
Remote Management and Secure Application Development for Pervasive Home
Systems Using JASON

Bert Bos
Chess IT, the Netherlands
Bert.Bos@chess.nl

Łukasz Chmielewski Jaap-Henk Hoepman1 Thanh Son Nguyen
Radboud University Nijmegen, the Netherlands
{lukaszc,jhh,thanhson}@cs.ru.nl

Abstract
In a modern house, the number of electronic devices

keeps increasing. More and more of these devices become
interconnected, to provide new services. And they start dis-
appearing in the environment, forming a truly pervasive
home system.

The embedded devices in such pervasive networks are
usually owned and managed by several entities with con-
flicting interests. This makes secure remote management
of such devices a challenging task. Software development
to implement such services need to solve complex security
problems and need to be aware of the large spread of capa-
bilities among the different devices.

We present ongoing research to apply and extend the JA-
SON architecture [1] to handle such remote management
and secure software development issues.

1 Introduction
In a modern house, the number of electronic devices

keeps increasing. Houses may be equipped with many mod-
ern appliances, ranging from hi-fi sets, tv’s, pc’s, smart
fridges and washing machines, doorbells, light switches,
thermostats and the like. Sensors record activity in the
house, to automatically switch off the light in empty rooms
for instance. They could also serve as burglar alarms.
Surveillance cameras may monitor the doors. Electronic en-
ergy meters, gas meters and water meters record and report
usage periodically and automatically without human inter-
vention.

These devices get networked. They synchronize and co-
operate to provide better services. The surveillance camera
can instruct the heating system to switch on the heater, order
the lighting system to switch on the lights in the hall and
the living room, and tell the television to play the preferred
channel when the owner approaches the front door. It can
activate the alarm system when unrecognized people try to
break in.

These devices need to be updated and managed from
time to time. Each device offers services from different

This research was partially funded by Sentinels project JASON
(NIT.6677)

1J.-H. Hoepman is also with TNO, The Netherlands, e-mail:
jaap-henk.hoepman@tno.nl

service providers. Such management may necessarily be
done by the service providers themselves. Remote manage-
ment is preferable, since service providers would wish to
update or interact with all devices that run their services in
a large geographic area without visiting each and every one
of them. In the extreme case, we cannot visit these devices,
since there are too many of them, and we may not even
know where they are.

The above scenario is an instance of a domestic perva-
sive system. That is, a system consisting of large group
of small or embedded devices, interconnected and spread
all through a modern family home. Pervasive computing
(also known as ubiquitous computing, everyware [5] etc.)
refers to the integration of systems into their environment,
to build context-aware systems and services that are invisi-
ble and blended into the surroundings. It has attracted a lot
of academic research. Moreover, several industrial projects
have started to use the results of this research to implement
actual pervasive systems. The Home Control Box project1

is one of these.
In our case study we envisage a central home control box

(HCB) in a house which connects to all local devices. The
HCB connects to service providers over the Internet. De-
vices can interact with each other and with service providers
through the HCB.

It is difficult and error-prone to develop secure applica-
tions for pervasive devices, especially because these devices
have varying capabilities, and may lack the most basic re-
sources. It would be useful if software developers would
have to focus only on implementing the functional aspect
of a service, while the security aspects could be specified
by the developers and be implemented automatically. The
JASON architecture provides this separation of concerns.

It is also important that applications by many differ-
ent vendors can work safely together on the same multi-
application platform. One core issue is that the manage-
ment is done by different and often competing parties. For
instance, two providers of similar services which run on the
same HCB, may try to interfere with each other. It is de-

1http://www.homecontrolbox.com/

sirable in such cases that management activities of parties
do not interfere with each other, if not allowed by the se-
curity policies in force. This requires proper sandboxing of
applications.

In this paper we discuss how the JASON approach pro-
vides a programming paradigm and a corresponding plat-
form for the development of secure domestic pervasive ser-
vices, that can be remote managed securely. We show use
cases and refinements to the JASON platform.

2 The JASON approach

JASON is our Javacard As Secure Objects Networks
platform [1]. It realizes the secure object store paradigm
where objects are stored on different devices and back of-
fice systems. Devices can have one or more of the following
characteristics: being pervasive, highly mobile, computa-
tionally weak, communicationally weak etc. The JASON
platform is being developed as a middleware layer which
securely interconnects an arbitrary number of smartcards,
embedded devices, terminals and back office systems over
the Internet.

The JASON platform supports secure deployment and
remote management of secure pervasive systems which run
applications from various parties. JASON applies role-
based access control. An application consists of a collec-
tion of objects which give access to pre-defined roles. In the
distributed object model that JASON follows, all objects are
separate entities running on separate nodes. Objects interact
by requesting remote methods or services from each other.
The request is done using methods provided by the JASON
secure communication layer. The method invocations are
transparent. Objects do not necessarily know whether its
requested method is executed remotely.

One important concept in JASON is the separation of
concerns: the security requirements and the implementa-
tion. Programmers only have to specify security and remote
management requirements in the application’s interface de-
scription, not to implement them. The JASON platform
translates these requirements into a secure implementation.
At runtime, the JASON platform provides a secure environ-
ment and secure communication protocols, according to the
specified requirements.

In the next two sections we present two individual tech-
niques in more details: the Secure Communication Layer
and the Sandboxing mechanisms. Then we present few
practical use cases to determine the practicality of the JA-
SON approach and to refine the JASON platform.

3 Secure Communication Layer

This section describes the communication model of the
Jason objects. This Secure Communication Layer (SCL)
enables objects to call remote methods and services in a se-
cure fashion. The interface language can be either an ex-

Figure 1. Sandboxing and SMI in JASON

tension of the Java interface language, or the extension of
WSDL [2]. These extensions allow extra security and re-
mote management keywords to be added to the interface.
The Jason platform translates these requirements into a se-
cure implementation.

SCL currently consists of two communication methods:
secure method invocation(SMI [1]) based on RMI andse-
cure web services(SWS) based on web services. Each ap-
proach has its own advantage and disadvantage, mainly due
to the underlying remote method invocation and web ser-
vices technologies. Given the overhead of encoding and
decoding XML, users can choose the remote method invo-
cation approach instead of web services. On the other hand,
web services are more flexible. For a comparison of remote
method invocation and web services, see [3].

Figure 1 shows how two objects can communicate via
stubs and skeletons in SMI2. The object which calls a re-
mote method on a remote object is identified as caller, while
the remote object is the callee. In this model, stub and skele-
ton are (Java) codes produced by the Jason compiler, used
by the caller and callee respectively. They provide transpar-
ent access to remote methods. The caller locates the inter-
face of the callee and issues a request which is passed to the
stub. The stub establishes the connection to the (skeleton at
the) callee over the public network using standard protocols
and formats. The callee authenticates the caller and evalu-
ates the request. Security requirements for returned value
such as authenticity, encryption etc., can be specified. The
JASON platform enforces these security properties during
the execution of the call.

4 Sandboxing
In Section 2 we explained the JASON approach, assum-

ing all objects were separate entities, running on separate
nodes. In this section, we discuss how these different ob-
jects can safely and securely be run ononehardware plat-
form. To this end we have studied severalsandboxingap-
proaches and their applicability to the JASON platform (see
Figure 1).

We have considered three approaches and their represen-
tatives. These approaches realize compartmentalizationson
different levels. On theApplication Level, we have the Java
VM which provides a sandbox for a Java application from

2SWS works in a similar fashion. For clarity we do not describethat in
the paper.

Application Level: Kernel Level: Operating System Level:

JVM SELinux Xen

Hardware

SeLinux

...
domains:

applicationComputer:

Figure 2. Different levels of sandboxing

within the Java Virtual Machine [11]. On theKernel Level,
SELinux [7] includes means for sandboxing in the kernel,
therefore it is possible to enforce each and every applica-
tion to operate in its own sandbox. On theOperating Sys-
tem Level, the Xen [4] approach is to enforce each different
operating system in different sandboxes and to allow a num-
ber of such sandboxes to run concurrently. Figure 2 shows
the ideas behind the three kinds of compartmentalization.
Comparison of the properties of these systems is given in
Section 4.1.

Java 2 is a powerful development environment. There are
a few fundamental components responsible for its security.
The first one is the class loader architecture, which is the
program that is responsible for loading Java classes. The
second one is the security manager, which is responsible
for limiting code to its sandbox environment. Another one
is the byte code verifier, that checks if a bytecode, which
is about to run, was produced by a proper Java compiler
and therefore if it is safe to run it on the Java VM. Java 2
security mechanisms provide unique features that help writ-
ing security sensitive applications. Functionality of signing
code and X.509 certificates is also provided. Java Authen-
tication and Authorization Service (JAAS) simplifies writ-
ing role-based applications. Furthermore, code verification
helps detecting malicious software before running it on a
virtual machine.

SELinux [8][7][10] was a project to port the work of de-
veloping a mandatory access control architecture done by
the National Security Agency (NSA) and the Secure Com-
puting Corporation (SCC) on the Mach and Fluke OS’s
to Linux. Now SELinux is an implementation of a flex-
ible mandatory access control (MAC) architecture (called
FLASK) into the Linux kernel. The policy for decision
making (defined in a policy file) is performed by security
server with a general security interface. The general se-
curity interface enables implementation of various security
models. It requires only to write an instance of a secu-
rity server and the rest of the system can be unchanged.
SELinux provides an example security server that imple-
ments a combination of Type Enforcement (TE), Role-
Based Access Control (RBAC), and optionally Multi-Level
Security (MLS). These security models provide significant
flexibility through a set of policy configuration files.

Xen [4] is a x86 virtual machine monitor (hypervisor)
which allows many guest operating systems to share a con-
ventional hardware in a safe and resource managed fashion.
This aim is achieved by providing an idealized virtual ma-
chine abstraction. Operating systems like Linux, FreeBSD,
or Windows can be ported to run on Xen with minimal ef-
fort. This approach has an advantage that a sandbox can
host any kind of object3 (but at the “expense” of having to
run a full operating system) that could run on the operating
system being sandboxed. The decision not to give full virtu-
alization without hardware support (currently supported by
Intel VT or AMD-V chips) gives Xen nearly optimal per-
formance.

Since 2005 there has been a tendency to put greater ef-
fort into the security aspects of Xen. Such a secure sys-
tem is sometimes called security enhanced Xen (XenSE)
[9]. Since then, research on improving security of Xen has
been carried out extensively.

4.1 Comparison

We present an aspect based discussion about the differ-
ences and similarities between SELinux compartment, Java
sandbox, and Xen guest operating system. The aspects have
been chosen with respect to the JASON’s security require-
ments and safety of the implementation. Due to space con-
straints we present only a few major security aspects and we
summarize the comparisons in Table 1.
System modification threat This kind of threat happens
when a malicious application manages to “escape” from a
sandbox and modifies the working system.

In this aspect Xen and Java are relatively safe tools. Xen
is a relatively small system (around 40K of code). Further-
more, some implementations of Java VM have been for-
mally verified [6].

In SELinux every part of the Linux kernel can be at-
tacked (and Linux kernel is relatively big), which enlarges
the possibility of a malicious code escaping from a com-
partment.
Flexibility of security supervisors and policiesThis as-
pect describes how flexible the mechanisms that maintain
policies are and how flexible policies can be defined in each
system.

An example SELinux security server contains concate-
nation of RBAC, TE approach, and optionally Multi-level
security, which makes it strongly flexible. Moreover, it is
possible to develop one’s own security server (however it in-
volves a large effort). The SELinux policy language is quite
complicated, because it has to cope with properties of the
whole operating system. Java security manager has good
flexibility and does not have to concentrate on operating
system issues. Java policy language seems to be transpar-
ent, simple, and powerful enough. Xen defines a privileged

3in contrast to Java VM where only Java objects can be run.

System
Aspect Java SELinux Xen

System modification threat + +/- +
Invasion of privacy + +/- +
Denial of service - +/- +/-
Code verification + - -
Flexibility of security supervisor and policy + + -
Role Base Access Control + + -
Gaining privileges + +/- -
Communication between sandboxes + +/- -
Resistance to operating system weaknesses - NA NA
Level of development + +/- +
Supported platforms within a sandbox - +/- +
Lightweight + + -

Table 1. Comparison of compartmentaliza-
tion mechanisms

domain that enforces administrator’s policy. The general
aims of Xen are slightly different than those of SELinux
and Java, but still Xen seems to be fairly flexible with re-
spect to its aims (e.g., its possible to dedicate a device to
only one guest operating system). However, for JASON
purposes Xen policy seems to be much less flexible than
SELinux or Java policies.
Level of development Java 2 and Xen are the most de-
veloped and widely used of the considered approaches.
SELinux is still in an experimental phase (however, it is al-
ready officially mainstreamed into the Linux kernel).
Lightweight In this paragraph we describe the resource
costs of using sandboxes under considered systems.

The most lightweight from the considered systems are
Java and SELinux. Under both systems creating additional
compartment does not cause much work for the security
supervisor. The least lightweight is Xen, because every
sandbox “takes up” virtualization of one operating system.
However, in a situation when not too many sandboxes are
used it seems to be a reasonable choice.

4.2 Conclusions

Java 2 sandbox functionality, lightweight of the system,
and cryptography support makes this system a very good
choice for implementing the JASON system. The main dis-
advantage of this system is the limitation that only Java ob-
jects can work in the sandbox.

Although SELinux is a promising system we have re-
jected it for our future research due to its disadvantages.
Firstly, the system is in a relatively early development stage.
Secondly, the system is vulnerable to any “normal” Linux
kernel vulnerability, which has relatively large code base(in
comparison with, e.g., Xen).

Xen virtual operating system seems to satisfy most of the
security requirements of the JASON sandbox. It can main-
tain fairly complex policies and is well developed. The dis-
advantages are: lack of crypto support, no transparent way
of communication between guest systems is provided, and
hardware support for full virtualization is necessary. The
most important advantage is universality – the fact that al-
most any application can be run within a compartment. Any
application within guest operating system is only bound to
the system’s limitations.

5 Use cases
In order to refine the JASON platform, we study the

Home Control Box (HCB) system and a few HCB appli-
cations as use cases. Assuming that a HCB participates in
the JASON network, we discuss the security requirements
that could be fulfilled with the existing JASON solutions
and the additional functionalities that are necessary to add
to JASON itself.

A HCB system consists of several HCBs. These are
small and powerful computers being placed inside the
house. Each HCB connects to various home devices (tele-
vision, heating system etc.), to HCB providers, to other ser-
vice providers, to the police and hospitals.

The HCB providers have control over the HCBs and keep
track of these in their databases. Service providers need
agreements with the HCB providers to use the HCBs. For
the fact that service providers need authorization from HCB
providers first before privileges to use HCBs are granted to
them, and the fact that the HCBs are regularly tracked by the
HCB providers, we also use the term Back Office System
(BOS) to refer to the HCB providers. Note that this BOS
is different from the back office systems that each service
provider may maintain.

Figure 3. Home Control Box and devices

From inside the house, devices are connected in some
way to the HCB, e.g. by a cable or a wireless connec-
tion. From the outside, service providers locate their de-
vices through the corresponding HCB. Since it is a generic
container, typically service providers need to install an ap-
plication on the HCB to control their devices. For instance,
there is an application to control the surveillance camera,
to receive instructions from the safeguard company as well
as to send a burglar alarm to them. The HCB however
only allows to install applications if the BOS approves it,
which typically means they have a contract. The HCB runs

these applications, forwards requests and responses back
and forth.

We show two HCB use cases. Our goal is to see the prac-
ticality of JASON in different situations, therefore we select
the use cases such that they cover more and different uses
of the HCB. One case (the Health Alarm) involves a situa-
tion where emergency overrides security checks, while the
other case (the Energy Meter) involves strict policy checks
before an action is performed. We show their security re-
quirements and whether those requirements can be fulfilled
by the JASON platform.

5.1 Health Alarm

The health alarm is a service that allows users to warn
the hospital in case of an emergency. The goal is to help el-
derly people to live on their own, without constant nursing.
In case of a health emergency, the health alarm provides an
easy and informative way to call hospitals, easier than using
phones. The user holds a small device which can be inte-
grated into a wristwatch. In case of illness or emergency,
the user can press the signaler which sends signals (carry-
ing heart beats, blood pressure etc) to the HCB, which in
turn sends that to the hospital. By means of an indoor cam-
era, a video connection is established between the house
and the hospital. The doctor can see the situation and de-
cide whether an ambulance is necessary.

Several security requirements can be identified. Con-
sider a few function calls by the HCB, the signaler and the
hospital. The requirements are as follows (Figure 4). Next
to each requirement,+ means that it can be implemented
by JASON,− means that it currently cannot.

Figure 4 shows a situation when the signaler requests the
method ”health alarm” on the HCB to report a health emer-
gency, together with medical data of the owner. The signaler
first connects to the HCB and issues the method call. Before
executing the method, the HCB authenticates the signaler
to avoid abuse (caller authentication)(+). Because of the
emergency, the HCB does not check immediately whether
the security policies allow this action but will log and audit
later (logging and emergency overrides)(−). The HCB sets
high priority for this emergency call so it can be executed
before other methods, say reporting energy usage (setting
high priority for the call)(−). The HCB forwards the alarm
by calling the method ”health alarm” on the hospital and
passes the medical data along.

The hospital requests to “initialize video connection” so
the doctor can see the situation in the house. The HCB au-
thenticates the hospital (caller authentication)(+). It streams
the video content to the hospital securely (and only to the
hospitals, not to thieves, say) (secure streaming of video)(-
). The hospital needs to authenticate the service user (Callee
authentication)(+). Connection should be established with
high priority so the case can be resolved quickly (setting

HCBCall HCB: health alarm (req1)HCB requires:.auth. of Signalizer(+).logging and emergencyoverrides (bypass securitypolicies) ().setting high priorities for thisemergency call ()
Hospital (req3)Hospital requires:authentication of HCB (+)link encryption (+)logging and emergencyoverrides ()setting high priority for thisemergency call ()req3

req2req1 (req2)HCB requires:authentication of the hospital(+)link encryption (+)...req4
(1) (2)(3) Call Hospital: health alarmCall HCB: initialize video connection(req4)Hospital requires:secure streaming of video ()medical data should be keptsecret (encryption) (+)setting high priority for the call ()

Legend:reqx: requirement set nr xSignalizer

Figure 4. Requirements for the Health Alarm

priority for the method call)(−).
Logging and ”emergency overrides” is useful in several

cases. In practice, in case of an emergency, the doctor treats
the patient first before checking the papers. Similarly, in
case of a method request with emergency, the callee can au-
thenticate the caller and allow emergencies override secu-
rity policies. The callee however logs this fact and investi-
gates later. This functionality is currently missing from the
JASON platform.

Setting priority for roles and method calls is useful. For
instance, a method call to the police should be processed
before a call to the energy provider. The JASON platform
still lacks this capability.

5.2 Energy Meter

Many modern houses are equipped with electronic en-
ergy meters. The energy meter monitors and reports en-
ergy usage automatically and periodically. Usage data is
sent to the energy provider through the HCB. Under normal
circumstances there is no need for the energy provider to
physically visit and collect data from the meters anymore.

Similarly to the health alarm case, consider a few func-
tion calls and their security requirements. However, due to
space limit, we do not repeat the security requirements that
already followed from the previous use case but refer to the
Figure 5 instead.

The energy meter requests the method “report energy us-
age” on the HCB to send meter data to the HCB, which
in turn sends that to the energy provider. There is a
mutual distrust between the energy provider and the ser-
vice user4, therefore the energy provider authenticates the
HCB (caller authentication)(+) and the energy meter (nested
caller authentication)(-), checks for the integrity and au-
thenticity of the meter data (data integrity)(+) and updates
its database.

Occasionally, the energy provider requests to change the
calibration information of the energy meter. It requires that
whether all new calibration parameters are updated, or none
(atomicity of the transaction)(-). Since there is a mutual dis-
trust between the service user and the service provider, the

4However, they both have to trust the energy meter to some extent.

HCB
Energy Provider

Call HCB: report energy usage
Call EnergyProvider: report energy usage

(1)
(2) (req�6)�authentication ofEnergy Meter (+)�data integrity (+)(req�2)�authentication of theEnergy Provider (+)(req�3) EnergyProvider requires:�authentication of HCB(+) and Energy Meter(�)�integrity of the usagedata (+)

Call HCB: apply new calibrationCall Energy Meter: apply new calibration
(req�4)�authenticity of the HCB (+)�atomicity of the transaction (�)....
(req�5)EnergyMeter requires:�authenticity of the Energy Provider (+)�logging the calibration parameters(�) (1*)(2*) req�2

req�4
req�7

req�3
req�5 req�6

Legend:req�x: requirement set nr x
(req�7)logging parameters(�)...EnergyMeter

Figure 5. Requirements for the Energy Meter

service user requires the calibration parameters to be logged
as well on the HCB as evidents for future cases (logging
parameters)(-).

5.3 New Requirements

We have seen the use cases and the new requirements
for the JASON platform. Based on this experience we have
built a generalized M2M scenario that is the aimed scenario
of new JASON (we do not describe this scenario here).

The JASON platform need to be extended with the
following functionalities: automatic authentication of the
callee, setting priority for the calls, new security require-
ments for sending parameters or results of method calls
(e.g., integrity), atomicity of transactions, logging and
”emergency overrides” and secure streaming of video.

Several consequences were identified relating to these
new requirements. In case of emergency overriding security
policies, we have to create a log so tracing back is possible
later. Issue connected with “emergency overrides” is asyn-
chronous method’s calls (situation when a caller does not
wait for receiving a result from a callee). How and where
the log data is kept so that it is secure and still easily ac-
cessible to the service providers. Identify the types of poli-
cies that can or cannot be overridden and determine how far
the emergency can override. We might also want to back
up some pieces of essential data before executing the emer-
gency request. In this way we can fall back safely in case
the log audit concludes that the request was malicious.

Another important issue is remote management in which
more than two parties are involved. This situation is shown
in Figure 5. Here the energy meter sends report to the en-
ergy provider through the HCB. It is desired that the report
should be signed by the energy meter and by HCB. It is
feasible that in general recursive remote management prop-
erties are desired (e.g., multiple signing data, forwarding an
encrypted data, signing an encrypted data etc.).

6 Conclusions and Further Research

It is difficult and error-prone to develop secure appli-
cations for pervasive devices, especially because these de-
vices have varying capabilities, may lack the most basic re-

sources, are owned and managed by several entities with
conflicting interests, leading to complex policies. In this
paper we have presented an ongoing research to apply and
extend the JASON platform to handle such remote man-
agement and secure software development issues. To this
end, JASON provides a programming paradigm and a corre-
sponding platform for the development of secure domestic
pervasive services, that can be remote managed securely.

Several research challenges were identified. For in-
stance, how to combine the advantages of the sandboxing
mechanisms, how to define a clear interface language for
security requirements, requirements for new security key-
words and implementations to the JASON platform, how to
guarantee secure interfaces and to resolve conflicts between
keywords, and developing support to automatically translate
the security requirements into secure implementation. Fur-
ther research also takes into account naming and publishing
consequences, communication consequences, key manage-
ment, logging, auditing, and transaction support.

References
[1] R. Brinkman and J.-H. Hoepman. Secure method invocation

in jason. InUSENIX Smart Card Research and Advanced
Application Conference (CARDIS), pages 29–40, San Jose,
CA, USA, Nov. 2002.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (wsdl) 1.1.
Technical report, W3C, 2001.

[3] W. R. Cook and J. Barfield. Web services versus distributed
objects: A case study of performance and interface design.
In ICWS ’06: Proceedings of the IEEE International Con-
ference on Web Services (ICWS’06), pages 419–426, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
art of virtualization. InProceedings of the ACM Symposium
on Operating Systems Principles, pages 164–177, October
2003.

[5] A. Greenfield.Everyware : The Dawning Age of Ubiquitous
Computing. New Riders Press, March 2006.

[6] P. H. Hartel and L. Moreau. Formalising the safety of java,
the java virtual machine and java card. Technical report,
University of Twente, 2001.

[7] P. Loscocco and S. Smalley. Integrating flexible supportfor
security policies into the linux operating system. InProceed-
ings of the FREENIX Track: 2001 USENIX Annual Tech-
nical Conference, pages 29–42. The USENIX Association,
June 2001.

[8] P. Loscocco and S. Smalley. Meeting critical security ob-
jectives with security-enhanced linux. InProceedings of the
2001 Ottawa Linux Symposium, pages 115–134, July 2001.

[9] C. Rozas. Intels security vision for xen.
http://www.xensource.com/files/XenSecurityIntel CRozas.pdf.

[10] S. Smalley.Configuring the SELinux Policy, Ferbuary 2005.
NSA technical report.

[11] R. F. Stark, J. Schmid, and E. Borger.Java and the Java Vir-
tual Machine: Definition, Verification, Validation. Springer-
Verlag Berlin Heidelberg, 2001.

