
Long-Lived Test-And-Set Using Bounded Space?

Jaap-Henk Hoepman1

Department of Computer Science, University of Twente, the Netherlands

hoepman@cs.utwente.nl

Abstract This paper studies the problem of implementing a shared mem-

ory test-and-set object using only shared registers. Our contribution is

threefold. First, we present a general framework to allow reasoning about

reusing one-shot shared memory objects in the construction of bounded

space long-lived objects. Then we derive general theorems about test-and-

set objects that simplifies reasoning about their implementation. Finally

we show the validity of our approach by constructing an n process long-

lived test-and-set object from n + 1 one-shot test-and-set objects, and

proving this construction formally correct.

1 Introduction

A test-and-set object is a shared memory synchronisation primitive that shares

a single token among a collection of n concurrent processors. Processors can re-

quest the token by invoking the test-and-set operation on the object. The result

(either won or lost) indicates whether the process was successful in acquiring

the token. A successful processor must return the token by invoking the reset

operation. This allows other processors to acquire the token. The object guar-

antees that at any time only one processor holds the token. This processor can

then execute a critical section in which it is free from interference by other pro-

cessors that are waiting to obtain the token. Fairness is not guaranteed however:

a single processor may always obtain the token while another processor fails to

do so infinitely often.

We are interested in implementing such a test-and-set object efficiently,

both in time and space, in the shared memory model using only read-write

registers. The implementation should be crash-failure resilient, i.e., should be

wait-free [Her91]. Because 2-processor test-and-set can be used to implement 2-

processor consensus, deterministic implementations of a wait-free test-and-set

object using only read-write registers are known not to exist [LAA87, Her91]. We

therefore focus on randomised solutions.

Afek et al. [AGTV92] were the first to present a direct implementation of n-

processor test-and-set using read-write registers. Previous implementations go

by way of a general construction of a concurrent object [Her91], and therefore

are less efficient.

? Id: test-and-set.tex,v 1.16 1999/09/10 13:03:22 hoepman Exp hoepman

2 Jaap-Henk Hoepman

Actually, Afek et al. construct the n-processor test-and-set in three stages.

The first stage is a randomised implementation of a 2-processor test-and-set us-

ing 2 single-writer shared registers due to Tromp and Vitányi [TV91a, TV91b].

The second stage is the (deterministic) construction of a n-processor one-shot

test-and-set (which can give the token only once to a single processor, and which

cannot be reset) using a tournament-tree of 2-processor test-and-set objects as

a primitive. The third and last stage builds a multi-use, long-lived, test-and-set

object from a one-shot test-and-set object by adding fields to the shared regis-

ters. Their construction is unbounded, but it is claimed that the space can be

bounded using a (modified version of a) sequential time stamping scheme [IL87].

These use Ω(2n) labels, and hence each single-writer multi-reader register con-

tains Ω(n) bits. The protocol uses n of those registers. None of the, quite com-

plex, constructions are formally proven correct.

Our results are as follows.

– We present a general framework to allow reasoning about reusing one-shot

shared memory objects in the construction of bounded space long-lived ob-

jects.

– We derive general theorems about test-and-set objects that simplifies rea-

soning about their implementation.

– We show the validity of our approach by constructing an n process long-

lived test-and-set object from n+ 1 one-shot test-and-set objects, and prov-

ing this construction formally correct.

We use multi-writer registers, which add a logarithmic factor to the space com-

plexity when compared with single-writer multi-reader registers [IS92]. Reading

a multi-writer register takes a linear factor more time than reading a single-

writer register. Writing takes the same amount of time for both types of regis-

ters.

The time complexity of our test-and-set operation is an expected O(logn)
operations on multi-writer registers. The time complexity of our reset operation

is 5n operations on multi-writer registers. Our construction uses 4n2+4 (multi-

writer) registers of 2 bits each, plus n single writer registers and 1 (multi-writer)

register containing dlogn+ 1e bits each. Both time and space complexity are

comparable to the results of Afek et al. . Our construction is formally proven

correct.

The paper is organised as follows. General theorems about test-and-set ob-

jects, how to re-use one-shot objects and the concept of linearizability [HW90]

are discussed in Section 2. We then show, in Section 3 how to build a long-lived

test-and-set object using n+1 one-shot test-and-set objects. In the appendix we

show how a simple tournament can be used to implement n-process one-shot

test-and-set using 2-process one-shot test-and-set objects.

Long-Lived Test-And-Set Using Bounded Space 3

2 Preliminaries

2.1 Specifying Test-And-Set Objects

We assume familiarity with the concept of linearizability as defined by Her-

lihy [HW90, Her91]. We summarise the main concepts for the sake of self con-

tainment.

A shared memory object is a data-structure stored in shared memory that

may be accessed by several, sequential, processors concurrently. Let P be the

set of processors sharing the object. Such an object defines a set of operations

O which provide the only means for a processor to modify or inquire the state

of the object. Each operation O ∈ O takes zero or more parameters p on its in-

vocation and returns a value r as its response (r = O(p)). To make the objectX

on which O operates explicit, we may occasionally writeX.O(p). Each execution

of an operation is called an action. For an action A, we denote by tI(A) ≥ 0 its

invocation time and by tR(A) > tI(A) its response time. For incomplete actions,

tR(A) = ∞ and the response of the action is unknown. We write A ∈ X if action

A involves an operation on X .

For test-and-set objects, O contains, for each processor p ∈ P , the param-

eterless function TestAndSetp() returning either won or lost, and the parame-

terless procedure Resetp() (not returning any value), which can only be called

by a process whose previous operation was a won test and set. Single shot test-

and-set objects do not have the reset operation, and allow each processor p to

execute TestAndSetp() at most once.

A run over the object is a tuple 〈A,→〉 with actions A and partial order →

such that for A,B ∈ A, A → B iff tR(A) < tI(B).1 Two actions A,B overlap (A‖B)

if neither A → B nor B → A. We write A 6← B for ¬(B → A). Runs start in some

initial state where no processor is accessing the object, and can have infinite

length2. A run captures the externally observable behaviour of the object. A run

is wellformed if processors invoke actions sequentially.

Objects may impose extra restrictions, e.g. on when certain operations can

be called, before their runs are called well-formed. Test-and-set objects, for in-

stance, require that the Reset() operation is called only by the winner of the

test-and-set.

A wellformed run is called complete, if all actions that start in it have fin-

ished in it, i.e., if no crashes occurred. A non-complete run can be completed

by including an arbitrary response for each pending action, where the inserted

responses are ordered after all other actions in the run, and ordered arbitrarily

among each other3. This complete run is called the completion of the run. A

1 Hence → is an interval order, i.e., a transitive binary relation where A→ B and C → D

implies A→ D or C → B.
2 We do not consider runs that start with one or more processors allready accessing

the object.
3 Pending actions may have had an effect on other concurrent actions, and therefore

should be ‘serialised’ in time before these actions in the corresponding sequential

4 Jaap-Henk Hoepman

run may have many completions (by using all possible values for the unknown

responses).

The sequential specification S describes the desired behaviour of an object.

This specifies the set of possible states of the object, its initial state init(S), and

for each operation its effect on the state and its (optional) response. We write

(s, r = O(p), s′) ∈ S if invoking O with parameters p in state s changes the

state of the object to s′ and returns r as its response.

Consider, as an example, the sequential specification STI of a test and set

object. The state of a test-and-set object is a single variable owner whose value

is either ⊥ or a processor number. Initially owner = ⊥. Furthermore, for all

processors p,q with p ≠ q,

(owner = ⊥,TestAndSetp() = won,owner = p) ∈ STS , (TS1)

(owner = q,TestAndSetp() = lost,owner = q) ∈ STS ,and (TS2)

(owner = p,Resetp(),owner = ⊥) ∈ STS . (TS3)

We will write owner(TS) for the state of test-and-set object TS . One-shot test-

and-set objects do not define a Reset operation. Their sequential specification is

described by (TS1) and (TS2) only.

A sequential execution 〈A,⇒〉 corresponding to a complete run 〈A,→〉 is

an infinite sequence s1A1s2A2 . . . , where
⋃

i{Ai} = A, where si a state of the

object as in the sequential specification of the object, and ⇒ a total order over

A extending → (i.e., A → B implies A ⇒ B) defined by Ai ⇒ Aj if and only

if i ≤ j. A sequential execution 〈A,⇒〉 satisfies a sequential specification S if

and only if for all i ≥ 1, (si,Ai, si+1) ∈ S and s1 = init(S). In other words, the

sequential execution corresponding to a run is a run in which no two actions are

concurrent but in which the ‘observable’ order of actions in the run is preserved.

Definition 2.1. A wellformed run 〈A,→〉 over an object is linearisable w.r.t. se-

quential specification S, if for at least one of its completions, there exists a corre-

sponding sequential execution 〈A,⇒〉 satisfying S.

An object is linearisable w.r.t. its sequential specification S if all well-formed

runs over the object started in a properly initialised state are linearisable w.r.t.

S.

We have the following lemma

Lemma 2.2. An object is linearizable w.r.t. its sequential specification S if all

complete runs over the object started in a properly initialized state are lineariz-

able w.r.t. S.

Proof. Each incomplete run is a prefix of a complete run over the object where

all crashed processors were actually delayed until the end of the incomplete

run. ut

This allows us to assume w.l.o.g. that all runs are complete.

execution. In order to verify that the sequential specification is satisfied, the response

of this action must be known.

Long-Lived Test-And-Set Using Bounded Space 5

2.2 Implementing Objects

The implementation I of a compound object from lower level ones implements

each of the compound operations by a sequential procedure, that calls low level

operations or does some local computations. For example, one can implement

a multi writer register using only single writer registers by specifying for both

the read and the write operation on the multi writer register a sequential pro-

cedure calling reads and writes on the single writer registers. Let init(I) denote

the necessary initial state of these lower level objects. Such an implementation

is wait-free if each operation completes in a priori bounded number of steps,

irrespective of the other processors (which may all have crashed).

Another way to view an implementation I of an object X is the following.

An implementation of X restricts (using the properties of the low level objects

it uses, their initial states described by init(I), and the ‘implementation’ of each

operation by a sequential procedure operating on these low level objects) the

externally observable behaviour of X (i.e., the runs over X) to (a subset of)4 all

possible runs over the object. These runs are called the runs over I .

Lamport [Lam86] presents a much more thorough and formal approach to

implementing objects from lower level ones. For our purposes the above infor-

mal discussion and the following definition of a correct implementation suffice.

Definition 2.3. The implementation I of an object X is correct if all wellformed

runs over I are linearizable w.r.t. the sequential specification SX of the object X.

Note that we only require the wellformed runs to be linearizable. This is because

wellformedness cannot be guaranteed by the implementation: only the user of

an object controls when and where to invoke a certain operation on an object.

2.3 Re-using Short-Lived Objects

Straightforward implementation of a long-lived object (that can be accessed re-

peatedly) from short-lived ones (that can be accessed only a few times) generally

withdraws fresh objects from an infinite pool of short-lived objects. Such an im-

plementation uses unbounded space.

Intuitively, one can bound the space by re-using the short-lived objects as

follows (cf. [KST91, MA94]). The infinite pool of fresh objects is replaced by a

finite pool of clean objects, that gets replenished with objects that are no longer

used. Once the implementation can guarantee that it is done with one of the

withdrawn, now dirty, objects5, it must somehow reset, or wash, the object and

insert it back into the pool. This washing, or resetting, operation is added to the

implementation of the object later, and may not be atomic. We therefore have

to ensure that the washing operation is not interfered by any other activity. To

operations performed after the reset, such a cleaned object looks exactly the

same as a truly new object.

4 We will not discuss lifeness in this paper.
5 Some guarantee like this must be met because the objects are short-lived anyway.

6 Jaap-Henk Hoepman

Let I be an implementation of X, then we write I + I(O) for the implemen-

tation of object X +O, i.e. the object X with a new operation O.

The following theorem formalises the above discussion.

Theorem 2.4. Let X have sequential specification S. Let I be a correct implemen-

tation of X. Let Wash be a new operation for X with implementation I(Wash)
that, when executed interference free in an arbitrary state of I , exits leaving the

implementation in state init(I).
Consider a run over I+I(Wash), where for all actions A on X (including wash-

ing actions) and washing actions W ≠ A in this run, ¬(A‖W) holds. Then each

wellformed subrun of this run that lies exactly inbetween two succesive washing

actions is linearizable w.r.t. S. If all such subruns of the run are wellformed, all

actions A in the run can be assumed to be atomic and satisfying S.

Proof. If for a run over I + I(Wash), for all actions A on X and washing actions

W in this run, ¬(A‖W) holds then the runs over X inbetween succesive calls to

Wash actually form a partition of the full run (i.e. each action occurs in exactly

one of these runs). Moreover, by the properties of I(Wash) and the fact that

each washing action is indeed executed interference free, each of these runs

on X start in the initial state init(I). Because I is correct, each of these runs is

linearizable w.r.t. S if it is wellformed. ut

This scheme can only be applied if used objects can easily be washed, and if

one can guarantee never to run out of clean objects before a dirty object can be

washed. We will show that this technique is applicable in the implementation of

long-lived test-and-set objects.

2.4 Properties of Test-And-Set Objects

Let x,y, z denote TestAndSet actions, subscripted by p when executed by pro-

cessor p. Write res(x) for the result returned by x, and R(x) for the Reset action

corresponding to x (i.e., executed after x to reset the test-and-set object). For

one-shot test-and-set objects, that do not have a Reset operation, define R(x)
as a ‘virtual action’ and add it to the run ordered after all regular actions in it.

Definition 2.5. For a wellformed run 〈A,→〉 or sequential execution 〈A,⇒〉, de-

fine

W = {x ∈ A | res(x) = won}

L = {x ∈ A | res(x) = lost}

Because we only consider complete runs where all actions return a response,

this is well defined. We have the following general theorem

Theorem 2.6. Let STS be the sequential specification of a test-and-set object. Let

〈A,⇒〉 correspond to a wellformed run 〈A,→〉, satisfying STS and let x,y ∈ W
be arbitrary. Then

x ⇒ y if and only if x → R(y) .

Long-Lived Test-And-Set Using Bounded Space 7

Proof. For x = y the theorem trivially holds. So assume x ≠ y . We consider the

if and only-if part separately.

(if, ⇐) If x → R(y) then x ⇒ R(y). Now if y ⇒ x, then y ⇒ x ⇒ R(y) with

x ≠ y and hence res(x) = lost by (TS2), contrary to assumption. Therefore

x ⇒ y .

(only if, ⇒) Suppose x ⇒ y . If y ⇒ R(x), then by similar reasoning as above,

res(y) = lost. Hence R(x) ⇒ y and so R(x) 6← y . With x → R(x) and

y → R(y) we conclude x → R(y).

This completes the proof. ut

This theorem motivates the following definition of ⇒′ among all x,y ∈ W in a

run 〈A,→〉.

x ⇒′ y if and only if x → R(y) . (D1)

Clearly x → R(x) (and likewise for y). Because→ is an interval order, x → R(y)

or y → R(x). Hence ⇒′ orders each pair x,y ∈ W . Also note that we have

x ⇒′ x for all x ∈W . Define the following property.

(T1) For all x,y ∈W , x ≠ y , not both x → R(y) and y → R(x).

The next lemma shows that if (T1) holds for a run 〈A,→〉, then ⇒′ as defined

by (D1) is acyclic6.

Lemma 2.7. Let 〈A,→〉 be a wellformed run over a test-and-set object, and let

⇒′ be defined by (D1). If (T1) holds, then ⇒′ is a transitive acyclic order, in fact a

total order overW , extending →.

Proof. ⇒′ extends → among all such z ∈ W , because if x → y , then surely

x → R(y) and hence, using (D1), x ⇒′ y . If x ⇒′ y and y ⇒′ z, then by (D1)

and (T1) x → R(y) and z 6→ R(y). Because z → R(z) and → is an interval order,

x → R(z) and hence by (D1) also x ⇒′ z. This shows that ⇒′ is transitive. Now

⇒′ is easily seen to be acyclic. If there were a cycle of length larger than 1, by

transitivity it could be reduced to a cycle of length 2: x ⇒′ y and y ⇒′ x (with

x ≠ y). But together with (D1), this would contradict (T1). ut

Define the following property.

(T2) For each x ∈ L there exists an y ∈ W such that y 6← x and x 6← R(y),

with for all z ∈W ,

1. if R(z) → x, then z → R(y), and

2. if x → z then y → R(z).

Broadly speaking, (T2) states that if a test-and-set is lost, it must have com-

peted with another test-and-set operation that won. Some technicalities make

(T2) slightly more complicated. Requiring that a test-and-set that is lost must

overlap with a test-and-set that won is not enough, as witnessed by the scenario

depicted in Figure 1. Here, y,z ∈ W . x ∈ L overlaps with R(y), but because x

8 Jaap-Henk Hoepman

PSfrag replacements

y R(y)

z R(z)

x

Figure1. Overlapping test-and-set can win

starts after R(z), it cannot have been beaten by y , and therefore x should win

as well.

In the proof of Theorem 2.10 we need the following definition, inspired

by [AKKV88]. To avoid awkward limiting conditions we postulate two extra ac-

tions ⊥ and R(⊥) with ⊥ → R(⊥), ⊥ → x for all x ∈ A, and R(⊥) → x for all

x ∈ A. We add ⊥ toW .

Definition 2.8. Suppose (T1) and (T2) hold. For x ∈W , define

Clan(x) = Clan(R(x)) = the index of x in ⇒′, 1 being the first.

For x ∈ L, define C(x) to be the last y ∈ W (according to ⇒′, i.e., with the

highest clan number) such that y → x. Then define

Clan(x) =







1+ Clan(C(x)) if R(C(x)) → x,

Clan(C(x)) otherwise

Because (T1) holds, ⇒′ is acyclic by Lemma 2.7, and so Clan(x) is properly

defined for all x ∈ W . In fact each clan contains exactly one z ∈ W , and for

x,y ∈W , with x ≠ y , we have x ⇒′ y iff Clan(x) < Clan(y).

Since ⊥ ∈ W , C(x) exists for all x ∈ L. Therefore, Clan(x) is also properly

defined for all x ∈ L.

Lemma 2.9. Let 〈A,→〉 be a wellformed run over a test-and-set object satisfying

(T1) and (T2). Let x ∈ L and y ∈W be arbitrary. Then

1. If x → R(y), then Clan(x) ≤ Clan(y).

2. If x → y , then Clan(x) < Clan(y).

Proof. Suppose x → R(y). Because by definition C(x) → x we have C(x) →

R(y) and hence by (D1) C(x) ⇒′ R(y) and so Clan(C(x)) ≤ Clan(R(y)). Recall

that Clan(y) = Clan(R(y)) for all y ∈W .

There are two cases.

6 We allow 1-cycles, i.e., x ⇒′ x.

Long-Lived Test-And-Set Using Bounded Space 9

1. R(C(x)) 6← x: Then Clan(x) = Clan(C(x)) and so Clan(x) ≤ Clan(y). More-

over, if x → y , then C(x) → y so C(x) ≠ y and hence Clan(x) < Clan(y).
2. R(C(x)) → x: Then Clan(x) = 1 + Clan(C(x)). As by assumption x →

R(y), we have R(C(x)) ≠ R(y), so C(x) ≠ y which implies Clan(x) − 1 =

Clan(C(x)) < Clan(y). Hence Clan(x) ≤ Clan(y).
Moreover, if x → y , then by property (T2) there is a z ∈W such that z 6← x

and x 6← R(z) with C(x) → R(z) [because we have R(C(x)) → x], and

z → R(y) [because x → y]. Hence C(x) ⇒′ z and z ⇒′ y by (D1). Since

z ≠ y [by x → y and z 6← x], and z ≠ C(x) [by R(C(x)) → x and x 6← R(z)],

we have Clan(C(x)) < Clan(z) < Clan(y). We conclude Clan(x) < Clan(y).

This completes the proof. ut

The next theorem proves that if (T1) and (T2) both hold for a run 〈A,→〉, then

this run is a valid run for a test-and-set object.

Theorem 2.10. Let 〈A,→〉 be a wellformed run over a test-and-set object satis-

fying (T1) and (T2). Then 〈A,→〉 is linearisable w.r.t. STS .

Proof. We construct the corresponding sequential order⇒ in phases. First let⇒

be⇒′ as in (D1). Then⇒ is a total acyclic order among all x ∈W by Lemma 2.7.

Now insert for each x ∈W , R(x) immediately after x in ⇒. Similarly, for all

y ∈ L, insert y between x and R(x) in ⇒ for which Clan(x) = Clan(y). Such x
exists by (T2) and the definition of C(y): it either equals C(y) or the next write

after C(y) which exists due to (T2).

Arbitrarily order all y ∈ L with the same clan number consistent with →,

and take the transitive closure. Note that this does not introduce cycles.

The resulting sequential execution is easily verified to satisfy (TS1), (TS2)

and (TS3). It remains to verify that ⇒ extends →. We show this by case analysis.

1. x → y with x = a or x = R(a) for a ∈ W and y = b or y = R(b) for

b ∈ W : then a → R(b) and hence a ⇒′ b by (D1) and therefore x ⇒ y by

construction of ⇒.

2. R(x) → y , y ∈ L: Then x → y , hence x ⇒′ C(y). If x ≠ C(y), then

Clan(x) < Clan(C(y)) ≤ Clan(y). If x = C(y), then by R(x) → y , Clan(y) =
1+Clan(C(y)). Again Clan(x) < Clan(y). So in both cases, by construction,

x ⇒ y .

3. x → R(y), x ∈ L: By Lemma 2.9, Clan(x) ≤ Clan(y). By construction x ⇒

R(y).
4. x → y :

(a) x ∈ W and y ∈ L: Then x ⇒′ C(y) so Clan(x) ≤ Clan(C(y)) ≤
Clan(y). By construction x ⇒ y .

(b) x ∈ L and y ∈ W : By Lemma 2.9, Clan(x) < Clan(y). By construction

x ⇒ y .

(c) x ∈ L and y ∈ L: If z → x then z → y . Therefore C(x) ⇒′ C(y). If

R(C(x)) → x then R(C(x)) → y . We conclude Clan(x) ≤ Clan(y). By

construction x ⇒ y .

This completes the proof. ut

10 Jaap-Henk Hoepman

3 Implementing Long-Lived Test-And-Set

Protocol 3.1 implements an n-processor long-lived test-and-set object fromn+1

one-shot test-and-set objects for the same number of processors.

The notational conventions are as follows. Shared registers are written SHARED.

SHARED denotes a multi-writer multi-reader register. When indexed by a pro-

cessor name (e.g. SHAREDp), this denotes a single-writer multi-reader register

owned (i.e. written) by p. Local variables of process p are written as varp . Ghost

variables (used for the proof of correctness but not influencing the flow of con-

trol of the program) are denoted by GHOST . Assignments to them appear in-

dented on the following line in square brackets. Each numbered line contains at

most one read from or one write to a single shared variable, or calls the single

shot test-and-set operation. We assume that each of these operations is atomic

(including any assignments to ghost variables immediately following that state-

ment).

In the protocol we assume a bounded set of n-processor one-shot test-and-

set objects OneShot[], indexed by elements from a set I. We will fix the size of I

later. A shared register INDEX maintains the index of the current one-shot test-

and-set object to play in. The winner of this one-shot object wins the long-lived

test-and-set. When resetting, it is responsible for finding a new, empty, test-and-

set object, to clean it, and finally let INDEX point to this object. If the object we

implement is indeed a test-and-set object, resets occur sequentially. Therefore

there is no interference during a reset and hence finding an empty object and

resetting it is relatively straightforward.

Before entering a single shot test-and-set object, a processor writes the index

of this object to shared register CHOOSEp , and checks whether the global index

changed before actually entering. Therefore, while INDEX is being updated, only

processors that have revealed to enter a now old and already abandoned object

(i.e. won by another processor) will possibly be using this old object.

The argument to see why this is the case runs as follows. While the winner p

is in the reset phase, INDEX does not change. Therefore, a processor q is either

busy in an old test-and-set object, and then the index of this object is stored in

CHOOSEq, or q is busy in or about to enter test-and-set object INDEX. Hence, the

winner can easily find a free object, that is guaranteed not to be used or about

to be used, by eliminating INDEX and all indices found in CHOOSEq for all q ≠ p

from the set I of all indices. This removes at most n indices. We conclude that

|I| ≥ n+ 1 and take I = {0, . . . , n}.

Initially, INDEX and CHOOSEp equal an arbitrary element from I. Moreover7,

owner(i) = ⊥ for all i ∈ I, ROUND = 1 and OWNER = ⊥.

3.1 Proof of Correctness

We will use the following additional notation. The predicate p@x is true if the

next step of process p is to execute line x of Protocol 3.1. If x is subdivided

7 We write owner(x) for owner(OneShot[x]).

Long-Lived Test-And-Set Using Bounded Space 11

Registers

INDEX ∈ I, a multi-writer register, initially 0.

CHOOSEp ∈ I, single writer registers for each p ∈ {1, . . . , n}, initially arbitrary.

OneShot[], an array of one-shot test-and-set objects, indexed by i ∈ I, initially owner(i) = ⊥.

Ghost variables

OWNER ∈ {1, . . . , n}, initially ⊥.

ROUND, roundp ∈
�

, initially 1.

choosep[] ∈ I, an array indexed by {1, . . . , n}, initially arbitrary.

Qp ∈ 2{1,... ,n}, initially arbitrary.

Local variables of processor p

indexp , freep ∈ I, initially 0.

resp ∈ {won, lost}, initially arbitrary.

Fp ∈ 2{1,... ,n}, initially arbitrary.

q ∈ {1, . . . , n}, initially arbitrary.

TestAndSetp() :

1 indexp := INDEX

[roundp := ROUND] ;

2 CHOOSEp := indexp ;

3 if (indexp ≠ INDEX)

then resp := lost ;

4 else resp := OneShot[indexp].TestAndSetp()

[OWNER := p if resp = won]

5 return resp ;

Resetp() :

6 (∗ Find index of free test-and-set object ∗)

6.1 Fp := I \
{

indexp

}

[Qp := {}] ;

6.2 forall q ≠ p

6.3 do Fp := Fp \
{

CHOOSEq

}

[Qp := Qp ∪
{

q
}

; choosep[q] := CHOOSEq];

6.4 freep := select x ∈ Fp
7 (∗ Wash free object. This is not an atomic operation. ∗)

7.1 call OneShot[freep].Washp()

7.2 wait until OneShot[freep].Washp() returns

[owner(freep) = ⊥]

(∗ Make free object available ∗)

8 INDEX := freep
[ROUND := ROUND + 1; OWNER := ⊥] ;

Protocol 3.1: A bounded space long-lived n processor test-and-set protocol.

into several lines x.i, we also write p@x if p@x.i for some i. We write p.x for

the action of executing line x by process (or sometimes action) p.

We will use → to denote both the partial order in the run 〈A,→〉 over the

high-level actions (i.e., those on the long-lived test-and-set object), and the total

12 Jaap-Henk Hoepman

order over all low level actions (i.e., both on the registers and the one-shot test-

and-set objects). Note that x → R(y) is equivalent to x.5 → y.6 and that R(x) →

y is equivalent to x.8 → y.1.

We prove correctness of the protocol using invariants. The proof consists of

two stages. First we will show that invariance of the following two predicates

p@5–8∧ resp = won ⇒ OWNER = p (P1)

p@5∧ resp = lost ⇒ (OWNER ≠ p ∧ OWNER ≠ ⊥) ∨ (roundp ≠ ROUND)

(P2)

implies that (T1) and (T2) hold for every run. This shows, using Theorem 2.10,

that all runs are linearisable w.r.t. STS . In the second stage of the proof, we show

that (P1) and (P2) are indeed invariant and thus that Protocol 3.1 implements a

test-and-set object.

Lemma 3.1. Invariance of (P1) and (P2) in Protocol 3.1 implies that (T1) and (T2)

hold for all runs of Protocol 3.1.

Proof. If (T1) is violated, then for some xp and yq in W with xp ≠ yq we

have xp .5 → yq.6 and yq.5 → xp.6. Hence x and y overlap and we conclude

that p ≠ q. Because the underlying execution is atomic, either xp.5 → yq.5 or

yq.5 → xp .5. In the first case, just before yq.5 we have p@6 and resp = won as

well as q@5 and resp = won, so by (P1) OWNER = p and OWNER = q and then

p = q, a contradiction. The other case is similar.

Suppose yq ∈ L. To show (T2) holds, we have to show there exists a zr ∈W

with zr 6← yq and yq 6← R(zr) and that for all xp ∈ W , if R(xp) → yq we have

xp → R(zr), and if yq → xp we have zr → R(xp)

By property (P2) we have the following two cases.

1. At yq.5, OWNER = r and r ≠ q and r ≠ ⊥. Then for some zr ∈ W , zr .4 →
yq.5 → zr .8. Hence zr 6← yq and yq 6← R(zr). Moreover, if R(xp) → yq,

using the above also xp .5→ zr .8

Now if zr .5 → xp.5 at xp.5 we have r@5–8 ∧ p@5. By (P1), then p = r . Be-

cause zr and xp are concurrent, this cannot happen. Because the underlying

run is atomic, we conclude xp.5 → zr .5, and hence xp → R(zr).

If yq → xp , then zr .4 → yq.5 → xp .1 → xp .5. If xp .5 → zr .5 then at p.5

we have again r@5 ∧ p@5, which we have already shown is impossible. We

conclude zr .5 → xp .5, and hence zr → R(xp).

2. At yq.5, roundq ≠ ROUND. Then for some zr , yq.1 → zr .8 → yq.5. Again

zr 6← yq and yq 6← R(zr). Moreover, if R(xp) → yq, using the above xp .5 →

zr .8 and by similar reasoning of the previous item xp → R(zr).

If yq → xp , then yq.1 → zr .8 → yq.5 → xp .1. This implies zr .5 → xp.6, and

hence zr → R(xp).

This completes the proof. ut

Long-Lived Test-And-Set Using Bounded Space 13

We introduce the following 9 smaller invariants.

p@5–8 ∧ resp = won implies indexp = INDEX ∧ owner(indexp) = p (I1)

resp = lost implies OWNER ≠ p (I2)

p@4 ∧ owner(indexp) = ⊥ implies indexp = INDEX (I3)

owner(i) = q ∧ q ≠ ⊥ implies q = OWNER ∨ INDEX ≠ i (I4)

p@5 ∧ resp = lost ∧ OWNER = ⊥ implies roundp ≠ ROUND (I5)

p@6.2–8 ∧ q ∈ Qp ∧ q@4 implies indexq = choosep[q] ∨ indexq = INDEX

(I6)

p@6–8 implies resp = won (I7)

p@7–8 ∧ q@4 implies (indexq ≠ freep ∧ INDEX = indexp ≠ freep) (I8)

INDEX ≠ indexp implies ROUND ≠ roundp (I9)

Lemma 3.2. If (I1), (I7) and (I8) are invariant for Protocol 3.1, then for all oper-

ations on OneShot[i], with i ∈ I, executed by Protocol 3.1, (TS1), (TS2) and (TS3)

hold.

Proof. If (I8) is invariant, then if p washes OneShot[freep] at 7, for all test-and-

set operations executed by q at 4 on OneShot[indexq], freep ≠ indexq.

If (I1) and (I7) are invariant, then if both p and q wash an object, then actually

p = q. Hence for all actions A on OneShot[i] (including washing operations),

¬(A‖Wash(OneShot[i])).

By assumption, the implementation I of OneShot[freep] and the implemen-

tation of OneShot[freep].Washp() together guarantee that OneShot[freep].Washp()

returns with init(I).

Now for every run of the protocol, the conditions of Theorem 2.4 are met.

One shot test and set objects impose no further restrictions on wellformed runs.

Hence each run in the partition (in Theorem 2.4) is wellformed, and so for all

actions on one shot test and set objects in the run, STS holds. ut

Lemma 3.3. In Protocol 3.1, (I1) through (I9) hold initially.

Proof. Because initially, for all p, p@1, (I1), (I3), (I5), (I6), (I7) and (I8) trivially

hold. (I2) holds initially, because initially OWNER = ⊥. (I4) holds because initially

owner(i) = ⊥ for all i ∈ I. (I9) holds because initially indexp = INDEX = 0 ut

Lemma 3.4. In Protocol 3.1, (I1) through (I9) are invariant.

Proof. We prove invariance of each invariant separately.

(I1) : Steps 1, 2, and 8 of p set ¬p@5–8. Steps 5, 6, and 7 of p do not change

indexp , INDEX or owner(indexp) (step 7 of p does not alter owner(indexp)

by the construction of Fp). Step 3 only sets p@5 if pindex ≠ INDEX and hence

resp = lost.

Now consider step 4 by p. If it sets resp = won, then by (TS1) – which holds

by Lemma 3.2 – according to which at p.4, owner(indexp) = ⊥, which by (I3)

14 Jaap-Henk Hoepman

implies indexp = INDEX (not altered by p.4). Also, by (TS1) after step 4 we

have owner(indexp) = p.

Only steps 4, 7 and 8 of q ≠ p can affect (I1) by possibly altering INDEX or

owner(indexp) while p@5–8 and resp = won.

But if q@7 or q@8, then resq = won by (I7). Using the assumption that

p@5–8 and resp = won (else (I1) trivially holds) and that (I1) holds initially,

we conclude p = q. This case is handled in the previous paragraph.

This leaves step 4 for q ≠ p while p@5–8 and resp = won. This only affects

owner(indexp) if indexq = indexp . Then by (I1), owner(indexq) ≠ ⊥. But

then by Lemma 3.2 (TS2) holds, which implies that step 4 does not affect

owner(indexp) at all.

(I2) : No other processor but p can set OWNER = p. But p only sets OWNER = p
when resp = won.

(I3) : Only step 3 of p sets p@4, but only if indexp = INDEX.

The only step of q that could set owner(indexp) = ⊥ is 7. However, similar

as before, step 7 of q ≠ p does not change owner(indexp) by (I8) as long

as p@4. And if q ≠ p changes INDEX from indexp to a value unequal to

indexp (by step 8), then q@8 implies resq = won by (I7) and hence we can

apply (I1) to show INDEX = indexq and hence indexp = indexq, and thus

owner(indexp) = q ≠ ⊥.

(I4) : The only step that changes owner(i) to a value unequal to ⊥ is 4. But then

it also sets OWNER = p. The only steps that change INDEX and OWNER are

4 (handled already) and 8. But if 8 of p sets INDEX = i, then freep = i at 7

and hence after 7, owner(i) = ⊥.

(I5) : Step 1–2 and 5–8 of p set ¬p@5.

Step 3 only sets p@5 if pindex ≠ INDEX and hence by (I9) ROUND ≠ roundp .

This leaves step 4. But if this step returns resp = lost, then by (TS2) – which

holds by Lemma 3.2 – we have owner(indexp) ≠ p ∧ owner(indexp) ≠ ⊥. By

(I4) then OWNER ≠ ⊥ or INDEX ≠ indexp . Because we assumed OWNER = ⊥

we conclude INDEX ≠ indexp and hence again by (I9), ROUND ≠ roundp .

(I6) : Step 1–6 and 8 of p set ¬p@6.2–8. Steps 6.2, 6.4, and 7 do not alter Qp or

choosep[]. Step 6.1 sets Qp = {} satisfying (I6).

For each q, step 6.3 of p sets Qp := Qp ∪
{

q
}

, but also choosep[q] :=

CHOOSEq. If q@4–5, then CHOOSEq = indexq and the condition holds. If

¬q@4–5 the condition holds trivially

Only step 8 of r ≠ p changes INDEX. But if r@8, then by (I7) and (I1) we

conclude that p = r . This case is handled above.

Only step 3 of a q ∈ Qp can invalidate (I6) if it reaches q@4, but then there

are two cases:

1. q.2→ p.6.3: CHOOSEq = indexq when p.6.3 is executed for this q, hence

choosep[q] = indexq .

2. p.6.3 → q.2: Then p.1 → q.3 → p.8 (q.3 → p.8 by assumption that

p@7–8). By (I1), INDEX = indexp . Now because q reaches q@4, indexq =

INDEX = indexp .

(I7) : By the protocol, OWNER = p implies resp = won. Then (I7) follows from

wellformedness (maintaining (TS3)) of the run.

Long-Lived Test-And-Set Using Bounded Space 15

(I8) : If p@7, then (I8) holds by virtue of (I6) and the fact that after step p.6 Qp =

I \
{

p
}

and freep is selected from Fp = I \ (
⋃

q∈Qp choosep[q] ∪
{

indexp

}

).

Also note that INDEX = indexp by (I1).

(I9) : The only step that changes INDEX is 8, but this step also increments

ROUND. Hence whatever value p read for roundp at step 1 when reading

indexp must have been smaller.

ut

The correctness of our protocol immediately follows from these invariants, and

the results of Section 2.

Theorem 3.5. In Protocol 3.1, (P1) and (P2) are invariant. Therefore Protocol 3.1

implements a wait-free long-lived test-and-set object.

Proof. (P1) follows from (I1) and (I4). Invariants (I2) and (I5) imply (P2). (I1)

through (I9) are invariant by lemma 3.4. Therefore (P1) and (P2) are invariant

too.

By Lemma 3.1, then (T1) and (T2) hold for every run of Protocol 3.1. By

Theorem 2.10 then all runs of Protocol 3.1 are linearisable w.r.t. STS . ut

We conclude by stating the time (measured in number of shared register

accesses) and space requirements of our protocol.

Theorem 3.6. Protocol 3.1 uses n+ 1 one-shot test-and-set objects, and n single

writer registers and 1 (multi-writer) register containing dlogn+ 1e bits each.

Let t be the worst case expected running time of the one-shot test-and-set

operation, then the worst case expected running time of the test-and-set operation

of Protocol 3.1 is 3+ t.

Letw be the worst case running time needed to wash the one-shot test-and-set

object. Then the worst case running time of the reset operation is n+w .

Proof. Immediately follows from the code of Protocol 3.1. ut

Using the results of the appendix, we obtain the following corollary.

Corollary 3.7. Long-lived test-and-set can be implemented using 4n2 + 4 (multi-

writer) registers of 2 bits each, plus n single writer registers and 1 (multi-writer)

register containing dlogn+ 1e bits each.

The test-and-set operation takes a worst-case expected time of O(logn); the

reset operation takes 5n time units in the worst case.

References

[AGTV92] AFEK, Y., GAFNI, E., TROMP, J., AND VITÁNYI, P. M. B. Wait-free test-and-set.

In 6th WDAG (Haifa, Israel, 1992), A. Segall and S. Zaks (Eds.), LNCS 647,

Springer-Verlag, pp. 85–94.

[AKKV88] AWERBUCH, B., KIROUSIS, L. M., KRANAKIS, E., AND VITÁNYI, P. M. B. A proof

technique for register atomicity. In 8th FST&TCS (Pune, India, 1988), K. V.

Nori and S. Kumar (Eds.), LNCS 338, Springer Verlag, pp. 286–303.

16 Jaap-Henk Hoepman

[BGHM95] BUHRMAN, H., GARAY, J. A., HOEPMAN, J.-H., AND MOIR, M. Long-lived re-

naming made fast. In 14th PODC (Ottawa, Ont., Canada, 1995), ACM Press,

pp. 194–203.

[Her91] HERLIHY, M. P. Wait-free synchronization. ACM Trans. Prog. Lang. & Syst.

13, 1 (1991), 124–149.

[HW90] HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness condition for

concurrent objects. ACM Trans. Prog. Lang. & Syst. 12, 3 (1990), 463–492.

[IL87] ISRAELI, A., AND LI, M. Bounded time stamps. In 28th FOCS (Los Angeles,

CA, USA, 1987), IEEE Comp. Soc. Press, pp. 371–382.

[IS92] ISRAELI, A., AND SHAHAM, A. Optimal multi-writer multi-reader atomic reg-

ister. In 11th PODC (Vancouver, B.C., Canada, 1992), ACM Press, pp. 71–82.

[KST91] KIROUSIS, L. M., SPIRAKIS, P., AND TSIGAS, P. Reading many variables in

one atomic operation: Solutions with linear or sublinear complexity. In 5th

WDAG (Delphi, Greece, 1991), S. Toueg, P. G. Spirakis, and L. Kirousis (Eds.),

LNCS 579, Springer-Verlag, pp. 229–241.

[Lam86] LAMPORT, L. On interprocess communication. Part I: Basic formalism, part

II: Algorithms. Distr. Comput. 1, 2 (1986), 77–101.

[LAA87] LOUI, M. C., AND ABU-AMARA, H. H. Memory requirements for agreement

among unreliable asynchronous processes. In Advances in Computing Re-

search, F. P. Preparata (Ed.), vol. 4. JAI Press, 1987, pp. 163–183.

[MA94] MOIR, M., AND ANDERSON, J. H. Fast, long-lived renaming. In 8th WDAG

(Terschelling, The Netherlands, 1994), G. Tel and P. M. B. Vitányi (Eds.), LNCS

857, Springer-Verlag, pp. 141–155. To appear in Science of Computer Pro-

gramming.

[TV91a] TROMP, J., AND VITÁNYI, P. M. B. A randomized algorithm for two-process

wait-free test-and-set. Tech. Rep. CT-91-10, Institute for Language, Logic

and Information, University of Amsterdam, 1991.

[TV91b] TROMP, J., AND VITÁNYI, P. M. B. Randomized wait-free test-and-set. Tech.

Rep. CS-R9113, CWI, Amsterdam, 1991.

A From 2 to n Process One-Shot Test-And-Set

We still have to show that our construction of a long-lived test-and-set object

from a one-shot object is reasonable, in the sense that we can implement the

one-shot test-and-set together with a washing operation. In this appendix we

show that this is indeed the case, by constructing an n process one-shot test-

and-set object from a 2-process one which is easily washed by a single proces-

sor. The construction is only a slight modification of existing protocols. Our

exposition on this topic is therefore brief, and will point to relevant other pub-

lications where appropriate.

Recall that for long-lived test-and-set objects, each winner of the test-and-set

eventually resets it. In other words, for all x ∈W , R(x) exists. For one-shot test-

and-set objects this is not the case, because the reset operation is not defined.

In this case, R(x) for a x ∈ W was defined in Section 2.4 as a virtual action

ordered after all regular actions in the run.

For one-shot test-and-set, property (T1) now implies thatW contains at most

one action.

Long-Lived Test-And-Set Using Bounded Space 17

Registers

DOOR ∈ {open, closed}, a multi-writer register, initially open.

OneShot2Proc[], a tree of 2 processor one-shot test-and-set objects,

indexed by binary strings of length dlogne − 1 or smaller,

initially owner(i) = ⊥.

Local variables of processor p

resp ∈ {won, lost}, initially arbitrary.

` ∈
{

0, . . . , dlogne
}

, initially arbitrary.

TestAndSetp() :

1 if (DOOR = open)

2 then DOOR := closed ;

` := dlogne ;

3 repeat resp := OneShot2Proc[p[` − 1:1]]].TestAndSetp[`]() ;

` := `− 1 ;

until resp = lost ∨ ` = 0 ;

else resp := lost ;

4 return resp ;

Wash():

forall binary strings s of length dlogne − 1 or smaller

do OneShot2Proc[s].Wash() ;

Protocol A.1: From 2 to n processor one-shot test-and-set.

(T1)’ |W| ≤ 1.

Given this constraint, (T2) simplifies to

(T2)’ If |L| > 0, then |W| = 1, and for x ∈W , for each y ∈ L, x 6← y .

In Protocol A.1 we present the construction of a n-process single shot test-and-

set using a 2-process single-shot test-and-set as a primitive. The idea is to play a

tournament [AGTV92] in a tree of 2-processor test-and-set objects, using multi-

writer registers inside these 2-processor test-and-set objects to ease the search

for an opponent [BGHM95] and to enable a single processor to wash the entire

data structure.

Any 2-processor test-and-set object using single writer registers in its imple-

mentation (e.g., the construction in [TV91a, TV91b]) can be used if each single

writer register is replaced by a multi-writer one (which can be written by any of

the n processors playing the tournament). The construction of the tree guaran-

tees that at most two processors ever play any test-and-set.

Each 2-processor test-and-set has 2 ‘inputs’, labelled 0 and 1. A processor

entering such test-and-set over the input with label i plays the 2-processor test-

and-set protocol for processor i.

The tournament tree of 2-processor test-and-sets is constructed as follows.

The root of the tree (at level 1) is a single 2-processor test-and-set labelled ε

18 Jaap-Henk Hoepman

(the empty string). The tree has dlogne levels. If test-and-set x is connected

over input i to test-and-set y with label s one level higher in the tree, then x

has label (s i).

Interpret the name p of any of the n processors {0, . . . , n− 1} as an dlogne

binary string, padded in the front with 0 bits when appropriate. The index of the

rightmost, least significant, bit is 1. Let p[i] denote the i-th bit of p’s name, and

let p[i :1] denote the substring of p’s name obtained by taking the rightmost i,

i.e., least significant, bits.

Now the path for p through the tree to win is easily determined using p’s

name. At level `, p plays the test-and-set with label p[` − 1:1] over input p[`].

p enters the tournament at level ` = dlogne, and if p wins, then he advances to

a higher level ` − 1. If p wins test-and-set ε at level 1 (and advances to level 0),

then p wins the tournament and hence the n-processor test-and-set.

The tournament construction guarantees that (T1)′ holds. Processors enter-

ing the tournament first check to see whether a ‘global’ door is open, and only

enter and close the door if they find this door open. This construction guaran-

tees that (T2)′ also holds.

We will now formally prove correctness of Protocol A.1.

Definition A.1. Let 〈A,→〉 be a complete run (see Sect. 2.1) over Protocol A.1.

For every action x ∈ A define

level(x) = the minimal level visited by x in the tournament tree,

where level(x) = 0 for the winner, and level(x) = dlogne + 1 if x never enters

the tournament tree but looses because of a closed door.

For all processors p ∈ {0, . . . , n− 1} and all ` ∈
{

0, . . . , dlogne
}

, define the

peers of p at level ` + 1,

T`(p) =
{

yq ∈ A | (level(yq) < dlogne + 1) ∧ (q[` :1] = p[` :1])
}

.

The peers T`(p) contain all actions that actually compete in the test and set and

are possible contenders for p at level `+1. We have the following lemma, which

states if there is a contender for p at level ` + 1 then there is exactly one such

contender at level ` or lower.

Lemma A.2. Let 〈A,→〉 be a complete run over Protocol A.1. For all ` ∈
{

0, . . . , dlogne
}

,

and all p ∈ {0, . . . , n− 1}with |T`(xp)| > 0, there exists exactly one yq ∈ T`(xp)
with level(yq) ≤ `.

Proof. By induction on `.

For ` = dlogne, there is at most one xp with xp ∈ T`(p). If |T`(p)| > 0,

there is exactly one.

Suppose the result is proven for all ` > t. Now consider ` = t, and pick an

arbitrary p ∈ {0, . . . , n− 1} with |Tt(p)| > 0. Let p0 be p with p[t + 1] = 0

and let p1 be p with p[t + 1] = 1. For all yq ∈ Tt(p) either yq ∈ Tt+1(p0) or

yq ∈ Tt+1(p1). Those yq with yq ∈ Tt+1(p0) play the 2-processor test-and-set

Long-Lived Test-And-Set Using Bounded Space 19

with label p[t : 1] at level t + 1 over input 0; by the induction hypothesis there

is at most one such yq.

Those yq with yq ∈ Tt+1(p1) play the 2-processor test-and-set with label

p[t : 1] at level t + 1 over input 1; by the induction hypothesis there is at most

one such yq.

Because |Tt(p)| > 0, there is at least one such yq. By the properties of the

test-and-set object and the fact that the run is complete there is exactly one

winner that enters level t. ut

Theorem A.3. (T1)’ and (T2’) hold for all runs of Protocol A.1. Hence Protocol A.1

implements an n-process one-shot test-and-set object.

Proof. (T1)’, i.e., |W| ≤ 1, immediately follows from Lemma A.2, taking ` = 0.

(T2)’, i.e., if |L| > 0, then |W| = 1, and for x ∈W , for each y ∈ L, x 6← y , is

proven as follows.

Note that the only value written to DOOR is closed. Then all reads after the

first write to DOOR return closed. Now suppose to the contrary that p ∈ W ,

q ∈ L, q → p. But then q.2→ p.1 and hence p would have read DOOR = closed,

meaning p ∈ L contrary to assumption.

If |L| > 0, then at least one processor plays the test-and-set. The first proces-

sor p to enter the test-and-set reads DOOR = open at p.1 and enters the tour-

nament. Hence |T0(p)| > 0 and therefore by Lemma A.2 for some yq ∈ T0(p)
level(yq) = 0 i.e., yq ∈W .

The second part from the theorem follows from Theorem 2.10. ut

Theorem A.4. Let Protocol A.1 use the 2-process test-and-set of Tromp and Vi-

tányi [TV91a, TV91b]. Then its worst case expected running time of the test-and-

set operation isO(logn), and it uses at most 4n registers of 2 bits each. The worst

case running time of the washing operation is 4n.

Proof. A processor can advance at most dlogne levels up the tree, playing a one-

shot test-and-set at each level. The 2-process test-and-set object of Tromp and

Vitányi [TV91a, TV91b] has a worst case expected running time of O(1). Hence

our protocol has a worst case expected running time of O(logn).

Protocol A.1 uses 2dlogne−1 < 2n single-shot test-and-set objects. The 2-

process test-and-set object of Tromp and Vitányi [TV91a, TV91b] uses two 4-

valued registers. Hence our protocol uses at most 4n registers of 2 bits each,

plus 1 binary register for the ‘door’.

Washing each register takes 1 time unit. This proves the upper bound on the

time needed to wash the object. ut

