, and checks whether csi is recorded
as checked-in. If not, the credit token is rejected. Otherwise it is
accepted and the PTC records csi as inspected. (If this particular
token is encountered by a different inspector, on a leg of the trip
that is inconsistent with earlier inspections of the same token, then
fraud is assumed.)

Note that the fact that credit must be verified in real time implies that
the equipment of the inspector must be online, communicating with the
PTC (and not the PTO).

Phase 6: Clearing and settlement The PTO logs all check-in and credit to-
kens submitted during check out. The PTC pays the fare as soon as it
receives the check-out token and computes the new credit token. (It
may accumulate fares to pay the total amount every day or week.) The
PTO verifies the payments it receives with the logs it keeps.

6.2 Practical considerations

As discussed in the introduction of this section, the main challenge in prac-
tice of is to make check-in and check-out as fast (and reliable) as possible.

Reliability can be improved in the above protocol by adding an acknowl-
edgement message back from the user to the check-in or check-out device
whenever the check-in or check-out token have been received in good or-
der, and letting the check-in or check-out device generate an appropriate
sound as confirmation. The user device itself could confirm proper check-in
or check-out immediately after receiving the token (and sending the ac-
knowledgement), or sound an alarm when the expected token is not re-
ceived within a short timeout. But an additional message does increase the
time needed to check-in or check-out, and adds another point of failure as
well: what to do if the acknowledgement message itself is not delivered?

Check-in speed is constrained both by the real time connection between
the user device and the check-in device, and the real time connection be-
tween the check-in device and the PTC which needs to verify that the credit
token is not double-spent. This check could be made asynchronous, and the
check-in token be issues optimistically, at the expense of ramping up inspec-
tion within the public transportation system to detect people that checked
in with such a double spent credit token. Alternatively, when there are not
too many check out devices, optimistically issued check-in tokens can be re-
voked when necessary by blacklisting the embedded credit sequence num-
ber cs and sending this to all check-out devices. The check-in token itself
involves computing a basic signature over the credit sequence number sent

24

by the user device, after verifying the blind signature over the credit token.
This should not prove to be an issue in practice.

Check-out is more complex as it involves issuing a blind signature over
the new credit, where the check-out device works as a relay between the
user device and the PTC. Check-out speed can be significantly improved
by decoupling the issuing of the check-out token from updating the credit
on the user device, doing it ’lazily’ after check-out with a separate protocol
that runs between the user device and the PTC. In this case a basic check-
out token containing the fare can be issued by the check-out device, with an
ordinary signature (instead of a blind one). To protect user privacy however,
care needs to be taken to then hide the user address from the PTC to prevent
it from linking the previous credit sequence number csi to this used address
(as this allows the full trip to be linked to a particular user).

6.3 Dealing with failures and disputes

Beyond the failures and disputes for protocol 1 discussed in section 5.3, the
use of of check-in and check-out devices poses additional challenges. Also
the fact that credit is stored on the user device makes the solution more
fragile and risky for the user.

Dispute resolution depends on clear information about what happened
about the time a failure occurred. Unfortunately, due to their privacy friendly
nature, the protocols retain very little useful information by themselves.
Adding timestamps to local logs of each protocol step, by the PTC, the PTO,
and the user device will help compare logs in case of disputes (and detect
possible fraud). Creating append only logs (using hash chaining techniques)
increases their integrity, especially if occasional public commitments to the
current state of the log are recorded. A hash of the log on a user device can
be submitted when checking in and checking out, and be included in the
check in and check out token (that are signed by the PTO). This poses no
linkability as the log will be updated with every check in and check out,
provided such updates always contain some private information from the
user device (e.g. the serial number used in the next credit token).

To aid dispute resolution, the PTO could also issue a separate check-
out [csi ,`, t , f]kPTO

to the user when she checks out, containing the credit
sequence number, check-out location, time, and fare, signed by the PTO.
This allows the user to verify the correctness of the new credit token she
receives when checking out (and allows her to check that the correct check-
out information is used to compute the fare).

Check in fails If it is a communication error in the first step, the user can
try again. Otherwise, if the credit token fails to verify the user needs

25

to start a dispute resolution (if she believes the credit token should be
valid). If the credit token is accepted, but subsequent steps fail, dispute
resolution should clear the recorded serial number for the credit token
from the clearinghouse database to ensure it is valid the next time the
user checks in.

Check out fails If it is a communication error, the user can try again. Other-
wise, if the check-in token (or payment receipt) fails to verify the user
needs to start a dispute resolution (if she believes the check-in token
should be valid). If the check in token is not accepted, dispute reso-
lution needs to determine whether the user actually tried to check in
earlier, or did not. If the user did not get an error when checking in,
for sure the PTO log will contain the serial number of the current credit
token.

Fare dispute After checking out user discovers that the fare paid does not
correspond to the fare due for the trip made. The user should submit a
piece of the log with all entries involving the check in and corresponding
check out for this trip (which should follow each other immediately
in the user device log, and are thus linked through the internal hash
chain). This is then matched with the corresponding logs of the PTO
and clearinghouse. Any discrepancy can be compensated by adding it
to the current credit on the device by issuing a new credit token. This
can be done even after the user has made other, more recent, trips.

6.4 Analysis

The security analysis is similar to that of the previous protocol, as presented
in section 5.2. We therefore focus on the privacy aspects here.

A significant improvement over the previous protocol is that neither the
PTO nor the PTC obtains information about the user identity: communi-
cation with the inspector and the check-in or check-out devices is sender-
anonymous. PTOs can link check-in and check-out location (and hence trips)
to credit sequence numbers, but PTOs cannot link these to anything else (ei-
ther on their own, or when colluding with others). Credit sequence numbers
are in essence ephemeral identifiers.

The situation changes slightly when a user decides to buy additional
credit and to add it when checking out. In that case, the PTC learns also the
value v of the additional credit which can be linked to a particular user when
thew PTC colludes with the PSP and the particular credit bought is more or
less unique. This can be mitigated by allowing users only to buy predefined
values of credit, thus ensuring a reasonable anonymity set of users all buying

26

the same credit at roughly the same time. (We implicitly assume here that
a user buys credit well in advance to prevent timing correlation attacks.)

The situation also changes when the credit values stored in a credit token
are unique. This would allow the PTO to link a check-in with credit vi with a
subsequent check-in with credit value vi+1. With a bit of ’luck’ a PTO might
be able to link several trips made by the same user this way. This chain
is severed as soon as a common credit value is reached,20 or when a user
decides to travel with a different, non colluding, PTO.

6.5 Pay as you go, paying later

Given the potential benefits of ‘pay as you go’, it would especially be nice to
allow users to pay for their trips afterwards, instead of forcing them to lock
significant funds on the device itself. However, introducing a pay later option
creates a risk for PTOs as users may fail to pay their debts, so mitigation
strategies need to be considered.

The basic idea is use to the same protocol, but allowing negative credit.
The main risk is that users use their device up to the maximum negative
credit, then de-install the app from their smartphone, and then reinstall a
fresh one with a balance of zero. To counter such sybil-like attacks, rein-
stalling an app should be hard. One way to do so is to tie the install to your
device identity or app store identity. In that case the app provider or even
the app store itself could start asking questions when someone repeatedly
installs the app. But this is not as straightforward as it seems, because ide-
ally we want to allow arbitrary third parties to provide public transport apps
(to increase trust).

One idea is that any (third party) app must be ’blessed’, by the clearing-
house, with an ’admission credential’. In other words, a user can install any
app he or she desires, but all protocols outlined above first verify whether
the user has a valid admission credential. The user can obtain this creden-
tial, through the app, by registering the app with the clearinghouse.21 This

20 Under reasonable assumptions this would not be a concern in practice. Suppose
the maximum credit is €100 and fares are multiples of 10 cents, then there are
1000 different possible credit values. If there are one million users, the anonymity
set would on average contain 1000 people (although the distribution is probably
skewed with larger anonymity sets for smaller credit values). The system could
also define some default credit value options (like €25, €50, and €100) and
nudge users to always top-up their credit to these defaults. The anonymity sets
for these particular values would then be much larger.

21 However, there should be a way to tie this credential to the specific device being
used, to prevent cloning.

27

registration process requires the user to prove his or her identity (for exam-
ple using a government wide digital identity scheme). Note that relying on
such an approach is risky, as it undermines the main message that the public
transport app is privacy friendly: if that is supposed to be the case, why does
it require me to sign in with a government approved digital identity?

The admission credential is special, because it can be blacklisted: the
clearinghouse keeps information about all credentials it issued so that when
a user wants to obtain a new admission credential (because he or she claims
to have lost their phone, reinstalled the app or whatever), then the previous
admission credential becomes blacklisted. Information about the blacklisted
credential is sent to all PTOs so that when they check whether some user has
a valid admission credential (in the first step of each protocol), this will fail
for all blacklisted credentials. Note however that this will not deteriorate
the privacy protection offered by the protocols, at least not for users with-
out blacklisted credentials: for every credential that is not blacklisted, the
PTOs have no way to trace or link valid admission credentials that are not
yet blacklisted. The exact privacy properties depend on the specific method
to blacklist credentials: a naive scheme might allow the clearinghouse to
share blacklisting information about all users to the PTO to make them all
traceable. The most privacy friendly scheme doesn’t even allow blacklisted
users to be linked or identified [5, 23].

7 Conclusions

In this paper we explored options how to implement privacy friendly tick-
eting for public transport in practice. We show that this certainly possible,
with certain constraints (or issues that deserve further study, see below).
Starting point is the observation that from a privacy perspective it is better
to collect personal data locally on the user device, instead of centrally on
the servers of the service providers.

Two different approaches (buying tickets beforehand, and pay as you
go) have been studied. We show that these can be implemented with rea-
sonably good privacy properties, under reasonably practical assumptions. In
particular we show that an untrusted smartphone can be used as the ’token’
to carry tickets or travel credit. This allows third parties to provide the apps
for that purpose, which should increase the (perceived) trust of the overall
system. For the second protocol, there are rather strict requirements on the
maximum checking in and checking out time (in the order of 200-300 mil-
liseconds); actual implementations of the protocols proposed are necessary
to verify whether these requirements can be met.

28

One meta conclusion of this work is that we need an efficient, friction-
less, way to provide sender anonymity on the Internet, similar to the use
of randomised MAC addresses on local networks. A VPN is too weak (the
VPN provider sees everything its users do), yet Tor is too strong (there is no
need to protect against a NSA like adversary) given the impact on perfor-
mance. If randomised client IP addresses could be used by default to set up
a TCP connection between a client and a server, that would already provide
a tremendous boost in privacy on the Internet as servers can no longer trace
their users based on their IP address. There are some proposals for tem-
porary IPv6 addresses that partially address this issue [13], but these only
apply to larger subnets and do nothing to hide the often fixed IP addresses
of private xDSL connections.

The second meta conclusion of this work is that there is a need to make
apps (or data in apps) uncloneable, so that they can be used in similar con-
texts and with similar properties as smart cards. Moreover, there should be
a secure way to establish that the person holding the phone and/or using
the app is indeed the owner of the phone (and not someone that uses the
phone with permission of the real owner). These properties are also manda-
tory to increase the security of attribute credentials, in particular to prevent
the attributes in them being pooled or shared. This seems challenging if at
the same time we want the apps to be open source. One idea is to use either
the SIM card present in most smartphones, or to use the secure element
present in most modern smartphones.

References

[1] M. Abe and E. Fujisaki. “How to date blind signatures”. In: Advances
in Cryptology – ASIACRYPT 96 (Kyongju, Korea, Nov. 3–7, 1996). Lec-
ture Notes in Computer Science 1163. Springer, 1996, pp. 244–251.

[2] M. Abe and T. Okamoto. “Provably Secure Partially Blind Signa-
tures”. In: Advances in Cryptology – CRYPTO 2000 (Santa Barbara, CA,
USA, Aug. 20–24, 2000). Lecture Notes in Computer Science 1880.
Springer, 2000, pp. 271–286.

[3] E. Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments
from Bitcoin”. In: IACR Cryptol. ePrint Arch. 2014 (2014), p. 349.

[4] J. Camenisch and A. Lysyanskaya. “An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revo-
cation”. In: Advances in Cryptology – EUROCRYPT 2001 (Innsbruck,
Austria, May 5–10, 2001). Lecture Notes in Computer Science 2045.
Springer, 2001, pp. 93–118.

29

[5] J. Camenisch and A. Lysyanskaya. “Dynamic Accumulators and Ap-
plication to Efficient Revocation of Anonymous Credentials”. In:
Advances in Cryptology – CRYPTO 2002 (Santa Barbara, CA, USA,
Aug. 18–22, 2002). Lecture Notes in Computer Science 2442.
Springer, 2002, pp. 61–76.

[6] D. Chaum. “Blind Signatures for Untraceable Payments”. In: Advances
in Cryptology – CRYPTO ’82 (Santa Barbara, CA, USA, Aug. 23–25,
1982). Plenum Press, New York, 1982, pp. 199–203.

[7] D. Chaum. “Untraceable electronic mail, return addresses, and digital
pseudonyms”. In: Communications of the ACM 24.2 (1981), pp. 84–
88.

[8] D. Chaum, A. Fiat, and M. Naor. “Untraceable Electronic Cash”.
In: Advances in Cryptology - CRYPTO ’88, 8th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-
25, 1988, Proceedings. Vol. 403. Lecture Notes in Computer Science.
Springer, 1988, pp. 319–327.

[9] R. Dingledine, N. Mathewson, and P. F. Syverson. “Tor: The Second-
Generation Onion Router”. In: 13th USENIX Security Symposium
(San Diego, CA, USA, Aug. 9–13, 2004). USENIX Association, 2004,
pp. 303–320.

[10] V. Fetzer, M. Hoffmann, M. Nagel, A. Rupp, and R. Schwerdt. “P4TC –
Provably-Secure yet Practical Privacy-Preserving Toll Collection”. In:
PoPETs 3 (2020), pp. 62–152.

[11] F. D. Garcia et al. “Dismantling MIFARE Classic”. In: Computer Se-
curity - ESORICS 2008, 13th European Symposium on Research in
Computer Security, Málaga, Spain, October 6-8, 2008. Proceedings.
Vol. 5283. Lecture Notes in Computer Science. Springer, 2008,
pp. 97–114.

[12] S. L. Garfinkel, A. Juels, and R. Pappu. “RFID Privacy: An Overview
of Problems and Proposed Solutions”. In: IEEE Security & Privacy 3.3
(2005), pp. 34–43.

[13] F. Gont, S. Krishnan, T. Narten, and R. Draves. Temporary Address Ex-
tensions for Stateless Address Autoconfiguration in IPv6. RFC 4941bis.
RFC Editor, Aug. 2020, pp. 1–22.

[14] I. Gudymenko. “Privacy-preserving E-ticketing Systems for Public
Transport Based on RFID/NFC Technologies”. PhD Thesis. Technis-
che Universität Darmstadt, May 26, 2015.

[15] T. S. Heydt-Benjamin, H.-J. Chae, B. Defend, and K. Fu. “Privacy for
Public Transportation”. In: Privacy Enhancing Technologies, 6th Inter-
national Workshop, PET 2006, Cambridge, UK, June 28-30, 2006, Re-

30

vised Selected Papers. Vol. 4258. Lecture Notes in Computer Science.
Springer, 2006, pp. 1–19.

[16] G. Hinterwälder et al. “Efficient E-Cash in Practice: NFC-Based Pay-
ments for Public Transportation Systems”. In: Privacy Enhancing Tech-
nologies - 13th International Symposium, PETS 2013 (Bloomington,
IN, USA, July 10–12, 2013). Lecture Notes in Computer Science
7981. Springer, 2013, pp. 40–59.

[17] J.-H. Hoepman and G. Huitema. “Privacy Enhanced Fraud Resistant
Road Pricing”. In: What Kind of Information Society? Governance,
Virtuality, Surveillance, Sustainability, Resilience (Brisbane, Australia,
Sept. 20–23, 2010). IFIP Advances in Information and Communica-
tion Technology 328. Springer, 2010, pp. 202–213.

[18] IBM Research Zürich Team. Specification of the Identity Mixer Cryp-
tographic Library. Report. Version 2.3.4. Zürich: IBM Research, Feb.
2012.

[19] A. Juels. “RFID security and privacy: A research survey”. In: IEEE
Journal on Selected Areas in Communications 24.2 (2006), pp. 381–
394.

[20] T. Okamoto. “Efficient Blind and Partially Blind Signatures Without
Random Oracles”. In: Theory of Cryptography (TCC) 2006 (New York,
NY, USA, Mar. 4–7, 2006). Lecture Notes in Computer Science 3876.
Springer, 2006, pp. 80–99.

[21] H. Pagnia, H. Vogt, and F. C. Gärtner. “Fair Exchange”. In: The Com-
puter Journal 46.1 (2003), pp. 55–75.

[22] S. G. Stubblebine, P. F. Syverson, and D. M. Goldschlag. “Unlinkable
serial transactions: protocols and applications”. In: ACM Transactions
on Information and System Security 2.4 (1999), pp. 354–389.

[23] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. “Blacklistable
Anonymous Credentials: Blocking Misbehaving Users without TTPs”.
In: Int. Conf. on Computer and Communications Security (CCS) 2007
(Alexandria, VA, USA, Oct. 29–Nov. 2, 2007). ACM, 2007, pp. 72–81.

[24] Undisclosed authors. Security analysis of the Dutch OV-Chipkaart. Re-
port 34643. TNO, 2008.

31

	Privacy Friendly E-Ticketing For Public Transport
	Introduction
	Problem statement
	Requirements
	Threat model
	Other assumptions

	Protecting privacy in practice
	Primitives
	Partially blind signatures
	Two faces of blindness
	Dealing with failures

	Attribute based credentials
	Privacy friendly payment with receipt
	Notation

	Solution 1: Emulating paper tickets
	Detailed protocol
	Analysis
	Dealing with failures and disputes
	Variations and extensions
	Using actual paper tickets, or smart cards
	Supporting seasonal tickets

	Solution 2: Pay as you go, with credit on device
	Detailed protocol
	Practical considerations
	Dealing with failures and disputes
	Analysis
	Pay as you go, paying later

	Conclusions

