
Simple Distributed Weighted Matchings∗

Jaap-Henk Hoepman
Nijmegen Institute for Computing and Information Sciences (NIII)

Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

jhh@cs.ru.nl

19th October 2004

Abstract

Wattenhofer et al. [WW04] derive a complicated distributed al-
gorithm to compute a weighted matching of an arbitrary weighted
graph, that is at most a factor 5 away from the maximum weighted
matching of that graph. We show that a variant of the obvious sequen-
tial greedy algorithm [Pre99], that computes a weighted matching at
most a factor 2 away from the maximum, is easily distributed. This
yields the best known distributed approximation algorithm for this
problem so far.

1 Introduction

A matching M(G) of a graph G = (V, E) is any subgraph of G where no
two edges are incident to the same vertex. Let w(e) be the weight of an
edge e ∈ E of G, where w(e) > 0. Define the weight w(G) of a graph G
to be the sum of the weights of all its edges. Then a maximum weighted
matching M∗(G) of G is a matching whose weight is the maximum among
all matchings of G.

Surprisingly, few distributed algorithms to compute (an approximation
of) the maximum weighted matching of the communication graph are known.
For unweighted graphs, there are deterministic distributed algorithms com-
puting the maximal matching in trees [KS00], and bipartite and general
graphs [CHS02]. Randomised algorithms for the general case [II86] also
exist.

For weighted graphs, Uehara et al. [UC00] present a constant time dis-
tributed algorithm that computes a weighted matching that is O(∆) away

∗Id: weighted-matchings.tex,v 1.3 2004/10/19 08:30:12 jhh Exp

1

jhh@cs.ru.nl

M(G) = ∅

while E 6= ∅

do pick locally heaviest edge e from E
add e to M(G)
remove e and all edges incident to e from E

return M(G)

Protocol 2.1: Sequential greedy weighted matching protocol.

from the maximum (where ∆ is the maximum degree of the graph). Re-
cently, Wattenhofer et al. [WW04] derived a complicated randomised dis-
tributed algorithm to compute a weighted matching M(G) with approxim-
ation ratio 5, i.e., such that w(M(G)) > 1

5
w(M∗(G)).

For sequential algorithms, the problem is much better studied. For
unweighted graphs, Micali and Vazirani [MV80] present an O(

√

|V ||E|)
time algorithm that computes a maximal matching. For weighted graphs
Gabow [Gab90] gives an O(|V ||E|+ |V |2 log |V |) time algorithm, computing
the maximum weighted matching. Both return an exact solution, and not
approximations.

Recently, there have improvements in the performance of sequential al-
gorithms to approximate the maximum weighted matching of a graph, that
require much less running time than the exact algorithms.

The obvious greedy sequential algorithm (that each time adds the re-
maining heaviest edge) computes a weighted matching at most a factor 2
away from the maximum, in running time O(|E| log |V |) [Avi83]. Preis [Pre99]
showed that selecting locally heaviest edges instead of globally heavy edges
achieves the same approximation, improving the running time to O(|E|).
Using a path-growing algorithm, Drake et al. [DH03b] achieve the same
running time and performance ratio.

Later, Drake et al. [DH03a] improved the approximation to 3/2 + ε,
using a slowly converging algorithm using the concept of augmenting paths.
Pettie et al. [PS04] present both a deterministic and a randomised algorithm
achieving the same approximation in running time O(|E| log 1

ε
).

In this paper, we show that Preis’s algorithm is easily distributed determ-
inistically. This gives us an O(|E|) time deterministic distributed algorithm
that computes a weighted matching with an approximation ratio 2, the best
known so far.

2 A distributed greedy algorithm

We derive a distributed variant from the sequential protocol 2.1 due to
Preis [Pre99], who proved that this protocol approximates the maximum

2

R := ∅

N := Γ(v)
c := candidate(v, N)
if c 6= ⊥ −→ send 〈req〉 to c
while N 6= ∅

do receive m from u
if m = 〈req〉 −→ R := R ∪ {u}
if m = 〈drop〉 −→ N := N \ {u}

if u = c −→ c := candidate(v, N)
if c 6= ⊥ −→ send 〈req〉 to c

if c 6= ⊥ ∧ c ∈ R −→ forall w ∈ N \ {c} send 〈drop〉 to w
N := ∅

{ if c 6= ⊥ then (v, c) ∈ M }

Protocol 2.2: Distributed greedy weighted matching protocol (node v).

matching by a factor 2.

Lemma 2.1 (Preis) Protocol 2.1 returns for any graph G a matching M(G)
such that w(M(G)) ≥ 1

2
w(M∗(G)).

We assume an asynchronous distributed system where nodes in V can send
messages to their neighbours over the communication links E. We set G =
(V, E). Message passing is asynchronous but reliable.

Let Γ(v) be the set of neighbours of v in G. Define

candidate(u, N) = v ∈ N s.t.
(

∀v′ ∈ N :: w(u, v) ≥ w(u, v′)
)

to be the node in the set of remaining neighbours reached by the locally
heaviest edge as seen from u.

In the distributed version of the greedy protocol (see protocol 2.2), each
node u start with a set N equal to all its neighbours in the graph. A node
sends a request to its current candidate neighbour connected to it over the
locally heaviest edge (from u’s point of view). This request is either granted
(because the neighbour replies with a request to u as well, meaning that both
see this as the locally heaviest edge), or the edge is eventually dropped (if the
target node added a different edge to the matching, dropping all remaining
edges from the graph). The set N maintains the set of neighbours that are
still reachable by non-dropped edges. The set R contains all nodes from
which requests have been received. If an edge over which a request was sent
is dropped, u sends a new request to a new candidate in N .

3

2.1 Proof of correctness

In the proof of the protocol we assume all edge weights are unique. If they
aren’t, node identities can be added to break symmetry. For node v we write
Nv and cv for its local variables.

The main idea of the proof is to show that protocol 2.2 essentially sim-
ulates protocol 2.1. Define for a run of protocol 2.2 the event that two
nodes u, v match when u receives from v a 〈req〉 message while u sent a 〈req〉
message to v before (i.e., cu = v and cv = u).

Consider a run of protocol 2.2 on input G. Consider all matching events
xi in that run (as defined above), and order them in order of occurrence (x1

being the first, x0 is the wake up event of the algorithm). Let matching event
xi match the pair (ui, vi) (which adds edge ei = (ui, vi) to the matching).
Define for event xi the set of remaining edges Ei inductively as follows. Set
E0 = E, and set

Ei = Ei−1 \ {all edges incident to ui and vi} .

Proposition 2.2 In protocol 2.2, each node sends at most one message over
each incident edge.

Proof: A node only sends a 〈req〉 message after it removed the previous
candidate from the N . It sends a 〈drop〉 message to all remaining nodes in
N (to which it didn’t send a 〈req〉 yet), except for the current candidate,
and then terminates by setting N = ∅. /

Proposition 2.3 After xi, and before xi+1 (if it occurs), if (u, v) ∈ Ei then
u ∈ Nv ∧ v ∈ Nu.

Proof: The proposition holds initially. Consider the moment when a node
u is removed from a set Nv. This either happens when v receives a matching
〈req〉 by some node w = cv, or a 〈drop〉 from u. In the first case, a match
event xi occurs and all edges incident to v are removed from Ei−1 to con-
struct Ei, including (u, v). In the second case, if u sent a 〈drop〉 message,
it was because of another match event xj equal or before xi in which all
edges incident to u were removed (similar to the first case). As Ej ⊇ Ei,
the proposition follows. /

Proposition 2.4 For all i, we have ei ∈ Ei−1.

Proof: Suppose not. If ei = (u, v) is removed from Ej−1 (to construct Ej)
for some j < i, then a matching event (u, w) (or (v, w)) occurred removing
all edges incident to u. But then cu = w remains forever, contradicting that
u is involved in matching event xi (even if w = v). /

4

Proposition 2.5 Protocol 2.2 terminates for every node in the graph, with
Et = ∅ for some t.

Proof: By proposition 2.2, a node can receive at most one 〈req〉 from each
neighbour. After all those are received, each iteration of the loop removes
elements from Nv. Hence, eventually Nv = ∅ and v terminates, unless v
waits for receipt of a message forever in the first line of the loop. But then
Nv 6= ∅ and hence cv = u 6= ⊥ for some u. This means a 〈req〉 message
was sent to u. Then either v ∈ Nu, or a 〈drop〉 message is in transit to v
(contradicting that v waits forever for a new message). But if v ∈ Nu it will
either become a candidate for u (in which case u sends 〈req〉 to v), or u finds
another candidate, sending a 〈drop〉 to all remaining nodes in Nu including
v.

To show that for some t we have Et = ∅, consider the moment all nodes
have terminated. Then for all v we have Nv = ∅. By propostion 2.3 the
proposition follows. /

Proposition 2.6 Matching edge ei is a locally heaviest edge in Ei−1.

Proof: Let ei = (u, v). By proposition 2.4 ei ∈ Ei−1. To see that this
is also the locally heaviest edge in Ei−1, suppose an edge (u, w) ∈ Ei−1 is
heavier. Then w ∈ Nu by proposition 2.3, but then cu = w instead. /

Theorem 2.7 Protocol 2.2 computes for any graph G = (V, E) a matching
M(G) such that w(M(G)) ≤ 1

2
w(M∗(G)) in time O(|E|).

Proof: We first show that if protocol 2.2 computes a matching M(G), then
there is a run of protocol 2.1 that returns the same matching. Consider a
run of protocol 2.2 on input G. Let xi be the ordered sequence of matching
events in that run as defined above.

Now consider the sequential algorithm 2.1. Define E′

0 = E, and let E′

i

be the set of remaining edges in the graph after adding the i-th edge e′i to
the matching and removing the incident edges. Clearly E ′

0 = E0. A simple
inductive argument shows that E ′

i = Ei for all i, if we let protocol 2.1 select
edge e′i = ei (by proposition 2.6 and the induction hypothesis this is a locally
heaviest edge and therefore a possible selection).

We conclude that the sequential algorithm adds the same edges to the
matching as the distributed algorithm in this run. According to proposi-
tion 2.5, for some t we have Et = ∅. Then also E ′

t = ∅ so the sequen-
tial algorithm doesn’t add any more edges. The bound on the approxim-
ation follows from Lemma 2.1. The time complexity follows from proposi-
tion 2.2. /

5

3 Conclusions

We have described a distributed algorithm that computes a 1

2
approximation

of the maximum matching of a weighted graph in O(|E|) time, based on a
sequential algorithm achieving the same approximation.

Other sequential algorithms, that improve the approximation to 3/2 + ε
are known [DH03a, PS04]. It is an open question whether these algorithms
can also be distributed, and if so, at which cost in terms of running time.

References

[Avi83] Avis, D. A survey of heuristics for the weighted matching problem.
Networks 13 (1983), 475–493.

[CHS02] Chattopadhyay, S., Higham, L., and Seyffarth, K. Dy-
namic and self-stabilizing distributed matching. In 21st PODC
(Monterey, CA, USA, 2002), ACM Press, pp. 290–297.

[DH03a] Drake, D., and Hougardy, S. Improved linear time approxim-
ation algrotihms for weighted matchings. In 2764 7th Int. Work-
shop on Randomization and Approximation Techniques in Com-
puter Science (APPROX) (2003), no. 2764 in LNCS, pp. 14–23.

[DH03b] Drake, D., and Hougardy, S. A simple approximation al-
gorithm for the weighted matching problem. Inf. Proc. Letters 85
(2003), 211–213.

[Gab90] Gabow, H. Data structures for weighted matching and nearest
common ancestors with linking. In 1th SODA (San Fransisco, Ca.,
USA, 1990), ACM, pp. 434–443.

[II86] Israeli, A., and Itai, A. A fast and simple randomized parallel
algorithm for maximal matching. Inf. Proc. Letters 22 (1986),
77–80.

[KS00] Karaata, M., and Saleh, K. A distributed self-stabilizing al-
gorithm for finding maximal matching. Computer Systems Science
and Engineering 3 (2000), 175–180.

[MV80] Micali, S., and Vazirani, V. An O(
√

V E) algorithm for finding
maximum matching in general graphs. In 21nd FOCS (??, 1980),
IEEE Comp. Soc. Press, pp. 17–27.

[PS04] Pettie, S., and Sanders, P. A simple linear time 2/3−ε approx-
imation for maximum weight matching. Tech. Rep. MPI-I-2004-
1-002, Max-Planck-Institut für Informatik, Saarbrücken, germany,
2004.

6

[Pre99] Preis, R. Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs. In 16th STACS (Trier, Ger-
many, 1999), C. Meinel and S. Tison (Eds.), LNCS 1563, Springer,
pp. 259–269.

[UC00] Uehara, R., and Chen, Z. Parallel approximation algorithms
for maximum weighted matching in general graphs. Inf. Proc.
Letters 76 (2000), 13–17.

[WW04] Wattenhofer, M., and Wattenhofer, R. Distributed
weighted matching. In 18th DISC (Amsterdam, the Netherlands,
2004), R. Guerraoui (Ed.), LNCS 3274, Springer, pp. 335–348.

7

	Introduction
	A distributed greedy algorithm
	Proof of correctness

	Conclusions

