
Securing data accountability
in decentralized systems

Ricardo Corin1 and David Galindo2 and Jaap-Henk Hoepman2

1 University of Twente, Enschede, The Netherlands corin@cs.utwente.nl
2 Institute for Computing and Information Sciences, Radboud University Nijmegen,

The Netherlands {d.galindo,jhh}@cs.ru.nl

Abstract. We consider a decentralized setting in which agents exchange
data along with usage policies. Agents may violate the policies, although
later on auditing authorities may verify the agents’ accountability with
respect to the used data. Using (provably secure) time-stamping and
signature schemes, we design and analyze an efficient cryptographic pro-
tocol that generates the sufficient communication evidences which au-
diting authorities need to carry out their auditing. Finally, we describe
an extension providing policy confidentiality against eavesdroppers time-
stamping servers.

1 Introduction

In many situations, there is a need to share data between potentially untrusted
parties while ensuring the data is used according to given policies. For example,
Alice may be interested in sending her e-mail address to Bob, but also attaching
a non-disclosure policy, so that Bob may not disclose Alice’s email to anyone
else.

Of course, a priori nothing guarantees that Bob will actually follow the policy,
making the enforcement of such policies a difficult problem. Access and usage
control [JSSB97,SS94,PS02,BCFP03] are exemplary enforcement mechanisms.
Here, a trusted access control service restricts data access at the moment the
request happens, something that can be sometimes overly restrictive and expen-
sive.

Recently, a more flexible approach has been proposed [CEdH+04,CCD+05].
In this approach, after Bob receives Alice’s e-mail address, Bob is free to violate
the policy, for instance by sending Alice’s e-mail to Charlie and including a
“free-to-be-spammed” policy. However, it could happen that later on Bob is
audited by an authority that requests a convincing proof of Bob’s permission
to disclose Alice’s e-mail address. Auditing authorities are not fixed and pre-
established; they may be formed dynamically by (groups of) agents that observe
actions in the system. For example, consider that Alice starts getting tons of
spam from Charlie. Alice may switch to “auditing authority” mode, and enquiry
Charlie for a proof of permission to use Alice’s e-mail address. A convincing
proof exonerating Charlie would be evidence of the communication with Bob

which happened before the spam, in which Charlie got Alice’s e-mail address
along with a “free-to-be-spammed” policy. Upon seeing this, Alice can go to
Bob and request a convincing proof he was allowed to disclose Alice’s e-mail to
Charlie, which Bob can not provide and hence is found guilty of policy violation.
(In this case, we say that Bob violates the datum accountability of Alice’s e-mail
address.)

Following [CEdH+04,CCD+05], we allow the target system to be decentral-
ized, and it may very well be the case that Alice, Bob and Charlie are registered
in different domains, which are not even synchronized in their local clocks; even
worse, each domain’s clock may not even be keeping real time, but may be simply
a logical clock (e.g. a counter). Still, an auditing authority would need to recog-
nize events (e.g. communications) that happened before others. For example, the
fact that Charlie sent spam to Alice only after having received the permission
from Bob exonerates Charlie. Also, an auditing authority needs to be able to
recognize valid communication evidence from fake ones; for example, Bob must
not be able to repudiate the communication with Charlie.
Contributions The works of [CEdH+04,CCD+05] focus on designing a high-
level formal proof system to build authorization permissions starting from the
atomic communication evidences, which are abstracted away and assumed to
be sound (this is analogous to Dolev-Yao models [DY83,CES06] which assume
“perfect encryption” in the analysis of security protocols). However, from the
above discussion it is clear that it is not trivial to design an effective and secure
cryptographic protocol to achieve valid communication evidences to let auditing
authorities do their work, as we are in a decentralized setting in which different
agents may collude in order to fool the auditing authorities.

In this paper, we design such a cryptographic protocol, which allows agents
to exchange usage policies among them in such a way that valid communication
evidence is generated after the exchange. Our protocol is efficient, and it’s based
on standard cryptographic building blocks, as detailed next.
Building blocks We use two building blocks in our protocol: time-stamping
and signature schemes. We choose to model different agents’ domains running
different local clocks, which may be logical, as described above. Our model is
quite flexible, and in particular brings the following advantages:

– First, we allow the protocol to work in decentralized environments, in which
clocks domains do not need to interact between them;

– Second, it is possible to use both digital-based and hash-based time-stamping
schemes (see [ABSW01] for an overview), the choice depending on the use
the implementor has in mind. For instance, if the implementor prefers to
regard the time-stamping servers as non-trusted, auditable time-stamping
schemes can be used without loss of security. Time-stamping is used to order
the events within the domain, and enables our cryptographic protocol to
safely logs the different domains’ times of the sender and the receiver into
the communication evidence. At a later stage, the auditing authority can
use this information for the auditing procedure. Signatures by the agents

2

are used to provide integrity, authentication and non-repudiability to the
communication evidences.

Plan of the paper We introduce preliminaries and define the security require-
ments of the protocol in Section 2. The building blocks of the protocol (i.e.
time-stamping services and signature schemes) are introduced in Section 3. We
present the protocol in Section 4, along with an (informal) security analysis in
Section 5. Section 6 discusses extensions, and finally Section 7 concludes the
paper.

2 The setting

Potentially untrusted agents a, b, c ∈ G are sharing data objects d ∈ D which
must be used according to policies φ ∈ Φ. The agents are not enforce to comply
with the policies, but they can be audited at any time by an Authorization
Authority AA which will check if they were allowed to perform a certain action
on a given piece of data d at a certain moment in time. To be accountable, agents
must show a policy φ allowing them to perform the action under investigation.
If an agent c is the creator of the data, he is allowed to perform any action
on the data; otherwise, the agent must show that another agent b sent him the
policy φ and therefore the permission to perform the actions specified therein.
Eventually, the AA could iterate the process starting from agent b, and ideally
the sequence should led to the owner/creator of the piece of data.

We do not study how to build evidences for the creation of data. For the
purpose of this paper, certifying that an agent owns/creates a piece of data
needs the interaction with several organizations external to the system, since
it involves legal and societal aspects (as an example, an organization issuing
patents). Therefore, we assume there exists a public function

Owner : D −→ G. (1)

stating to whom data belongs.
In our setting, comm(t1, t2, a⇒ b, φ) provides a proof that a string φ was sent

from a to b with respect to some local logical time values t1, t2, where t1 refers
to the sender local time and t2 refers to the receiver local time. The properties
that such a proof should satisfy are as follows:

Meaningfulness. comm(t1, t2, b ⇒ c, φ) provides a proof that a string φ has
been communicated from b to c.

The reason for this property is trivial. We want to be sure that a commu-
nication evidence between Bob and Charlie can only be generated if Bob has
communicated φ to Charlie.

Unforgeability. It is not feasible to create an evidence comm(t3, t4, a ⇒ b, φ′)
either when the local logical clock for b is t′4 > t4 or when the local logical clock
for a is t′3 > t3.

3

Assume the auditing authority contacts Bob at Bob’s logical time t′4 and
asks him for a permission for having sent Alice’s e-mail address to Charlie. The
unforgeability property implies Bob can not provide an exonerating evidence
even in the unlikely case he colludes with Alice, since exoneration would require
an evidence of the form comm(t3, t4, a⇒ b, spread Alice’s e-address) to be
created at time t′4 with t4 < t′4.

Liability. A valid comm(t1, t2, b ⇒ c, φ) implies b has committed itself at a
logical time t1 to send φ to c.

That is, if Charlie shows an evidence comm(t1, t2, b⇒ c, φ) showing that Bob
sent him a permission to spam Alice at Bob’s logical time t1, then Bob is liable
for showing he had permission to communicate this policy before time t1.

Comparability. Any pair of communication evidences comm(t1, t2, b ⇒ c, φ)
and comm(t3, t4, a⇒ b, φ′), with a, b, c agents, should be comparable with respect
to b’s local time, i.e. communication evidences with origin or destination b are
totally ordered with respect to b’s local logical time.

With this property, we ensure Bob can not show an evidence allowing him
to execute a certain action, such that the order of action’s permission reception
and action/s execution is undetermined.

3 Building blocks

3.1 Time-stamping schemes

Time-stamping is an important data integrity protection mechanism the main
objective of which is to prove that electronic records existed at a certain time.
Two major time-stamping protocols, the absolute (hash-and-sign) time stamps
protocol and the linking protocol have been developed. In the former a time-
stamping authority (TSA) signs the concatenation of the hashed message and
the present time by using its private key. Therefore the TSA is completely trusted
in this case.

In the linking protocol, a time-stamp token is the hash value of the concate-
nation of the present hashed message and the previous hash value. A verifier
can check the validity of the token by using published values for the hash chain.
In this case, the TSA is not necessarily trusted, and auditing techniques can
be used to detect if the TSA eventually cheated. We stress this audit does not
need to be performed by our auditing authority; it is sufficient the AA trusts the
time-stamping auditors.

Time-stamping schemes have been used in business applications and are
even included in international standards [ISO]. The major schemes in use are
[sur,aut,dig].

The formal security conditions for time-stamping schemes are still a subject
under discussion. In the following, we quote the syntax and security properties
of a time-stamping scheme from [BLSW05]. Notice that the definitions below
are abstracted away, so that the different concrete implementations found in

4

the literature can be easily translated into our syntax. Additionally, an audit
functionality can be added to time-stamping schemes with the syntax above.
This auditing functionality is used when the TSA is not unconditionally trusted,
and it allows to check that the TSA is behaving as expected.

Definition 1 A time-stamping scheme TS is capable of: (1) assigning a time-
value t ∈ N to each request x ∈ {0, 1}k, and (2) verifying whether x was time-
stamped during the t-th (maybe logical) time unit). It consists of the following
components:

Repository – a write only database that receives k-bits digests and adds them
to a list D. Repository also receives queries t ∈ N and returns D[t] if
τ ≤ |D|. Otherwise, Repository returns reject.

Stamper – operates in discrete time variables called rounds. During a t-th
round, Stamper receives requests x and returns pairs (x, t). Let Lt be the
list of all requests received during the t-th round. In the end of the round,
Stamper creates a certificate c = Stamp(x;Lt, Lt−1, . . . , L1) for each request
x ∈ Lt. Besides, Stamper computes a digest dt = Publish(Lt, . . . , L1) and
sends dt to the repository.

Verifier – a computing environment for verifying time stamps. It is assumed
that Verifier has a tamper-proof access to Repository. On input (x, t),
Verifier obtains a certificate c from Stamper, and a digest d = D[t] from
Repository, and returns Verify(x, c, d) ∈ {yes, no}. Note that x can be
verified only after the digest dt is sent to Repository.

Client – any application-environment that uses Stamper and Verifier.

A time-stamping scheme TS = (Stamp,Publish,Verify) must satisfy the fol-
lowing correctness property: Verify(x, Stamp(x,L),Publish(L)) = yes for every
L = (Lt, . . . , L1) and x ∈ Lt.

Security requirements

In the rest of the paper, an adversary is meant to be any probabilistic polyno-
mial time algorithm. It is assumed that adversaries A is able to corrupt Stamper,
some instances of Client and Verifier. The Repository is assumed to be
non-corrupting. After publishing dt it should be impossible to add a new request
x to Lt and prove to a Verifier that x ∈ Lt by building up a certificate c. The
following security conditions must be then required:

Definition 2 (Consistency) A time-stamping scheme is consistent if for ev-
ery PPT adversary A

Pr[L = (Lt, . . . , L1, c, x) ← A(1k) | x /∈ Lt, Verify(x, c,Publish(Lt, . . . , L1)) =
yes] is negligible.

With the security notion below, we want that an adversary A can not perform
the following attack: A publishes a value d which is not computed by using the
Publish function and then, after obtaining a new randomly generated string x,
finds a certificate that Verify(x, c, d) = yes.

5

Definition 3 (Security against random back-dating) A time-stamping scheme
is secure against random back-dating if for every polynomially unpredictable dis-
tribution D on {0, 1}k and (A1,A2) probabilistic polynomial time algorithms

Pr[(d, a)← A1(1k), x← D, c← A2(x, a) | Verify(x, c, d) = yes] is negligible.

3.2 Signature scheme

Definition 1. A signature scheme Σ = (KeyGen,Sign,VerSign) consists of three
probabilistic polynomial time algorithms:

– KeyGen takes as input a security parameter 1k, and outputs a pair (vk, sk),
where sk is the secret key of the user, and vk is the matching verification
key.

– Sign takes as input a message m and the secret key sk, and produces a
signature σ.

– VerSign finally, the verification algorithm takes as input a message m, a
signature σ and the verification key vk, and returns true if σ is a valid
signature of m, and false otherwise.

A signature scheme enjoys the correctness property if it satisfies the following
condition: if KeyGen(1k) = (sk, vk) and Sign(m, sk) = σ, then VerSign(m,σ, vk) =
true. In this case, we say that (m,σ) is a valid message-signature pair.

The standard security notion for signature schemes was introduced in [GMR88]
and it is called existential unforgeability against chosen-message attacks. A signa-
ture scheme Σ = (KeyGen,Sign,VerSign) is called secure in the latter sense if the
success probability of any PPT adversary A in the following game is negligible
in the security parameter 1k:

1. KeyGen(1k) outputs (vk, sk) and the adversary is given 1k and vk.
2. A(1k, vk) has access to a signing oracle Sign(sk, ·), which on input a message

m outputs its signature σ(m).
3. A succeeds if it outputs a valid signature on a message not submitted to the

signing oracle.

4 A communication evidence protocol

Our goal is to design a decentralized protocol performing as less on-line opera-
tions as possible. Our system includes certification authorities CA trusted by the
auditing authority, which will be used for keys authenticity and non-repudiation
purposes. The AA can choose to trust/distrust the time-stamping servers. This
election will determine which time-stamping schemes are accepted in the system
(cf. the discussion in Section 3.1). The AA is an algorithm taking inputs from
the agents, but it does not need itself to be in possession of any special input
like a public key or similar.

6

Let us assume the existence of a set of time-stamping and certification au-
thorities satisfying the trust requirements imposed by the AA, as well as the
existence of a public board in which each user is inscribed in an unique TSA and
CA. Let us denote by TSAa, CAa and TSAb, CAb the authorities in which a and
b are respectively registered. A time-stamping scheme is used to provide tempo-
ral evidence to bit strings. In our setting consists each time stamping authority
TSAa runs a local time variable. We say that Ta is the local time managed by
TSAa. Despite the local time variables are run in a decentralized manner, we are
still able to define an irreflexive partial ordering (denoted by ≺) between events
in the different Ta’s. Notice that every local time variable has a total order <,
i.e. the natural ordering in the set N.

The partial order is defined in terms of the relation ‘D1 existed before D2’,
where D1, D2 are strings. The relation is determined via time-stamps: a valid
time-stamp certificate ca issued on round ta by TSAa on a string m, implies m
existed before round ta was closed. As a consequence, a time-stamp cb issued on
round tb by TSAb on a string m′ such that cb is a substring of m′, implies that cb

existed before round tb was closed. Summing up, the ta-th round in TSAa ended
before the tb-th round in TSAb did so. This enables to establish the partial order
ta ≺ tb.

Any agent a in the system has a unique pair of matching verification/signature
keys (vka, ska) corresponding to a secure signature scheme Σa, and it is regis-
tered in a single TSA. We will refer to this as a is registered in TSAa. We assume
that these keys are revocable. Therefore, agents have access to certification au-
thorities CA which ensure the verification key vka belongs to a and provide
revocation mechanisms.

A communication evidence comm(ta1 , tb2, a ⇒ b, φ) must satisfy the require-
ments outlined in Section 2: meaningfulness, unforgeability, liability and com-
parability. The temporal tag includes two temporal values; a first value ta1 will
prevent non-repudiation by a (and therefore makes a liable for having permission
to communicate φ at ‘time’ ta1), and a second value tb2 will refer to the moment in
which b is allowed to use the policy φ. The value tb2 will prevent forging evidences
by b even if a and b collude together.

Definition 4 (Syntaxis of our communication evidence protocol) A com-
munication evidence protocol is a pair of functions CE = (Create,Validate).

Create The parties initiating a run of the protocol Create are two agents a, b ∈ A,
where a is willing to send a policy φ to b and b is willing to receive and
therefore use this policy. The protocol additionally involves their respective
time-stamping authorities TSAa,TSAb; and the certification authorities for
a, b which are denoted by CAa,CAb. The output is a communication evidence
comm(ta1 , tb2, a⇒ b, φ).

Validate – can be run by any agent in the system, and requires interaction with
TSAi and TSAj and the certification authorities agents CAa,CAb. It takes
as input a communication evidence comm(ta1 , tb2, a ⇒ b, φ), and it returns
true if comm is valid, and false otherwise.

7

4.1 Protocol specification

In order to be able to prevent non-repudiation of communication evidences,
we need to slightly modify the revocation mechanism used by the certification
authority. In particular, the certification authorities must ask the TSA in which
the user is registered to time-stamp the revocation information for that user’s
public key. In this way, it is possible to check if a a communication evidence was
created before either the sender’s verification key vka or the receiver’s verification
key vkb were revoked.

– Create(a, b, φ):
1. a signs the concatenated string (φ, b) using the scheme Σa and the signing

key ska. Let σ1 denote the signature thus obtained.
2. a sends σ1 to Stampera, and gets back a valid stamp (ta1 , ca

1) when the
ta1-th round is closed.

3. a sends ev1 := (a, vka, b, φ, σ1, t
a
1 , ca

1) to b.
4. b verifies that:

(a) vka is a’s verification key.
(b) vka was not revoked before TSAa’s local time ta1 (this is done by

interacting with CAa and TSAa).
(c) VerSign

(
(φ, b), σ1, vka

)
= true.

(d) Verify(σ1, c
a
1 , dta

1
) = yes, where dta

1
is the corresponding entry in

Repositorya.
If everything is fine, then b proceeds to the next step. Otherwise, b does
not use policy φ.

5. b signs ev1 using skb. Let σ2 denote the signature thus obtained.
6. a sends σ2 to Stamperb, and gets back a valid stamp (tb2, c

b
2) when the

tb2-th round is closed (and therefore ta1 ≺ tb2). Let ev2 := (b, vkb, σ2, t
b
2, c

b
2).

7. Finally
comm(ta1 , tb2, a⇒ b, φ) := (ev1, ev2).

– Validate
(
a, b, φ, comm(ta1 , tb2, a⇒ b, φ)

)
:

1. Contact TSAb and get the value Tb of the current (non-closed) round.
2. Verify that:

(a) VerSign
(
(φ, b), σ1, vka

)
= true.

(b) vka is the a’s verification key.
(c) vka was not revoked before TSAa’s local time ta1 .
(d) Verify(σ1, c

a
1 , dta

1
) = yes, where dta

1
is the corresponding entry in

Repositorya.
(e) vkb is the b’s verification key.
(f) vka was not revoked before TSAb’s local time tb2.
(g) VerSign

(
ev2, σ2, vkb) = true.

(h) Verify(σ2, c
b
2, dtb

2
) = yes, where dtb

2
is the corresponding entry in

Repositoryb.
(i) tb2 < Tb.
If every checking is correct, then return true. Otherwise, return false.

8

5 Security analysis

Meaningfulness. “A string φ has been communicated from a to b”
Firstly, if the communication evidence is verified in the positive, neither a’s
or b’s verification keys were revoked beforehand. That a is the origin of the
communication and b is the receiver, is guaranteed by two facts: on the one
hand, a valid signature on the message (φ, b) can only be produced by a as long
as we are using an unforgeable signature scheme Σa; on the other hand, b and
only b is able to compute the signature σ2 for a similar reason, and he can do
that only after a sends ev1 to him.

Unforgeability. “It is not feasible to create an evidence comm(ta1 , tb2, a⇒ b, φ)
when the local logical clock for b is set to t′b2 with t′b2 > tb2”
For creating such an evidence at time t′b2 > tb2, the adversary must break the
security against random back-dating of the time-stamping scheme.

Liability. “a commits itself to send φ to b at logical time t1”
a commits to message (φ, b) as soon as he signs it; a valid time-stamp (ta1 , ca

1) on
σ1 implies (φ, b) was signed before the local time counter at TSAa was set to ta1 .
Therefore, a expresses at time ta1 his willingness to transfer φ to b if he follows
the protocol. Finally, if the communication evidence is verified in the positive,
a’s verification key was not revoked beforehand.

Comparability. “communication evidences with origin or destination a are to-
tally ordered with respect to a’s local logical time”
This is guaranteed by the fact that a’s logical time is Ta and that Ta has a total
order by definition.

6 Extensions

Privacy against curious time-stamping servers. In the likely case that
agents want to keep the policies exchanged confidential against an eavesdropping
time-stamping server, the protocol proposed in Section 4.1 is not guaranteed to
be secure. In particular, it might be very well the case that the signature on a
message m could leak some information the agents wish to remain private.

However, it turns out that the protocol can be easily extended to provide
confidentiality against time-stamping servers by using commitment schemes. In
order to maintain a low number of on-line communications we choose to use
non-interactive commitments. A non-interactive commitment scheme C consists
of two probabilistic algorithms C = (Send,Receive). The algorithm Send is run
by the sender party, and on input a pair security parameter/message (1k,m) it
outputs a pair commitment/de-commitment (ct, dt). The algorithm Receive is
run by the receiver, and on input (1k, ct, dt) outputs a string m or the reject
symbol ⊥ . Executing Send is called the commitment phase while executing
Receive is called the de-commitment phase. Typically, when using a commitment
scheme in a protocol, the parties execute the commitment phase first and a later

9

stage the de-commitment phase; there will be some some other parts of the
protocol between the two phases.

Roughly speaking, a commitment scheme should ensure that after the com-
mitment phase, the receiver does not know learn about the message yet, but the
sender should not be able to change it anymore. After the de-commitment phase
the receiver obtains the message. For formal definitions and efficient construction
of non-interactive commitment schemes, we refer the reader to [HM96].

The main idea is that agents send to the time-stamping server a commitment
on the signatures instead of sending signatures on the clear. Remember that
these signatures contain the policies and their destination, so that they could
eventually reveal information the agents want to keep confidential.

The extended protocol is defined in Appendix A.

7 Conclusions

We define a cryptographic protocol to provide valid communication evidences,
that can be used later by auditing authorities. Even though our protocol is aimed
towards guaranteeing data accountability in the settings of [CEdH+04,CCD+05],
we believe that our protocol can be easily adapted to provide secure transport of
arbitrary payloads in decentralized settings, where exchanges need to be logged
with communication evidences recording the relative domain times in which the
exchanges took place.

References

[ABSW01] A. Ansper, A. Buldas, M. Saarepera, and J. Willemson. Improving the
availability of time-stamping services. In ACISP 2001, volume 2119 of
Lecture Notes in Computer Science, pages 360–375, 2001.

[aut] http://www.authentidate.com/.
[BCFP03] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for

reasoning about access control models. ACM Transactions on Information
and System Security (TISSEC), pages 71–127, 2003.

[BLSW05] A. Buldas, Peeter Laud, M. Saarepera, and J. Willemson. Universally
composable time-stamping schemes with audit. In ISC 2005, volume 3650
of Lecture Notes in Computer Science, pages 359–373, 2005.

[CCD+05] J. G. Cederquist, R. J. Corin, M. A. C. Dekker, S. Etalle, and J. I. den
Hartog. An audit logic for accountability. In A. Sahai and W. H. Wins-
borough, editors, 6th Int. Workshop on Policies for Distributed Systems &
Networks (POLICY), Stockholm, Sweden, pages 34–43, Los Alamitos, Cal-
ifornia, June 2005. IEEE Computer Society Press. Imported from DIES.

[CEdH+04] R. Corin, S. Etalle, J. I. den Hartog, G. Lenzini, and I. Staicu. A logic
for auditing accountability in decentralized systems. In T. Dimitrakos and
F. Martinelli, editors, Proc. of the 2nd IFIP Workshop on Formal Aspects
in Security and Trust (FAST), volume 173, pages 187–202. Springer, 2004.

[CES06] R. Corin, S. Etalle, and A. Saptawijaya. A logic for constraint-based se-
curity protocol analysis. In IEEE Symposium on Security and Privacy,
2006.

10

[dig] http://www.digistamp.com/.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[GMR88] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–
308, 1988.

[HM96] S. Halevi and S. Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In CRYPTO 1996, volume 1109 of Lecture
Notes in Computer Science, pages 201–215, 1996.

[ISO] ISO IEC 18014-3,time-stamping services part 3: Mechanisms producing
linked tokens.

[JSSB97] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified
framework for enforcing multiple access control policies. In J. Peckham,
editor, SIGMOD 1997, Proc. International Conference on Management of
Data, pages 474–485. ACM Press, 1997.

[PS02] J. Park and R. Sandhu. Towards usage control models: Beyond traditional
access control. In E. Bertino, editor, Proc. of the 7th ACM Symposium on
Access Control Models and Technologies (SACMAT), pages 57–64. ACM
Press, 2002.

[SS94] R. Sandhu and P. Samarati. Access control: Principles and practice. IEEE
Communications Magazine, 32(9):40–48, 1994.

[sur] http://www.surety.com/.

A A communication evidence protocol providing
confidentiality

– Create(a, b, φ):
1. a signs the concatenated string (φ, b) using the scheme Σa and the signing

key ska. Let σ1 denote the signature thus obtained.
2. a runs Send(1`, σ1) for an appropriate security parameter 1`. Let ct1 and

dt1 denote respectively the commitment and de-commitment thereby
obtained.

3. a sends ct1 to Stampera, and gets back a valid stamp (ta1 , ca
1) when the

ta1-th round is closed.
4. a sends ev1 := (a, vka, b, φ, σ1, t

a
1 , ca

1 , ct1, dt1) to b.

5. b verifies that:
(a) Receive(1`, ct1, dt1) = σ1.
(b) vka is the a’s verification key.
(c) VerSign

(
(φ, b), σ1, vka) = true.

(d) vka was not revoked before TSAa’s local time ta1 .
(e) Verify(ct1, ca

1 , dta
1
) = yes, where dta

1
is the corresponding entry in

Repositorya.

If everything is fine, then b proceeds to the next step. Otherwise, b does
not use policy φ.

6. b signs ev1 using skb. Let σ2 denote the signature thus obtained.

11

7. b runs Send(1`, σ2) and let ct2 and dt2 denote respectively the commit-
ment and de-commitment thereby obtained.

8. a sends ct2 to Stamperb, and gets back a valid stamp (tb2, c
b
2) when the tb2-

th round is closed (and therefore ta1 ≺ tb2). Let ev2 := (b, vkb, σ2, t
b
2, c

b
2, ct2, dt2).

9. Finally
comm(ta1 , tb2, a⇒ b, φ) := (ev1, ev2).

– Validate
(
a, b, φ, comm(ta1 , tb2, a⇒ b, φ)

)
:

1. Contact TSAb and get the value T b of the current (non-closed) round.
2. Verify that:

(a) Receive(1`, ct1, dt1) = σ1.
(b) vka is the a’s verification key.
(c) VerSign

(
(m,φ), σ1, vka

)
= true.

(d) vka was not revoked before TSAa’s local time ta1 .
(e) Verify(ct1, ca

1 , dta
1
) = yes, where dta

1
is the corresponding entry in

Repositorya.
(f) Receive(1`, ct2, dt2) = σ2.
(g) vkb is the b’s verification key.
(h) VerSign

(
ev2, σ2, vkb) = true.

(i) vkb was not revoked before TSAb’s local time tb2.
(j) Verify(ct2, cb

2, dtb
2
) = yes, where dtb

2
is the corresponding entry in

Repositoryb.
(k) tb2 < T b.
If every checking is correct, then return true. Otherwise, return false.

12

