
Java RMI and .Net Remoting Performance
Comparison

Willem Elbers, Frank Koopmans and Ken Madlener
Radboud Universiteit Nijmegen

December 2004

Abstract

Java and .Net are both widely used for creating Middleware so-
lutions. There are many interesting aspects which can be compared
between Java and .Net. In this paper we examine the architecture of
Java RMI and .Net Remoting and test their performance as they come
”out-of-the-box”. The performance was measured over a series of 3
different tests using .Net and Java’s high performance timers and our
own modules to measure CPU utilization and Memory usage. In all
our tests Java RMI had the best performance times.

1



1 Introduction

The creation of software has been evolving strongly over the past few
years. High level programming languages are increasingly popular amongst
software developers because there is a great need for software quality and
lower development times, while not compromising on performance. Also,
the Internet has become increasingly popular and the need for networking
applications is greater then ever.

Java and .Net are both widely used for creating Middleware solutions.
There are many interesting aspects which can be compared between Java
and .Net, this paper focuses specifically on Middleware performance.

First there will be an overview of the Java and .Net middleware imple-
mentations, Java RMI and .Net Remoting. These will be described on an
abstract level which will help understanding and explaining the results of
the performance measurement later on. After the introduction of Java and
.Net middleware, their performance measurement will be introduced. An
overview of which measurements were done, and why, followed by the
results of these measurements will reveal the performance aspects of Java
and .Net middleware.

By looking back at the architecture of both Java and .Net Middleware,
conclusions can be drawn about the consequences for performance.

2 Java and .Net middleware explained

There are many differences and similarities between Java RMI and .Net
Remoting. This chapter introduces the general architecture of both and a
few differences which are relevant to the performance aspect of middle-
ware.

2.1 .Net Remoting and Java RMI in general

.Net Remoting and Java RMI are mechanisms which allow the user to in-
voke methods in another address space. The other address space could
be on the same machine or a different one. These two mechanisms can be
regarded as RPC in an object-oriented fashion.

• When the client object calls a method on the server object, a proxy

2



passes the call information to the RPC system on the client. This sys-
tem in turn sends the call over the channel to the Remoting system
on the server.

• The RPC system on the server receives the call information and, on
the basis of it, invokes the method on the actual object on the server
(creating the object if necessary).

• The RPC system on the server collects the result of the method invo-
cation and passes it back to the client through the connection of the
RPC system on of the client.

• The RPC system at the client receives the server’s response and re-
turns the results to the client object through the proxy.

Distributed objects Java and .Net use distributed objects, these are ob-
jects whose instances can be used remotely, they can be referenced in two
different ways:

• Within the address space where the object was constructed; The ob-
ject is an ordinary object which can be used like any other object.

• Within other address spaces (remote); The object can be referenced
using an object handle, and is treated like a remote interface. For the
most part object handles can be used in the same way as an ordinary
object.

Java and .Net distribute their objects in the same way, but the terminol-
ogy is different. .Net named their remote objects Remote Interfaces while
Java mostly speaks of Remote Classes.

2.2 .Net Remoting and Java RMI differences

The following differences between .Net Remoting and Java RMI affect
their performance in our tests:

Distributed directory Java RMI uses a RMI Registry as their distributed
directory, RMI clients and servers register their ”address” in the RMI Reg-
istry. In .Net Remoting a Windows native register is used, hence there is
no distributed directory within the .Net framework.

3



Available protocols .Net Remoting can communicate using HTTP, TCP
or SOAP. Java RMI is able to use All URL protocols (HTTP, FTP, etc.), IIOP,
JRMP and ORMI. These different protocols serve different means, HTTP is
used by .Net and Java (as standard) for compatibility and raw TCP-sockets
are used for optimized speed. Java has a better choice in protocols for RMI,
resulting in greater compatibility with other applications.

Proxies Another important difference between .Net Remoting and Java
RMI is that the proxies in Remoting are created during runtime whereas
RMI creates it’s stubs during compile-time.

Boxing This subject is not directly related to the middleware mecha-
nisms but affects the performance of .Net. While Java’s type system is
almost completely object oriented, it still uses some primitive types such
as int and char. In .Net there are no primitive types. Through a built-in
mechanism called ”Boxing” all types can be considered object and thus
making it a fully object oriented type system.

3 Java and .Net middleware performance mea-
surement

3.1 Measurement specification

The goal of the measurements is to accurately compare the middleware
performance between Java RMI and .Net Remoting. We do not want to
measure any other performance differences between Java and .Net.

The three most interesting aspects for middleware performance are:

• Remote method invocation with little data

• Remote method invocation with large data

• Exchange an array of objects between client and server while both
remove one object and send the array to the other.

Repeatedly invoking a remote method with little data (as parameter)
will reveal how the middleware handles a ”plain” method invocation.

4



This is often used in practice. Repeatedly invoking a remote method with
large data (as parameter) will reveal how the middleware handles the
transportation and buffering of data. The last measurement reveals how
the middleware will handle a variation of the transport data size in combi-
nation with the disposal of garbage objects. A serialized object containing
an array of dummy objects is sent from client to server. The server removes
one object from the array and sends the serialized object back to the client.
The client also removes an object from the array, and sends the serialized
object to the server. This is repeatedly done until the array is empty.

The first and second measurement cannot be predicted very well. There
is no good reason on forehand to believe Java or .Net is faster. Especially in
the data invocation measurement we expect both Remoting and RMI to be
equally as fast. Where the socket implementations are slightly faster, be-
cause sockets won’t have any middleware overhead such as marshalling
and unmarshalling. For the third measurement, we expect Java to be faster
because. In a Java RMI environment the client and server share the virtual
machine. This is making the disposal of garbage and exchanging of data
fast.

3.2 Measurement criteria

We will use a client-server situation for implementing middleware. Figure
1 illustrates how the client and server programs communicate.

5



To make sure that only the middleware performance is being mea-
sured, the measurements are implemented as ”clean” as possible. The
execution time of the program code is as minimal as possible, making its
influence on the measurement neglectable.

It is important to note that we are trying to compare two different
platforms. This means the Timers used to measure intervals and dura-
tions are (most likely) of a different resolution. Usage of a (not by Sun
supported) high-performance timer in Java, we achieved 10 nano-second-
accurate timing. The default timing in Java was only 10 milliseconds ac-
curate. The timer which is normally used in .Net has an accuracy of 100
nanoseconds, according to the specifications. Unfortunately, the imple-
mentation is not that accurate and in practice it is about 15 milliseconds
accurate due to thread context switching. Using a special Windows native
timer, we can achieve 10 nano-second-accurate timing in .Net too. The im-
plementation of the middleware itself in Java and .Net are considered to
be blackbox. During the measurement we do not alter or tweak it. Both
Java RMI and .Net Remoting were implemented using HTTP as commu-
nication protocol. For both middleware implementations, this is the most
common used technique.

3.3 Measurement implementation

To make a good and representative measurement we will use a separate
computer system for both client and server. To reduce interference from
other applications and unpredictable behavior, the client and server sys-
tem are both provided with a new installation of Microsoft Windows. A
null measurement is used to set our reference mark. The null measure-
ment is implemented (on both Java and .Net) by calling an empty remote
method using sockets. The usage of Sockets is considered to use only triv-
ial networking components. Therefore this implementation of a null mea-
surement will only measure the time it takes to send data through a net-
work. All measurements will be corrected by the corresponding null mea-
surements leaving an accurate reading of the middleware performance.
To make a good measurement the measurements take at least 10 seconds.
This rules out minor differences caused by unexpected circumstances and
makes the timer inaccuracy neglectable. Three different kinds of middle-
ware performance measurement are done. Each of these measurements is

6



implemented in the same way in both Java and .Net. The measurements
exchange data between the server and client using middleware, the time
and resources the measurement takes are measured. In both Java and .Net
there are no facilities to accurately measure the system resources used. We
have created our own DLL using the C++ programming language which
measures the system resources by calling Windows API’s and a registry
key to query the system resources. By making a uniform library for mea-
suring system resources we can be sure that the system resources are mea-
sured in the same way for both Java and .Net. Without a uniform library
there is a chance that Java and .Net measure the used CPU and RAM in a
different way, this would cause false measurements.

The measurement of system resources by the DLL has a resolution of
1 second. It takes a few milliseconds to call the DLL methods for measur-
ing. The resolution cannot be higher because that would be a performance
slowdown, it would intervene with the measurement results. The mea-

7



surement of our performance is done in two places now, in Java/.Net a
high-performance timer is called for measuring the time needed and in
the DLL we measure the CPU and RAM usage. The reason that these
measurements are not all done in the DLL is the big difference in mea-
surement resolution between the timers and the resource-measurement. If
we would implement a high-resolution timer in the DLL with a resolution
of 10nanoseconds it would be called by the Java/.Net program after 5 mil-
liseconds. This would cause severe inaccuracy. However, measuring the
resource usage in the DLL is acceptable because the 5 milliseconds delay
is relatively small to the resolution of 1 second.

4 Measurement results

Null measurement All measurements were performed locally on one
machine to confirm our expectations of local performance. This was true
for all measurements. All local measurements were performed within a
millisecond. These were performed with the same amount of invocations
and/or data.

Method invocation This test consists of 50.000 remote method calls with
just a single int parameter.

8



This graph reveals an unexpected result. The overall performance of
.Net Remoting is a factor 7 worse than Java RMI. The resource graphs
show us that there is no bottleneck at either CPU or Network utilization. A
logical explanation to this unexpected behavior of Remoting could be the
buffer polling rate or amount of roundtrips required to invoke a method.
The boxing mechanism, as described in chapter 2, should also affect the
performance in a negative way, although it is not very likely to perform
this bad. To make sure both our test applications were working correctly
we have added some debug code to show a message on the screen when
the method was invoked by the server.

Data invocation This test consists of 10 remote method calls with a 1
megabyte char array parameter. In this test, again, we see an unexpected
bad performance of .Net Remoting. In the network utilization graphs we
see RMI peaking at 100% while Remoting does a maximum of about 50%.

9



The interval between these peaks however is the same for both.

During these measurements .Net Remoting had no remarkable amount
of CPU Utilization. In the implementation of the .Net Socket a Network-
Stream wrapper was used in order to get these large blocks of data trans-
ferred across the application domains. This probably has some severe con-
sequences for the performance of this implementation, because a sequence
of smaller blocks of data (10 megabyte divided into blocks of 8192 bytes,
which is apparently the maximum of a byte array passed as a parameter
to our remote method) outperforms the Java Socket.

Object invocation The object invocation test consists of ”bouncing” an
array of 350 objects between the 2 application domains while emptying
one element each time the client or server receives this array.

10



Here, RMI is a factor 7 faster than Remoting. From the results of this
test we can conclude that .Net Remoting has problems when it comes to
transferring relatively big objects between the application domains, as Mi-
crosoft warns about this issue in it’s documents on .Net architecture. In-
creasing the size of the object the difference between .Net Remoting and
Java RMI, the difference between these two mechanisms can go up to a
factor of 20 in favor of RMI. We had expected the network traffic would
decrease towards the end of the test, where the number of objects left in
the array approaches zero. This is for both RMI and Remoting not the case.
Halfway the test both RMI and Remoting even allocate some extra mem-
ory. Our own socket implementations of this test are much slower than
both RMI and Remoting. This is not very strange, considering the fact the
whole structure of each object in the array has to be transferred for each
method invocation.

11



5 Conclusions

The most obvious and expected result of these measurements is that the
middleware for both Java and .Net causes a performance decrease com-
pared to local system calls. This is still true when disregarding the net-
working cost, because there is an extra layer of functionality within mid-
dleware.

RMI had the best performance in the 3 performed tests. It is up to 20
times faster than .Net Remoting on object invocation. This was more or
less expected, as Microsoft warns for a bad performance in this specific
test. The result was unexpected in the method invocation and data in-
vocation tests. On method invocation RMI outperformed Remoting by a
factor 7 and on data invocation by a factor 2.

In the following table we have summarized the results of our tests.

Time CPU Memory
RMI Remoting RMI Remoting RMI Remoting

Invocation + – + - - +
Data + - +/- +/- - +
Objects + - +/- +/- - +
Total + - + - - +

To measure the performances we have used the mechanisms ”out-of-
the-box”, so we have probably not used it under the optimal configura-
tions.

Some interesting aspects of this middleware performance comparison
still remain uncovered in this paper. To achieve a greater understanding of
the differences it would be useful to research the influence of marshalling
and garbage collection. Also, the behavior of the tested middleware mech-
anisms under their optimal configurations and under a greater variation
in size of the test sets is open to further research.

12



6 Appendix A

6.1 Graphs

Method invocation - CPU utilization

Method invocation - Memory usage

13



Data invocation - CPU Utilization

Data invocation - Memory usage

14



Object invocation - CPU utilization

Object invocation - Memory usage

15



7 Appendix B

7.1 Technical specifications

All relevant technical specifications used during this research are provided
for reference and replay.

Hardware The systems used for both client and server are two Fujitsu
Siemens Amilo-D-6800 Laptops with extra RAM. System specs:

• Intel Pentium 4 2,4MHz

• 768MB RAM

• 40GB Harddisk

• 100Mbit Intel LAN adapter

Software The operating system used is Microsoft Windows XP Profes-
sional. Both systems were formatted and provided with a new Windows
installation and service-pack 1. For Java, virtual machine version 1.4.2 06
was used. For .Net, version 1.1 was used.

16



References

[1] Comparing file transfer and encryption performance of Java
and .NET http://www.lore.ua.ac.be/Publications/pdf/
Jagers2004.pdf

[2] .Net Remoting Overview http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cpguide/
html/cpconNETRemotingOverview.asp

[3] Parallel computing Vol. 30 ISSN 0167-8191 LNCS (Lecture Notes on
Computer Science) 2047

[4] Measurement process - Glasgow university http://www.ece.
eps.hw.ac.uk/∼amc/msc-projects/lorna kirkhope/
intro m p.htm

[5] The Mono Project http://www.mono-project.com

[6] Java website http://java.sun.com

[7] The Server Side, a Java Middleware and Web technologies website
http://www.theserverside.com

[8] The Object Management Group http://www.omg.org

[9] The World Wide Web consortium http://www.w3.org

[10] .Net timer research http://www.eggheadcafe.com/articles/
20021111.asp

[11] Mailing from Florian Bomers (Sun microsystems employee) on high
performance timing in Java

17


