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Abstract. Blind signatures are a decades-old privacy enhancing tech-
nology. It is not always clearly understood that blind signatures actu-
ally possess two separate properties: the intuitive understanding that
the message to be signed is hidden from the signer, and the fact that
the resulting signature is unlinkable (meaning that the signer cannot
later tell in which session it created a particular signature). The ques-
tion is: how exactly should these properties be defined, and can they
be defined in a natural way such that they are mutually independent
yet together imply blindness?
In this paper we study this question, present formal definitions for
message indistinguishability and signature unlinkability (and a few
more related ones), and study their relationships. We show that these
two properties are indeed mutually independent. Unfortunately their
union is not equivalent to blindness in what appear to be only patho-
logical cases.

1 Introduction

David Chaum introduced blind signatures almost four decades ago [6], as
the fundamental building block to implement a form of untraceable digital
cash. His proposal was to represent each digital coin as a unique serial num-
ber blindly signed by the issuing bank. The unique serial number embedded
in the coin would prevent double spending, while the blind signature over
the coin would guarantee both untraceability (by not knowing which coin
was signed) and unforgeability (by signing the coins in the first place).

Chaum explained blind signatures intuitively by showing how a blind
signature could be implemented in a traditional, non digital, setting using
carbon paper inside paper envelopes. To obtain a blind signature on a se-
cret message, a user could send the message inside a sealed envelope to the
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signer, with the inside of the envelope covered with carbon paper. The car-
bon paper ensures that if the signer signs the envelope from the outside, the
carbon paper transfers this signature to the secret message inside the enve-
lope. When the signer returns the still sealed envelope (proving it didn’t see
the message) all the user needs to do is to open the envelope to obtain the
blindly signed message.

This intuitive explanation clearly shows that the message stays hidden
from the signer. But this by itself is not enough to prevent a bank from trac-
ing a digital coin signed this way, even if it prevents the bank from learning
its serial number. In fact, if the bank signs each envelope in a slightly differ-
ent way, and remembers which way of signing it used to sign each envelope,
it can link actual signatures on messages to the particular envelope on which
it put the exact same signature. In other words, in order to guarantee all the
desired security and privacy properties, blind signatures need to guarantee
the following two separate properties.

“Hiding the message”
The message to be signed is hidden from the signer.

Signature unlinkability
Given a final blind signature on a message, the signer cannot determine
when it generated that particular signature.

Perhaps due to Chaum’s metaphor, blind signatures have always informally
been explained as signatures where the message to be signed is hidden from
the signer. But as the above example shows, blind signatures need to guar-
antee two separate ‘faces of blindness’. The question is: how exactly should
these properties be defined, and can they be defined in a natural way such
that they are mutually independent yet together imply blindness?

Although in the particular case of signing digital coins signing messages
without knowing their contents is a desirable feature, in general this is irre-
sponsible: who would sign a contract without knowing its terms? Therefore,
in many applications partially blind signatures, where the signer may need
to know (at least part of) the message before signing it, do serve an im-
portant purpose. Such partially blind signatures have been introduced by
Abe and Fujisaki [1], and have applications in scenarios where a user wants
to prove that a certain condition has been met, without revealing when or
where that condition was met. Blind signatures can for example be used to
issue a unique and unforgeable token or receipt whenever a user has per-
formed a certain action (like paying a bill, visiting a checkpoint, entering
or leaving a certain location, completing some task, or satisfying any other
predetermined requirement). This token can then later be used to prove
that this particular action was performed or requirement was satisfied. This
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approach has been used, for example, to construct a privacy friendly form
of ticketing for public transport [7]. Blind signatures have also been used to
implement attribute based credentials [4, 5, 8].

In this paper we explore the different faces of blindness in depth, in the
more general setting of partially blind signatures. We note that our results
also apply to normal blind signatures as such signatures are equivalent to
partially blind signatures where the public message equals the empty string.
In a way this paper is a dual to the paper of Schröder and Unruh [15] that
reexamines the definition of security of blind signature schemes, discovering
that the messages and their resulting signatures have some independent
influence on the overall security of the scheme.

We first define partially blind signatures and their completeness and un-
forgeability properties in section 2. We then study the two faces of blindness
(message indistinguishability and signature unlinkability) and their relation-
ships in section 3. This section also discusses message hiding, and why mes-
sage indistinguishability is the more appropriate notion to study in this con-
text. We show that message indistinguishability and signature unlinkability
are both implied by a partially blind signature scheme, but that they are
indeed two separate notions (in the sense that there are signature schemes
that satisfy one of the two requirements, but bot both). Unfortunately, in
pathological cases the union of these two properties does not imply blind-
ness. We summarise and discuss our results in figure 1 and section 4. Fig-
ure 1 is also useful as a ‘cheat-sheet’ to keep track of the different properties
defined throughout the paper.

2 Completeness and unforgeability

We start with the basics: the definition of completeness and unforgeability
of (partially blind) signatures. We follow the framework for defining blind
signatures provided by Juels et al. [10] and generalised and refined for par-
tially blind signatures by Abe and Okamoto [2, 12, 13]). In this setting a
(partially blind) signature scheme is defined as follows (where λ is the se-
curity parameter of the scheme).4

Definition 2.1 (signature scheme). A signature scheme Σ consists of four
probabilistic polynomial-time algorithms 〈G ,S ,U ,V 〉.

4 The following definitions actually apply to arbitrary signature schemes, except
that the artificial distinction between public and private messages is only relevant
for partially blind signatures.
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– G takes security parameter 1λ as input, and returns a secret key sk (to be
given to the signer only) and a corresponding public key PK (known to all
parties in the system).

– S and U are in fact interactive algorithms where signer S has private
input sk and public input the public message m (with length polynomial in
the security parameter λ), while userU has private input message m (also
with length polynomial in the security parameter λ) and public input PK
and m. S and U interact with each other over a public communication
channel. After the interaction, S outputs either success or fail, and U
outputs either a signature σ or ⊥. U ’s output is private. S ’s output is
public.

– V takes as input a public key PK, public message m, a message m and a
signature σ, and outputs either accept or reject. This verification can be
performed by any party.

We write outS ← S (sk, m) ⇔ U (PK, m, m) → outU for an interaction
between a signer and a user with the specified inputs, with outS as the
output of the signer and outU as the output of the user.

Definition 2.2 (Completeness). A signature scheme 〈G ,S ,U ,V 〉 is com-
plete when for every interaction

success←S (sk, m)⇔U (PK, m, m)→ σ
such that V (PK, m, m,σ) = accept

holds with overwhelming probability (i.e., with probability 1 − 2−λ), where
this probability is computed over the private coin-flips of G ,S ,U and V .

We return to this somewhat peculiar definition of completeness (that sub-
sumes correctness) in the next section.

We now define the unforgeability property.

Definition 2.3 (Unforgeability). Let 〈G ,S ,U ,V 〉 be a signature scheme
and consider the following game between an adversarial userU ∗ and a honest
signer S and honest verifier V .

1. Run G (1λ) to generate sk and PK. Give sk, PK to S and PK to U ∗.
2. Let U ∗ engage in polynomially (in λ) many adaptive, parallel and arbi-

trarily interleaved interactions with polynomially many copies of the signer
S (knowing sk). Let j be the number of such interactions that return
success for the signer.

3. LetU ∗ return a list of k signatures σ1, . . . ,σk for k distinct combinations
of public messages and private messages (mi , m1), . . . , (mk, mk) such that
V (PK, mi , mi ,σi) = accept for all i ∈ {1, . . . , k}.
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Adversary U ∗ wins this game whenever k > j.
The signature scheme is unforgeable when every possible adversary U ∗

wins this game with at most negligible probability (i.e., probability 2−λ), where
this probability is computed over the private coin-flips of G , U ∗, V and all
signers S .

3 The two faces of blindness

With the above definitions for a correct and unforgeable signature scheme
given we are now ready to study the two different faces of blindness of such
signature schemes.

We start with the definition of blindness itself. After that we study mes-
sage indistinguishability in section 3.2. This notion is somewhat stronger
than message hiding (discussed in section 3.3). We finish with the defini-
tion of signature unlinkability in section 3.4. It turns out that it is more
appropriate to focus on message indistinguishability rather than message
hiding, because the latter notion is actually implied by signature unlinkabil-
ity. Throughout this section we establish relationships between the different
notions we define.

3.1 Blindness

The following definition of partial blindness is due to Abe and Okamoto [2,
13] that extends the original defintion of blind signatures from Juels et
al. [10] by allowing part of the message to be signed to be public.

Definition 3.1 (Blindness). Consider a signature scheme 〈G ,S ,U ,V 〉 and
the following game between an adversarial signer S ∗ and two honest usersU0
and U1, mediated by a challenger.

1. Run G (1λ) to generate sk and PK. Give sk, PK to S ∗.
2. Adversary S ∗ outputs PK, two private messages5 m0, m1, and public mes-

sage m, and gives them to the challenger.
3. The challenger randomly selects b ∈ {0,1} and sets b̄ = 1− b. It sets up

user U0 with input (PK, m, mb) and user U1 with input (PK, m, mb̄).
4. S ∗ is given oracle access to each of these users to engage in the blind

signature protocol with each of them, mediated by the challenger.6

5 Observe that these two messages are not required to be distinct.
6 Observe that in this game (and the ones that follow) we do not need to allow

the adversary to engage in polynomial many runs, for the simple reason that the
adversary is now the signer, who given the private key can simulate all runs for
himself.
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5. Let σb be the result returned by U0 and σb̄ be the result returned by U1.
If both signatures are valid, the challenger gives (σ0,σ1) to S ∗, in that
fixed order. Give ⊥ to S ∗ otherwise.

6. S ∗ outputs b′ ∈ {0,1}.

Adversary S ∗ wins this game whenever b′ = b. The signature scheme is blind
when every possible adversary S ∗ wins this game with at most negligible ad-
vantage (i.e., probability 1/2± 2−λ), where the probability is computed over
the coin-flips of S ∗ and the private coin-flips of U0 and U1.

Note that in this definition, as well as the ones that follow, we assume that
the adversarial signer knows which of the users (U0 or U1) it is interacting
with during the protocol.

The above definition is taken from [13], which differs in one significant
aspect from [12] (the published conference version that precedes the full
paper [13]) as follows. Step 5 in the game above originally read:

5’ Let σb be the result returned by U0 and σb̄ be the result returned by
U1 . If both signatures are valid, the challenger gives (m, mb,σb) and
(m, mb̄,σb̄) to S ∗ in arbitrary order. If only one of the signatures is
valid, the challenger gives that signature and the corresponding mes-
sage to S ∗. Give ⊥ to S ∗ otherwise.

In other words: the original game allows that even if only one of the sig-
natures is valid, the challenger gives that signature and the corresponding
message to S ∗. This leaves a blind signature scheme open to the following
generic attack.

1. Adversary S ∗ outputs PK and two private messages m0, m1, and public
message m, and gives them to the challenger.

2. The challenger randomly selects b ∈ {0, 1} and sets b̄ = 1− b. It sets up
user U0 with input (PK, m, mb) and user U1 with input (PK, m, mb̄).

3. S ∗ engages in the blind signature protocol, but only with U0. It aborts
its interaction withU1 which therefore returns⊥. (Note:U1 can also re-
turn a random value, but definitely not a valid signature as this requires
the cooperation of S ∗, so this is easily detected in the next step.)

4. Let σb be the result returned byU0. As the other signature equals⊥ the
challenger therefore gives (mb,σb) to S ∗ as its challenge.

5. This is no game for S ∗: using its knowledge of m0 and m1 it quickly
sees which of the two was given to U0 to sign. S ∗ outputs b ∈ {0, 1}
and wins.

Clearly this is not desirable, which probably explains why the definition is
amended in the full paper.
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3.2 Message indistinguishability

We now turn our attention to the message indistinguishability property, stat-
ing that the adversary cannot distinguish which of two known messages it
is actually asked to sign by a user.

Definition 3.2 (Message indistinguishability). Let 〈G ,S ,U ,V 〉 be a sig-
nature scheme and consider the following game between an adversarial signer
S ∗ and a honest user U , mediated by a challenger.

1. Run G (1λ) to generate sk and PK. Give sk, PK to S ∗.
2. Adversary S ∗ outputs PK and two private messages m0, m1, and public

message m, and gives them to the challenger.
3. The challenger randomly selects b ∈ {0,1}. It sets up user U with input

PK, m, mb.
4. S ∗ is given oracle access to the user to engage in the blind signature pro-

tocol with it, mediated by the challenger.
5. Let σ be the result returned by U . This is hidden from S ∗.7
6. S ∗ outputs b′ ∈ {0,1}.

Adversary S ∗ wins this game whenever b′ = b.
The signature scheme is message indistinguishable when every possible ad-

versary S ∗ wins this game with at most negligible advantage (i.e., probability
1/2 ± 2−λ), where the probability is computed over the coin-flips of S ∗ and
the private coin-flips of U .

We first offer an example of a signature scheme that is message indistin-
guishable, as this is useful in the proofs that follow. This signature scheme
requires a semantically secure encryption scheme {}k that satisfies the fol-
lowing property.

Property 3.1. Given c, m and k such that c = {m}k , the probability to find
m′ ̸= m and a potentially different key kx such that c = {m′}kx

is negligible.

One might think that an authenticated encryption scheme perhaps fits the
bill [3]. Unfortunately this is in general not the case.8 Luckily, a special

7 Note that we cannot give σ to S ∗, as this would allow S ∗ to easily test which
message was signed using the public verification function. The adversarial signer
must derive information about the message signed only from the transcript of the
protocol run.

8 In fact, the general Encrypt-then-MAC approach using encryption key kE and tag-
ging key kT (that returns the pair (c, t) as ciphertext where c = EkE

(m) and
t = SkT

(c)) does not work because kE and kT are unrelated. Given (c, t) as an
encryption of m against key kE, kT , we can pick an arbitrary key kE′ , use it to de-
crypt c to obtain m′ such that c = EkE′

(m′) and leave the tag alone. Then (c, t) is
a valid encryption for m′ as well (based on keys kE′ and kT).
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mode of authenticated encryption called CCM (that combines CTR encryp-
tion with a CBC-MAC using the same key k) satisfies this property. CCM is a
stream cipher that roughly works as follows (see [9] for details).

– Let Ek() be a pseudo-random function (it could be a block cipher or a
hash function keyed by k).

– Let m be a message whose length is a multiple of the block length of
this underlying block cipher, and write m= m1 ∥ . . . ∥mz .

– Compute the tag t for message m by using Ek() in CBC mode: define
t1 = Ek(m1), let t i+1 = Ek(mi+1⊕ t i) and let t = tz . We write t = Tk(m)
Again (for simplicity) tags are assumed to be exactly as long as a single
block.

– Compute the key stream blocks Ai by encrypting a counter with k, i.e.,
Ai = Ek(i).

– The full CCM ciphertext is obtained by XOR-ing m∥ t with A0 ∥ . . . ∥Az .

CCM is known to be semantically secure [9]. We show it also satisfies prop-
erty 3.1.

Lemma 3.1. Let {m}k be the CCM authenticated encryption scheme described
above. Such a scheme satisfies property 3.1.

Proof. Suppose we have c = (m∥ t)⊕ (A0 ∥ . . . ∥Az), where Ai = Ek(i) and
t = Tk(m). Let c = c0 ∥ . . . ∥ cz . If we focus on the tag part, then to break the
property we need to find m′ and kx such that c = (m′ ∥ t ′)⊕ (A′0 ∥ . . . ∥A′z),
where A′i = Ekx

(i) and t ′ = Tkx
(m′). This entails finding m′ and kx such that

cz = t ′ ⊕ A′z = Tkx
(m′) ⊕ Ekx

(z). In this equation cz and z are fixed. The
adversary is free to choose kx but this fixes m′ as well as it needs to match c
when xor-ed with (A′0 ∥ . . . ∥A′z−1). If we model the pseudo-random function
Ek() as a random oracle [11], it is extremely unlikely that it is possible to
meet these constraints: for every possible choice of k there is exactly one
possible mapping of the random oracle for Ekx

(z) that satisfies the equation,
which only happens with negligible probability.

Construction 3.1 (Message indistinguishable signature scheme) LetΣ=
〈G ,S ,U ,V 〉 be any ordinary unforgeable and complete signature scheme
(whereU submits the message m to be signed in plaintext toS ; we are abusing
notation somewhat). Let {m}kU

be the CCM authenticated encryption scheme
discussed above.

Define the message indistinguishable signature schemeΣ′ = 〈G ′,S ′,U ′,V ′〉
as follows. G ′ equals G creating signing key kS and verification key KS .

UserU ′, before submitting a message m to be signed, generates a key kU ′ .
It encrypts the message m as c = {m}kU ′ using the CCM encryption scheme and
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sends this to the signer who creates the intermediate signature σ′ = [c ∥m]kS
(using its knowledge of kS and public parameter m). It returns this toU who
adds kU ′ to create the final signature σ = (σ′, kU ′). U ′ outputs σ and S ′
outputs success. This describes S ′ and U ′.

Signature verification V ′ then runs as follows. Given KS , σ, m, and m, the
verifier first uses kU embedded in σ to reconstruct c = {m}kU . It then verifies
that indeed σ = [c ∥m]kS using the public key KS and the original signature
verification function V .

Lemma 3.2. The signature scheme in construction 3.1 is message indistin-
guishable according to definition 3.2.

Proof. The construction matches the (syntactic) constraints of definition 2.1,
and it is easily seen to be complete as defined in 2.2.

We rely on property 3.1 to prove unforgeability (definition 2.3). If the
blind signature scheme would be forgeable, a user U ∗ would be able to
return k signaturesσ1, . . . ,σk for k distinct messages (m1, m1), . . . , (mk, mk)
such that V (PK, mi , mi ,σi) = accept for all i ∈ {1, . . . , k}, when given only
j < k such message/signature pairs. By definition, the underlying standard
signature scheme is not forgeable. By the pigeonhole principle then there
should be two signatures σi = (σ′i , ki) and σ j = (σ′j , kj) such that σ′i and
σ′j are signatures over the equal strings ci ∥mi and c j ∥m j . Then mi = m j

and ci = {mi}ki
= {m j}kj

= c j while (mi , mi) ̸= (m j , m j) by assumption. This
contradicts property 3.1.

Because the encryption scheme is semantically secure, this signature
scheme is message indistinguishable according to definition 3.2.

We first show that blindness implies message indistinguishability.

Theorem 3.2. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is blind
according to definition 3.1. Then Σ is message indistinguishable according to
definition 3.2.

Proof. Intuitively the argument runs as follows. Because the signer knows
that b selects which message user U0 will offer for signing, if the signature
scheme were not message indistinguishable, the signer could trivially guess
b correctly (even when not given mb). The formal proof requires a bit more
work.

Suppose not. So there is an adversarial signer S ∗ for the game defined
in definition 3.2. We turn it into an adversarial signer S ∗∗ for the game
defined in definition 3.1 as follows.

1. S ∗∗ starts S ∗, which returns PK and two private messages m0, m1, and
public message m.
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2. S ∗∗ forwards these to the challenger from definition 3.1.
3. Let this challenger randomly select b ∈ {0,1}, set b̄ = 1− b, giving user
U0 the input (PK, m, mb) and user U1 the input (PK, m, mb̄).

4. Set up both users to be ready to engage with S ∗∗ in the blind signature
protocol (according to the game defined in 3.1).

5. S ∗∗ is merely a mediator now, relaying messages between the users
and S ∗. It actually runs the interactive blind signing protocol only be-
tween userU0 and S ∗. (It aborts the other instance.) Observe how this
corresponds to the challenge that S ∗ is supposed to get according to
definition 3.2.

6. Let σb be the result returned by U0. (The other user returns ⊥.)
7. Because one of the signatures fails to be created, according to the blind-

ness game defined for definition 3.1, the challenger gives⊥ toS ∗∗, who
simply discards it.

8. S ∗ outputs b′ ∈ {0,1}, which S ∗∗ forwards as its own output for this
challenge.

The output b′ of S ∗ corresponds to the challenge U0, PK, m, mb. If b = b′,
then by construction b′ is also the correct response to the challenge given
to S ∗∗. This shows that advantage of S ∗∗ the same of that of S ∗, i.e., non-
negligible, contradicting the premise of the theorem.

The converse does not hold however: there are message indistinguishable
signature schemes that are not blind as the following theorem demonstrates.
This shows that message indistinguishability is a strictly weaker notion.

Theorem 3.3. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is mes-
sage indistinguishable according to definition 3.2. This does not imply that Σ
is blind according to definition 3.1.

Proof. Let Σ be the signature scheme from construction 3.1. This is message
indistinguishable according to lemma 3.2.

Clearly this signature scheme is not really blind: a malicious signer can
record for each run the signature σ′ it generated. It can then always win
the game in definition 3.1: it now knows the σ′b it created while interacting
with U0, which it can match to (σ0,σ1) = ((σ′0, kUb

), (σ′1, kUb̄
)) (where σ′b

is the signature over mb). This reveals b.
We conclude that message indistinguishability does not imply blindness,

and thus the theorem follows.

3.3 Message hiding

Message indistinguishability is a very strong property (it is in fact very sim-
ilar to semantic security definitions for encryption schemes [11]), but per-
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haps this property is somewhat counter intuitive and perhaps even stronger
than needed for the typical scenario where blind signatures are used: there
we typically want to prevent the signer from learning a random message
(think a random sequence number) someone else submits for signing. This
notion is captured in the following definition of message hiding.

Definition 3.3 (Message hiding, strong version). Let 〈G ,S ,U ,V 〉 be a
signature scheme and consider the following game between an adversarial
signer S ∗ and an honest user U , mediated by a challenger.

1. Run G (1λ) to generate sk and PK. Give sk, PK to S ∗.
2. Adversary S ∗ outputs PK and public message m, and gives them to the

challenger.
3. The challenger randomly selects a private message m ∈ {0, 1}λ, and sets

up an instance of a user U with input PK, m, m.
4. S ∗ is given oracle access to user U to engage in the blind signature pro-

tocol with it, mediated by the challenger.
5. Let σ be the signature returned by U . The challenger gives σ to S ∗.
6. S ∗ outputs m′ ∈ {0, 1}λ.

Adversary S ∗ wins this game whenever m′ = m.
The signature scheme is message hiding when every possible adversary S ∗

wins this game with at most negligible probability (i.e., probability at most
2−λ), where the probability is computed over the coin-flips of S ∗ and the pri-
vate coin-flips of U .

Blind signature schemes that only offer message hiding are for instance used
in the Idemix attribute based credential system to hide the master secret m1
from the credential issuer [8]. A trivial implementation of such a blind sig-
nature scheme in the random oracle model would be one where the message
m to be signed is first hashed using a cryptographic hash function h and sub-
sequently sending the resulting hash h(m) to the signer to be signed with
an arbitrary traditional (non-blind) signature scheme.9

This shows that message hiding is a strictly weaker notion than (general)
blindness. But does message indistinguishability imply message hiding, or
the other way around? In fact not when we define message hiding as above.

Theorem 3.4. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is mes-
sage hiding according to definition 3.3. This does not imply that Σ is message
indistinguishable according to definition 3.2.

9 Idemix uses a Pedersen style commitment [14] instead of a hash function to blind
the secret master key. This makes it possible to prove knowledge of this secret in
a zero knowledge proof later.
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Proof. Consider the basic message hiding signature scheme above. Let h
be a hash function modelled as a random oracle. This guarantees that no
adversary is able to recover m given h(m).

Let the signer use an ordinary signature scheme with signing key kS
and verification key KS to compute the signature σ on a string s as [s]kS

.
A message hiding signature scheme is one where the user, wishing to com-
pute a signature on a public message m and a private message m computes
m∥h(m) and sends this to the signer to sign. The signature then equals
[m∥h(m)]kS

. To verify such a signature, the verifier is given m and m, com-
putes m∥h(m) and uses checks the signature σ using the underlying tradi-
tional signature verification function.

The construction matches the (syntactic) constraints of definition 2.1,
and it is easily seen to be complete as defined in 2.2.

The construction is also (strongly) message hiding according to defini-
tion 3.3. Suppose the challenger returns a signatureσ after the query phase.
If the adversary is able to successfully guess m′ such that σ = [m∥h(m′)]kS

then this essentially means the adversary was able to compute m′ = m while
observing the hashes h(m) sent during the signing process. This is contrary
to the assumption on h.

The thus constructed signature scheme is clearly not message indistin-
guishable according to definition 3.2. If the adversary selects m, m0, m1 and
receives m∥h(mb) for signing, it easily checks which of the two m0 and m1
matches h(mb) to correctly guess b.

Theorem 3.5. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is mes-
sage indistinguishable according to definition 3.2. This does not imply that Σ
is message hiding according to definition 3.3.

Proof. Let Σ be the message indistinguishable signature scheme from con-
struction 3.1. Suppose we tweak it a bit such that the signature returned
by the user equals σ = (σ′, kU , m, m). This tweak does not affect message
indistinguishability, for in that game σ is not given to the adversary as part
of the challenge. However, in the message hiding game as defined in defi-
nition 3.3, the adversary does get σ and thus trivially wins that game. The
result follows.

So message indistinguishability and strong message hiding are incom-
parable notions. However, a weaker notion of message hiding (that does
not give the adversary access to the generated signatures) does follow from
message indistinguishability. For that we have to weaken the definition a bit
by not giving the adversarial signer the set of final signatures obtained by
the user(s). The formal definition is as follows.
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Definition 3.4 (Message hiding). Let 〈G ,S ,U ,V 〉 be a signature scheme
and consider the following game between an adversarial signer S ∗ and a hon-
est user U , mediated by a challenger.

1. Run G (1λ) to generate sk and PK. Give sk, PK to S ∗.
2. Adversary S ∗ outputs PK and public message m, and gives them to the

challenger.
3. The challenger randomly selects a private message m ∈ {0, 1}λ, and sets

up an instance of a user U with input PK, m, m.
4. S ∗ is given oracle access to user U to engage in the blind signature pro-

tocol with it, mediated by the challenger.
5. Let σ be the signature returned by U . σ is hidden from S ∗
6. S ∗ outputs m′ ∈ {0, 1}λ.

Adversary S ∗ wins this game whenever m′ = m.
The signature scheme is message hiding when every possible adversary S ∗

wins this game with at most negligible probability (i.e., probability at most
2−λ), where the probability is computed over the coin-flips of S ∗ and the pri-
vate coin-flips of U .

Theorem 3.6. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is mes-
sage indistinguishable according to definition 3.2. Then Σ is message hiding
according to defintion 3.4.

Proof. Suppose not. So there is an adversarial signer S ∗ for the game de-
fined in definition 3.4. We turn it into an adversarial signerS ∗∗ for the game
defined in definition 3.2 as follows.

1. S ∗∗ starts S ∗, which returns PK and m.
2. S ∗∗ essentially operates as the challenger for S ∗ using whatever it

learns in the process to solve its own challenge.
3. S ∗∗ does the following. It generates two fresh private messages m0, m1

and uses the public message m it got from S∗ and forwards these to-
gether with PK received from S ∗ to its own challenger in definition 3.2.
This challenger sets up a user with input PK, m1, mb (depending on its
hidden coin flip b) to which S ∗∗ is given oracle access to, to engage in
the blind signature protocol. S ∗∗ forwards this oracle access to S ∗.

4. After S ∗ has finished interacting with its oracles, is outputs a guess
m′ (to S∗∗). When m′ = mb′ as in step 3 for b′ ∈ 0,1, S ∗∗ returns b′

otherwise it returns a random bit.

If S ∗ guesses m′ correctly, then m′ = mb given to user U as part of S ∗∗
challenge in step 3. The probability that this happens is non-negligible. We
conclude that the advantage of S ∗∗ guessing b is also non-negligible.
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3.4 Signature unlinkability

We now turn to the definition of signature unlinkability. The challenge is
to define it in such a way that it does not immediately imply the message
indistinguishability property (and thus would be almost equivalent to the
general blindness property). We solve this by letting the challenger generate
the messages to be signed and giving the signer only the resulting signatures
in random order.

Definition 3.5 (Signature unlinkability). Consider a signature scheme 〈G ,S ,U ,V 〉
and the following game between an adversarial signerS ∗ and two honest users
U0 and U1.

1. Run G (1λ) to generate sk and PK. Give sk, PK to S ∗.
2. Adversary S ∗ outputs PK, and a public message m, and gives them to the

challenger.
3. The challenger generates two messages10 m0, m1 and sets up userU0 with

input (PK, m, m0) and user U1 with input (PK, m, m1).
4. S ∗ is given oracle access to both users to engage in the blind signature

protocol with both of them, mediated by the challenger.
5. Let σ0 be the result returned by U0 and σ1 be the result returned by U1.
6. If any of the signatures is invalid, the challenger gives ⊥ to S ∗.11 Other-

wise the challenger randomly selects b ∈ {0,1} and sets b̄ = 1 − b. The
challenger gives σb and σb̄ to S ∗ in that order.

7. S ∗ outputs b′ ∈ {0,1}.

Adversary S ∗ wins this game whenever b′ = b. The signature scheme is sig-
nature unlinkable when every possible adversary S ∗ wins this game with at
most negligible advantage (i.e., probability 1/2± 2−λ), where the probability
is computed over the coin-flips of S ∗ and the private coin-flips of U0 and U1.

We note that Chaum’s untraceable payment scheme [6] uses a blind signa-
ture scheme that is strongly message hiding and is signature unlinkable as
well.

The following signature unlinkable signature scheme (which is a slight
modification of Chaum’s blind signature scheme) is useful in the proofs of
some of the following theorems. We omit the public message m for simplic-
ity.

10 Again not necessarily distinct.
11 We cannot allow one of these outputs to be ⊥ instead of a real signature, as that

would trivially allow an adversary to distinguish the instance used to generate it.
See the discussion in the footnote for definition 3.1
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Construction 3.7 (Signature unlinkable signature scheme) Define a sig-
nature unlinkable signature scheme Σ = 〈G ,S ,U ,V 〉 as follows. Let h1, h2
be two cryptographic hash functions.
G generates a RSA key pair, and publishes the public key (n, e) while giving

the corresponding private key (d, n) to the signer.
A user submitting m for signing first computes r = h1(m) and then sends

m′ = h2(m)r e mod n to the signer. The signer computes σ′ = m′d mod n and
returns it to the user. The user computes σ = σ′/r as the final signature. This
defines S and U .
V takes as input m and σ and returns whether σe mod n= h2(m).

The careful observer will have noted that this is essentially Chaum’s blind
signature protocol with r derived from m (making it no longer blind as we
shall see shortly) while m cannot be recovered from the signature by hiding
it using h2.

Lemma 3.3. The signature scheme from construction 3.7 is signature unlink-
able according to definition 3.5.

Proof. The construction matches the (syntactic) constraints of definition 2.1
(disregarding the public message m), and it is easily seen to be complete as
defined in 2.2 using the fact that we have (r e)d mod n = 1 in RSA, and the
result σ = h2(m)d mod n is a traditional RSA signature over h(m′).

This signature scheme is signature unlinkable. As in the game defined
in definition 3.5 the challenger generates m0 and m1, the adversarial signer
S ∗ does not know them. By playing the game S ∗ learns:

– m′0 = h2(m0)r e
0 mod n (and that it is computed by U0),

– m′1 = h2(m1)r e
1 mod n (and that it is computed by U1),

– σ0 = h2(m0)d mod n and σ1 = h2(m1)d mod n given in the order de-
fined by a random bit b.

S ∗ needs to guess b based on this information (and its knowledge of the
public key (n, e)).

As h1 and h2 are random oracles, the value S ∗ learns for m′0 could ac-
tually correspond to h2(m1)r e

1 mod n (and vice versa). So the information it
relies on to decide on the value for b could just as well be used to argue for
the opposite value.

We first show that blindness implies signature unlinkability.

Theorem 3.8. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is blind
according to definition 3.1. Then Σ is signature unlinkable according to defi-
nition 3.5.
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Proof. Suppose not. So there is an adversarial signer S ∗ for the game de-
fined in definition 3.5. We turn it into an adversarial signerS ∗∗ for the game
defined in definition 3.1 as follows.

1. S ∗∗ starts S ∗, which returns PK and m.
2. S ∗∗ generates two distinct messages m0, m1 and sends them to the chal-

lenger along with PK and m.
3. The challenger randomly selects b ∈ {0, 1} and sets b̄ = 1− b. It sets up

user U0 with input (PK, m, mb) and user U1 with input (PK, m, mb̄).
4. S ∗∗ engages in the blind signature protocol with both users, mediated

by the challenger. It does so by relaying all messages to and from S ∗.12

5. Let σb be the result returned by U0 and σb̄ be the result returned by
U1. If both signatures are valid, then the challenger gives (σ0,σ1) to
S ∗∗ in that order by definition.13 Otherwise it returns ⊥ to S ∗∗.

6. S ∗∗ forwards σ0 and σ1 in that order to S ∗ as the challenge.
7. S ∗ outputs b′ ∈ {0,1}, which S ∗∗ forwards as its own output for this

challenge.

We observe that if S ∗ outputs b′ it believes the first signature (σ0, corre-
sponding to m0) given as a challenge was generated while interacting with
user Ub′ . Which is the case if b′ equals b generated by the challenger for
the game defined in definition 3.1. This means that b′ is also the correct re-
sponse to the challenge given to S ∗∗. This shows that the advantage of S ∗∗
is the same of that of S ∗, i.e., non-negligible, contradicting the premise of
the theorem.

The signature scheme from construction 3.7 allows us to prove that the
converse does not hold: there are signature unlinkable signature schemes
that are not blind as the following theorem demonstrates. This shows that
also signature unlinkability (like message indistinguishability) is a strictly
weaker notion.

Theorem 3.9. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is signa-
ture unlinkable according to definition 3.5. This does not imply that Σ is blind
according to definition 3.1.

12 Observe how we use the fact that in definition 3.5 the challenger in the signature
unlinkability game (here simulated by S ∗∗) randomly selects m0 and m1 before
giving them toU0 andU1 without revealing them to S ∗: if S ∗∗’s own challenger
picks b = 1, it is as if S∗∗ (simulating S ∗’s challenger) picked m1 (forU0) and m0

(for U1) instead.
13 Note how S ∗∗’s own challenger therefore swaps the signatures generated by the

users based on its hidden random bit b.
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Proof. Consider the signature scheme from construction 3.7, which is sig-
nature unlinkable according to lemma 3.3.

This scheme is clearly not blind: using its knowledge of m0 (that the
adversary chooses according to definition 3.1) the adversarial signer S ∗
can compute r0 = h1(m0) and hence m′0 = h2(m0)r e

0 mod n that either user
U0 or user U1 will submit for signing. This allows S ∗ to tell which of two
users was given m0 as input by the challenger, and therefore allows S ∗ to
correctly guess b.

A very similar proof can be used to prove the following theorem.

Theorem 3.10. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is sig-
nature unlinkable according to definition 3.5. This does not imply that Σ is
message indistinguishable according to definition 3.2.

Proof. Again consider the signature scheme from construction 3.7, which is
signature unlinkable according to lemma 3.3.

This signature scheme is not message indistinguishable according to def-
inition 3.2 however. In the message indistinguishability game the adversar-
ial signer knows m0 and m1 and therefore can compute rb = h1(mb) and
m′b = h2(mb)r e

b mod n for b ∈ {0,1}. It can therefore tell which of the two
messages the challenger submits for signing and hence can always correctly
guess b and win the game.

The reverse is also true.

Theorem 3.11. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is mes-
sage indistinguishable according to definition 3.2. This does not imply that Σ
is signature unlinkable according to definition 3.5.

Proof. Consider the message indistinguishable signature scheme in construc-
tion 3.1, where the message to be signed is first CCM encrypted as c = {m}kU
under a random key kU . The signer creates the intermediate signature σ′ =
[c ∥m]kS . It returns this to U who adds kU to create the final signature
σ = (σ′, kU ).

This scheme is however not signature unlinkable according to defini-
tion 3.5. Suppose the adversarial signer keeps the intermediate signatures
σ′0 and σ′1 it generated while interacting with user U0 and user U1 respec-
tively. As in the proof of theorem 3.3 it can match these with σb = (σ′b, kUb

)
and σb̄ = (σ

′
b̄
, kUb̄

) and hence guess b correctly.

This shows that message indistinguishability and signature unlinkability are
indeed separate notions.
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We will now explore the relationship between signature unlinkability
and other notions defined in this paper. For example, what is the relationship
between signature unlinkability and message hiding? The blind signature
scheme underlying the Idemix attribute based credential scheme [8, 5] is
in fact only strongly message hiding but not signature unlinkable.14 This
proves the following theorem.

Theorem 3.12. Consider a signature schemeΣ= 〈G ,S ,U ,V 〉 that is strongly
message hiding according to definition 3.3. This does not imply that Σ is sig-
nature unlinkable according to definition 3.5.

The other way around, signature unlinkability does imply (weak) message
hiding (which explains why we need the slightly stronger notion of message
indistinguishability).

Theorem 3.13. Consider a signature schemeΣ= 〈G ,S ,U ,V 〉 that is signa-
ture unlinkable according to definition 3.5. ThenΣ is message hiding according
to definition 3.4.

Proof. The proof is very similar to the proof of theorem 3.6.
Suppose not. So there is an adversarial signer S ∗ for the game defined

in definition 3.4. We turn it into an adversarial signer S ∗∗ for the game
defined in definition 3.5 as follows.

1. S ∗∗ starts S ∗, which returns PK and m.
2. S ∗∗ essentially operates as the challenger for S ∗ using whatever it

learns in the process to solve its own challenge.
3. S ∗∗ forwards m to its own challenger. This challenger generates two

messages m0 and m1 and sets up a userU0 with input (PK, mi , m0) and
a userU1 with input (PK, m, m1).S ∗∗ is given oracle access to both users
to engage in the blind signature protocol with both of them, mediated
by the challenger. For U0 it forwards oracle access to S ∗. For U1, S ∗∗

14 The CL signature over a message (m0, . . . , mk) equals (A, e, v) such that

A=

�

Z
k
∏

i=0

Rmi
i Sv

�1/e

mod n .

where Z , Ri , S and n are part of the public key. A and e are generated by the
signer, which makes this scheme trivially signature linkable. When submitting a
message for signing, the user submits a commitment

∏k
i=0 Rmi

i Sv′ to that message
to hide it. And to use such a credential in an unlinkable fashion, the main goal of
Idemix, the user does not reveal A and e but simply proves their existence to the
verifier in zero knowledge.
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interacts with this oracle itself. This way S ∗ is set up exactly as in the
definition of the game in 3.4

4. After S ∗ has finished interacting with its oracles, it outputs a guess m′

(to S∗∗).
For the signature unlinkability game S∗∗ is playing, S∗∗ asks for its chal-
lenge. If both signatures (σ0 generated byU0 and σ1 generated byU1)
in step 3 are valid it receives σb and σb̄ (depending on the private coin
flip b of its challenger) in that order.
It then checks whether σb or σb̄ is a valid signature over m′ (the guess
returned by S ∗). In the first case it returns b′ = 0, in the second case it
returns b′ = 1. If neither is the case it returns a random bit b′.

By assumption with some non-negligible probability, m′ returned byS ∗ cor-
responds to the oracle set up by S ∗∗ in step 3. Then m′ = m0 (as S ∗ never
interacted with U1). So if m′ matches σb (the first signature in its chal-
lenge), σb must be a signature over m0 and hence b = 0. And if it matches
σb̄, then b = 1 instead. We see that in this case b′ = b and hence the
adversary wins. As we already concluded that this case happens with non-
negligible probability, the conclusion follows.

The reverse of this theorem does not hold, by 3.11 and 3.6.

3.5 Message indistinguishability and signature unlinkability

We have so far shown that signature blindness can be separated into two
separate properties, message indistinguishability and signature unlinkabil-
ity, that are indeed independent: one does not imply the other, and neither
on its own implies blindness. The natural question to ask is whether message
indistinguishability and signature unlinkability together do imply blindness.
That would be a nice conclusion, as it would show that the proposed sep-
aration is ideal in the sense that both properties capture all what makes
a signature scheme blind. Unfortunately, this is not the case if we do not
rule out pathological cases of misbehaving users, as the following theorem
shows.

Theorem 3.14. Consider a signature scheme Σ = 〈G ,S ,U ,V 〉 that is mes-
sage indistinguishable according to definition 3.2 and signature unlinkable
according to definition 3.5. This does not (in general) imply that Σ is blind
according to definition 3.1.

Proof. Let Σ be a blind signature scheme according to 3.1. Modify Σ as
follows to create a new signature scheme Σ′. Pick a particular message em.
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If σ is the signature returned by user U when interacting with S , define
U ′ to return the tuple (σ,β) where β is a random identity except when U ′
wants a signature on message em. In that case β equals the identity of U .

Clearly, Σ′ is no longer blind. The adversarial signer can always commit
to messages m0 = em and m1 to the challenger. Depending on its private bit
b, the challenger gives em to either U0 or U1. Whichever it is, it will return
a signature (σ0, b) over em while the other returns (σ1,β) over m1 where β
is random.

When challenged, the adversary receives (σ0, b), (σ1,β) in that order.
It returns the b it finds in the first signature which by construction is al-
ways equal to the private bit chosen by the challenger. In other words, the
adversary wins.

In the message indistinguishability game of definition 3.2, the adversary
doesn’t receive the final signatures. Therefore its view when interacting with
S ′ is exactly the same as when interacting with S . We conclude that Σ′ is
also message indistinguishable.

In the signature unlinkability game of definition 3.5, the adversary does
not get to pick the messages to be signed. Instead, the challenger does.
With overwhelming probability, em is not among the messages chosen by
the adversary. As a result, the β component of both challenge signatures is
random and can be ignored, i.e. the advantage of the adversary against Σ′

is no better than against Σ. We conclude that Σ′ is signature unlinkable.

4 Conclusions

A summary of our results is presented in figure 1, where we write A→ B
when A implies B. And we write A |− B when B ̸→ A, i.e., if A does not
logically follow from B (or, B does not imply A).

Compiling this figure, we made use of the following transitivity rules
governing the relationships among the several notions we defined in this
paper.

– A→ B and B→ C implies A→ C .
– A |− B and B→ C implies A |− C .
– A→ B and B |− C implies A |− C .

As can be seen from the picture, this paper shows that signature blind-
ness can be decomposed into two separate and indeed independent prop-
erties: message indistinguishability and signature unlinkability. The more
natural notion of message hiding cannot be used for this purpose as it is
implied by signature unlinkability.
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Unfortunately combining signature unlinkability and message indistin-
guishability does not give back blindness, although this appears to be the
case only in pathological cases. We have so far been unable to prove a re-
stricted version of such a theorem ruling out certain classes of users, and
neither did we find a less pathological counterexample. This is left for fur-
ther research.

I am grateful to the anonymous reviewers for their comments and sug-
gestions that really helped improve the paper.

5 Data deposition statement

Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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Blindness (3.1):

m0, m1, m←S ∗

b ∈R {0, 1}
S ∗(m)⇔U0(m, mb)→ σb

S ∗(m)⇔U1(m, mb̄)→ σb̄ :

b
?
= S ∗(σ0,σ1)

(th. 3.8)(th. 3.9)

(th. 3.13)

(th. 3.11)
(th. 3.3)

(th. 3.6) (th. 3.5)

(th. 3.4)

(th. 3.2)
Message
indistinguishability (3.2):

m0, m1, m←S ∗

b ∈R {0, 1}
S ∗(m)⇔U (m, mb)→ σ :

b
?
= S ∗()

Message hiding (3.4):

m←S ∗

m ∈R {0, 1}λ

S ∗(m)⇔U (m, m)→ σ :

m
?
= S ∗()

Legend
Left implies right, reverse unknown.

Left implies right, and right does not imply left.

Left does not imply right, reverse unknown.

Message indistinguishability
+ signature unlinkability

Signature unlinkability (3.5):

m←S ∗

m0, m1 ∈R {0, 1}λ

S ∗(m)⇔U0(m, m0)→ σ0

S ∗(m)⇔U1(m, m1)→ σ1 :

b ∈R {0,1} :

b
?
= S ∗(σb,σb̄)

Strong message hiding (3.3):

m←S ∗

m ∈R {0, 1}λ

S ∗(m)⇔U (m, m)→ σ :

m
?
= S ∗(σ)

(th. 3.12)
(th. 3.10)

(th. 3.14)

∧-rule

By transitivity rules

By definition

Fig. 1. Summary of relations

23


	Two Faces of Blindness 
	1 Introduction
	2 Completeness and unforgeability
	3 The two faces of blindness
	3.1 Blindness
	3.2 Message indistinguishability
	3.3 Message hiding
	3.4 Signature unlinkability
	3.5 Message indistinguishability and signature unlinkability

	4 Conclusions
	5 Data deposition statement


