
Formally Verified Modular Semantics

Ken Madlener

ii

Copyright c© 2014 Ken Madlener
All rights reserved

ISBN: 978-90-8891-946-6

Typeset with LATEX 2ε

Cover design: Proefschriftmaken.nl || Uitgeverij BOXPress
Printed by: Proefschriftmaken.nl || Uitgeverij BOXPress
Published by: Uitgeverij BOXPress, ’s-Hertogenbosch

Formally Verified Modular Semantics

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,

volgens besluit van het College van Decanen

in het openbaar te verdedigen op donderdag 9 oktober 2014

om 12:30 uur precies

door

Ken Madlener

geboren op 24 maart 1983

te Zevenaar

Promotor:
prof. dr. Marko van Eekelen

Copromotor:
dr. Sjaak Smetsers

Manuscript commissie:
prof. dr. Bart Jacobs
prof. dr. Herman Geuvers
prof. dr. Peter D. Mosses Swansea University

Acknowledgements

This thesis would have not been possible without the support of many people,
to whom I am greatly indebted. First and foremost, I would like to thank my
supervisors Marko van Eekelen and Sjaak Smetsers for their continuous support
and guidance during the course of my research and finalizing this thesis. I am
especially thankful to Marko for arranging additional financial support for the
continuation of my work after the original four-year term finished. I would also
like to thank Peter Mosses for hosting me during my research visit to Swansea
University and the many useful discussions I had with him. I thank Alexandra
Silva for her sharp comments on the last chapter of this thesis and for helping me
improve it. Next, I would like to thank the members of the manuscript committee,
Bart Jacobs, Herman Geuvers and Peter Mosses for agreeing to referee my thesis.

My visit to Swansea was made possible by Bart Jacobs, the head of the Digital
Security research group, which I was proud to be part of. I have had many pleasant
(research) discussions with members of the Digital Security group and computer
science researchers who I have met at conferences and research schools. In par-
ticular, I would like to thank Gerhard de Koning Gans for his strong support and
being a good friend, Łukasz Chmielewski, my roommate and friend, Alejandro
Tamalet, who was the co-author of the paper underlying the third chapter of this
thesis, Bas Spitters for his clever insights, Robbert Krebbers for explaining the
latest tricks in COQ to me, Martin Churchill, who was my roommate during my
stay in Swansea, and Uri Klein for his encouragement.

Finally, I would like to thank my family and close friends for their everlasting
support. However, this series of acknowledgements would not be complete with-
out expressing eternal gratitude to my wife Krista, for her love and support.

Ken
London, Ontario, May 2014

v

Table of Contents

Acknowledgements v

1 Introduction 1
1.1 Programming Language Semantics 2

1.1.1 Lightweight semantics 3
1.1.2 Modularity in semantics 4

1.2 Theorem Provers . 5
1.2.1 Formalization of semantics in theorem provers 6

1.3 Future Work . 7
1.4 Overview and Contributions . 8

2 A Verification Study on the Rotterdam Storm Surge Barrier 13
2.1 Introduction . 13
2.2 The Considered Component: DEW 15

2.2.1 Z specification . 17
2.3 Formal Analysis . 18

2.3.1 Translation of C++ to PVS 19
2.3.2 Communication with the hydraulic-model evaluator 21
2.3.3 Verification . 22

2.4 Validation of the Specification 23
2.4.1 Decision based on incomplete information 24
2.4.2 Critical excesses . 24

2.5 Case-study Evaluation . 25
2.6 Related Work . 27
2.7 Future Work: Certified Lightweight Semantics 28

vii

viii TABLE OF CONTENTS

2.8 Conclusions . 29

3 Reasoning About Assignments in Recursive Data Structures 31
3.1 Introduction . 31
3.2 Preliminaries . 33
3.3 The Model . 33

3.3.1 The heap . 34
3.3.2 Expressions, statements and compositions 34
3.3.3 Assignments . 36

3.4 The Effect of Assignments on Multidot Expressions 37
3.4.1 Looking at the heap before the assignment 38
3.4.2 Looking at the heap after the assignment 39
3.4.3 PVS formalisation . 40

3.5 Linearised Abstractions . 41
3.5.1 Paths . 42
3.5.2 Example: verification of an in-place list reversal algorithm 43
3.5.3 Other data structures . 44

3.6 Evaluation and Future Work . 45
3.7 Related Work . 46

3.7.1 Local reasoning . 47
3.8 Conclusions . 47

4 Formal Component-Based Semantics 49
4.1 Introduction . 49
4.2 Component-Based Semantics . 52

4.2.1 Modular SOS . 53
4.3 Formalization . 55

4.3.1 Types for transition relations 55
4.3.2 Grammar . 56
4.3.3 Semantics . 58

4.4 Labels . 59
4.4.1 Formalization of labels 61

4.5 Example of Modular Proof . 63
4.6 Related Work . 64
4.7 Conclusions and Future Work . 65

5 GSOS Formalized in Coq 67
5.1 Introduction . 67
5.2 A Simple Stream Language . 69

5.2.1 Operational semantics 70
5.2.2 Denotational semantics 72

TABLE OF CONTENTS ix

5.3 Framework . 73
5.3.1 Generic terms . 73
5.3.2 Distributive laws . 75
5.3.3 Operational and denotational models 75

5.4 COQ Formalization . 77
5.4.1 Equational reasoning with setoids 77
5.4.2 Dependent types for generic terms 78
5.4.3 Theory about terms . 79

5.5 Proving the Adequacy Theorem 81
5.5.1 Adequacy theorem for rules in simple format 81
5.5.2 The GSOS format . 82
5.5.3 From GSOS to distributive laws 83
5.5.4 Adequacy theorem for the GSOS format 84

5.6 Related Work . 85
5.7 Conclusions . 86

6 Modular Bialgebraic Semantics and Algebraic Laws 87
6.1 Introduction . 87
6.2 Preliminaries . 90
6.3 Rule Format . 91

6.3.1 Example . 92
6.3.2 The Open GSOS format 94
6.3.3 Operational conservative extensions 100

6.4 Silent Transitions . 102
6.4.1 Silent transitions as unfolding rules 103
6.4.2 Unfolding rule extensions 106

6.5 Algebraic Laws . 108
6.5.1 Preservation of algebraic laws 111
6.5.2 Combining algebraic laws 112

6.6 Running the operational semantics 113
6.7 Related Work . 114
6.8 Conclusions . 116

Bibliography 117

Summary 131

Samenvatting (Dutch Summary) 133

Curriculum Vitae 135

CHAPTER 1

Introduction

One cannot pay a code reviewer enough to do his job; some bugs simply escape
the human eye. For mission-critical code, of which failure would have catas-
trophic consequences for human life, the possibility of the existence of bugs
is simply unacceptable. Applying traditional software testing methods to this
type of software does not always yield a satisfactory level of certainty about its
correctness. As Edsger W. Dijkstra put it “program testing can at best show the
presence of errors but never their absence” [DDH72]. One may resort to formal
methods to mathematically prove software correctness, where “formal” refers to
the act of writing statements in symbolic, unambiguous “mathematical” form. A
correctness proof entirely eliminates the possibility of the existence of bugs, to the
extent that they can be found within the model.

Enabling the formal verification of real-life software has been a long-standing
goal in computer science. Most mainstream languages such as C, C++ or JAVA

are designed from an engineering perspective, making their semantics (i.e. their
“meaning”) less amenable to concise mathematical description. Correspondingly,
formal verification results in long proofs involving many case distinctions and
side-conditions to be dealt with. Pen and paper proofs of software correctness
are therefore deemed less trustworthy, as it is easy to make mistakes. This makes
a strong case for the development of software tools to support formal verifica-
tion. There are three main strands: model-based testing, model checking and
theorem proving. Model-based testing entails the generation of test sequences
from a model of the system behavior and requirements. The system under test
is executed with these test sequences as inputs. Model checking exhaustively
and automatically checks that a finite-state transition system (the model) meets

1

2 INTRODUCTION

its specification. It generally aims at temporal properties such as the absence of
deadlocks and starvation. A theorem prover provides an underlying logic (i.e.
a formal language together with a number of axioms) to express theorems, and
provides a mechanism to verify their proofs. The software verification problem at
hand is formulated as a logical formula to be verified within the theorem prover.

All of the above techniques have in common that they help the user to find
counterexamples that violate the specification of a program. Theorem proving
is clearly the most general-purpose; its use is not limited to the verification of
specific programs, but can also be used to reason about programming language
theory, or even more generally, mathematics. The same reasons that the verifica-
tion of individual programs benefits from theorem proving apply to the verification
of results in programming language theory.

This thesis focuses on the topic of reasoning about programming language
semantics with the assistance of theorem provers. It proposes a number of ap-
proaches to the formalization and analysis of semantics within theorem provers,
inspired by a case-study on the verification of real-life software.

The guiding principle for the work in this thesis has been practical applica-
bility. This goal is shared with the Laboratory for Quality Software (LAQUSO)1,
from which financial support was received. LAQUSO bridges the gap between
academia and industry through the application of results of fundamental research.
Chapter 2 of this thesis carries out a case-study on the verification of mission-
critical software, which was the source of inspiration for the rest of the work in
this thesis. Related work from Nijmegen is [vETHSU08, LSVE08, STT+09].

1.1 Programming Language Semantics

A programming language consists of a syntax and a semantics. Its syntax says
what strings (of characters) are valid programs, and its semantics assigns meaning
to valid programs. There are several styles to describe a semantics, of which the
following two are relevant to this thesis:

• Operational semantics [Plo81]. The operational semantics of a language is
determined by a set of operational rules. These rules generate the set of valid
computation steps which describe how one state may evolve into another
state, thereby giving rise to a state transition system. In particular, when the
set of computation steps is obtained by recursion over the programs, then
one calls the operational semantics “structural”, abbreviated as SOS.

1LAQUSO is a joint activity between Eindhoven University of Technology and Radboud
University Nijmegen, see http://www.laquso.com.

http://www.laquso.com

1.1 PROGRAMMING LANGUAGE SEMANTICS 3

• Denotational semantics [Sco70, SS71]. This style describes the meanings
of programs as mathematical objects (called denotations). As an example,
a denotation of a program could be a partial function which maps input to
output. An important aspect of denotational semantics is compositionality:
the denotation of a program term should correspond to a combination of the
denotations of its sub-terms.

One could say that operational semantics provides a description from an imple-
mentation point of view, and denotational semantics provides a more abstract
perspective. These views should be consistent for the language in question, and
indeed, this is a favorite textbook theorem, see e.g. [Win93]. Such assertions are
called “meta-theoretic”, because they make a verdict about the set of programs of
the language as a whole.

It should be emphasized that both of the above styles of semantics pertain to
a concrete programming language. One level higher in the abstraction ladder
one can speak of meta-theoretic results that span entire classes of languages.
Using the language of category theory, Turi and Plotkin [TP97] have formulated
a theory, also called “bialgebraic semantics”. At the core of their framework
are the bialgebras, which carry both operational (structurality) and denotational
(compositionality) characteristics. In bialgebraic semantics, both the model of
the operational semantics and the model of the denotational semantics are derived
from a shared bialgebra. These models are entirely independent of a concrete syn-
tax, behavior or semantics, i.e. all language-specific details have been abstracted
away.

A fair body of research has dedicated to developing a general theory for SOS,
in which the concept of rule format plays a central rôle (see [MRG07] for an
overview). These formats are syntactic restrictions on the operational rules, which
guarantee some form of well-behavedness of their associated operational seman-
tics. The GSOS rule format [BIM95], which originates from the theory of SOS,
has been given a categorical interpretation by means of bialgebras, and it has been
proved that the operational and denotational semantics generated from any set of
GSOS rules are consistent for every input program [TP97]. This implies that the
operational semantics enjoys the compositionality of denotational semantics.

1.1.1 Lightweight semantics
A couple of decades of research has proven that it is a complex task to develop
a complete formal semantics of mainstream programming languages. Reference
manuals of programming languages rarely provide any formal description other
than the syntax; usually concepts are introduced informally and by means ex-
amples, see e.g. the Java Language Specification [JSGB98]. Indeed, mainstream

4 INTRODUCTION

imperative programming languages exhibit computational behavior consisting of
a mixture of side-effects (caused by changes to the state), ordinary or abrupt
termination, and continuations (e.g. goto-statements). This makes it a serious
challenge to model mainstream languages in a structured fashion, let alone reason
about them.

Most textbooks on programming language semantics omit complexities by
using idealized example languages. However, a restricted, so-called lightweight
semantics of the program at hand might still be helpful to uncover bugs. The
caveat is that one cannot entirely rule out the existence of bugs that might occur
outside of what has been modeled. In Chapter 2 we carry out a case-study on real-
life software written in C++ by means of a lightweight model, which nevertheless
revealed bugs which were left unnoticed after manual code review. Chapter 3
presents a number of general theorems about assignments in recursive data struc-
tures, based on a lightweight semantics of an object-oriented language. We fully
expect that these results also hold in languages such as JAVA and C++.

1.1.2 Modularity in semantics

If one insists on a complete description of a programming language semantics,
then modularity is the holy grail. By structuring a language as a combination
of language-independent components, modularity promotes better understanding
through simplification. Neither operational nor denotational semantics in their
original form provide support for modularity.

For denotational semantics, this issue was partially solved by Moggi’s in-
troduction of monads as a way to structure computational behavior [Mog89].
Potential for extension is provided by the use of monads “with a hole”, also called
“monad transformers”. The operations associated with the original monad should
be “lifted” through the applied monad transformer. Liang and Hudak [LHJ95]
provide ad hoc liftings of operations for a collection of pairs of monad transform-
ers, however, the number of combination possibilities grows quadratically in the
number of monad transformers. Another approach is to generate monads from
algebraic operations and equations, which has been investigated by Plotkin and
Power, see e.g. [PP02].

On the operational side, Mosses [Mos04] has developed a modular variant,
which will be the subject of Chapter 4. It can be viewed as a foundational basis for
a component-based approach to semantics, which assigns meaning to higher-level
language constructs (of mainstream languages) by means of syntactic combina-
tions of language-independent (and therefore reusable) fundamental constructs.
The PLANCOMPS project, a joint effort by three universities in the United King-
dom, is presently developing a library of fundamental constructs.

1.2 THEOREM PROVERS 5

The building blocks which form the basis of a modular approach to semantics
can be combined in different ways, leading to a variety of programming lan-
guages. This raises the question whether there is a relationship between such
languages. We look at this question in Chapter 6 of this thesis. We use bialgebraic
semantics as the foundation for this work. The level of abstraction provided
by it allows us to express the relationship between two languages as a transla-
tion between bialgebras, which induces a translation between the corresponding
operational semantics models. Moreover, its categorical roots permit a natural
formalization in a theorem prover, e.g. based on the COQ formalization presented
in Chapter 5.)

1.2 Theorem Provers
A theorem prover provides a logic (i.e. a formal language together with a number
of axioms) and a program that mechanically verifies proofs of theorems written in
that logic. Where pen and paper proofs usually have a share of “handwaving”, a
theorem prover is not satisfied until it has been provided with a complete proof,
consisting all the steps necessary to derive that the conclusion follows from the
axioms. As Jacobs et al. [JVDBH+98] put it “a theorem prover is like a skeptical
colleague who patiently checks all details and is willing to do routine checks”.
The obvious advantage of mechanization is that it leaves no room for human
error. This can help to make proofs about programming language semantics
tractable, which are notoriously hard to reason about due to the amount of book-
keeping involved, caused by case distinctions, side-conditions and side-effects
of the language in question. In brief, one could say that theorem provers are
the embodiment of the principle that providing proofs generally is difficult, but
checking them is “easy” (and can therefore be done mechanically).

There are two main branches in the world of theorem provers: the automated
and the interactive theorem provers. Automated theorem provers operate with
very little user intervention by relying on heuristics to discover proofs, but are
inherently limited to domain-specific theories. Examples are ACL2 [KSM13],
SAT-solvers, and the prover of the KEY project [BHS07] for a first-order dynamic
logic of JAVA.

Interactive theorem provers (also called “proof assistants”) are as the name
suggests not fully automatic, but are in return often more generally applicable.
This thesis applies the interactive theorem provers COQ [The12], mainly devel-
oped by Inria in France, and PVS [ORS92], developed by SRI International
in the US, which both incorporate a functional programming language in their
higher-order logic. COQ is directed towards the formalization of constructive
mathematics, while PVS is more geared towards the verification of instances (e.g.

6 INTRODUCTION

programs). COQ’s logic is constructive, which makes it possible to seamlessly
extract certified programs from its proofs. Both theorem provers include domain-
specific strategies and decision procedures to automate certain types of proofs,
effectively making them automated for certain fragments of their languages. Other
interactive theorem provers which have been used in connection with program-
ming language semantics are ISABELLE [Pau94], which is applied by e.g. [Hui01,
Ohe01], and SPARKLE [DMvEP08] for the functional language CLEAN.

1.2.1 Formalization of semantics in theorem provers
We mention two large projects that formalize semantics in theorem provers. The
LOOP project [JVDBH+98] in Nijmegen formalizes a significant fragment of
sequential JAVA as a denotational semantics in both PVS and ISABELLE. An-
other notable project by Inria in France is the COMPCERT project [Ler09], which
formalizes almost all of the ANSI C language in COQ, and moreover verifies the
correctness of an optimizing compiler for this language. Outside formal semantics
there exist examples where theorem proving has brought mistakes to light, e.g.
in the original proof of the Kepler conjecture [HHM+10]. Chapter 2 of this
thesis consists of a case-study that reveals some mistakes in thoroughly reviewed
program code, by the help of PVS.

Even though research has come a long way over the past years, the price one
pays for the generality offered by interactive theorem provers is that carrying
out proofs can be quite laborious. An important factor is the choice of the set
of definitions one decides to work with, as there are usually several degrees of
freedom. One often discovers the advantages or disadvantages of a certain set of
definitions after the fact. This makes the scalability of theorem proving a serious
remaining challenge, and many academic papers have been dedicated to case-
studies applying domain-specific techniques to formalize programming language
theory and mathematics. All of the research chapters of this thesis, except for
Chapter 6, are based on theorem prover formalizations.

It is an important distinction whether the formalization of a semantics is a
“shallow embedding” or a “deep embedding”. In the latter case, the semantics
in the formalization consists of a data-structure for representing the syntax of the
language itself, and a function which maps a program (an instance of the datatype
for the language) to its semantics. In the former case, the semantics of the program
at hand is merely the result of a direct translation into the theorem prover’s logic
(which could be obtained through the deep-embedding map). A meta-theoretic
proof often enumerates over all the programs of the language, which requires a
deep embedding if it is to be carried out in a theorem prover. Shallow embeddings
are more suitable to analyze a concrete program. The LOOP project is a slight
twist to this dichotomy. It provides a compiler to translate JAVA to PVS, thus

1.3 FUTURE WORK 7

the resulting PVS code is a shallow embedding of the original program [vdBJ01].
The COMPCERT project provides a deep embedding of ANSI C; the correctness
of the compiler is verified with respect to every possible input program.

The case-study of Chapter 2 verifies a concrete piece of software and is based
on a shallow embedding. Chapters 3–5 are based on deep embeddings. A standard
approach to encoding the set of valid computation steps of a structural operational
semantics in COQ is to encode the operational rules as constructors of an inductive
datatype. Inspired by the bialgebraic framework, in Chapter 5 we propose a dif-
ferent approach to the encoding of operational semantics, by providing a datatype
for operational rules in general (subject to a particular format). In a broad sense,
the former approach is a shallow embedding of operational rules, while the latter
is a deep embedding. The bialgebraic approach taken in Chapter 5 enables formal
reasoning about the relationship between programming languages.

1.3 Future Work
The added value of formal methods to the development of mission-critical soft-
ware has gained recognition by the industry over the last decade. Several industry
standards, such as DO-178C / ED-12C for aviation, EN-50128 for railways, and
the more general IEC-61508, permit the use of tools that implement formal meth-
ods to augment or replace certain test-cases. However, a concern raised in the
DO-178C standard is that it is not always clear that the formalization upon which
a verification is based is conservative, that is, the formalization should not admit
false results [Joy10].

This problem would be immediately solved if the software in question was
written in a programming language with a formal semantics and native theorem
prover support, such as COQ or PVS. However, conventional software develop-
ment uses imperative languages, which prevents this from being a realistic option
in the near future.

Use of esoteric language features creates situations in which the behavior of
a program may be hard to predict for a programmer, and may even depend on
the compiler used, due to bugs in the compiler itself or underspecification of the
reference manual. For this reason, it is common that mission-critical components
of software are written in a “safe” subset of the full language, which promotes
clarity. This direction is taken for example by the SPARK language [Bar03],
a subset of ADA, which is in fact specifically targeted at the development of
mission-critical software.

In the presence of a modular semantics it should be a straightforward task to
derive the semantics of subset languages. Moreover, since the full and subset
languages are both obtained from the same building blocks, there is a formal

8 INTRODUCTION

connection between both languages. The verification process can profit from
not having to carry the weight of the full semantics, while the conservativity of
the results can be proved formally within the same framework. For example, if
the mission-critical component in question never throws an exception, one could
analyze it in a sub-language which ignores exceptions. The results obtained in
this thesis (Chapter 6 in particular) provide foundations for further work in this
direction.

1.4 Overview and Contributions
We provide an overview of this thesis and highlight the contributions of the author.
Apart from changes in layout, the content of each of the chapters is the original
publication, with the exception of the last chapter which includes the proofs that
were omitted in the published version for space reasons.

Chapter 2.
Ken Madlener, Sjaak Smetsers, and Marko van Eekelen. A formal verification
study on the Rotterdam storm surge barrier. Proceedings of the 12th Inter-
national Conference on Formal Engineering Methods (IFCEM’10), volume
6447 of Lecture Notes in Computer Science, pages 287–302. Springer, 2010.

This chapter presents the results of the validation and verification of a crucial
component of BOS, a large safety-critical system that decides when to close
and open the Maeslantkering, a storm surge barrier near the city of Rotterdam
in the Netherlands. BOS was specified in the formal language Z and model
checking has been applied to some of its subsystems during its development. A
lightweight model of the C++ code and the Z specification of the component
was manually developed in the theorem prover PVS. As a result, some essential
mismatches between specification and code were identified. The Z specification
itself is also validated by the use of challenge theorems, to assess particular design
choices. Tools have been used to exhaustively search for inconsistencies between
the original specification and the challenge theorems, which led to deeper issues
with the specification itself.

This chapter presents the results of a LAQUSO project commissioned by the Dutch
Ministry of Transport, Public Works and Water Management and the Nuclear
Research & consultancy Group (NRG). The verification and validation work was
carried out by the author, who has also written most of the original publica-
tion [MSvE10]. This work was presented at the 12th International Conference
on Formal Engineering methods in Shanghai, China. It has been informally com-
municated by the ministry that the issues that were found in the case-study have
now been fixed.

1.4 OVERVIEW AND CONTRIBUTIONS 9

Chapter 3.
Alejandro N. Tamalet and Ken Madlener. Reasoning about assignments in
recursive data structures. Proceedings of the 13th Brazilian Symposium on
Formal Methods (SBMF’10), volume 6527 of Lecture Notes in Computer
Science, pages 161–176. Springer, 2010.

This chapter presents a framework to reason about the effects of assignments in
recursive data structures. It defines an operational semantics for a core language
based on Bertrand Meyer’s ideas for a semantics for the object-oriented language
EIFFEL [Mey03]. A series of field accesses, e.g. f1 • f2 • ... • fn, can be seen as a
path on the heap. This chapter provides rules that describe how these multidot
expressions are affected by an assignment. Using multidot expressions to con-
struct an abstraction of a list, it proves the correctness of a list reversal algorithm.
This approach does not require induction and the reasoning about the assignments
is encapsulated in the mentioned rules. This chapter also discusses how to use
this approach when working with other data structures and how it compares to the
inductive approach. The framework, rules and examples have been developed and
their correctness was proved in PVS.

The work for this chapter was initiated by Alejandro N. Tamalet in his master’s
thesis [Tam06]. The author and Tamalet have equally contributed to the PVS
formalization and writing the published paper [TM10]. This work was presented
at the 13th Brazilian Symposium on Formal Methods in Natal, Brazil.

Chapter 4.
Ken Madlener, Sjaak Smetsers, and Marko van Eekelen. Formal component-
based semantics. Proceedings of the 8th Workshop on Structural Operational
Semantics (SOS’11), volume 62 of Electronic Proceedings in Theoretical
Computer Science, pages 17–29. 2011.

Component-Based Semantics is a solution proposed by Mosses [Mos09] aimed at
improving the scalability of semantics of programming languages. It is expected
that this framework can also be used effectively for modular meta-theoretic rea-
soning. This chapter presents a formalization of Component-Based Semantics in
the theorem prover COQ. It is based on Modular SOS, a variant of SOS, and
makes essential use of dependent types, while profiting from type-classes. This
formalization constitutes a contribution towards modular meta-theoretic formal-
izations in theorem provers. As a small example, a modular proof of determinism
of a mini-language is developed.

This work consists of the author’s own contributions published in [MSvE11], and
was presented at Structural Operational Semantics 2011 in Aachen, Germany. The

10 INTRODUCTION

author received guidance from Marko van Eekelen and Sjaak Smetsers in writing
the published paper.

Chapter 5.
Ken Madlener and Sjaak Smetsers. GSOS Formalized in Coq. Proceedings
of the 7th International Symposium on Theoretical Aspects of Software
Engineering (TASE’13), pages 199–206. IEEE, 2013.

Structural operational semantics provides a well-known framework to describe the
semantics of programming languages, lending itself to formalization in theorem
provers. The formalization of syntactic SOS rule formats, which enforce some
form of well-behavedness, has so far received less attention. GSOS is a rule
format that enjoys the property that the operational semantics and denotational
semantics, both derived from the same set of GSOS rules, are consistent. This
chapter formalizes the underlying theory in the theorem prover COQ, and proves
the consistency property, also known as the adequacy theorem. The inspiration
for our work has been drawn from the field of bialgebraic semantics.

This work consists of the author’s own contributions published in [MS13], and
was presented by the author at The 7th International Symposium on Theoretical
Aspects of Software Engineering in Birmingham, UK. The author received guid-
ance from Sjaak Smetsers in writing the published paper.

Chapter 6.
Ken Madlener, Sjaak Smetsers and Marko van Eekelen. Modular Bialgebraic
Semantics and Algebraic Laws. Proceedings of the 17th Brazilian Symposium
on Programming Languages (SBLP’13), volume 8129 of Lecture Notes in
Computer Science, pages 46–60. Springer, 2013.

The ability to independently describe operational rules is indispensable for a mod-
ular description of programming languages. This chapter introduces a format for
open-ended rules and proves that conservatively adding new rules results in well-
behaved translations between the models of the operational semantics. Silent
transitions in our operational model are truly unobservable, which enables one
to prove the validity of algebraic laws between programs. Algebraic laws are
a variant of bisimulation relations between open terms, relating the branching
structures of the state transition systems corresponding to the open terms. We
also show that algebraic laws are preserved by extensions of the language and that
they can be instantiated. The work presented in this chapter is developed within
the framework of bialgebraic semantics.

The inspiration for the work in this chapter was drawn from the author’s con-
sultation with Mosses at Swansea University. It consists of the author’s own

1.4 OVERVIEW AND CONTRIBUTIONS 11

contributions. This chapter is based on a paper accepted for presentation and
publication at the 17th Brazilian Symposium on Programming Languages, which
was held in Brası́lia, Brazil. The author received guidance from Marko van
Eekelen and Sjaak Smetsers in writing the accepted paper [MSvE13]. Credits are
also due to Alexandra Silva whose sharp comments helped improve the chapter.

CHAPTER 2

A Verification Study on the Rotterdam Storm Surge
Barrier

Abstract. This chapter presents the results of the validation and
verification of a crucial component of BOS, a large safety-critical
system that decides when to close and open the Maeslantkering,
a storm surge barrier near the city of Rotterdam in the Nether-
lands. BOS was specified in the formal language Z and model
checking has been applied to some of its subsystems during its
development. A lightweight model of the C++ code and the Z
specification of the component was manually developed in the
theorem prover PVS. As a result, some essential mismatches be-
tween specification and code were identified. The Z specification
itself is also validated by the use of challenge theorems, to assess
particular design choices. Tools have been used to exhaustively
search for inconsistencies between the original specification and
the challenge theorems, which led to deeper issues with the
specification itself.

2.1 Introduction
Humans increasingly rely on automation, the advantage being that a computer can
make unprejudiced decisions, not being influenced by mood or other conditions.
It is therefore often considered to be safer to let a computer be in control. A study
showed that this is the case for the Maeslantkering, a storm surge barrier near

13

14 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

the Dutch city of Rotterdam. The barrier consists of two hollow floating walls,
connected by steel arms to pivot points. Each of these arms is as large as the
Eiffel Tower. The barrier operates fully autonomously and is therefore sometimes
called the largest robot in the world.

A control system called BOS (Dutch: Beslis & Ondersteunend Systeem) makes
the decisions about closing and opening the barrier. This system was developed
by CGI Nederland B.V.1 for Rijkswaterstaat (RWS) – a division of the Dutch
Ministry of Transport, Public Works and Water Management. When BOS predicts
that the water level will rise so high that it could flood the city of Rotterdam, it has
the responsibility to close the barrier. This makes BOS a safety-critical system.
On the other hand, Rotterdam is a major port, so the barrier should close only
when really necessary. Unnecessarily closing the barrier costs millions of Euros
because of restricted ship traffic.

It is often loosely said that even computers make mistakes. Verification and
validation efforts must be undertaken to reduce the severity of this risk. The IEC-
61508 standard [IEC96] recommends the use of formal methods for safety-critical
systems. The BOS project adhered to the standard by using the formal language
Z [Spi89] in combination with the ZTC type checking tool [Jia94] for specifica-
tion. Some of its subsystems have been model checked using SPIN [Hol97]. This
level of formal support during the development turned out to be a cost-effective
approach for the BOS project [TWC01]. The system has been in operation since
1997 and a test closure is performed annually. On November 11th, 2007 BOS
closed the barrier on its own for the first time because of a combination of high
tide and storm.

With the advent of theorem provers and powerful decision procedures, more
rigorous approaches to formal verification come within reach, even for large soft-
ware systems such as BOS. The Nuclear Research and consultancy Group (NRG)
and RWS commissioned Radboud University Nijmegen to carry out a 3-month
project to do a case-study in applying formal verification to a part of BOS. NRG’s
field of operation is nuclear applications, where safety standards are even higher.
Their objective was to investigate if formal verification can increase confidence in
the safety of software. The conducted work is carried out on a crucial component
of BOS selected by experts at RWS and CGI of 800 lines of sequential C++
code. The code has been verified against the existing Z specification, and the
specification itself has been validated.

Given the man hours available for the actual verification and validation work
in the project (roughly 2 months, one PhD student), the task was challenging
and presented several hurdles that had to be taken. Since the code had not been
formally verified before, there was no strict correspondence between code and

1Called CMG Den Haag B.V. at the time of the development of BOS.

2.2 THE CONSIDERED COMPONENT: DEW 15

specification. To make the two fit together and to isolate the selected component,
an understanding of the code that goes deeper than what is written in the formal
specification is required. The formalization has been carried out in the PVS theo-
rem prover [ORS92] by means of a manually developed lightweight semantics.

The development of the BOS system is an effort linking several disciplines.
This induces the risk of interface problems caused by misunderstandings that
undermine robustness. Because a specification is the result of a translation of
the designer’s intuition into a formal language, it cannot be formally verified.
We were nevertheless able to semi-systematically validate the specification with
the help of challenge theorems. A challenge theorem is a property that from the
point of view of the person performing the validation is plausible and should
hold. With our understanding of the domain we were able to formulate several
challenge theorems. PVS and its testing features enabled us to discover some
extreme situations in which the component might behave suspiciously.

The main contribution of this chapter is an exposition demonstrating how
lightweight modeling of industrial C++ code may enable one to find mismatches
between specifications and code, based on a concrete case-study. Although we are
confident that our PVS model faithfully reflects the semantics of the source code,
future projects that verify safety-critical software may desire formal guarantees.
We sketch an approach in this chapter to resolve issues regarding the connection
between the modeled semantics and the true semantics of the component as future
work. This chapter also demonstrates how challenge theorems can assist one in
validating specifications.

This chapter is organized as follows. Section 2.2 gives a description of the
selected component. The model is described in Section 2.3. Validation of the
specifications is discussed in Section 2.4. The case-study is evaluated in Section
2.5. Related work is discussed in Section 2.6 and future work on ensuring corre-
spondence between model and executed code is discussed in Section 2.7. Section
2.8 concludes.

2.2 The Considered Component: DEW
BOS makes decisions based on water level predictions computed from hydrolog-
ical and meteorological information. When the expected water levels are consid-
ered to be too high, then it starts the procedure to close the barrier: commands
to a system that operates the valves, pumps and motors of the barrier are sent
and authorities are informed (via fax and pager). While in operation, BOS runs a
script that continuously makes calls to native functions (written in C++). These
functions can be categorized into sending out a command, a status request and

16 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

Figure 2.1: A schematic representation of the relevant BOS components.

a request for a decision. The component we consider in this study, determine
excessive water level (DEW), is one of the functions that make the decisions.

A system called SOBEK, developed by Delft Hydraulics2, generates the water
level predictions. It computes model-based predictions for the next 24 hours
in steps of 10 minutes for three physical locations: Rotterdam, Dordrecht and
Spijkenisse (these are cities in the Netherlands). With each call, DEW receives a
number of parameters from the script: for each of the locations a maximum water
level and the desired evaluation interval of the predictions. To reduce the load on
SOBEK, predictions are stored in a database. DEW obtains the predictions from
SOBEK via the hydraulic-model evaluator. The model evaluator first tries to look
up the requested prediction in the database, and if it does not exist, issues a new
request to SOBEK.

DEW searches the predictions for a point in time where the maximum water
level at one of the locations is exceeded by the prediction and it raises a flag if
an excess is found. Some threshold is taken into account so that the barrier will
only close when the excess is critical. An excess is considered to be critical when
one of the maximum water levels is exceeded, and 20 minutes later the predicted
water level is at least as high. In all other cases DEW will tell the script not to
close the barrier.

Particular about the script language is that it works with lifted values. For
example, a boolean in the script can be either true, false or undetermined.
This also goes for the three maximum water levels and evaluation period provided
by the script.

2Now called Deltares.

2.2 THE CONSIDERED COMPONENT: DEW 17

2.2.1 Z specification
The Z specification of DEW, the decision component, is composed of a number
of Z schemas using the standard Z operators piping (>>) and disjunction (∨).
For presentation purposes we have translated the original Dutch names to English
and slightly simplified the formulas. The main schema consists of the following
composition:

DEW == SetEvaluationParams >> DetModelEvaluation >>
(EvaluationFailed ∨ CoreDEW)

SetEvaluationParams puts the parameters from the script into the appropriate
form. The output is passed on using the piping operator to DetModelEvaluation,
which specifies the behavior of the hydraulic-model evaluator. If DetModelEval-
uation is successful, then the schema CoreDEW is chosen, where the real work of
DEW takes place, otherwise, EvaluationFailed is chosen.

Schema CoreDEW. The schema CoreDEW takes two input parameters: Lo-
cList and Interval. LocList is a partial function from locations to a maximum
water level (it is partial because sometimes not all locations have a determined
maximum water level). The prediction data is obtained from an external schema
that represents the model evaluator. This is represented as a table of records
LocSeqs (for predictions sequences per location) in which each record consists of a
location l (which corresponds to a location in the domain of LocList), a prediction
vals (a function mapping time to the predicted water level), and a point in time
TBegin at which the prediction starts. Both time and water levels are represented
as natural numbers. The result of CoreDEW consists of a flag Excess indicating
whether an excess will occur, and a point in time ExpTime corresponding to the
first critical excess. Since it may be the case that such a critical excess does not
exist (even if Excess is true), this value is lifted. The condition for the existence
of an excess is defined in the design document as:

return!.Excess =
if (∃ s : LocSeqs; l : dom LocList; i : N •

i ∈ 1..(#s.vals)∧ s.loc = l ∧ (s.vals i).val > (LocList l))
then ExDet true else ExDet false

It says that if there is an index i in the domain of s.vals which is greater than
the maximum water level at location l given by LocList l, then there is an excess,
otherwise there is no excess.

18 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

Critical excesses are excesses such that 20 minutes later the water level is
at least as high. (In the BOS documentation these are therefore called non-
decreasing excesses.) The critical excesses have to lie within the predetermined
evaluation interval. The starting time is obtained by taking the minimum of begin
times of all locations.

TStart == min {l : LocSeqs • l.TBegin}

For the sake of completeness, we also give the definition of the existence of a
critical excess. The details, however, are not important for the rest of this chapter.

let ExcessTimes ==
{s : LocSeqs; l : dom LocList; i : N | i ∈ 1..(#s.vals)−2 ∧
s.loc = l ∧ (s.vals i).val > (LocList l) ∧
(s.vals (i+2)).val > (s.vals i).val •

TStart+(i−1)∗10} ∩ Interval •
(ExcessTimes = /0⇒ return!.ExpTime = EtUndet) ∧
(ExcessTimes 6= /0⇒ return!.ExpTime = EtDet(min ExcessTimes))

In the above, the indices i of critical excesses are mapped to absolute time (using
Z’s set comprehension notation). The resulting set is intersected with the evalua-
tion interval and checked to be nonempty. Recall that for an excess to be critical,
the water level has to be 20 minutes later at least as high (hence, i+2).

A careful reader might have noticed two issues with the above specification.
First of all, it might seem suspicious in the first definition the interval is not taken
into account. This is a correct observation. Secondly, TStart is chosen to be the
first TBegin time of all selected prediction sequences. In ExpTime, TStart is then
used as the same offset for every prediction sequence, even if it has a different
TBegin. Both issues have been resolved in the C++ code. In order to be able
to prove consistency between Z specification and C++ code, we have fixed these
flaws in the Z specification (see Sections 2.3.2 and 2.3.3).

2.3 Formal Analysis
In this section we describe how a model has been created out of the code of DEW
and how it was checked and proved to be consistent with the specification. The use
of C++ in BOS is according to “safe” coding guidelines (see e.g. [Hol06]); there
was no heavy use of object orientation, no pointer arithmetic, etc. This permitted
us to develop a lightweight PVS model of the C++ code. The PVS theorem prover
was chosen for the very practical reason of locally available expertise. There exist

2.3 FORMAL ANALYSIS 19

theorem provers for Z such as Z/Eves [Saa97], but our focus is on the development
of a lightweight semantics of the component’s C++ code and the Z specification
could easily be transliterated into PVS. In short, PVS is based on higher-order
logic with dependent types and predicate subtyping. We do however not make
extensive use of these distinctive features of PVS and we believe that many other
theorem provers would also suit the job.

2.3.1 Translation of C++ to PVS
Datatypes. BOS works with lifted types to represent the possibility of informa-
tion being undetermined. A number of subclasses are derived from the C++ class
LType to represent these types. Although PVS has a standard facility to lift types,
we model these classes as records to stay close to the original code. The names of
lifted types are prefixed by L as a naming convention.

LType : TYPE = [#fDet : bool#]
LInt : TYPE = LType WITH [#iVal : int#]

Setting the value of a lifted integer to 5, i.e. li.Set(5), would be modeled using

LInt Set (i : int) : LInt = (#fDet :=TRUE, iVal := i#)

as s WITH [somevar := LInt Set (5)], where s is the current state. Whenever a
set-function is used, the determined-flag is automatically set to true.

As mentioned in Section 2.1, we adopt a lightweight approach to the target
program’s semantics in this chapter. In our PVS code, C++ integers are modeled
as unrestricted integers, which is in line with how integers are perceived in Z.
Since in reality the C++ integers are a finite set, this leaves the possibility that
the C++ model in PVS and Z specification match, while the behavior of the actual
C++ code diverges from the Z specification. See also the discussion in Section 2.7.

Functions. The C++ functions have been translated into separate PVS theories
carrying the same names and taking the same arguments. Arguments that are
passed on by reference are modeled by making local PVS variables (using LET ...
IN) of the function arguments before the beginning of the function body and then
updating the returned variables at the end of the function body. For example, the
header of the C++ function CoreDEWC (corresponding to the Z schema CoreDEW)

static flag CoreDEWC (
const LInt [] cLocList, // in
const Interval& cInterval, // in
flag& Excess, // out
LTime& ExpTime // out

)

20 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

is translated into a PVS function of type

CoreDEW pvs (
cLocList : [Loc→ LInt],
cInterval : Interval

) : [flag,flag,LTime]

The representation of the type Interval closely follows the declaration in C++.
This works for functions have no side-effects. The functions were all annotated
with in/out flags, so these kind of conversions were straightforward (but, indeed,
not formally sound). Each function has been modeled as a separate PVS theory.

In PVS, functions are always total. If PVS is not able to deduce totality by
itself, it will generate a proof obligation. This way it is enforced that the execution
model terminates, which was not a problem for the considered code of DEW.

For-loop. At the heart of DEW’s code lies one for-loop. This for-loop runs
through the prediction for a single location and searches for excesses within the
specified evaluation interval. It makes use of an object s which resembles the Z
defined prediction sequence (see Section 2.2.1). It also assumes that MaxLevel
contains the maximum water level of location s.loc (selected from the input
parameter cLocList).

for(int item = 0; !ExpTime.IsDetermined () &&
(item < s.GetSize() - 2); ++item) {
if(TLoop >= TBegin && TLoop <= TEnd) {
const int next wl = s.vals.ElementAt(item).val;
if(next wl > MaxLevel) {
Excess = TRUE;
// is this a critical excess?
if(s.vals.ElementAt(item + 2).val >= next wl)
ExpTime.Set(TLoop);

}
}
TLoop += stepsize;
}

TBegin and TEnd are the boundaries of Interval. Note that the outer conditional
corresponds with the intersection in the Z definition of critical excesses. Two
variables are being set: Excess, a boolean which indicates whether an excess
occurs in the prediction, and ExpTime, the first time at which a critical excess
occurs. This for-loop has been modeled as a recursive function. A measure
has to be supplied with a recursive function, which tells PVS that the number
of iterations left at some point will be 0.

2.3 FORMAL ANALYSIS 21

2.3.2 Communication with the hydraulic-model evaluator
To reduce the load on the prediction engine, i.e. SOBEK, previously computed
predictions are stored in a database. The hydraulic-model evaluator acts as a proxy
for SOBEK and the database. Calls to the evaluator have to supply the current
evaluation time (of the synchronous script). The evaluator then checks whether
the prediction already exists in the database, and if it is up to date. If this is the
case, it returns the existing prediction. If not, it issues a request to SOBEK to
compute a new prediction. The new prediction is then stored in the prediction
database with a run-id. The prediction itself is not returned by the evaluator, but
only the run-id and a status flag. The request may fail for several reasons: the time
of the prediction requested is invalid, SOBEK is in an error state, etc. The status
flag RunStatus indicates whether the request was successful. If this flag is true,
the specification says we may assume that an entry with the run-id exists in the
database. We have used this informal information in our PVS model.

From a functional point of view, the model evaluator, SOBEK and the database
can be considered as a single entity. Because we do not verify the model evaluator,
we treat it as something that has arbitrary output (including its success or failure).
The following C++ code obtains the predictions from the database:

if(!DB.SelectPrediction(loc, Run.Get()))
{ <.. .> /* error */ }
else {
const LocSeq& s = DB.GetLocSeq();
<.. .>
}

The select operation points DB to the right record by changing its internal state.
The actual prediction is obtained in the code by DB.GetLocSeq() and fed into the
for-loop. The code shown above uses the location and run-id (loc, Run.Get())
as a key to return a unique prediction. In the Z specification, the database may
contain several predictions starting at various times. To avoid obvious incon-
sistencies, we have chosen to change the Z specification so that it also contains
a unique prediction per key. This modification was made in accordance with a
system expert.

To simulate all possible outputs of the model-evaluator (and therefore also
SOBEK and the database), we use uninterpreted variables to represent success or
failure of the model evaluator and the database output. The correctness proof has
to take every possible value of the variables in account.

RunStatus : bool

Seq : TYPE = [#n : Length,
val : [below (n)→ height],

22 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

TBegin : Time
]

LocSeqs : [[Loc,nat]→ Seq]

The model evaluator is started once per execution of DEW, so we let RunStatus
to be a constant. The C++ functions SelectPrediction and GetLocSeq are
represented in PVS by the the following functions:

DB SelectPrediction : bool = RunStatus

DB GetLocSeq (loc : Loc,RunId : nat) : Seq = LocSeqs (loc,RunId)

We do not have an explicit state of DB in the model, so we have to supply loc and
RunId as arguments to DB GetLocSeq. With this way of modeling we would have
to supply the parameters that initialize a particular object with every function call
that is made on it. This is not a useful solution for code which uses many objects
with internal states, but works well for the code of DEW.

2.3.3 Verification
The result of a formal verification is either one or more discrepancies between
specification and code or a proof that (model of) the code implements the specified
behavior. It is common that most discrepancies (if there are any) are already
found during the process of modeling. While modeling DEW we found two
discrepancies, and we found a third during formal verification itself.

The first problem that was found as a result of modeling is the following. For
regular excesses, the evaluation interval was not being taken into account in the
specification (see Section 2.2.1), but was in the implementation. This is a design
decision of the implementer which happened to be correct. However, the fact
that the specification was not updated accordingly, suggests that the implementer
was not aware that he was actually fixing something. The second problem found
during modeling had to do with the prediction database. In the Z specification, the
database may store multiple predictions per location and run-id. In the C++ code,
only one prediction per location/run-id is considered (which is obtained from the
database, see Section 2.3.2). An assumption that we were not aware of might
resolve this issue, but this was not obvious from the specification nor its guiding
text.

The main part of the formal verification itself requires proof of the following
lemma that equates the specification and implementation (as functions):

correctness : LEMMA
∀ (param : CoreDEWIn) :

CoreDEWZ pvs (param) = CoreDEWC pvs (param)

2.4 VALIDATION OF THE SPECIFICATION 23

Both return a triple [flag,flag,LTime] (the return flag, Excess, ExpTime, resp.)
which all have to agree under P and every possible param}.

Proof approach. Instead of directly trying to prove the above lemma in PVS,
we chose to first develop a toy model in the model checker SPIN [Hol97] to
experiment with. The reason is that when developing non-trivial formalizations
in a theorem prover, often a considerable amount of time is devoted to debugging
specifications and theorems. Using SPIN, we could try out candidate invariants
by putting assert commands in the model code. The number of possible inputs
was incremented until enough confidence in the correctness of the model was
obtained. This essentially comprises playing with the ranges of length, height and
the maximum water levels. While doing so, we found a flaw in the code: the
last two elements of the array containing the predictions are not being taken into
account. After fixing this issue, no other issues were found and the theorem could
be proved in the first attempt with approx. 2000 proof commands.

2.4 Validation of the Specification
Interaction of components that are developed by engineers of several disciplines
poses the risk of problems with interfacing as a result of misunderstandings.
The standard way to validate a specification is picking different examples of
system behavior allowed by that particular specification, and see if they fit with
the intuition of the designer. This is often infeasible to do exhaustively, hence,
this method is sound, but not necessarily complete.

To assess the design choices made in the specification in a more systematic
way, we have formulated challenge theorems. A challenge theorem is a statement
that from the point of view of the person performing the validation might be a
valid consequence of the specification. By checking the consistency of a challenge
theorem with the existing specification, which may be done automatically with the
help of tools, counterexamples are generated that demonstrate how the existing
specification and the challenge theorem diverge. These examples may serve as
concrete material for discussion with the experts. Accordingly, the existing spec-
ification has to be altered or the domain understanding of the person performing
the validation has to be improved.

Stating the most general system property, and focusing it gradually on DEW
forces us to identify what assumptions we make about other components. For
closing the barrier, these are based on the following general theorems:

• If there will be a flood, then the barrier will be closed in a timely manner.

• If the barrier is closed, there would have otherwise been a flood.

24 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

For DEW in particular, this means that we have to assume that the predictions are
correct and if it decides to close the barrier, then this is properly delegated by BOS
as a command to the barrier. The theorems for DEW become:

• If there is an excess in the available predictions that is critical, then DEW
will decide to close.

• If DEW has decided to close, there would otherwise have been a critical
excess.

We have verified in Section 2.3 that w.r.t. the existing definition of critical excess
that DEW behaves correctly. In Section 2.4.2 we validate the definition of critical
excess itself.

2.4.1 Decision based on incomplete information
We have for the moment ignored the possibility of failing sensors. This makes the
actual case a bit more complicated, because if no prediction data is available at all
or is only partially available, then DEW can simply not make a sensible decision
and should (and does) therefore raise an alarm. However, when the predictions
are only partially available, it should still decide to close the barrier if needed.
With each call to DEW, for each of the three locations a maximum water level is
supplied which may be undetermined. If one of these locations is undetermined,
and no excesses were found on the determined locations, then DEW would say
there is no excess. Both Z and C++ agree in this, but this behavior is obviously
not safe. The experts agreed with us that this is an issue, but the way DEW is
called precludes this problem.

Another issue we found is that the evaluation period (chosen by the script)
may not necessarily be within the period of which the predictions are available. In
this case DEW would look at the intersection of the two (see the Z specification
for critical excesses in Section 2.2.1), which again is not safe.

2.4.2 Critical excesses
In order to assess the DEW’s specified conditions to close the barrier, we have
formulated two alternative definitions of a critical excess. These variations were
motivated by real-life, but possibly rare, scenarios. Without loss of generality we
focus on predictions for one location, ` say.

As an extreme example, consider a tsunami. In the predictions this would
typically look like a short but high peak. Based on this idea, we have defined our
own criterion in (2.1) that expresses that the “volume” (to be loosely interpreted)

2.5 CASE-STUDY EVALUATION 25

exceeding the maximum water level may not surpass a predefined amount M (here
P` and max` denote the prediction and maximum water level respectively):

{i : N |
#dom P`

∑
k=i

max(0,P`(k)−max`)> M} (2.1)

Another situation one typically wants to avoid is a possibly slight, but continuous
excess of the maximum water level:

{i : 1 . . .#dom P`−T | ∀ j ∈ 1 . . .T : P`(i+ j)> max`} (2.2)

There are obvious cases in which these two variants do not coincide. In (2.3)
below, the original definition for critical excess as in the Z specification (see
Section 2.2.1) is expressed:

{i : N | i ∈ 1 . . . length`−2 ∧ P`(i+2)> P`(i)> max`} (2.3)

All three versions have been entered into PVS and lemmas (although unprov-
able) that express their equivalence were formulated. These lemmas implicitly
quantify over the PVS variable LocSeqs (see Section 2.3.2) and the maximum
water level. We used a random testing feature [Owr06] in PVS that allows the
user to audit the truth of simple lemmas by trying out a number of instances.

Comparing (2.1), (2.2) and (2.3) gave us an example in the lines of Figure
2.2, where the water level increases rapidly and then steadily decreases until it
is below the maximum water level (indicated by the dotted line). To search for
different classes of counterexamples, we added the premise that a rapid increase
followed by a slow decrease until maximum water level does not occur in the
predictions of LocSeqs. This resulted in another type of examples, where the
water level first increases rapidly, drops and then increases again. It turned out
that in those cases the barriers would close too late, as shown in Figure 2.3. It
was not clear whether these scenarios may occur in reality or are precluded by
undocumented assumptions about behavior of water, so experts were consulted,
see Section 2.5.

2.5 Case-study Evaluation
Verification. The original BOS project applied formal methods in the form of
formal specification in Z to discover bugs in an early stage of the development.
The specifications were used as a reference for implementation. The code is
a composition of Z schemas translated into blocks of C++ annotated with the
corresponding schema name. The implementation of each schema is based on the

26 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

Figure 2.2: No non-decreasing ex-
cess.

Figure 2.3: At t = 2 the barrier
closes according to (2), at t = 9 it
closes according to (3), the Z-spec.

programmer’s own interpretations and design decisions. Hence there is no real for-
mal connection between C++ implementation and Z specification. We have found
three inconsistencies as a result of this. Two of them became apparent during the
formalization in PVS, but a third was missed until real verification was applied. In
the first two cases, the code seems to fix a flaw in the specification. Whether these
fixes are a deliberate decision or just “luck” is unclear. The manual modeling of
C++ code in PVS provided enough assurance about the correspondence between
source code and model for this particular case-study. In Section 2.7 we discuss
a complementary approach that may be viable for future verification projects on
BOS or other safety-critical software.

Validation. We have validated the specification of DEW itself by formulating
challenge theorems that focus on a particular high-level property. We considered
two aspects: safety and the condition under which DEW decides to close the
barrier. Validation of the safety aspect showed that there are two situations in
which DEW does not raise an alarm when information is missing (due to undeter-
mined values or incomplete predictions). To validate the closing conditions, we
studied the definition of critical excess by comparing it with plausible alternative
definitions. In principle these definitions do not have to be complete or correct,
as the resulting counterexamples are only used as a guidance to understand the
differences between the definitions and for discussion with subject matter experts.
Possibly, several iterations are required to synchronize with the domain experts
in other projects. We believe that in this case-study our unprejudiced abstract
understanding of the domain was an advantage in finding the issues with the
specification.

2.6 RELATED WORK 27

Impact analysis. Based on our findings presented in a preliminary report, sub-
ject matter experts performed an impact analysis. They agreed that the issues
we found are possible and that the system would exhibit undesirable behavior
in those situations. However, the issues found are very unlikely to do harm in
reality, because the delays caused are very small compared to the process of
detecting a storm and preparing for a closure. So the findings have no impact
on the performance of BOS required in practice.

2.6 Related Work
BOS was developed using what one could consider to be lightweight formal
methods. It was specified in Z to discover ambiguities in an early stage of its
development and parts of it were checked using the SPIN model checker [Hol97].
Experiences with the development of BOS using this approach are described in
[WBRG08]. In [TWC01], Hall’s seven myths of formal methods are revisited
based on the experiences of the BOS project.

The interface between BOS and BESW (a separate system that operates the
barrier) was studied initially by Kars [Kar96]. The interface was specified in
Promela and model checking was applied using SPIN [Hol97], revealing several
flaws. A redesigned and redefined version was developed by RWS and subse-
quently studied by Ruys [Ruy01] again using Promela and SPIN, applying several
abstraction techniques to fight state space explosion. One serious timing error was
found.

The emergency closing system of a different storm surge barrier, located in the
Eastern Scheld, has been a case-study of the QUEST project in the late 1990ies,
which was funded by the German BSI [Slo99]. This project focused on the
combination of formal methods in the software development process. One of the
aims was a formal verification of the correctness of the open- and close-signals of
the barrier.

The approach of a lightweight modeling of the source language semantics way
has been practiced before in [STT+09] to verify Fiasco’s IPC implementation.
John et al. have developed a tool that generates out of MISRA-C state transition
models encoded in PVS. Due to the fact that PVS is strongly typed, possible
run-time errors in the C program result in inconsistencies in the generated PVS
specification.

28 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

2.7 Future Work: Certified Lightweight Semantics
Industrial safety-critical software, like the decision and support system (BOS)
studied in this chapter, is usually developed according to “safe” coding guidelines,
e.g. see [Hol06]. These coding rules attempt to increase the ability to more
thoroughly check the reliability of such critical applications. In essence, the rules
restrict the use of the complete source language to a subset of that language. The
advantage of this subset is that its semantics if often much simpler than the full
semantics of the complete language. For example, the DEW component of BOS is
programmed in C++, but hardly uses any of the object oriented features available
in C++. In fact, this made the simple direct translation to PVS (Section 2.3)
feasible.

This PVS model, however, was created manually, and may therefore not com-
pletely match the original semantics of DEW. For our project the informal jus-
tification of correctness of this model was sufficient, but for future verification
projects a stronger, preferably provable correspondence between the original code
and the derived model might be desired. In the section we discuss how such a
correspondence can be established.

Formalizing semantics of real programming languages is a very important
trend in computer science. One of the greatest achievements in this area is a fully
verified optimizing C compiler developed in the COMPCERT project [Ler09]. In
this project a large subset of C, called CLIGHT, is compiled to PowerPC code.
The correctness of this compiler, containing various complex optimization passes,
has been proven in the theorem prover COQ. By ignoring the small differences
between CLIGHT and the subset of C++ in which DEW is specified, we can
consider DEW as a CLIGHT program. The semantics of CLIGHT is defined by
means of an interpreter for CMINOR which is, in fact, a representation in COQ of
the abstract syntax tree created by the CLIGHT parser. This framework can then be
used to obtain what we brand as the “official” semantics of the DEW code. On the
other hand, we can use the manually derived model presented in this chapter (but
now specified in COQ rather than in PVS) as an alternative semantics, and show
correctness of this model by proving in COQ that both semantics are equivalent.
This proof actually boils down to constructing the simulation relation as depicted
in the following diagram.

2.8 CONCLUSIONS 29

DEWCLIGHT
parsing (3) //

manual modeling (1)

��

DEWCMINOR

interpretation (4)

��
COQDEW

simulation equivalence (2)
DEW[[CMINOR]]

In general, to prove a property of a CLIGHT program, say P, there are two
possibilities:

1. By manually constructing a model (step 1 in the diagram) for P, proving
the desired property using this model, and showing the equivalence of the
model (step 2) based on the official semantics of P (which is obtained via
step 3 and 4 in the diagram).

2. By using the official semantics of P directly, i.e. both formulate and prove
the desired property directly in DEW[[CMINOR]]

The main advantage of the first approach is that it provides a lightweight shallow
embedding: The program is directly translated into COQ in such a way that only
those aspects of P that are relevant to the desired property are take into account.
Proving properties using such a lightweight abstract model is usually much easier
than to use a full concrete model (a model incorporating all the aspects of the
entire language). The disadvantage is, of course, that it requires the additional
proof obligation in which correspondence between model and official semantics
is stated.

Last but certainly not least, by compiling our program with COMPCERT, we
obtain for free that resulting code exhibits exactly the same behavior as the model
about which the safety properties have been proved: the verified compiler guar-
antees that properties proved on the (model of the) source code hold for the
executable compiled code as well.

2.8 Conclusions
In this chapter we have verified and validated a crucial component of BOS, called
DEW. This component is responsible for deciding when the storm surge barrier
near Rotterdam should close. BOS was specified in the formal language Z, but no
real formal verification was applied during its development. We have developed a
formal model of the Z specification and the C++ code in the PVS theorem prover

30 A VERIFICATION STUDY ON THE ROTTERDAM STORM SURGE BARRIER

by means of a manual lightweight modeling of the semantics. This enabled us to
find an error in the code, but also two flaws in the Z specification which the code
seems to fix. The challenge of verifying DEW was to make a sound model that
isolates the relevant code.

Validation of the specification itself revealed deeper issues with the specified
and implemented behavior of DEW. It does not raise an alarm when information
is missing that is mandatory for the decision being made, which is questionable
behavior in the context in which it is being used. Another issue is that the precise
conditions under which DEW decides that the barrier must close seem to be
incomplete. This last issue seemed quite serious. All issues were confirmed by
domain experts.

In future work we plan to carry out the proposed approach to ensure (formal)
correspondence between lightweight manual modeling and official semantics on
other safety-critical software.

Acknowledgements. The author would like to thank Wouter Geurts from CGI
Nederland B.V. for technical support during the project, and Erik Poll and the
anonymous reviewers for their valuable comments on a draft version of the pub-
lished paper.

CHAPTER 3

Reasoning About Assignments in Recursive Data
Structures

Abstract. This chapter presents a framework to reason about
the effects of assignments in recursive data structures. It defines
an operational semantics for a core language based on Bertrand
Meyer’s ideas for a semantics for the object-oriented language
EIFFEL [Mey03]. A series of field accesses, e.g. f1 • f2 • ... • fn,
can be seen as a path on the heap. This chapter provides
rules that describe how these multidot expressions are affected
by an assignment. Using multidot expressions to construct an
abstraction of a list, it proves the correctness of a list reversal
algorithm. This approach does not require induction and the
reasoning about the assignments is encapsulated in the mentioned
rules. This chapter also discusses how to use this approach when
working with other data structures and how it compares to the
inductive approach. The framework, rules and examples have
been developed and their correctness was proved in PVS.

3.1 Introduction
In order to verify pointer programs that manipulate recursive data structures, one
generally identifies the pointer structure embedded in the heap with an abstract
model. A concrete instance is a mapping of a set of objects on the heap connected
by a field such as next to an abstract list of objects. The mapping is called

31

32 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

the abstraction and the abstract list is called the abstract model. An operation
performed by the program on a pointer structure on the heap has a corresponding
operation on the abstract model. For example, the operations performed by a list
reversal algorithm have the combined effect that the abstract list is reversed at the
end of the execution. The standard way to define data abstractions is by recursion
on the structure of (the data type of) the abstract model.

Verification of pointer programs is a non-trivial task due to the possibility of
aliasing. Modifying data through one name implicitly modifies the values associ-
ated to all aliased names. If two portions of the heap are disjoint, an assignment in
one part of the heap does not affect the other; this is called local reasoning. Local
reasoning is essential for scalability and several approaches to obtain it have been
studied, see e.g. Separation Logic [Rey02] and Region Logic [RBN10].

When it is not known how the heap is partitioned or when working within
a region that may contain aliases, we have to reason about how a change to (a
portion of) the heap affects the corresponding abstract model. This complements
local reasoning. In this chapter we focus on the effects of assignments to abstract
models. We present our work in the setting of a core language, inspired by Meyer’s
ideas for a semantics for the object-oriented language EIFFEL [Mey03].

Our framework allows us to express multidot field access expressions, mul-
tidot expressions for short, of the form f1 • f2 • ... • fn. A multidot expression
consisting of a series of next-fields describes a path from the head of a list to
one of its elements. If we instantiate it with a series of left and right-fields we can
describe the path from the root of a binary tree to any node or leaf. In general, a
multidot expression describes a path on the heap where the elements are connected
by field accesses.

The main contribution of this chapter is to provide a set of rules that precisely
describe the value of a multidot expression after an assignment, and to show how
these rules can be applied for verification of programs that manipulate recursive
data structures. The given rules are categorised into separation rules, where the
assignment has no effect on the multidot expression, and interference rules, where
the assignment does have effect on the multidot expression. We have applied these
rules to show the correctness of an in-place list reversal algorithm by mapping
each element of the list to a multidot expression. We also discuss how to apply
the same principles to other recursive data structures and we make a comparison
with the standard inductive approach. Our work has been completely carried out
in the theorem prover PVS [OSRS01].1

This chapter is organised as follows. Section 3.2 gives a short introduction to
PVS and introduces the notation. Section 3.3 defines the language we shall work
with. In Section 3.4 we present the rules that describe the effects an assignment

1The PVS files can be obtained at http://www.cs.ru.nl/˜kmadlene/yaspcc.zip.

http://www.cs.ru.nl/~kmadlene/yaspcc.zip

3.2 PRELIMINARIES 33

can have on a multidot expression and in Section 3.5 we apply these rules to prove
the correctness of a list reversal algorithm and we discuss the applicability to
other data structures. We compare the approach described in this chapter with the
standard inductive approach and we give pointers for future work in Section 3.6.
Related work is discussed in Section 3.7 and conclusions are drawn in Section 3.8.

3.2 Preliminaries
PVS is based on higher-order logic with dependent types and predicate subtyping.
Subtyping based on predicates makes type checking undecidable, so when PVS
cannot infer the desired type itself, it will generate a proof obligation. Its intuitive
syntax is reminiscent of functional languages such as HASKELL. For reasons of
presentation, we slightly simplify the actual PVS syntax. We will briefly introduce
the notation used in this chapter.

Formulas are terms of type bool. We shall use the standard notation for
connectives (∧,∨,⇒,¬), and for quantifiers (∀ ,∃). There is a conditional term
IF φ THEN M ELSE N, for terms M,N of the same type.

Given the types σ,τ,σ1, . . . ,σn, function types are written as [σ → τ] and
record types as [lab1 : σ1, ..., labn : σn]. Given the record types ρ1, . . . ,ρm, labelled
coproduct types are written as {lab1 (ρ1), ..., labm (ρm)}. Terms of coproduct
type can be constructed with labi (M), where M : ρi, and recognised with labi?.
Standard set comprehension notation can be used to define predicate subtypes.
New types can be introduced via definitions, like

lift [σ] : TYPE = {bottom,up (down : σ)}

(bottom is the unit type and we omit its argument). The lift type constructor adds
a bottom element to an arbitrary type σ given as a parameter, written in short as
σ⊥ := lift [σ].

Lists are defined as

list [σ] : TYPE = {null,cons (car : σ,cdr : list)}

There is an infix function ++ that appends two lists. It is overloaded so that when
one of its arguments is of type σ, then this argument is converted to a list. The ith
element of a list l can be accessed using nth (l, i).

3.3 The Model
This section describes an operational semantics of a core object-oriented lan-
guage. The focus is on the features needed to understand the properties discussed

34 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

in the next section, i.e., we do not model some typical object-oriented features like
inheritance.

3.3.1 The heap
In our model we consider all values to be an object or void. The set Object is
defined as an uninterpreted type that represents non-void objects. Instances of
Objectv have the possibility of being void:

Objectv : TYPE = {obj (obj : Object),void}

A basic approach to model the heap, due to Burstall [Bur72] and more recently
emphasised by Bornat [Bor00], is to model it as a collection of functions of type
Object→ Objectv, one for each class field (i.e. the component). This modelling
encodes the fact that changing what object a field points to does not affect other
fields. This has the important consequence that whenever one field is updated, we
do not need to propagate that update to the other fields. This is sometimes called
the component-as-array model [FM07, HM07].

Our heap is a grouping of field functions, indexed by their field names:

Heap : TYPE = [Name→ [Object→ Objectv]]

where Name is a set representing the field names. Given a heap h and a field name
f , h (f) is the corresponding field function. This indexing allows us to reason
about field names, which is not possible when using a loose set of field functions
as in the component-as-array model. There, the names of the fields are fixed by the
names of the functions that model them. We use this to express meta-properties
about multidot field expressions in Section 3.4. The separation by syntax provided
by the component-as-array model is lost in this model, because a field update is
now an update on the heap function. With the meta-level properties presented in
the rest of this chapter, we obtain a reincarnation of separation by syntax.

The above definition of the heap highlights the relationship with the compo-
nent-as-array model. However, defining the heap as a function of type [Object→
[Name→ Objectv]] may seem more intuitive. In this definition we first fix an ob-
ject and then we ask for a field name to obtain its value. As the functions are total
(required by PVS), both definitions are in fact equivalent. This means that every
field should be defined at every object. This is of course not realistic, however,
accesses to undefined fields can be handled by a preliminary static analysis.

3.3.2 Expressions, statements and compositions
We model expressions, statements and their compositions following Meyer’s ideas
for a semantics for EIFFEL [Mey03]. A distinctive aspect of this approach is that

3.3 THE MODEL 35

expressions and statements are evaluated relative to an object, which is provided
together with the heap as argument.

We deal with null-pointer dereferencing in language constructs, as opposed to
avoiding it by type constraints. In our experience, the second approach leads to
cumbersome specifications because the result of each expression and statement
must be checked for definedness before composing them.

There are two syntactic categories: expressions (without side-effects) and
statements:

Expr : TYPE = {e : [Objectv⊥,Heap⊥→ Objectv⊥] |
∀ (o : Objectv⊥,h : Heap⊥) :

bottom or void ? (o,h) ⇒ bottom ? (e (o,h))}
Stmt : TYPE = {S : [Objectv⊥,Heap⊥→ Heap⊥] |
∀ (o : Objectv⊥,h : Heap⊥) :

bottom or void ? (o,h) ⇒ bottom ? (S (o,h))}

To define a semantics for EIFFEL, Meyer works with partial functions [Mey03]. In
most theorem provers, including PVS, functions have to be total. For this reason
we use lifted arguments, to represent undefinedness. The bottom or void ? (o,h)
predicate returns true if and only if o is undefined or void or h is undefined. By
using predicate subtypes, we ensure that whenever an expression or statement
is evaluated in void or in an undefined object or state, the result is undefined.
This shifts checking for void or bottom from the specification to type correctness
obligations that PVS generates automatically.

The expression Current (called this or self in some languages) returns the
current object:

Current : Expr = λ (o : Objectv⊥,h : Heap⊥) :
IF bottom or void ? (o,h) THEN bottom ELSE o

The operators • and ; compose expressions and statements. If x is an expression,
S an statement and r is either of them, we define:

S;r = λ (o : Objectv⊥,h : Heap⊥) : r (o,S (o,h))

x •r = λ (o : Objectv⊥,h : Heap⊥) : r (x (o,h),h)

The normal uses are state compositions S;T and field access x •y. The overloading
allows us also to write S;x, which returns the value of evaluating x after the
statement S, and x •S, which can be thought as a qualified call of S from x.

We define in PVS an automatic conversion that translates a name f into the
expression λ (o : Objectv⊥,h : Heap⊥) : h (f) (o) whenever needed. This allows
us to express a field access directly as x • f . We also define a conversion that

36 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

translates an o : Object into obj (o) : Objectv, and one that translates an o : Objectv
into up (o) : Objectv⊥, to reduce the amount of syntax.

IF-statements are mapped to IF-expressions in the logic of PVS. WHILE-
statements can be modeled as recursive PVS functions, provided that a mea-
sure can be given (which is required by PVS to ensure that the function is to-
tal). This chapter does not treat WHILE-statements in depth; see the LOOP
project [JVDBH+98] for the PVS semantics of the JAVA version of WHILE.

3.3.3 Assignments
At its core, an assignment is an update of a heap-function in a particular point
(consisting of a field and an object):

update (f : Name,p : Object,h : Heap,q : Objectv) : State =
λ (g : Name) (o : Object) :

IF p = o ∧ f = g THEN q ELSE h (g) (o)

Our model forces us to explicitly deal with undefinedness due to dereferencing
of void. The update operation is encapsulated in an operator := that assigns an
object q to the field f of the object p in the heap h:2

:=(f : Name,q : Objectv) : Stmt =
λ (p : Objectv⊥,h : Heap⊥) :

IF bottom or void ? (p) ∨ bottom ? (h) THEN bottom
ELSE update (f ,obj (down (p)),down (h),q)

If the assignment is made in an undefined state or tries to assign to void, the error
is propagated. Note that this always causes the entire program to terminate, as
our language (as presented in this chapter) does not support exception handling.
This is required by the definition of Stmt. We shall use the above variable names
throughout the rest of this chapter. The next step is to define local assignments
f := e and qualified assignments e1 • f := e2. These definitions are not relevant for
the development of this chapter and we therefore omit them.

An assignment affects a field access if and only if the object where the field is
evaluated is the one where the assignment was made and the field being accessed
is the one that was assigned to. This is summarised in the following two basic
separation and interference properties (both assume that o,h is not bottom or
void):

Property 1. If p 6= o or f 6= g, then g (o,(f :=q) (p,h)) = g (o,h).

2In the PVS formalisation we have called this function⇐, because := is reserved.

3.4 THE EFFECT OF ASSIGNMENTS ON MULTIDOT EXPRESSIONS 37

Property 2. If p = o and f = g, then g (o,(f :=q) (p,h)) = q.

The proofs of these two properties amount to expanding the definition of := and
applying several case-splits. When the assignment is replaced with a qualified
assignment e1 • f := e2, then analogous properties hold, but p = o is replaced by
e1 (o,h) = o.

One has to explicitly apply properties 1 and 2 as proof steps to reason about
the effect of an assignment in the presented semantics. The key condition is
p = o∧ f = g. The latter is a syntactical comparison and thus can be done au-
tomatically. However, most of the time comparison between objects cannot be
discharged automatically, unless we have information about the layout of the heap,
see Section 3.6.

3.4 The Effect of Assignments on Multidot Expres-
sions

In this section we look at expressions of the form

(g1 • ... •gn) (o,(f :=q) (p,h)), (3.1)

where the gi and f are field names, o and p are Objectv⊥ and q is of type Objectv.
Because undefinedness due to dereferencing void is not an essential part of the
discussion, we shall omit it in the rest of this chapter.

Properties 1 and 2 describe the result of a very simple multidot, namely one
where n is equal to 1. There, p = o∧ f = g is the condition which determines
the result. In multidot field expressions of arbitrary length a similar condition
determines the result, but now it must be taken into account that in the path from
o to

(g1 • ... •gn) (o,(f :=q) (p,h)),

the field f of the object p can be traversed more than once if there is a loop. Thus
we are interested in the set of indexes k such that:

p = (g1 • ... •gk−1) (o,h) and f = gk .

The properties we present in this section are categorised into separation rules,
where the assignment has no effect on the multidot field expression, and interfer-
ence rules, where the assignment does have effect on the multidot field expression.
Moreover, we now have a choice to look at the heap h before the assignment, or
at the heap h′ = (f :=q) (p,h) after the assignment. For the separation properties
this does not make a difference, but for the interference properties it does.

38 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

The properties we derive about multidot expressions in this section are at the
meta-level. Although it is possible to use them to reason about a particular multi-
dot in a program, the intended use is to reason about the effects of assignments on
recursive data structures. Examples that demonstrate the application are given in
Section 3.5.

To improve readability, the notation for multidot expressions differs from the
actual syntax used in PVS. In the last subsection we show the concrete PVS
formalisation of a property. We will use graphs representing a portion of the
heap h′ to show examples of the properties. In these graphs nodes are objects and
edges are labelled with an attribute name. An edge

f // from an object o to an
object p means that f (o,h′) = p. The edge removed by the heap update is depicted
as

f
× // .

3.4.1 Looking at the heap before the assignment
The assignment in (3.1) may or may not modify the multidot field expression.
Graphically, what matters is whether the edge that has changed belongs to path
followed by the multidot field expression or not. A particular edge is determined
by its object of origin and the field name. Hence, the condition that determines
whether the assignment influences the multidot expression is whether or not the
following set is empty:

Kpre :={k : nat | k<n∧p = (g1 • ... •gk−1) (o,h)∧ f = gk}.

We start with the case where Kpre is empty, i.e., the edge changed by the
assignment is not part of the multidot expression, as shown in Figure 3.1.

gn //

o

g1

��

p
f
× //

f

��

gk

OO

//

gk−1

OO

q

(a) p = (g1 • ... •gk−1) (o,h), but f 6= gk.

gk=f // gn //

o

g1

OO

p
f
× //

f

��
q

(b) f = gk, but p 6= (g1 • ... •gk−1) (o,h).

Figure 3.1: Examples where Kpre is empty.

As the edge that changed was not part of the multidot expression, the assignment
does have an effect on it.

3.4 THE EFFECT OF ASSIGNMENTS ON MULTIDOT EXPRESSIONS 39

Property 3. (empty Kpre) If Kpre is empty, then

(g1 • ... •gn) (o,h′) = (g1 • ... •gn) (o,h) .

Now consider the case where Kpre is not empty. Figure 3.2 depicts an example
with two indexes i and k in Kpre such that k< i. If there are several indexes in Kpre,

o

g1

��

p
f=gk× //

f=gi

��

gk+1 // //

gi−1

xx

//

gk−1

OO

q
gk+1 // gi // gn //

Figure 3.2: Example with two indexes k< i in Kpre.

it means that there are several loops starting at p. The assignment breaks the first
edge in these loops. In the heap after the assignment, the edge that joins p with q
is determined by the least element in Kpre.

Property 4. (min Kpre) If k = min (Kpre), then

(g1 • ... •gn) (o,h′) = (gk+1 • ... •gn) (q,h′) .

Since the assignment may also affect the path that goes from q to the final value,
the right hand side must still be evaluated in h′.

3.4.2 Looking at the heap after the assignment
Instead of looking at when the multidot expression follows the edge that changed
in h, we will now look at when it follows the new edge in h′. That is, we will look
at the set:

Kpos :={k : nat | k<n∧p = (g1 • ... •gk−1) (o,h′)∧ f = gk}.

If the new edge is never traversed, the multidot expression does not change.

Property 5. (empty Kpos) If Kpos is empty, then

(g1 • ... •gn) (o,h′) = (g1 • ... •gn) (o,h) .

40 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

o

g1

��

p
f
× //

f=gi=gk

��

gk−1

yy

//

gi−1

OO

q
gi+1 //

gk+1

��

OO

gn
oo oo

Figure 3.3: Example with two indexes i< k in Kpos.

Now assume that there is at least one index in Kpos. In Figure 3.3 we see an
example with two such indexes i and k with i< k. In this case the result of the
multidot expression can be described as either (gk+1 • ... •gn) (q,h′) or as (gi+1 • ...
•gk •gk+1 • ... •gn) (q,h′). If we take the greatest index in Kpos, we get the shortest
path to the resulting value and since the rest of the edges are not affected by the
assignment we can describe the result in terms of h. This is expressed in the
following properties.

Property 6. (f orall Kpos) For all k in Kpos,

(g1 • ... •gn) (o,h′) = (gk+1 • ... •gn) (q,h′) .

Property 7. (max Kpos) If k = max (Kpos), then

(g1 • ... •gn) (o,h′) = (gk+1 • ... •gn) (q,h) .

3.4.3 PVS formalisation
Given a list of names fs, the dot composition of the corresponding attributes is
formalised as

multidot (fs : list [Name]) : RECURSIVE Expr =
IF null ? (fs) THEN Current
ELSIF null ? (cdr (fs)) THEN car (fs)
ELSE car (fs) •multidot (cdr (fs))

MEASURE length (fs)

Note that because e •Current= e does not hold when e evaluates to void, we cannot
simply append Current at the end of the multidot expression.

3.5 LINEARISED ABSTRACTIONS 41

As an example of the PVS formalisation, we show a property that combines
empty Kpos and max Kpos in a property at the source code level. Since it is written
as an equality between functions, it can be used as a rewrite rule.

multidot after assignment pos : LEMMA
∀ (f : Name,gs : list [Name],x,e : Expr,o : Objectv⊥,h : Heap⊥) :

(x • f := e;multidot (gs)) (o,h) =
LET h′ = (x • f := e) (o,h),

Kpos = λ (k : below [length (hs)]) :
x (o,h) = multidot (take (gs,k)) (o,h′)∧
f = nth (gs,k) IN

IF bottom ? (h′) THEN bottom
ELSIF empty ? (Kpos) THEN multidot (gs) (o,h)
ELSE LET k = max (Kpos) IN

IF k = length (gs)−1 THEN e (o,h)
ELSE (e •multidot (drop (gs,k+1))) (o,h)

This property describes in terms of h all the possible outcomes of multidot (gs)
when evaluated in h′. If the assignment resulted in an error then the result is an
error. If Kpos is empty then the multidot expression is unchanged. Otherwise, let
k be the greatest element in Kpos. The result is then as stated in max Kpos (with a
shift of indexes due to lists starting at 0 in PVS). But again because e •Current is
not equal to e when evaluated on void, we have to make a special case for when
the multidot expression ends exactly at e. There is a similar lemma that combines
empty Kpre and min Kpre.

The intuitive way to prove these properties is by induction on gs. The intention
is to reason about the last edge of the multidot expression and use the inductive
hypothesis on the path that leads to it. The problem with this approach is that
on the non-empty case we have to reason about a list of the form cons (g,gs).
Therefore, we get to reason about the first edge, not the last one. To overcome
this problem we defined a function multidot rev that chains the arguments in the
reverse order. Then we wrote lemmas that are adapted to work with the reversed
list, and we proved them by induction on gs. Finally, the original lemmas were
proven using their reversed counterpart by instantiating gs with reverse (gs).

3.5 Linearised Abstractions
In this section we look at examples of abstract models expressed in terms of
multidot field expressions. We call this style of specifying linearised, because it
is not by recursion on the structure of the abstract model. The properties derived

42 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

in the previous section provide us a set of tools to reason about the effects of an
assignment to a linearised abstraction.

3.5.1 Paths
The following definition abstracts a path embedded in the heap to a list l of
Objects. The ith object in l is the object on the heap that can be accessed by
requesting the first i fields describing the path.

Path (gs : list [Name], l : list [Object])
(o : Objectv⊥,h : Heap⊥) : bool =

length (gs)+1 = length (l)∧
∀ (i : below [length (l)]) :

multidot (take (gs, i)) (o,h) = nth (l, i)

Due to the possibility of undefinedness, we define the abstractions as predicates
about the heap and the current object rather than as functions because in PVS
functions must be total.

With the use of the spatial separation lemmas for multidot expressions we can
prove the following separation lemma for paths (recall that h′ = (f :=q) (p,h)):

Property 8. If for all i< length (l) it holds that p 6= nth (l, i) or f 6= nth (gs, i), and
¬bottom ? (f (p,h)), then

Path (gs, l) (o,h′) = Path (gs, l) (o,h).

Thinking again in terms of graphs, this lemma says that if an edge outside the path
is modified, then the path is not affected by the assignment. To give an idea of
how the multidot rules are applied, we sketch the proof of this lemma.

Proof sketch. We are supposed to show that the Path predicates are logically
equivalent. In expanded form, we have to show that the following predicates are
equivalent:

∀(i1 : below [length (l)]) : (g1 • ... •gi1) (o,h
′) = nth (l, i1) (3.2)

∀(i2 : below [length (l)]) : (g1 • ... •gi2) (o,h) = nth (l, i2) (3.3)

To show that (3.2) implies (3.3), we instantiate i1 with i2 and apply empty Kpos.
Then we have to show that Kpos is indeed empty. If this was not the case then there
would be a k such that

p = (g1 • ... •gik) (o,h
′) = nth (l,k) and f = gk,

3.5 LINEARISED ABSTRACTIONS 43

which is a contradicts the assumption that p is not in l. For the converse direction,
we apply empty Kpre in an analogous way. �

The interference property for paths describes how a path ending in p can be joined
with a path beginning at q:

Property 9. If p /∈ l0 ++q++ l1 and c = car (l0 ++p), then

Path (gs1 ++ f ++gs2, l0 ++p++q++ l1) (c,h′) =
(Path (gs1, l0 ++p) (c,h)∧Path (gs2,q++ l1) (q,h))

The proof uses the multidot rules empty Kpos and max Kpos for the implication
from left to right and it uses the rules empty Kpre and min Kpre from right to left.

An important point about the proofs using linearised abstractions is that the
induction is encapsulated in the rules about multidot expressions; to prove the
above properties, we did not apply induction.

3.5.2 Example: verification of an in-place list reversal algo-
rithm

The Path abstraction can be specialised by Path (g, l), which instantiates the regu-
lar Path with a list of g-fields. By requiring the last node of Path (next, l) to point
to void, we obtain an abstraction for lists on the heap:

List (l : list [Object])
(o : Objectv⊥,h : Heap⊥) : bool =
Path (next, l) (o,h)∧
IF cons ? (l) THEN void ? (next (last (l),h))
ELSE void ? (o)

Note that List (null) (o,h) is true iff void ? (o) is true, i.e. an empty list is repre-
sented by void. Similar separation and interference properties as the ones for Path
can be proved for List.

To prove the correctness of the annotated in-place list reversal algorithm listed
in Figure 3.4, we use standard Hoare-style reasoning. The annotations have type
Asrt : [Objectv⊥,Heap⊥→ bool] and a Hoare-triple has the following meaning for
P,Q : Asrt and S : Stmt:

{P} S {Q} :=
∀(o : Objectv⊥,h : Heap⊥):

P (o,h)⇒ Q (o,S (o,h))

As can be seen in Figure 3.4, the current object o and the updated heap S (o,h)
distribute over the connectives. So, the actual work to verify the correctness

44 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

of the list reversal algorithm amounts to simplifying expressions of the form
(g •List (l)) (o,(e1 • f := e2) (o,h)). By expanding the definitions of dot and as-
signment, this can be brought into the form of List (l) (o′,(f := q) (p,h′)), on
which the separation and interference rules for the List abstraction can be applied.

{λ (o,h) :¬bottom or void ? (o,h) ∧ a •List (As) (o,h)}
b := void;
WHILE (λ (o,h) :¬void ? (a (o,h))) DO
{λ (o,h) :¬bottom or void ? (o,h) ∧
∃(as,bs : list [Object]) :

(a •List (as)) (o,h) ∧ (b •List (bs)) (o,h) ∧
disjoint ? (as,bs) ∧ append (reverse (as),bs) = reverse (As)}

tmp :=a;
a :=a •next;
tmp •next :=b;
b := tmp;

OD
{λ (o,h) :¬bottom or void ? (o,h) ∧ (b •List (reverse (As))) (o,h)}

Figure 3.4: In-place list reversal.

3.5.3 Other data structures
The linearised specification approach exemplified in the previous two sections can
also be applied to other recursive data structures. Consider for example binary
trees that store a value in each node:

binary tree [σ] : TYPE = {leaf ,node (v : σ l,r : binary tree)}

It is straightforward to define a predicate

get node (bt : binary tree [σ],path : list [Name],v : σ) : bool

that says whether by traversing bt in the order specified by path, we arrive at v.
Basically get node maps each constructor application to the corresponding field
name. We can now describe a binary tree on the heap by mapping each of its
nodes to a multidot field access:

binary tree abstraction (bt : binary tree [Object])
(o : Objectv⊥,h : Heap⊥) : bool =

3.6 EVALUATION AND FUTURE WORK 45

∀ (x : Object,path : list [Name]) :
get node (bt,path,x) ⇒

multidot (path) (o,h) = x

From the properties about multidot expressions presented in Section 3.4 one can
obtain separation and interference lemmas for binary trees.

The same ideas can be applied to other tree-like structures. First make a
linearised abstraction of the data structure: obtain the path from the root to each
of its elements and use that path to describe the pointer structure in terms of
multidot expressions. Then use the properties of Section 3.4 when reasoning about
assignments. Data structures with loops can also be specified, e.g., a circular list
is just a path that starts and ends in the same object.

3.6 Evaluation and Future Work
A natural way to define abstractions is by means of recursion on the structure
of the abstract model. We single out the work by Mehta and Nipkow that uses
this approach to verify several pointer programs [MN05]. The advantage of us-
ing induction is that it is a familiar general-purpose method that is integrated
in the theorem prover. Much work has been devoted to automate proofs by in-
duction, in particular to heuristics to instantiate the inductive hypothesis, e.g.
rippling [BBHI05]. In the inductive approach one still has to reason about the
effect of the assignments to the data structure, whereas using the rules given in
Section 3.4 the focus is on when to apply each rule and in finding the extrema of
the K-sets, which requires an instantiation.

Our experience is that both approaches require a comparable amount of proof
work. However, there is still work to be done on investigating specialised version
of the assignment rules and on the integration with the theorem prover as tactics.
For example, if we know that there is no loop on a multidot expression, as is the
case in tree-like structures, then we also know that the K-sets are either empty or
have only one element. This eliminates the need to find the minima or the maxima.

Because both approaches lead to definitions that are essentially equivalent, the
same properties hold. Hence, our approach can be seen as a complement rather
than a replacement of inductive reasoning.

Reasoning about assignments ultimately reduces to reasoning about object
equality. Therefore, this framework would benefit from knowledge about the
layout of the memory. The separation rules are used to provide local reasoning,
but they are not a primitive of the logic as the star conjunct is in Separation
Logic [Rey02] (see also Section 3.7). Hubert and Marché [HM07] propose a static
separation analysis and show how it can be integrated in the component-as-array

46 REASONING ABOUT ASSIGNMENTS IN RECURSIVE DATA STRUCTURES

modelling. They split the heap into regions that are inferred by the separation
analysis and accordingly relabel the field names as a combination fr of the old
field name f and a region r. This could be integrated into our model, for example
by redefining the heap as

Heap : TYPE = [Region,Name→ [Object→ Objectv]]

When it is inferred that two objects x and y lie in separate regions, the comparison
between them can be avoided and the separation lemmas can be applied automat-
ically.

3.7 Related Work
A first version of some of the rules presented in Section 3.4 first appeared in
Tamalet’s Master’s thesis [Tam06].

In the seminal work of Bornat [Bor00] and also in the work by Meyer on a
semantics for EIFFEL [Mey03], pointer structures on the heap are related with
abstract models via repeated composition of field requests. This has been a source
of inspiration for this chapter. Bornat and Meyer both define a sequence closure
operator that repeatedly requests a series of (the same) fields, yielding the list
of objects that is traversed on the heap. This is essentially the same as our
Path abstraction of Section 3.5.2. In this chapter we have given a complete
and formalised overview of the effects of assignments to arbitrary multidot field
expressions. A treatment of the sequential operator in the context of EIFFEL has
been given in an unpublished work by Blanco and Castro [BP05], restricted to the
case of lists.

A perhaps more natural way to define abstractions is by the use of recursion
on the structure of the abstract model. Mehta and Nipkow [MN05] used this
approach to verify the correctness of several pointer programs. We have compared
the inductive approach and the linearised approach in Section 3.6.

Hoare and Jifeng [HJ99] introduce a framework for the formulation of as-
sertions about objects and pointers based on trace model of graphs and process
algebra. They use a graphical notation very similar to the one used in this chapter.
However, their model uses graph transformations to describe the changes to the
state whereas we use an operational semantics.

Our rules about an assignment followed by a multidot are meta-level properties
of the language. To enable this meta-level reasoning we introduced a function
multidot that maps a list of Names to a suitable expression, which is essentially
a deep embedding of multidot expressions. The rules about multidot expressions
are a reflection of the properties 1 and 2. For an instructive paper on reflection
with examples in PVS we refer to [vHPPR98].

3.8 CONCLUSIONS 47

3.7.1 Local reasoning
Local reasoning is the key to scalability in formal verification of programs. The
way the heap is modelled in our framework is based on the component-as-array
modelling idea of Burstall [Bur72]. Refinements of this modelling have been
used as the core of weakest pre-condition calculus-based tools such as Krakatoa
for the verification of Java programs, and Caduceus for the verification of C
programs [FM07, MPM05]. A separation analysis tailored to integration with the
component-as-array modelling has been proposed by Hubert and Marché [HM07].
Future work on the integration of this analysis with our work has been discussed
in Section 3.6.

A well-studied approach to obtain local reasoning is that of Separation Logic,
proposed by Reynolds [Rey02], which can be seen as a radical refinement of
Burstall’s idea. In Separation Logic disjointness of portions of the heap is made
explicit in the logic. Its frame rule allows one to reason about just the relevant
portion of the heap that a piece of code manipulates and later augment it with the
rest of the heap. The separation logic assertion checking tools VERIFAST [JP08]
and SMALLFOOT [BCO06] have a (partially) verified formal theory, see respec-
tively [VJP12] and [Tue09].

A related line of research is Region Logic, whose goal it is to preserve the
local reasoning of Separation Logic, but without using non-standard semantics of
Hoare-triples. See [RBN10] for recent work.

3.8 Conclusions
In this chapter we have presented a novel approach to reason about assignments
in recursive data structures. We have shown how recursive pointer structures can
be described in terms of paths obtained by a series of field accesses. We have
provided a formal model of these paths as multidot expressions and we have
proved a set of rules that describe how an assignment can affect them. Using these
rules we have derived separation and interference lemmas for lists and verified an
in-place list reversal algorithm. A complete formalisation of the presented work
has been carried out in the PVS theorem prover. We have also shown how to apply
this approach to reason about other data structures and we have compared it with
the standard inductive approach.

Acknowledgements. The author would like to thank Marko van Eekelen and
Sjaak Smetsers for their comments on a draft version of the published paper.

CHAPTER 4

Formal Component-Based Semantics

Abstract. Component-Based Semantics is a solution proposed
by Mosses [Mos09] aimed at improving the scalability of seman-
tics of programming languages. It is expected that this framework
can also be used effectively for modular meta-theoretic reasoning.
This chapter presents a formalization of Component-Based Se-
mantics in the theorem prover COQ. It is based on Modular SOS,
a variant of SOS, and makes essential use of dependent types,
while profiting from type-classes. This formalization constitutes
a contribution towards modular meta-theoretic formalizations in
theorem provers. As a small example, a modular proof of
determinism of a mini-language is developed.

4.1 Introduction
Theorem prover formalization of programming language meta-theory and seman-
tics receives a lot of attention. Most notably, the POPLMARK Challenge [ABF+05]
calls for experiments on verifications of meta-theory and semantics using proof
tools. One of the main issues that programming language formalizations have
to cope with is the lack of reusability of existing work. Many programming
languages have language constructs in common, but often have (slight) differences
in their precise semantics (e.g. assignments in C versus assignments in JAVA).

Component-Based Semantics, introduced by Peter D. Mosses, aims to resolve
this reusability issue by constructing language descriptions from combinations of

49

50 FORMAL COMPONENT-BASED SEMANTICS

basic abstract constructs [Mos09]. Basic constructs are supposed to have a fixed
meaning and be language-independent. As an example, the basic construct of
conditional expressions should not depend on whether the expressions may have
side-effects or not, terminate abruptly or even interact with other processes. One
could even go as far as creating a repository of constructs that may be freely
combined to build new languages. This repository is therefore necessarily open-
ended, enabling users to add newly discovered basic constructs.

Modular Structural Operational Semantics (MSOS) [Mos04], a variant of SOS,
provides an adequate framework for the independent description of language com-
ponents [Mos09]. MSOS was designed to address the lack of reusability of SOS
rules: every auxiliary entity used in a rule, such as an environment or a store,
needs to be threaded through all rules of the language. MSOS provides a way
to automatically propagate unmentioned entities between the premise(s) and con-
clusion of a rule, enabling the reuse of rules in different languages. SOS is very
suitable for the formalization of languages and has therefore been widely adopted
by the theorem prover community. MSOS has so far received less attention.

This chapter proposes a formalization of Component-Based Semantics based
on MSOS in the theorem prover COQ [The12].1 Our main contribution is a way
to constructively formalize programming language semantics: basic constructs
can be developed in separate COQ files, which may be verified independently.
The formalization has been tested by building a small repository of constructs.
Moreover, it is possible to equip the constructs with small proofs that can be
used to construct larger proofs of properties holding for a full language. For this
reason, we shall use the term component instead of construct in this chapter. Our
formalization supports meta-theoretic reasoning about a programming language,
but does not support reasoning about the format of MSOS rules.

The formalization follows the original design of MSOS in its use of arrows
of a category for the auxiliary entities (encapsulated in labels) appearing in the
transition rules. A very elementary level of knowledge about category theory
and a modest amount of familiarity with theorem proving is required to read this
chapter. Our formalization makes essential use of dependent types to formalize
the labels in MSOS, and profits from COQ’s support for type-classes. Each com-
ponent is represented by a parametrized so-called COQ section. To define a full
language, it is sufficient to enumerate its components. The correct instantiation
of the corresponding parameters can in principle be performed automatically by
COQ’s powerful type system.

1The COQ files can be obtained via http://www.cs.ru.nl/˜kmadlene/fcbs.html.

http://www.cs.ru.nl/~kmadlene/fcbs.html

4.1 INTRODUCTION 51

Syntactic Categories
Cmd commands
Exp expressions
Dcl declarations
Pcd procedure abstractions
Prm parameter patterns, encapsulating declarations

Constructs
Cmd ::= seq (Cmd, . . . , Cmd) normal command sequencing
Cmd ::= skip normal termination
Cmd ::= cond loop (Exp, Cmd) a simple while-loop, propagating abrupt

termination
Cmd ::= catch (Cmd, Pcd) tries to handle abrupt termination of

Cmd by procedure abstraction Pcd
Cmd ::= throw Exp terminates abruptly with the value of the

Exp
Pcd ::= abs (Prm, Cmd) a parametrized procedure abstraction

(with static scoping)
Prm ::= eq Exp a parameter that matches only the entity

computed by the Exp.
Exp ::= block (Dcl, Exp) locally binds Dcl in the Exp

Table 4.1: A basic repository.

52 FORMAL COMPONENT-BASED SEMANTICS

4.2 Component-Based Semantics
We illustrate the description of programming languages in terms of basic abstract
constructs by means of a while-loop example taken from [Mos09]. Depending
on what concrete language is being analyzed, a standard command such as while
may have different interpretations. For example, if the language includes a break
command that abruptly terminates the program throwing a particular exception,
then the description of while should include the handler for that exception. We
assume that Cmd[[]] and Exp[[]] are functions mapping concrete expressions to
abstract expressions of Cmd and Exp, respectively. Below, cond loop is a simple
while-loop that takes an expression and a command, and propagates abrupt termi-
nation. The other constructs involved can be found in Table 4.1. The description
is then:

Cmd[[while (E) C]] = catch(cond loop(Exp[[E]], Cmd[[C]]),
abs(eq(breaking), skip))

Cmd[[break]] = throw(breaking)

A simple extension is a while-loop that handles continue commands. To describe
such while-loops, all that is needed is to change the above example in such a
way that Cmd[[C]] is encapsulated by a catch construct. Table 4.1 contains some
possible constructs, which are used as examples throughout the rest of this chapter.
See [Mos09] for an open-ended repository containing more constructs.

An important facet of Component-Based Semantics is that the construct repos-
itories ideally contain no redundancy. If two basic constructs with different names
have the exact same semantics, then one of them should be discarded. Moreover,
if a construct can be expressed purely in terms of existing basic constructs, then
this construct is generally also to be discarded. For instance, a while-loop testing
for (non)zero corresponds to one with a boolean test combined with a predicate
testing for (non)zero. However, one might well have both a while-do loop and a
do-while loop as basic constructs, since neither is more basic than the other. A
repository essentially describes a universal language that can be used to define the
semantics of a concrete language in question. This universal language provides
a fixed name for each basic construct, which in our formalization corresponds to
the name of a COQ file.

In the rest this chapter we prefer to use the term component instead of con-
struct, to emphasize we do not only refer to syntax when we use the term com-
ponent, but also to its semantics and properties that it may be equipped with. For
the semantics of each component to be language-independent, it is necessary that
it does not depend on

• auxiliary entities that are not mentioned by the component;

4.2 COMPONENT-BASED SEMANTICS 53

• the transition relation of the full language;

• abstract syntax of the full language.

In our formalization we parametrize the components on these pieces of informa-
tion. However, we first review MSOS, the framework our formalization is based
on.

4.2.1 Modular SOS
In SOS, the operational semantics of a language with effects is modeled by a
labeled transition system (LTS) 〈Γ,A,→〉, where Γ is the set of configurations, A
is the set of actions, and → ⊆ Γ×A×Γ is the transition relation (sometimes
called step relation). It is possible to consider transition systems that also include
terminal states, but these are only relevant if one desires to study terminating
sequences of transitions, which is outside the scope of this chapter. A straightfor-
ward example of a set of configurations that we will use below is Cmd×ρ×σ.
We will call ρ and σ auxiliary entities, or simply entities.

A drawback of SOS is its lack of support for modularity. It is sometimes neces-
sary to update existing rules by decorating the transitions with additional entities,
e.g. a second store to model a separate part of memory. If we were to add an
auxiliary entity to the configurations, then this entity needs to be threaded through
all the rules that define the semantics. This prevents the rules from being reusable,
and therefore plain SOS is not a suitable framework for Component-Based Seman-
tics. One can get around this problem informally, by implicitly propagating the
entities that are not mentioned, by using a convention (see also [CKS07]) such as:

ρ ` 〈c1,σ〉 → 〈c′1,σ′〉
ρ ` 〈seq c1 c2,σ〉 → 〈seq c′1 c2,σ

′〉

c1 −→ c′1
seq c1 c2 −→ seq c′1 c2

Normal command sequencing does not manipulate any of the entities and we can
therefore assume that they are propagated. This informal description style enables
formulation of rules independent of the auxiliary entities that may or may not be
present and thereby provides reusability of the rules.

MSOS is a variant of SOS that has special support for the propagation of
unmentioned entities. The key distinction is that it separates phrases of the lan-
guage from entities by moving the entities into a label on the transition. That is,
transitions are of the form γ

α−−→ γ′, such that γ and γ′ merely consist of abstract
syntax (which may include computed values), and α is a label containing the
auxiliary entities. Before we discuss the associated transition systems, let us
consider some examples of rules specified in MSOS. Figures 4.1 and 4.2 pro-
vide examples of normal command sequencing and local bindings. The abstract

54 FORMAL COMPONENT-BASED SEMANTICS

Label := {. . .}

seq skip c−→ c (4.1)

c1
{X}−−−→ c′1

seq c1 c2
{X}−−−→ seq c′1 c2

(4.2)

Figure 4.1: Normal command se-
quencing.

Label := {ρ : env, . . .}

d
{X}−−−→ d′

block d e
{X}−−−→ block d′ e

(4.3)

e
{ρ=ρ0[ρ1],X}−−−−−−−−−→ e′

block ρ1 e
{ρ=ρ0,X}−−−−−−−→ block ρ1 e′

(4.4)

block ρ1 v−→ v (4.5)

Figure 4.2: Local bindings.

syntax is standard, and the meta-variables c,d,e,ρ and v stand for commands,
declarations, expressions, environments and values, respectively.

The meta-variable X plays an important rôle in the rules. It binds the un-
mentioned entities, allowing us to propagate them between the premise(s) and
conclusion of each rule, without specifically describing what these entities are.
Different occurrences of X in the same rule stand for the same entities. Note that
the rules assume neither the presence or absence of particular auxiliary entities:
the only entities that are mentioned are the ones used by the transitions in the rule
in question. The Label box specifies what entities the label should at least include.
Entities in labels can be matched in rules using notation such as “{ρ= ρ0[ρ1], X}”,
where ρ0[ρ1] stands for updating ρ0 by ρ1.

Rules without labels on them are unobservable, meaning that they implicitly
assume that the entities remain unchanged during the transition (e.g. in rule (4.1)).
We remark that in this chapter skip too is a component: it has an empty label and
an empty set of rules. A formal format for silent rules such as (4.1) has been
introduced by Churchill and Mosses [CM13], which is based on the distinction
between computations and values. See also Section 6.4 of this thesis.

Mosses [Mos04] recognized that the arrows of a category provide an adequate
mathematical structure for labels. That is, two consecutive steps are only allowed
to be made when their labels are composable, i.e., γ

p−→q−−−−→ γ′
r−→s−−−−→ γ′′ is only

allowed when q = r, and identity arrows correspond to the labels of unobservable
transitions (as in rule 4.1). Hence, the associated transition systems are a triple
〈Γ,A,→〉 similar to LTSs, with the difference that Γ strictly consists of abstract
syntax, and the additional requirement that A are the arrows of a label category
A. The label category is a product of elementary categories that correspond to the
entities, which we will discuss in Section 4.4. The values of the auxiliary entities

4.3 FORMALIZATION 55

are the objects ofA. As an example, a simple step with rule (4.1) looks as follows,
if the label contains an environment and a store:

seq skip c
〈ρ,σ〉−→〈ρ,σ〉−−−−−−−−−→ c (4.6)

4.3 Formalization
In Component-Based MSOS, the source configuration γ of a transition γ

α−−→ γ′

plays a special rôle. Namely, it determines to which component the rule permitting
that particular transition belongs. The formalization defines for each component
a so-called local transition relation, which describes the rules for source configu-
rations that belong to that particular component.

Provided with the grammar of the full language, we construct the transition
relation of the full language by combining the local transition relations. Com-
ponents may optionally provide proof of a property that it satisfies, which can
likewise be combined to build the proof of that property about the full language
(if all components satisfy that property). This will be demonstrated in Section 4.5.

We make use of COQ’s support for type-classes [SO08] to automatically “fill
in the details”, i.e. combining the components and filling in the parameters to
construct the full language. Type-classes, however, are not strictly necessary for
the formalization.

It is possible in our formalization to construct several full languages from
the same repository. Extending an existing language with new constructs is not
pursued in this chapter; this could potentially be done by leaving holes [DCB11]
in the inductive datatype corresponding to the full language’s grammar.

4.3.1 Types for transition relations
The transition relations of labeled transition systems (see Section 4.2.1) can be
assigned the following type:

Step Γ A : Γ→ A→ Γ→ Prop

In other words, a step is a predicate which takes arguments γ, α and γ′ and returns
an element of Prop (the built-in sort of propositional types in COQ). Just like the
labeled transition systems associated with SOS specifications, there is no apparent
distinction between syntax and the auxiliary entities.

Following the principles of MSOS, we update the type of Step to feature
arrows of a category as labels on the transitions. Step now becomes parametric in
the full label category A of the full language (which has a collection O of objects),
resulting in the following type:

56 FORMAL COMPONENT-BASED SEMANTICS

Step Γ O (A : Category O) : Γ→ Arrows A→ Γ→ Prop

We have to remark that to avoid confusion, we are not following the exact syntax
used in our formalization at this point. Moreover, we omit the definition of
Category in this chapter, but we elaborate on Arrows in Section 4.4.

Component-Based MSOS requires both a modular way to specify the step
relation and a modular way to specify the abstract syntax. The component seq
of Figure 4.1 implicitly specifies its own signature, namely the production rule
Cmd ::= seq Cmd Cmd, and specifies two new rules. It also assumes that a
syntactical category Cmd exists, and to be able to define rule (4.2), it assumes
that a transition relation on Cmd exists. We therefore parametrize the component
(i.e. its local transition relation and lemmas) with Γ, representing the syntactic
category, the full transition relation S on Γ, and the component’s construct C
(where P is a type that stands for its parameters, see the next section). Since
the components always define the semantics for precisely one construct of the
language, we restrict the input configuration to the phrases built by that construct.
We call the transition relation of a component a local step, to emphasize the
difference with a transition relation defined on a full syntactic category.

LocalStep Γ O (A : Category O) (S : Step Γ O A) P (C : Construct P Γ) :
restr C→ Arrows A→ Γ→ Prop

To define the full language, it is sufficient to enumerate the components it
is built of. This results in a transition relation of type Step for each syntactic
category, which we call a global step relation. This is described later on in this
section.

4.3.2 Grammar
As a running example, we define a programming language that consists of just the
basic constructs skip and seq (see Figure 4.1). Although it is a fairly simple exam-
ple, it allows us to explain the formalization without having to get ahead too much
on labels, which are treated in Section 4.4. In component-based descriptions of
actual programming languages, the semantics is to be defined by a (context-free)
translation to basic constructs. Basic constructs are designed to be independent
of a particular programming language and as a result are often too simple to be
directly mapped to constructs of an actual programming language.

The grammar of our skip− seq language is straightforwardly encoded by the
following inductive type:

Inductive Cmd := skip | seq (c1 c2 : Cmd)

4.3 FORMALIZATION 57

Recall from Section 4.2 that each component is parametrized on its abstract
construct. The arguments are passed on as an injection-projection pair which we
will call Construct. Injection corresponds to applying a constructor and projection
corresponds to pattern matching. Construct consists of two properties saying that
i and p are (partial) inverses of each other. This is needed to prove properties about
the component.

Class Inject P Γ := inject : P→ Γ

Class Project P Γ :=project : Γ→ option P

Class Construct P Γ {i : Inject P Γ} {p : Project P Γ} :={
H i :∀ x : P,p (i x)≡ Some x;
H p :∀ γ : Γ,match project γ with

| None ⇒ True
| Some x⇒ i x≡ γ

end
}

For constructs that take several arguments, such as Cmd ::= seq Cmd Cmd, the
arguments are tupled. The Class keyword declares the definitions to be type-
classes. The convenience of type-classes is that class fields (such as inject or
project) may be used without explicitly mentioning which instance of that class
should be used. The curly brackets around i and p indicate that these arguments
are implicit. In this case, these implicit arguments become class constraints, i.e.,
order to build an instance of Construct, instances of Inject and Project need to be
present. For our example language, the corresponding instances are:

Instance : Inject unit Cmd :=λ ,skip

Instance : Inject (Cmd×Cmd) Cmd :=
λ p, let (c1,c2) :=p in seq c1 c2

Instance : Project unit Cmd :=
λ γ,match γ with
| skip⇒ Some tt
| ⇒ None
end

Instance : Project (Cmd×Cmd) Cmd :=
λ γ,match γ with
| seq c1 c2⇒ Some (c1,c2)
| ⇒ None
end

Instance : Construct unit Cmd

58 FORMAL COMPONENT-BASED SEMANTICS

Instance : Construct (Cmd×Cmd) Cmd

The type-class mechanism can be seen at work here: we do not have to specify
the arguments i and p, for they can be resolved from the signatures. In fact, the
manual declaration of these type-class instances is straightforward and can be
omitted by an augmentation of COQ’s type-class resolution algorithm, but we skip
the details here. The reader may have noted that when the full language has two
constructs with the same signature, the type-class instance resolution algorithm
may fill in the wrong Construct instance. This is solved in the formalization by
adding an argument (i.e. a string) to Construct, enabling us to uniquely identify
each instance.

Returning to the LocalStep type, the Construct argument is actually a class
constraint (i.e. it is an implicit argument) in the formalization. In fact, the category
and the Step relation are also class constraints. Some components require the
presence of other components. For instance, the component seq “imports” the
(very basic) component skip. To this end, the Skip construct becomes an additional
constraint of seq. This does not interfere with modularity: all other details about
the full language remain opaque.

4.3.3 Semantics
A straightforward way to encode transition relations in a theorem prover is by
means of an inductive predicate [BHLP09]. Making the definition inductive guar-
antees that the only valid transitions are the ones that can be built by its construc-
tors, which correspond to the rules. The encoding of rules is straightforward using
nested implications, where universal quantifications are added for variables that
occur in the rules. As an example, we give the transition relation for seq:

Inductive ls : restr Seq→ Arrows A→ Cmd→ Prop :=
| seq1 :∀ c1 c2 c′1 ar,step c1 ar c′1→ ls (Seq · (c1,c2)) ar (i (c′1,c2))
| seq2 :∀ c2 ar,unobs ar→ ls (Seq · (skip tt,c2)) ar c2

The premise unobs ar expresses unobservability of the label, i.e., it is an identity
arrow. We have suppressed the class constraints here for readability. That is, ls
requires suitable instances of Category, Step, Construct and Label (the latter is
presented in Section 4.4). The type restr C is used to restrict phrases of the full
language to ones built by constructor C. By means of an inductive type with a
single constructor, we can ensure that the only way to build an instance of type
restr C is by providing an object of P:

Inductive restr ‘(C : Construct P Γ) := restr cons (γ : Γ)
Notation C · γ :=(restr cons C γ)

4.4 LABELS 59

The backtick performs implicit generalization: necessary variables to the argu-
ment C are automatically declared as implicit arguments of restr. Writing e.g.
Seq · (c1,c2) is similar to applying the “real” constructor (e.g. seq c1 c2), but not
exactly the same. One can obtain c1,c2 by straightforward pattern matching on
restr cons. In contrast, it is only possible obtain c1,c2 from seq c1 c2 by using the
elimination principle of Cmd, which is not available inside the component.

The inductive predicate ls is made into a type-class instance to enable resolu-
tion:

Instance LS Seq : LocalStep O := ls

The semantics of the full language is essentially defined by a case distinction on
the constructors of the datatypes. The full step relation is defined as an inductive
predicate s that combines the existing local step relations of the used components
into one global step relation. This is done by means of an inductive predicate that
has a single constructor. The constructor assumes a localstep of any of the local
transition relations of the syntactic category in question (passing along s itself),
and returns an object of s (as above, in ls). The reader interested in the details is
referred to the source code. This construction satisfies equations such as:

localize Skip S Cmd = LS Skip
localize Seq S Cmd = LS Seq

The operator localize maps the given Step instance (in this case S Cmd) to the
canonical LocalStep w.r.t. the provided construct. These equations are necessary
to prove properties about the components. For example, consider the component
seq, which imports the component skip. To be able to prove properties about seq,
the local step relation of skip (which is empty) needs to be accessible. This is done
by passing on the first equation as an argument. The equality is overloaded with
the obvious meaning that the Step instances agree on all inputs (i.e. ar, γ and γ′).
In conjunction with COQ’s built-in support for setoid rewriting (rewriting modulo
an equivalence relation), this enables us to perform short proofs for meta-theory
(used in Section 4.5).

4.4 Labels
Auxiliary entities such as environments and stores in SOS are encapsulated in
a label on the transitions in MSOS. In Section 4.2 we have explained that the
labels on the transitions have the structure of arrows of a category: the labels of
consecutive transitions should be composable. A subtle difference between MSOS
and SOS is that the chosen label category may restrict the transition relation

60 FORMAL COMPONENT-BASED SEMANTICS

specified by the rules, whereas in SOS it is solely the rules that determine this
relation. This can be seen by assuming the label category to be a discrete category,
i.e., the category with just identity arrows.

Mosses [Mos04] has shown that a suitable category is the product A=̂∏i∈IAi
of elementary categories representing the auxiliary entities. The usual types of
entities used in SOS rules are environments, stores and labels, which correspond
to read-only, read-write or write-only permissions, respectively. In MSOS, each
entity (with index i) has a corresponding set of objects Si that, together with the
permissions, determines its corresponding category Ai:

• read-only: Ai is the discrete category with Si as its objects;

• read-write: Ai is the pre-order category with Si as its objects, and S2
i as its

morphisms;

• write-only: Ai is the category with a single object ∗, and the free monoid on
Si as its morphisms.

A distinguishing feature of MSOS is its inherent support for write-only entities.
For example, a transition in a system with a single write-only entity can be pic-

tured as γ
∗

α−−→∗−−−−−→ γ′, where α is the name of the arrow (there are usually infinitely
many for write-only components). If it appears as the conclusion of a rule, then the
premises of that rule cannot possibly depend on the value of that entity, because
it is simply ∗. For this reason, we have adopted the use of arrows as labels in our
formalization. Note that if one were to replace the arrows as labels with relations
on product entities, then the notion of write-only labels would be lost (when Si
has at least one element in it).

Recall that the components are parametrized by a label category A on a col-
lection of objects O. To build the product category, O is instantiated with the
entity map i 7→Ai. Inside the component, the label category is entirely opaque. In
other words, it is impossible to learn anything from A except that it is a product
category. The Label box in the component specification expresses what entities
the full label should at least include. For example, Figure 4.2 requires that the
full label includes an environment entity. This is reflected in our formalization by
providing two functors PM and PU to each component, that project full labels to
their mentioned entities and unmentioned entities, respectively:

A PM−−→∏
i∈M
Ai, A PU−−→ U.

The idea is that the product of mentioned entities is transparent to the component,
whereas U is opaque. We use the functor PU to express unobservability, needed

4.4 LABELS 61

e.g. in rule (4.1). Additionally, the component requires that (PM,PU) is an isomor-
phism, which is crucial to enable modular proof. Let us consider determinism as
an illustration of this.

Property 10. Assume configurations γ,γ′,γ′′ :Γ and labels ar′ :x−→ y, ar′′ :x−→
z. The step relation on Γ is deterministic when both γ

ar′−−→ γ′ and γ
ar′′−−−→ γ′′ imply

that γ′ = γ′′ and ar′ = ar′′.

The requirement that the arrows are equivalent ensures not only that the post
configurations are equal, but also the outputs through the write-only components
are equal. To prove that the component seq is deterministic, one proceeds by
straightforward case analysis on the structure of the input configuration. In the
case that it is seq skip c, we have two arrows ar′, ar′′ such that PU ar′ = PU ar′′ =
id, and PM ar′ = PM ar′′ = () (the empty tuple). In other components that do
have mentioned entities, these projections of PM have to be equivalent. Using the
isomorphism we can then conclude that ar′ = ar′′.

4.4.1 Formalization of labels
The category theory we have used in our formalization is provided by the MATH-
CLASSES library by van der Weegen and Spitters [SvdW11]. Their library makes
extensive use of a technique called “unbundling”, which boils down to separating
the components of mathematical structures into separate type-classes. An example
of this are categories. In Section 4.3.1, we have treated Category as a record
structure containing Arrows as a field for presentation purposes. However, in the
actual formalization, Arrows is a separate type-class:

Class Arrows (O : Type) : Type :=Arrow : O→ O→ Type
Infix−→ :=Arrow

To build a Category, among other components, an equivalence relation on the
corresponding Arrows instance is necessary, to enable the comparison of arrows.
We use this relation in our formalization to define the predicate unobs for unob-
servability. The following instances are used for the entity categories:

Instance arrows ro : Arrows O :=λ x y,x≡ y

Instance arrows rw : Arrows O :=λ x y,unit

Instance arrows wo : Arrows unit :=λ x y, list O

We now define the type-class Label, which is used to provide the projection
functors. Label assumes the presence of the following objects:

62 FORMAL COMPONENT-BASED SEMANTICS

I M : Type
O : I→ Type
A :∀ i : I,Arrows (O i)
O M : M→ Type
A M :∀ i : M,Arrows (O M i)

In other words, for both index sets I and M it is required that a collection of arrows
exists.

Class Label :={
cover O :∀ i : M,O M i≡ O (to I i);
cover A :∀ i : M,A M i≡ 〈 λ T,Arrows T | eq sym (cover O i) 〉 A (to I i)
}

The cover O property says that for every index of the mentioned entities, the
objects have to correspond to the objects of the full category. Likewise, the arrows
of the mentioned entities have to correspond. A cast operation [Hur10] on the
objects (indicated by 〈 , 〉) is needed to be able to express the latter, but we omit
the details in this chapter. Given an instance of Label, we can derive the functors
PM and PU together with the fact that they are isomorphic. Each component has
a Label type-class constraint which leaves O and A parametric, but specifies O M
and A M.

To illustrate how a rule is interpreted with help of the Label construction, we
consider rule (4.4) of Figure 4.2. Let us first write it using informal notation.
Assume that ar : x−→ y, ar′ : x′ −→ y′ and projρ = πρ ◦PM is the projection of the
component with index ρ.

projρ x′ = ρ0[ρ1] projρ x = ρ0 PU ar = PU ar′ e ar′−−→ e′

block ρ1 e ar−−→ block ρ1 e′

In COQ-syntax, this rule is:

rule4 :
∀ (ρ0 ρ1 : Env) (e e′ : Exp) ‘(ar′ : x′ −→ y′),

projρ x′ ≡ update ρ0 ρ1→ projρ x≡ ρ0→
fmap PU ar = fmap PU ar′→ step ar′ e e′→

(∗−−−−−−−−−−−−−−−−−−−−−−−∗)
ls (Block · (ρ1,e)) ar (i (ρ1,e′))

Note that the use of equality in the above code is highly overloaded, which is
made possible by the use of type-classes. Like the MATH-CLASSES library, we
represent the functors by means of a function that maps the objects, which have
the actual names PM and PU , and functions that map the arrows, which have the
fmap prefix.

4.5 EXAMPLE OF MODULAR PROOF 63

4.5 Example of Modular Proof
Once the full language is declared, it is possible to combine proofs of the compo-
nents to prove that a particular property holds for the full language. Like the local
step relations, properties are parametrized by a global step relation S. We say that
a property holds for a step relation if it holds for all the possible configurations,
but we are a bit more general and allow the user to express that a property holds
for a particular configuration.

Not all properties can be proved by induction, and likewise not all properties
have a modular proof. We consider a class of admissible, well-behaved properties
P such that P S (I γ) does not depend on anything but the localized version of S
w.r.t. C (here I γ injects γ into Γ):

Definition admissible Γ O (P : Step Γ O A→ Γ→ Prop) :=
∀ ‘(C : Construct A Γ) (S : Step Γ O A) (γ : restr C),

P (globalize (localize C S)) (I γ)→ P S (I γ)

The operator globalize is the reverse of localize: it takes a local step relation ls and
makes it global, behaving like ls on phrases constructed by C and not permitting
any steps to be made that start from other configurations. The idea of admissible
properties is that they warrant that proof by induction is possible.

Lemma 1. Determinism is admissible.

We will demonstrate how this lemma is used to show that our skip− seq
language is deterministic by illustrating the seq case (skip is similar). Inside
the COQ section of seq, we have proved the following lemma that says that the
component is deterministic.

Lemma det Seq (c1 c2 : Cmd) :
det global S Cmd c1→ det local LS Seq (Seq · (c1,c2))

Note that it assumes that the global step relation is deterministic on c1, which is
essentially the induction hypothesis.

Two Step or LocalStep instances are considered equivalent if they agree on
the transitions between each triple consisting of two states and a label. Both
det global and globalize respect this notion of equivalence. Using COQ’s built-in
support for rewriting modulo equivalence relations (called setoid rewriting), it can
be shown that:

64 FORMAL COMPONENT-BASED SEMANTICS

det global S Cmd (seq c1 c2) (fold I)
= det global S Cmd (I (Seq · (c1,c2))) (Lemma 1)

=
det global (globalize (localize Seq S Cmd))

(I (Seq · (c1,c2)))
(rewrite eq Seq)

= det global (globalize LS Seq) (I (Seq · (c1,c2))) (fold det local)
= det local LS Seq (Seq · (c1,c2))

Now, the latter holds because this is a property proved in the component seq. The
proof for seq can therefore be completed by applying det Seq, using the equation
localize Skip S Cmd = LS Skip and the induction hypothesis.

Other components follow the same prescription. In future work, we want to
automate the weaving of local proofs by generalizing the above, and exploiting
automated proof search with the help of the type-class mechanism in COQ. Ex-
periments have already demonstrated that this is feasible, but fragile.

4.6 Related Work
A specification language for MSOS, called MSDF, short for MSOS Definition
Formalism, has been developed by Mosses [Mos06] and revisited by Mosses and
Chalub [CB07]. MSDF combines BNF notation with textual representation of
MSOS transitions, and a large number of basic components have already been
identified and specified in it. A tool that translates ML and (a part of) JAVA into
this repository have been developed by Chalub and Braga [CB07], which can
be executed in the MAUDE tool. MSDF provides its own specification language
for datatypes, which can be constructed from primitives such as sequences, lists,
maps, etc. In contrast, our formalization directly uses types defined in COQ.

Implicit-MSOS is an improvement of MSOS that reduces the amount of clutter
in the rules even further by implicitly propagating unmentioned entities [MN09].
The interpretation of Implicit-MSOS is given in terms of MSOS, and we expect
that it can be built on top of our formalization by clever use of type-classes.

The work of Delaware et al. focuses on the development of modular pro-
gramming language meta-theory in COQ. They show how type-safety of Feath-
erweight JAVA and its extensions can be proved in a modular fashion [DCB11].
In more recent work, they applied type-classes to compose proofs from modular
components [DOS13], and support semantics with side-effects in their modular
meta-theory [DKSO13].

The formalization of the operational semantics of OCAMLlight in HOL by
Scott Owens makes use of labels to encode mutations to the store in them [Owe08].
These mutations are correlated to a reduction in the program. The labels explicitly

4.7 CONCLUSIONS AND FUTURE WORK 65

carry mutations and therefore simplify the notation, but do not enable a high
degree of reusability of the rules.

In a theorem prover (and functional languages), abstract syntax and transition
relations are typically encoded as inductive types, of which the constructors corre-
spond to the grammar production rules and the constructors correspond to the rules
of the step relation. The inductive definition ensures that those constructors are the
only way to build instances of those types. This corresponds to the notions “initial
algebra” and “least relation”, sometimes used in this context (e.g. [MN09]). To
facilitate Component-Based Semantics, we have to be able to build these inductive
types from “partial versions” that define just the rules and production rules of
the component in question. To our best knowledge, there is no theorem prover
(or functional language) that supports (multiple) inheritance of inductive types
natively.

4.7 Conclusions and Future Work
In this chapter we have presented a formalization of Component-Based Semantics
in the theorem prover COQ. The formalization makes essential use of dependent
types, and profits from COQ’s support for type-classes. Our formalization is
based on the ideas of MSOS, and makes use of the idea of labels as arrows in
categories, as proposed by Mosses [Mos04]. Splitting the label category into a
transparent part for the mentioned entities and an opaque part for the unmentioned
entities enables modular proof. We have demonstrated this by crafting a proof
of determinism of a mini-language from smaller local proofs provided by the
components used.

In future work, the work in this chapter can be used to enable scalable verifi-
cation of specific programs. Another direction of further research is to investigate
whether the full generality of labels as arrows (which our formalization provides)
can be exploited for entities of types other than read-only, read-write and write-
only. We expect that by choosing a suitable category, it is possible to enforce
information flow policies, which has applications to security.

Acknowledgments. The author would like to thank Peter D. Mosses for intro-
ducing him to the notion of Component-Based Semantics, and Bas Spitters for
introducing him to type-classes in COQ. The author would also like to thank Peter
D. Mosses, Julien Schmaltz and the anonymous reviewers for their comments on
an earlier version of the published version of this chapter.

CHAPTER 5

GSOS Formalized in Coq

Abstract. Structural operational semantics provides a well-
known framework to describe the semantics of programming
languages, lending itself to formalization in theorem provers.
The formalization of syntactic SOS rule formats, which enforce
some form of well-behavedness, has so far received less attention.
GSOS is a rule format that enjoys the property that the operational
semantics and denotational semantics, both derived from the
same set of GSOS rules, are consistent. This chapter formalizes
the underlying theory in the theorem prover COQ, and proves
the consistency property, also known as the adequacy theorem.
The inspiration for our work has been drawn from the field of
bialgebraic semantics.

5.1 Introduction
Operational and denotational semantics are two well-known approaches to as-
signing a meaning to programming languages and process algebras. Around
fifteen years ago, Turi and Plotkin [TP97] developed a framework that unifies
both these styles. Using the language of category theory, they managed to strip
away language-specific details such as concrete syntax and behavior. Given a set
of operational rules, they have shown how to derive both the operational and de-
notational semantics from a distributive law corresponding to a set of operational
rules. Their result pertains to several syntactic operational rule formats [Bar04,

67

68 GSOS FORMALIZED IN COQ

HJ11], but the GSOS format [BIM95] is the most prominent one of them [Bar04,
Kli11]. For instance, classic languages such as basic process algebra and the
language WHILE [BHLP09] can be described by the GSOS format. Although
implementations based on Turi and Plotkin’s work have previously been devel-
oped in HASKELL by Hutton [Hut98], Jaskelioff, Hutton and Ghani [JGH11], and
Hinze and James [HJ11], formalized proofs in a theorem prover have not yet been
provided.

The contributions of this chapter are the following.

• It provides an implementation of both an operational and a denotational
semantics derived from a set of GSOS rules, and a proof of their consistency
(called the “adequacy theorem”), fully developed in the theorem prover
COQ [The12], using novel theorem proving techniques.

• A generic theory for syntactic terms, also fully developed in COQ, which is
needed for the proof of the adequacy theorem.

• It lays out the foundations for further work on the formalization of bialge-
braic semantics.

The advantage of a development in the constructive logic of COQ is that it enables
both the execution of and formal proofs about the semantics at hand. The work in
this chapter is heavily inspired by Turi and Plotkin’s bialgebraic semantics. The
presented formalization is a shallow embedding into COQ’s Type (i.e. the type
of types), and does not possess the full generality of Turi and Plotkin’s category
theoretic work. However, it is still far more general than previous work on pro-
gramming language semantics in theorem provers which usually concentrates on
the study of a concrete language, such as [BHLP09].

An important tenet of most theorem provers, including COQ, is that every
function must terminate, otherwise the underlying logic would be inconsistent.
This seemingly superficial difference with HASKELL has profound implications
for the development presented in this chapter. In order to satisfy the syntactic
checks which COQ performs on definitions to guarantee termination, the types
representing the syntax and behavior of the language must be chosen carefully.
As we will see, COQ’s support for dependent types can be put to good use. The
semantic domain potentially consists of infinite objects, as shown in the examples
provided in this chapter. In contrast to HASKELL, there is a clear distinction
between finite and infinite worlds in COQ. The standard syntactic equality of COQ

is not general enough for serious proofs about infinite objects. We have based the
COQ formalization on the use of setoids, i.e. a Type packaged with a user-defined
notion of equality and a proof of well-behavedness of the equality.

To make the content in this chapter accessible to readers with limited exposure
to the field of bialgebraic semantics and COQ, we explain the computational side

5.2 A SIMPLE STREAM LANGUAGE 69

AS a−→ AS BS b−→ BS

x l−→ x′ y m−−→ y′

Alt x y l−→ Alt y′ x′
x l−→ x′

Zip x y l−→ Zip y x′

Figure 5.1: A simple language for streams.

of this work in Section 5.2, using a simple language for the construction of streams
as our running example. Furthermore, we start off with a more limited rule format
to sketch the main ideas, and then treat the GSOS format. The reader is expected
to have a modest amount of familiarity with category theory. All definitions and
theorems in this chapter have been formalized and proved in COQ.1

5.2 A Simple Stream Language
In this section we discuss the relation between operational and denotational se-
mantics similar to the way they arise in the framework of Turi and Plotkin [TP97].
We use a simple language about streams (also used by Klin [Kli11] in his introduc-
tion to bialgebraic semantics) as our running example, allowing us to explain the
basics and provide some hints towards the COQ implementation. An example of
a more involved language featuring non-determinism will be given in Section 5.5.
This section is almost exclusively limited to the computational side of our work,
and the code presented in this section is perfectly executable within COQ.

Consider the simple stream language defined by the operational rules in Fig-
ure 5.1. For now we disregard the operation Zip. These rules inductively define a
transition relation between terms, composed of the operations AS, BS, Alt, and
a label, a or b. The operations AS and BS respectively generate the streams
aaaa · · · and bbbb · · · , and the operation Alt generates the alternation between its
two provided streams.

The syntax of the language is specified by its signature: a set of function
symbols each equipped with a fixed arity. Such a signature is encoded as a functor
which we will call the signature functor. If Σ denotes the signature functor,
then the terms are least fixpoint of Σ, usually denoted as T := µX ,ΣX . The
corresponding types are:

Inductive Σ X :=AS | BS | Alt (x y : X)

1The COQ files can be obtained via http://www.cs.ru.nl/˜kmadlene/adequacy.

http://www.cs.ru.nl/~kmadlene/adequacy

70 GSOS FORMALIZED IN COQ

Inductive T :=app (σ : Σ T)

Here X is a Type, and app is a constructor of T with the type Σ T → T . The
separation of Σ from T will be important in the rest of the chapter. We provide the
function map corresponding to the signature functor as well. This is an instance of
the type-class SFmap (i.e. setoid function map), which will be discussed in more
depth in Section 5.4.1.

Class SFmap (M : Type→ Type) :=
sfmapM :∀ X Y (f : X→ Y),M X→M Y

Instance : SFmap Σ :=
λ X Y (f : X→ Y) x,

match x with
| AS ⇒ AS
| BS ⇒ BS
| Alt x y⇒ Alt (f x) (f y)
end

5.2.1 Operational semantics
To encode the transition relation we also have to represent the behavior of the
system. This again is done with a functor, which we call a behavior functor. The
data type L corresponds to our label set.

Inductive L :=a | b
Definition B X :=L×X

Instance : SFmap B :=
λ A B (f : A→ B) a,

let (l,x) :=a in (l, f x)

We can now define a transition system as a B-coalgebra, i.e. a pair consisting of a
state-space, in this case T , and a structure map of type T → B T . In this chapter
we refer to the structure map as the coalgebra.

Fixpoint op (t : T) : B T :=
sfmapB app (

match t with
| app AS ⇒ (a,AS)
| app BS ⇒ (b,BS)
| app (Alt x y)⇒

5.2 A SIMPLE STREAM LANGUAGE 71

let (l,x′) :=op x in
let (m,y′) :=op y in (l,Alt y′ x′)

end)

One may think of op as a model of the operational semantics of the language
in question (cf. the rules in Figure 5.1), as it specifies for each state what the
next step would be. We can run a term by coiteratively unfolding op, resulting
in a stream of labels. The streams are actually the greatest fixpoint of the present
behavior functor [JR97], usually denoted as νX ,BX . This leads to the following
definitions:

CoInductive ZB := inB (x : B ZB)

CoFixpoint unfoldB ‘(c : X→ B X) (x : X) : ZB :=
inB (sfmapB (unfoldB c) (c x))

Definition run :=unfoldB op

Thus, inB is the constructor of the streams ZB, and has type B ZB→ ZB. We call
run the operational semantics, which is derived from op, the operational model.

In this chapter we will only consider behavior functors B that have a final
coalgebra. The existence of final coalgebras is a subtle matter; in HASKELL it is
possible to define the greatest fixpoint of an arbitrary functor (which acts as the
state-space of the final coalgebra), but in COQ the same definition is illegal due to
the inability of COQ to guarantee the termination of every function in that case.
The same goes for the least fixpoint operator, for the terms. The least and greatest
fixpoint operators in HASKELL-code would be respectively (the argument f being
the functor):

data µ f = µ (f (µ f))

codata ν f = ν (f (ν f))

However, because there is no distinction in HASKELL between finite and infinite
worlds, these operators are exactly the same.2

The structure map of the final coalgebra is called outB:

Definition outB (z : ZB) : B ZB :=
match z with
| inB x⇒ x
end

2In HASKELL, the keywords data and codata are only used to indicate the intended use of the
datatype, but can be interchanged.

72 GSOS FORMALIZED IN COQ

An important property of the final coalgebra is that unfoldB is the only func-
tion that makes the following diagram commute3, and this function is run (=
unfoldB op).

T
unfoldB op //

op

��
(finality)

ZB

outB
��

BT
B (unfoldB op)

// BZB

The intuition behind the above diagram for the concrete behavior functor B for
streams, used in this section, is that splitting a label off the stream generated by
unfolding op is the same as performing one step and unfolding op on the resulting
term.

5.2.2 Denotational semantics
As in [TP97] we consider the denotational semantics as a dual version of the op-
erational semantics. The underlying denotational model actually operates directly
on elements of the semantic domain of our stream language, i.e. the streams ZB.
For the present example this means that it prescribes how the operations of the
language, which receive streams as arguments, yield new streams. The semantic
functions corresponding to each of the operations are:

CoFixpoint denAS : ZB := inB (a,denAS)

CoFixpoint denBS : ZB := inB (b,denBS)

CoFixpoint denAlt (x y : ZB) : ZB :=
match (x,y) with
| (inB (l,x′), inB (,y′))⇒ inB (l,denAlt y′ x′)
end

From the above functions we can define the full denotational model:

Definition den (σ : Σ ZB) : ZB :=
match σ with
| AS ⇒ denAS
| BS ⇒ denBS
| Alt x y⇒ denAlt x y
end

3In the diagrams of this chapter we will adopt the categorical notation for functors by writing
F instead of sfmapF , for some functor F, i.e., we explicitly indicate the instance type, and leave
sfmapF itself implicit. Moreover, we omit parentheses in the notation of types.

5.3 FRAMEWORK 73

In a fashion dual to the operational side, the denotational semantics evaluates a
term, by folding the algebra den over that term.

Fixpoint fold ‘(h : Σ X→ X) (t : T) : X :=
match t with
| app σ⇒ h (sfmapΣ (fold h) σ)
end

Definition eval : T→ ZB := fold den

The terminology is that den is the denotational model, while eval is the deno-
tational semantics. Likewise, there is a unique function making the following
diagram commute, and this function is eval (= fold den).

ΣT
Σ (fold den) //

app

��
(initiality)

ΣZB

den
��

T
fold den

// ZB

5.3 Framework
The adequacy theorem in the case of the simple stream example says that execut-
ing run and eval on the same term yields the same stream. With the definitions
as they stand, a proof of it would proceed by induction on the terms of the stream
language, and would therefore be rather ad hoc. A more structured development
will be laid out in the present section, based on the use of a distributive law to
represent operational rules. From this distributive law we derive both operational
and denotational models.

As we have detailed in the previous section, it is not possible to take arbitrary
fixpoints in COQ due to limitations imposed by its logic. To develop our theory
independent of a particular signature or type of behavior, we will assume the
existence of least/greatest fixpoints with the appropriate properties. That is, the
fixpoints and their properties are parameters of the theory we develop in this
chapter. This is all possible in COQ as proofs and programs are in the same
syntactic class, in true Curry-Howard style. The question is then how to realize
these fixpoints in a fairly generic fashion. We do this for the terms in the present
chapter.

5.3.1 Generic terms
A more general version of T that does not directly depend on a specific signature
cannot be obtained by making T parametric in the signature in COQ, as we have

74 GSOS FORMALIZED IN COQ

explained earlier. Instead, we fix T on the signature Σ, and Σ should have a certain
shape. We will discuss the details of this in Section 5.4.2. To allow for open
terms (used later on to represent meta-variables X in the operational rules) the
constructor var : X→ T X has been added.

Inductive T X := var (x : X) | app (σ : Σ (T X))

T is also called the free monad generated by Σ. It is straightforward to generalize
the fold provided earlier to the new version of T .

Fixpoint fold (k : X→ Y) (h : Σ Y→ Y) (t : T X) : Y :=
match t with
| var x ⇒ k x
| app σ⇒ h (sfmapΣ (fold k h) σ)
end

The fold operation provides a recursive definition principle that avoids explicit
recursion (see e.g. [MFP91]): one only has to specify a mapping of the variables
k : X → Y , and an algebra h : Σ Y → Y . This result is attributed to the following
lemma.

Lemma 2. Let k : X→ Y, and h : Σ Y → Y. Then fold k h is the unique function
making the following diagram commute:

X var //

k
$$

T X

fold k h
��

ΣT X

Σ (fold k h)
��

appoo

Y ΣY
h

oo

The equalities fold k h ◦ var = k and fold k h ◦ app = h · Σ (fold k h) depicted
in the above diagram should be interpreted extensionally. Through the use of
type-classes we have overloaded the standard notion of equality in COQ to be the
extensional equality, and moreover, using equality with respect to custom notions
of the equality that might be defined on the types involved (setoids). See also
Section 5.4.1.

If we choose the empty type (i.e. the type False) for X, then we obtain the
set of closed terms (as in Section 5.2). In that case, the left part of the diagram
can be ignored, and the remaining square says precisely that app : Σ (T False)→
T False is the initial algebra for functor Σ. Observe that the diagram at the end of
Section 5.2 can then be obtained by taking ZB for Y , and den for h.

Finally, it is straightforward to provide a function mapping for T , to turn it into
a functor:

Instance : SFmap T :=
λ X Y (f : X→ Y), fold (var Y ◦ f) (app Y)

5.3 FRAMEWORK 75

5.3.2 Distributive laws
Before we treat the GSOS, we will first consider simple distributive laws, ones that
distribute a functor over another functor. Distributive laws (in the simple format)
are functions Λ : Σ◦B⇒ B◦Σ (i.e. of type ∀X,Σ (B X)→ B (Σ X)) that happen to
be natural transformations (see Section 5.4.1).

We will replace the operational as well as the denotational model introduced
in the previous section with models that are derived from the same distributive law
Λ, which corresponds to the operational rules.

Definition Λ : Σ◦B⇒ B◦Σ :=
λ X σ,

match σ with
| AS⇒ (a,AS)
| BS⇒ (b,BS)
| Alt x y⇒

let (l,x′) := x in
let (m,y′) := y in (l,Alt y′ x′)

end

As a function, Λ takes an operation (an element from the signature) as argument.
In the case of Alt this operation is applied to two arguments that both consist of a
pairing of an action and a variable. This corresponds to the premise of a rule. The
result is a pairing of an action and an operation applied to variables, corresponding
to the target of the conclusion of each rule. The polymorphism in X ensures that
Λ does not depend on a concrete choice of the set of variables. In summary, the
type of Λ says that each operation in the language, as it is applied to behaviors on
the variables, yields a behavior on an operation applied to variables.

5.3.3 Operational and denotational models
In the standard relational approach to operational semantics, the validity of a tran-
sition step is proved by the construction of a derivation tree. The nodes correspond
to applications of the operational rules, and the leafs correspond applications of
the hypotheses.

We can mimic this with the help of the definition principle for terms (the
fold operation) combined with the semantic model. Suppose that we have a map
H : X → B X, representing the behavior environment: the hypotheses about the
variables in the premises. If we encounter an application of an operation, then we

76 GSOS FORMALIZED IN COQ

apply Λ, and if we encounter a variable we apply H. In a diagram,

X var //

H
��

(1)

T X

op H
��

(2)

ΣT X

Σ (op H)

��

appoo

BX
B var

// BT X BΣT X
B app
oo ΣBT X

ΛT X

oo

which concretely is

Definition op ‘(H : X→ B X) : T X→ B (T X) :=
fold (sfmapB (var X)◦H)

(sfmapB (app X)◦Λ (T X))

The denotational model can be obtained in a dual fashion, by unfolding the
semantic model. Assume the existence of a final coalgebra for the behavior B
with state-space ZB and structure map outB.

ΣZB
den //

Σ outB
��

(3)

ZB

outB

��

ΣBZB

ΛZB
��

BΣZB B den
// BZB

Concretely,

Definition den : Σ ZB→ ZB :=
unfoldB (Λ ZB ◦ sfmapΣ outB)

The denotational model operates directly on elements of the semantic domain. It
tells how the operations of the language, applied to denotations, form new denota-
tions. We remark that the hypotheses do not play a role in the denotational model,
but will come into play when we construct the evaluation function eval. Running
a term according to the operational model, and evaluating a term according to the
denotational model is defined in same way as in Section 5.2:

Definition run (H : X→ B X) : T X→ ZB :=
unfoldB (op H)

Definition eval (H : X→ B X) : T X→ ZB :=
fold (unfoldB H) den

5.4 COQ FORMALIZATION 77

The distributivity property of Λ will be needed to prove the adequacy of run and
eval.

There are many sensible rules that do not fit in the format of Λ of this section.
For example, consider the operation Zip of our simple stream language, which
zips two input streams together (see Figure 5.1). This operation differs slightly
from Alt in the sense that at each transition it does not discard the head element
of the second stream. If we try to encode this rule in our semantic model, for
instance by adding the following alternative to Λ:

| Zip x y⇒ let (l,x′) := x in (l,Zip y x′)

then the model does not type check anymore. The main problem is that variables
used on both the left- and right-hand sides should receive a polymorphic type,
which is not the case for the variable y. Also replacing y by a pattern match,
as in the case for Alt will not work because then we have to reconstruct the first
argument of Zip on the right-hand side out of the constituents. In Section 5.5 we
discuss the more liberal GSOS rule format admitting operations like Zip.

5.4 COQ Formalization
In this section we discuss some details of the COQ formalization, and continue the
development of the theory for terms.

5.4.1 Equational reasoning with setoids
Infinite objects, as in most theorem provers, live in a world separate from finite
objects, and do not adhere to COQ’s standard notion of equality. One often works
instead with bisimulations, a weaker notion of equality on infinite objects. COQ

does not support user-defined extensions of its standard notion of equality (i.e.
quotient types) as it would endanger the decidability of type checking. To over-
come this issue, it is common practice to work with setoids, Types packaged with
a user-defined notion of equality and a proof of well-behavedness of the equality.
The commuting diagrams in Section 5.2 use bisimulation as the underlying notion
of equality in the COQ formalization. Finally, setoid morphisms are functions
whose domain and codomain are setoids and respect those equalities.

The recent addition of type-classes to COQ [SO08] enables the use of canon-
ical names for standard mathematical notation. These type-classes are first-class
as they are powered by proof search and implicit arguments. Declaring instances
of the Equiv, Setoid and Setoid Morphism type-classes enables fluent rewriting
modulo setoid equality in proofs. In our development we have tacitly overloaded
the canonical name “=” with setoid equality.

78 GSOS FORMALIZED IN COQ

First, we introduce setoid counterparts for the standard categorical notions of
functor and natural transformation. The setoid functor is taken from the MATH-
CLASSES library [SvdW11]. It consists of an object map M and two classes: a
class SFmap, which is the function map, and a class SFunctor carrying proofs of
the setoid functor axioms.4

Class SFunctor (M : Type→ Type)
‘{∀ ‘{Equiv X},Equiv (M X)} ‘{SFmap M} :={...}

For the full definition of SFunctor we refer to the COQ code. The second argument
lifts a notion of equality on X to a notion of equality on M X. Furthermore, it
carries two sanity properties stating that the object map makes a setoid on X into
a setoid on M X, and that the function map is a setoid morphism in its function
argument (allowing us to rewrite equivalent functions with one another), and the
following two familiar properties about the function map:

sfmapM id = id
sfmapM (f ◦g) = sfmapM f ◦ sfmapM g

Given two object maps M and N, one can define a family of functions:

Notation M⇒ N :=∀ X,M X→ N X

The family of functions η : M ⇒ N is a setoid natural transformation if ηX is a
setoid morphism whenever X is a setoid, and if it satisfies a commutation law:

ηY ◦ sfmapM f = sfmapN f ◦ηX (5.1)

Again for reasons of brevity, we no not include the corresponding type-class
definition SNatural.

5.4.2 Dependent types for generic terms
Attempting to encode terms as the least fixpoint µ of a signature functor as is done
in the HASKELL code in Section 5.2 results in an error in COQ, as such definitions
violate COQ’s syntactic check for positivity, which guarantees termination of
structurally recursive functions.

We bypass this issue by exploiting the fact that signatures of binding-free
languages have a fairly simple structure. That is, a term on such a signature is
essentially a rose tree, in which each parent node has an arbitrary number of child

4Unlike HASKELL, COQ admits variable names starting with an uppercase letter. Furthermore,
the backtick causes COQ to automatically generalize missing variables.

5.4 COQ FORMALIZATION 79

nodes, dictated by the arity of the operation corresponding to the parent node. A
leaf of the tree is either a parent node with zero children nodes, or a variable, if
we consider open terms.

The signature is nothing more than an assignment of an arity to each of the
language’s operations.

Variable Operation : Type
Variable ar : Operation→ nat

Definition Σ X :={x : Operation & vector X (ar x)}

A parent node in the tree is described by a dependent pair, consisting of the
operation x and a vector of length the arity of x (vector is essentially a richly
typed version of list). One can think of the notation “{ & }” as a type-theoretic
variant of set comprehension. Dependent pairs can be crafted using the notation
“(&)”, and projT1, projT2 are the corresponding projections.

The function map for the signature functor is:

Instance : SFmap Σ :=
λ X Y (f : X→ Y) (σ : Σ X),

match σ with
| (s & v)⇒ (s & map f v)
end

The induction principle for T pushes the use of dependent types even further. It is
the basis for the proofs of the Lemmas in Section 5.4.3.

Definition T induction ‘(P : T X→ Type) :
(∀x : X,P (var x))→
(∀x : Σ {t : T X & P t},P (app (sfmapΣ projT1 x)))→∀ t,P t

T induction is essentially a dependently-typed version of fold: we can re-obtain
fold by setting P :=λ ,Y:

Definition fold ‘(k : X→ Y) (h : Σ Y→ Y) : T X→ Y :=
T induction (λ ,Y) k (h◦ (sfmapΣ projT2))

5.4.3 Theory about terms
Now that we have the full definitions in place, we can continue our formalized
treatment of the theory about terms.

Lemma 3. Σ and T are setoid functors.

80 GSOS FORMALIZED IN COQ

The proof of Lemma 3 uses the full dependently-typed induction principle for
T . The full principle has also been used to prove the properties in this section by
induction on the structure of T .

In the remainder of this section we show that T is a monad in the categorical
sense. To this end, we need to show that it has a unit, var in this case, and a
multiplication, namely:

Definition join X : T (T X)→ T X := fold id (app X)

These satisfy the two standard coherence conditions of monads.

Lemma 4. The terms form a monad, i.e. the following identities hold:

joinX ◦ sfmapT joinX = joinX ◦ joinT X

joinX ◦ sfmapT varX = joinX ◦ varT X = id

It is a well-known fact from category theory that the category of Σ-algebras
is isomorphic to the category of algebras for the term monad. These are “plain”
algebras h for the functor T , with two additional properties:

h◦ varY = id
h◦ sfmapT h = h◦ joinY

A T -algebra homomorphism is a homomorphism of the underlying algebra.
We conclude this section by providing an alternative proof principle for open

terms, that differs from Lemma 2.

Lemma 5. Let k : X→ Y and h : T Y → Y such that h is an algebra for the term
monad. Set free k h := fold k (h◦appY ◦ sfmapΣ (varY)). Then free k h is unique in
making the following diagram commute:

X
varX //

k
$$

T X

free k h
��

T T X

T (free k h)
��

joinXoo

Y TY
h

oo

We have now set up a theory for syntax. Similarly, we could develop a theory
for behavior. We do not pursue this goal for two reasons. First, since our presenta-
tion is essentially a deep embedding of SOS rules, most of it hinges on a structured
encoding of the terms. Secondly, one may expect that more variation in the
behavior is desired to model phenomena such as time or probability (see [Bar04];
see also [Kli11] for an overview). Moreover, finality proofs can be tricky to carry
out in COQ due to guardedness restrictions that it puts on corecursive definitions.

5.5 PROVING THE ADEQUACY THEOREM 81

5.5 Proving the Adequacy Theorem
Our approach to prove the adequacy theorem for the GSOS rules is to first carry
it out for the simple rule format. The proof for GSOS follows the same proof
skeleton, but requires some additional intermediate verifications.

5.5.1 Adequacy theorem for rules in simple format
Recall how the operational and denotational models are obtained from a single
semantic model. We combine the diagrams of the operational and denotational
models into the following diagram.

ΣBT X ΣT X ΣZ ΣBZ

T X Z

BΣT X BT X BZ BΣZ

Σ(op H)oo

ΛT X

��

appX

��

op H

��

BappX

//

Σout //

den

��
ΛZ

��

Bden
oo

out

��

Σ(run H) //
Σ(eval H) //

eval H //

run H //

B(run H)
//

X

BX
H��

varX

dd
unfold H

::

BvarXzz B(unfold H)$$

(1)

(2) (3)

The following theorem holds for open terms, which is a mild generalization of
what has been presented in the literature [TP97, Kli11, Bar04].

Theorem 1 (Adequacy).

∀H t,run H t = eval H t.

Proof. Consider the following diagram in the category of B-coalgebras. That is,
the objects are pairs (consisting of the object and the structure map) and the arrows
are coalgebra homomorphisms.

〈X,H〉 varX //

unfold H
$$

〈T X ,opH〉

run H
��

〈ΣT X ,BappX ◦ΛT X ◦Σ(opH)〉

Σ (run H)

��

appXoo

〈Z,out〉 〈ΣZ,ΛZ ◦Σout〉
den

oo

82 GSOS FORMALIZED IN COQ

!a a−→ Done

x→� y l−→ y′

x • y l−→ y′
x l−→ x′

x • y l−→ x′ • y

x l−→ x′

x t y l−→ x′
y l−→ y′

x t y l−→ y′ Done→�

Figure 5.2: Basic process algebra.

Except for the arrow Σ (run H), it is trivial to see that each of the arrows are in
fact coalgebra homomorphisms, as it can be directly read off the complete diagram
above. To show this for Σ (run H), one uses naturality of Λ and the fact that run
is a coalgebra homomorphism. Commutativity of the diagram follows from the
finality of out. The theorem then follows from applying the forgetful functor to
the above diagram and the definition principle used to define eval H.

5.5.2 The GSOS format
Consider the process algebra language of Figure 5.2. The parallel composition
operation “t” and the possibility of a state not having any outgoing transitions
clearly make this a non-deterministic language. We use the fin type family to
define the behavior functor; fin n consists of the first n natural numbers.

Definition B X :={n : nat & fin n→ A × X}
CoInductive cotree :=node : B cotree→ cotree

The object of the corresponding final coalgebra consists of the cotrees.

Lemma 6. cotree is the object of the final coalgebra for the functor B.

As an aside, it may seem more natural to set B X := list (A × X), but one runs
into problems trying to provide a guarded corecursive definition of unfold for that
choice of B.

Note that the sequencing operation “•” does not fit in the simple rule format for
the same reasons as Zip in Section 5.3.3. Moreover, the second rule in Figure 5.2
has a transition to a variable in its conclusion, which is not supported in the simple
format.

The operational rules of basic process algebra can however be encoded in the
GSOS format. Let B be arbitrary and Σ be constrained to the conditions set out in

5.5 PROVING THE ADEQUACY THEOREM 83

Section 5.4.2, and set D X :=X × B X. The abstract GSOS format entails natural
transformations of the following type:5

ρ : Σ◦D⇒ B◦T

The difference with the simple format is that the arguments of each operation are
now pairings consisting of both the variable and the behavior on that variable, and
each rule yields a term.

For reference we include the encoding of the rules of Figure 5.2:

Definition ρ : Σ◦D⇒ B◦T :=
λ X σ,

match σ with
| ! a ⇒ (1 & (λ ,(a,app Done)))
| x t y ⇒ (& merge ([id,var]◦projT2 (π2 x))

([id,var]◦projT2 (π2 y)))
| (,(0 &)) • (,b)⇒ sfmapB var b
| (,b) • (y,) ⇒ sfmapB (λ x′,app (var x′ • var y)) b
| Done ⇒ (0 & case0)
end

Here merge and case0 have the following types:

Definition merge ‘(f : fin n→ X) ‘(g : fin m→ X) : fin (n+m)→ X

Definition case0 (f : fin 0→ Type) (i : fin 0) : f i

5.5.3 From GSOS to distributive laws
Recall that the symmetry of the (co)domains was vital to the proof of the adequacy
theorem. The rules ρ need to undergo a two-step transformation to obtain a
distributive law of T over D. First expand ρ’s codomain:

Definition ρ̃ : Σ◦D⇒ D◦T :=
λ X,〈app X ◦ sfmapΣ (var X ◦π1),ρ〉

To obtain Λ we apply fold.

Definition Λ : T ◦D⇒ D◦T :=
λ X, fold (sfmapD (var X))

(sfmapD (join X)◦ ρ̃ (T X))

5Literature on process algebra often considers just the case where B is the finite power set and
calls that the GSOS format.

84 GSOS FORMALIZED IN COQ

A general proof (included in the COQ development) shows that the definition
principle for terms yields natural transformations. From this fact, together with the
assumption that ρ is a natural transformation, it is straightforward to show that Λ

is natural as well. The obtained distributive law, which distributes the term monad
over the copointed functor D, enjoys more structure than the plain distributive
laws, as we will prove in Proposition 1.

Proposition 1. The following two identities hold:

ΛX ◦ varDX = sfmapD varX

ΛX ◦ joinDX = sfmapD joinX ◦ΛT X ◦ sfmapT ΛX

The first identity says that the law should behave trivially on variables. The
second identity characterizes compositionality of the semantics. Proposition 1
is a key ingredient in the proof of Lemma 7 and Lemma 8. Lenisa, Power and
Watanabe [LPW04] prove that the GSOS format corresponds precisely to a dis-
tributive law of a monad over a copointed functor, but for the adequacy theorem it
is sufficient to show that a GSOS rule implies such a law.

5.5.4 Adequacy theorem for the GSOS format
The proof of the adequacy theorem for GSOS is analogous to the situation in
Theorem 1, but B should be replaced by D, Σ by T , and app by join and entails
more proof obligations due to the richer structure on Λ. We adapt the definitions
of the operational/denotational models and semantics to this new situation. Recall
that we used the definition principle of terms to obtain an operational model from
the plain distributive laws. We repeat this construction for distributive laws that
stem from GSOS rules, with the difference that we use the alternative definition
principle.

Definition opGSOS ‘(H : X→ D X) : T X→ D (T X) :=
free (sfmapD (var X)◦H)

(sfmapD (join X)◦Λ (T X))

As in the proof, we need to verify that each of the relevant arrows are coalgebra
homomorphisms, but for the functor D instead of B. For the arrow corresponding
to join this follows from the following fact:

Lemma 7. sfmapD joinX ◦ΛT X , used in opGSOS, is an algebra for the term monad.

The D-coalgebras are isomorphic to the B-coalgebras, and it is straightforward
to verify that if out is a final B-coalgebra, then 〈id,out〉 is a final D-coalgebra (with

5.6 RELATED WORK 85

the same state-space). Hence, the denotational model for GSOS rules and runGSOS
can be obtained by finality, analogous to Section 5.3.2. We obtain evalGSOS by
making use of the alternative definition principle for terms.

Definition runGSOS (H : X→ D X) : T X→ D (T X) :=
unfoldD (opGSOS H)

Definition denGSOS : T ZD→ ZD :=
unfoldD (Λ ZD ◦ sfmapT outD)

Definition evalGSOS (H : X→ D X) : T X→ D (T X) :=
free (unfoldD H) denGSOS

Recalling Lemma 5, to ensure the uniqueness of evalGSOS, we need to verify the
following fact:

Lemma 8. denGSOS is an algebra for the term monad.

We can now conclude the following:

Theorem 2 (Adequacy for GSOS rules).

∀H t,runGSOS H t = evalGSOS H t.

5.6 Related Work
The work in this chapter is part of a line of research called bialgebraic semantics,
initiated by the work of Turi and Plotkin [TP97]. Bialgebras appear in the present
chapter in the form of diagrams (2) and (3). Hinze and James [HJ11] give a pen
and paper proof of the adequacy theorem based on HASKELL definitions for sev-
eral rule formats, using proof techniques similar to ours. The most powerful rules
distribute a monad over a comonad and also appear in [TP97, Bar04]. Although
these laws provide the most abstract perspective of well-behaved rules, they have
not yet been applied in concrete studies of rule formats [Kli11].

An implementation of Turi and Plotkin’s work has been developed by Hut-
ton [Hut98] in HASKELL and extended for modularity by Jaskelioff, Ghani and
Hutton [JGH11]. Both papers define the terms and and the final coalgebra as the
greatest fixpoint of a functor. Direct translations to COQ are not possible; in this
chapter we have presented an alternative approach based on dependent types.

Niqui [Niq09] extends the class of productive specifications definable in COQ

by developing the λ-coiteration scheme in COQ, based on Bartels’ work [Bar04].
In the further work section of his paper he mentions that adding monadic, pointed
or cofree structure on the bialgebraic nature of λ-coiteration can help to build even
more powerful schemes.

86 GSOS FORMALIZED IN COQ

Aceto et al. [ACGI11] have developed a tool, called the PREG AXIOM-
ATIZER, to prove the bisimilarity of two ground terms written in a language
specified in GSOS extended with predicates. It derives a sound set of axioms
from the GSOS rules, and uses that to prove the bisimulation.

5.7 Conclusions
We have shown how operational and denotational semantics can be obtained from
operational rules in the GSOS format in the theorem prover COQ. Moreover,
we have formally proved the theorem that says that these forms of semantics
are consistent. Our formalization facilitates both formal reasoning about and the
execution of programming language semantics.

Directions of further work would be to add support for variable binding, which
requires the use of a different base category [FPT99] (the present formalization is
based on Type), and further generalization to support different rule formats, as
in [Bar04, HJ11].

CHAPTER 6

Modular Bialgebraic Semantics and Algebraic Laws

Abstract. The ability to independently describe operational
rules is indispensable for a modular description of programming
languages. This chapter introduces a format for open-ended
rules and proves that conservatively adding new rules results in
well-behaved translations between the models of the operational
semantics. Silent transitions in our operational model are truly
unobservable, which enables one to prove the validity of algebraic
laws between programs. We also show that algebraic laws are
preserved by extensions of the language and that they can be
instantiated. The work presented in this chapter is developed
within the framework of bialgebraic semantics.

6.1 Introduction
In order to scale to the complexity of real-world programming languages, a modu-
lar way of describing semantics is highly desirable. When dealing with incremen-
tally constructed languages, one should anticipate future extensions or changes
to the language. Moreover, a concrete program seldomly uses all the constructs
provided by the language. When reasoning about a program it is convenient to
narrow the semantics down to the part of the language which is actually used.
True modularity offers the possibility to build an ad hoc semantics, easing the
construction of correctness proofs.

87

88 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

Mosses [Mos09] advocates to define higher-level language constructs out of
so-called “funcons”, language-independent fundamental programming constructs.
It is highly desirable that algebraic equations between programs are preserved
under the addition of new funcons, since this avoids the repetition of proofs.

The present chapter provides a fundamental perspective on this issue, built
on the framework of Turi and Plotkin’s bialgebraic semantics [TP97] (see also
Chapter 5). One of the advantages of this work is that it can be implemented in a
functional language such as HASKELL as well as in a theorem prover like COQ. In
fact, part of this work has already been formalized within COQ, based on [MS13].

Each operation corresponding to a funcon has a number of defining operational
rules, which may manipulate the state, or invoke an external operation. For
example, the rule for a condition-less loop would be loop x=⇒ seq x (loop x). The
double arrow indicates that the transition is deemed silent, it does not generate an
observable side-effect. To handle two subsequential commands, loop invokes the
external operation seq. This mechanism is comparable to interfaces in object-
oriented languages. Thus, we consider the operational rules corresponding to
some construct as open-ended, empowering true modularity in language descrip-
tions. By commencing with an empty language and then incrementally extending
this with new constructs, a full language is obtained.

Silent transitions are indispensable in providing independent descriptions of
the operations. An alternative version of the above silent transition loop-rule,
which avoids the use of a silent transition, can be defined by performing a “look-
ahead”, i.e.:

x a−→ x′ ` seq x y a−→ seq x′ y
x a−→ x′ ` loop x a−→ seq x′ (loop x).

However, a change in the rule for seq would impact the rule for loop and vice
versa, e.g.:

x a−→ x′ ` seq x y a−→ seq x′ y

x a−→ x′ ` loop x a−→ seq x′ (loop x),

hence these rules depend on each other; this is not a modular semantics. Another
way in which the modularity problem of the look-ahead version of loop manifests
itself is that it requires a separate rule in the case that x is skip, because skip can
make no transition at all.

A distinguished label, ‘⊥’ say, could be used to mimic silent transitions,
but replacing silent transitions by ⊥-transitions does not make them truly un-
observable. For example, loop x, with ⊥-transitions, would not be behaviorally
equivalent to seq x (loop x), unless one resorts to the more complex notion of weak
bisimulations. Finally, rules for silent transitions are often not purely structural.

6.1 INTRODUCTION 89

The rule seq skip x =⇒ x inspects the first argument of the head operation before
it can be applied.

In this chapter we treat structural operational rules and rules for silent transi-
tions as separate classes. A generalization of the categorical interpretation by Turi
and Plotkin [TP97] of the GSOS rule format accommodates the structural rules.
We apply an altered construction of Klin [Kli04], who extends Turi and Plotkin’s
work with silent transitions.

The standard notion of bisimulation between computations expresses that both
computations exhibit the same observational behavior. Unfortunately, standard
bisimulation is not preserved by language extensions [MMR10]. Formal-Hypo-
thesis bisimulations, introduced by De Simone [DS85], take into account that
variables in terms being evaluated may exhibit arbitrary behavior. A pair of FH-
bisimilar (open) terms is called an algebraic law. We prove that our notion of
language extension preserves algebraic laws. Moreover, we show that algebraic
laws can be instantiated, in the sense of [Ren00]. This property eases reasoning
about programs, since it allows program fragments to be replaced by other simpler
fragments, provided these are FH-bisimilar.

In summary, the contributions of this chapter are threefold:

• We introduce a rule format, called “open GSOS”, which enables the modu-
lar description of operational semantics. Moreover, we provide a definition
for conservative extensions of open GSOS rules, and show that there exists
a well-behaved translation between the operational semantics described by
open GSOS rules and the operational semantics described by conservative
extensions of these rules.

• We add support for rules with silent transitions to open GSOS, in such a
manner that silent transitions are truly unobservable while well-behavedness
of the translation between the base and extended operational semantics re-
mains intact.

• We formalize the notion of algebraic laws within the bialgebraic framework,
prove that these laws are preserved through conservative language exten-
sions, and prove that they can be instantiated. This transfers some results
from [MMR10] and [Ren00] to the setting of bialgebraic semantics.

Basic definitions are provided in Section 6.2, followed by three sections (Sec-
tion 6.3, 6.4, and 6.5) corresponding to the above points. Section 6.6 shows how
the resulting operational models can be executed. Related work is discussed in
Section 6.7 and conclusions are drawn in Section 6.8.

90 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

6.2 Preliminaries
This section recalls some basic definitions. A good introduction to the field of
bialgebraic semantics is provided in [Kli11]; further background can be found
in [Jac12].

We shall use the symbols X ,Y, . . . and f ,g, . . . to respectively denote objects
and morphisms in the underlying category, and Greek symbols ψ,φ, . . . : F ⇒ G
to denote natural transformations between functors F and G. Because the work in
this chapter is intended to be verifiable in COQ, we use the category of COQ types
(in which the morphisms are COQ functions) as the underlying category. However,
the work in this chapter is general enough for it to be applicable to other categories
(such as Set). The COQ-like notation x,y : X means that x and y are instances of
type X .

The (open) terms, generated by an endofunctor F , where X acts as the vari-
ables, are the initial solution F∗X to the equation Y ∼= X +FY . This means that
there is an isomorphism κX : F∗X

∼=−→ X +FF∗X , whose inverse is

κ
−1
X = [ηX ,ψX] : X +FF∗X

∼=−→ F∗X ,

i.e. formally ηX := κ
−1
X ◦ κ1 and ψX := κ

−1
X ◦ κ2, where κ1 and κ2 stand for the

left and right injections, respectively, into the coproduct. Thus, terms are either a
variable (and ηX transforms a variable into a term), or an operation over a number
of terms (and ψX transforms that into a term). We will also use an auxiliary
morphism to transform operations into terms:

φ : F ⇒ F∗ := ψ◦Fη

The functor F , called the signature functor, stands for the grammar of the lan-
guage, and is specified by cases, e.g. FX := X2 +X , which we will also denote
as FX := seq (x y : X) | loop (x : X), to directly label each of the cases in the
coproduct. To enhance readability, we will loosely use square brackets [−]F to
indicate that a term should be interpreted as an instance of F∗X . For example, by
[seq x y]F we formally mean φX (seq (ηX x) (ηX y)).

One can show that the functor F∗ is a monad. Recall from Chapter 5 that this
means that F∗ has a unit, η : Id⇒ F∗, and a join operation µ : F∗F∗⇒ F∗ (which
flattens terms over terms), which are both natural transformations (see Chapter 5
for their definitions COQ), and that η and µ are subject to the following conditions:

µ◦F∗µ = µ◦µF∗ (6.1)
µ◦ηF∗ = µ◦F∗η = id. (6.2)

6.3 RULE FORMAT 91

Formally, the terms F∗X are the free monad generated by F , and come with
a principle which says that there is a unique morphism satisfying the following
diagram, for any morphism f : X → Y and algebra g : FY → Y :

X
η //

f
%%

F∗X

fold f g
��

FF∗X
ψoo

F(fold f g)
��

Y FYg
oo

(6.3)

We have called this unique morphism fold f g, to emphasize that this corresponds
to folding over terms, a concept familiar from functional programming (see Chap-
ter 5 for examples in COQ).

F-algebras are morphisms FX → X for some X and functor F . F-algebras
such as ψX play a crucial role in the syntax. Dually coalgebras play a crucial role
for the behavior. A B-coalgebra is a pair 〈X ,c〉, where X is an object, representing
the states of the system and c : X → BX is a morphism capturing the dynamics of
the system. B is the type functor, also called the behavior functor. Sometimes we
will also call c itself a coalgebra, if X is understood from the context.

A relation is a triple 〈R,π1 : R→ X ,π2 : R→ X〉, where R and X are objects in
the underlying category (recall that in the present chapter we consider this to be
the category of COQ types). The notation xRy for x,y : X means that there exists
an instance r : R such that π1 r = x and π2 r = y. The relation 〈R,π1,π2〉 is an
Aczel-Mendler bisimulation relation [AM89, Jac12] between two coalgebras c,d
if there exists a morphism γ such that the following diagram commutes:

X

c
��

R

∃γ
��

π1oo π2 // X

d
��

BX BR
Bπ1

oo
Bπ2

// BX

6.3 Rule Format
In [TP97] it was shown that the operational rules in the GSOS format can be
understood as a natural transformation ρ : FD⇒ BF∗, where D := Id×B. From
Chapter 5 we recall that the left-hand side of the arrow in the type of ρ represents
an operation (from the signature functor), which for each of its argument positions
takes a pair consisting of a variable and the behavior of that variable. The right-
hand side is the result of executing the rule on that operation, which is a behavior
and the resulting term. From ρ one can derive subsequently a distributive law Λρ :

92 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

x a−→ x′ ` seq x y a−→ seq x′ y

seq skip y =⇒ y

seq x skip=⇒ x

loop x =⇒ seq x (loop x)

x a−→ x′ ` if x y z a−→ if x′ y z

if true y z =⇒ y

if false y z =⇒ z

Figure 6.1: Example operational rules.

F∗D⇒ DF∗ and a coalgebra opΛρ : F∗X → BF∗X , which acts as the operational
model.

In order to develop programming language semantics in an incremental fash-
ion, it is useful to be able to define the operations used in the language in isolation,
so that an existing language can be extended with new operations. This also
promotes reuse of pre-defined operations. In order to provide a set of rules in
the GSOS format, according to the above type, one needs to define each of the
operations in the language. Instead, in this section, we provide a generalization of
the GSOS format, which we call “Open GSOS”, enabling independent description
of the semantics of (groups of) operations, which can later be combined in order
to obtain the full language.

6.3.1 Example
As an example, we will explain, in terms of bialgebraics, the semantics of a very
basic programming language, which consists of an if-then-else operation and an
operation to sequence statements. The rules can be found in Figure 6.1 (the reader
should ignore the loop rule for now). The double arrows ‘=⇒’ stand for silent
transitions, and we will ignore these rules until Section 6.4, as they require special
treatment.

We consider labels to be a simplified version of MSOS of Chapter 4. Suppose
that A is a set consisting of labels and set BX := A× X . More specifically, A
could represent all possible state transitions S× S, for some set of states S. The
operations in the rules Figure 6.1 are if and seq. We do not consider skip, true and
false to be operations, instead, we consider these to be values, as they produce no
behavioral meaning (see also [CM13]). When values occur in argument positions
of operations, silent transitions may be triggered, as it is witnessed by the silent
transition rules of seq and if. We will discuss silent transitions in more depth
in Section 6.4. When an operation only has variables on its argument positions
(ruling out e.g. seqskipy), a non-silent transition is made, which can be specified
in terms of GSOS rules ρ : FD⇒ BF∗.

6.3 RULE FORMAT 93

To provide a modular semantics, we define the rules for each operation seper-
ately, starting with seq. We define a signature functor FX := seq (xy : X) = X2,
and then define (ρF)X (for any object X) as follows (recall that F∗ is the free
monad generated by F):

(ρF)X : FDX //
BF∗X

seq 〈x,〈a,x′〉〉 〈y,〈b,y′〉〉
� // 〈a, [seq x′ y]F〉

We can also define the non-silent rule for if in a similar way, for the signature
functor GX := if (xyz : X) = X3, yielding a rule ρG:

(ρG)X : GDX // BG∗X
if 〈x,〈a,x′〉〉 〈y,〈b,y′〉〉 〈z,〈c,z′〉〉

� // 〈a, [if x′ y z]G〉

Starting with a language just consisting of seq, we can extend it with the if
operation by taking the coproduct of the rules as follows, yielding:

(ρF+G)X : (F +G)DX // B(F +G)∗X

κ1 (seq x y)
� // B(ιF∗,(F+G)∗)X ((ρF)X (seq x y))

κ2 (if x y z)
� // B(ιG∗,(F+G∗))X ((ρG)X (if x y z))

In the specification above, κ1,κ2 stand for the left and right injections, respec-
tively, into the coproduct, and ιF∗,(F+G)∗ and ιG∗,(F+G)∗ stand for the “inclusion”
of the terms generated by signature functors F,G respectively, into the terms
generated by the coproduct F +G. We will discuss this inclusion natural transfor-
mation in more depth in the next section.

The above construction with coproducts can be used when each of the opera-
tions, which are defined in separate rules, do not refer to operations outside their
range of definition. If we wish to define a looping operation (i.e. an operation that
causes its argument to be executed indefinitely), using the rule

x a−→ x′ ` loop x a−→ seq x′ (loop x),

then we run into a problem. Say the corresponding bialgebraic GSOS rule would
be ρH : HD⇒ BH∗, where HX := loop (x : X) = X . In that case the rule has a
type-mismatch, because seq is not included in H, although the rule returns a term
which has seq in it. On the other hand, if seq were to be included in H, then there
is a redundant specification of seq in ρH and ρF , which violates modularity. This
situation arises often in modular language design, as operations tend to interact
with one another. As we have explained in the introduction of this chapter, the
way the looping operation is defined above is not modular, we merely use the

94 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

above as an example to illustrate a limitation of the standard type FD⇒ BF∗ of
the GSOS format.

6.3.2 The Open GSOS format
We introduce a generalization of the GSOS rule format which makes a distinction
between the signature whose operations are being defined, the ingoing signature
functor F , and the signature whose operations can be the result of the rule, the
outgoing signature functor G. Recall that K∗ denotes the free monad generated
by some functor K. When F is a signature functor, then F∗X essentially represents
the terms generated by that signature, with variables from X .

Definition 1 (Open GSOS Rules). Suppose that we have functors F,G,B, such
that there exists a natural transformation ιF,G : F ⇒ G, called the inclusion of F
in G. Furthermore, suppose that G∗ is the free monad generated by G. A rule in
open GSOS format is a natural transformation ρ : FD⇒ BG∗, where D := Id×B.

It is possible to slightly generalize the above definition by stipulating that D is
any functor that comes with a natural transformation π : D⇒ Id. The pair 〈D,π〉
is then also called a copointed endofunctor. However, most of the results in this
chapter depend on the assumption that D := Id×B specifically.

As an example, the ingoing signature of the loop operation would be FX :=
loop(x : X), and its outgoing signature would be GX := loop(x : X) | seq (xy : X)
(ignoring previous use of the names F,G).

The intuition behind the natural transformation ιF,G is that it corresponds to
the set inclusion of the operations (function symbols) corresponding to each of
the signatures, and thus any operation in the ingoing signature should be part of
the outgoing signature. Although in most of the examples the inclusion functor
will be pointwise injective, we do not formally require it to be so in this chapter.
We can extend ιF,G to terms, by folding:

(ιF∗,G∗)X : F∗X → G∗X := fold (ηG)X ((ψG)X ◦ ιG∗X),

which yields a monad morphism ιF∗,G∗ : F∗⇒ G∗ (verifying that this is indeed a
monad morphism is left as an exercise for the reader). Likewise we have an inclu-
sion for the behavior functors and the obvious extension to the copointed behavior
functors. When the types are obvious, we will omit the subscripts belonging to ι

(and likewise for η, µ and ψ).
The idea is that one defines rules where the outgoing signature functor has the

minimal set of operations required to define the rule (e.g. for the seq operation the
minimal outgoing signature functor is FX := seq (xy : X), and FX := seq (xy :
X) | if (xyz : X) is not minimal). Then the rule can be included into the full

6.3 RULE FORMAT 95

language by composing it with the inclusion functor (as in the ρF+G example of
the previous section), which is in fact also an Open GSOS rule. The definition of
Open GSOS does not prevent one from not using the minimal set of operations
in the outgoing signature, however, using it that way is unnecessary and non-
modular. Repeatedly extending existing Open GSOS rules with new operations
(by taking coproducts as in the ρF+G example) results in new rules in the Open
GSOS format. Eventually, one should end up with a closed system where the
ingoing and outgoing signature functors are equal, in which case it is in the
original GSOS format.

Definition 2. Suppose that there exists a natural transformation ι : F ⇒ G for
signature functors F,G. An open distributive law of F∗,G∗ over the functor D :=
Id×B is a natural transformation Λ : F∗D⇒ DG∗, subject to the following three
coherence conditions:

D
ηD +3

Dη �#

F∗D

Λ

��
DG∗

F∗F∗D F∗Λ +3

µD

��

F∗DG∗
ΛG∗ +3 DG∗G∗

Dµ
��

F∗D
Λ

+3 DG∗

F∗D Λ +3

F∗π1
��

DG∗

(π1)G∗
��

F∗
ι
+3 G∗

From left to right, the first condition says that the law should behave trivially on
variables, the second condition characterizes the compositionality of the seman-
tics, and the third condition says that the first component of the result is essentially
the input, included into G∗.

Proposition 2. There exists a map ρ 7→Λρ, which is a one-to-one correspondence
between natural transformations ρ : FD⇒ BG∗ and open distributive laws Λρ :
F∗D⇒ DG∗.

Proof. First, define the auxiliary morphisms

ψ̃

FD
F(η◦π1)
=====⇒ FF∗

ψ
=⇒ F∗

and

ρ̃
FD

ρ
=⇒ BG∗

FD
〈ψ̃,ρ〉
===⇒ F∗×BG∗

ιF∗,G∗×id
======⇒ DG∗

.

From an open GSOS rule ρX we obtain a morphism, which we will later prove to
be an open distributive law, by folding:

Λ
ρ

X : F∗DX → DG∗X := fold (D(ηG)X) (D(µG)X ◦ ρ̃G∗X).

96 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

We can show that B(µG)X ◦ (π2)G∗X ◦Λ
ρ

X ◦ φDX ◦FD(ηG)X is the inverse of the
above. First, we calculate:

Λ
ρ

X ◦φDX = Λ
ρ

X ◦ (ψF)DX ◦F(ηF)DX

= D(µG)X ◦ ρ̃G∗X ◦FΛ
ρ

X ◦F(ηF)DX

= D(µG)X ◦ ρ̃G∗X ◦F(Λ
ρ

X ◦ (ηF)DX)

= D(µG)X ◦ ρ̃G∗X ◦FD(ηG)X

= D(µG)X ◦DG∗(ηG)X ◦ ρ̃G∗X

= D((µG)X ◦G∗(ηG)X)◦ ρ̃G∗X

= D(id)◦ ρ̃G∗X

= ρ̃G∗X .

This leaves us with:

B(µG)X ◦ (π2)G∗X ◦ ρ̃G∗X ◦FD(ηG)X = B(µG)X ◦ρG∗X ◦FD(ηG)X

= B(µG)X ◦BG(ηG)X ◦ρX

= B((µG)X ◦ (ηG)X)◦ρX

= B(id)◦ρX

= ρX ,

which proves our claim that inverse operation indeed results in ρX .
Now, we verify that Λρ is an open distributive law. The first coherence con-

dition holds by the definition of Λρ. The verification of the second condition
is entirely analogous to Lemma 3.5.2i in [Bar04]. In order to verify the third
coherence condition for Λρ, we show that the next two diagrams commute. We do
so by applying induction on the terms, i.e. (6.3).

First, consider the following commuting diagram:

D
ηD +3

π1

��

F∗D

F∗π1
��

FF∗D
ψDks

FF∗π1
��

Id

η

!)

η +3 F∗

ι

��

FF∗
ψks

Fι

��
G∗ GG∗

ψ
ks FG∗

ιG∗
ks

6.3 RULE FORMAT 97

Now, consider the following diagram:

D
ηD +3

Dη !)
π1

��

F∗D

Λρ

��

FF∗D
ψDks

FΛρ

��
DG∗

(π1)G∗
��

DG∗G∗
Dµks

µ◦(π1)G∗G∗

t|

FDG∗
ρ̃G∗ks

F(π1)G∗
��

Id
η

+3 G∗ GG∗
ψ

ks FG∗
ιG∗

ks

Everything but the bottom right pentagon commutes trivially (the top right pen-
tagon holds per definition of Λρ). Note that by using the definition of ρ̃, we can
split up the pentagon as follows:

DG∗G∗

(π1)G∗G∗
��

FDG∗
ρ̃G∗ks

ψ̃G∗t|
F(π1)G∗

��

G∗G∗

µ
��

F∗G∗
(ιF∗,G∗)G∗ks

G∗ GG∗
ψ

ks FG∗
(ιF∗,G∗)G∗
ks

The bottom region follows from the commutativity of the following diagram, in
which we have unfolded the definition of ψ̃ := ψ◦F(η◦π1):

F∗G∗

ιG∗

��

FF∗G∗
ψG∗ks

FιG∗
��

FG∗G∗

ιG∗G∗

��

id

FDG∗

F(π1)G∗
��

G∗G∗

µ
��

GG∗G∗

Gµ
��

ψG∗ks FG∗G∗

Fµ
��

ιG∗G∗
ks FG∗

id

FηG∗ks

FηG∗

ck

G∗ GG∗
ψ

ks FG∗
ιG∗

ks

This completes the proof.

In the case that D := Id×B, then any open distributive law Λ (regardless of
whether it is obtained from an open GSOS rule following the above procedure or
not) induces an operational model, which can be defined as follows:

98 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

opΛ

X h−→ BX

F∗X
F∗〈id,h〉−−−−−→ F∗DX ΛX−−→ DG∗X

(π2)G∗X−−−−−→ BG∗X
.

Thus, the operational model takes an environment h (hypotheses about the be-
havior of variables) and maps it over the terms, and then applies the distributive
law. The projection π2 leaves us with the resulting behavior. Lemma 11 below
provides an alternative way to define the operational model which does not require
the specific assumption that D := Id×B.

We will now prove compositionality of the operational model, a well-known
property of bialgebraic semantics. The proof makes use of the second coherence
condition of distributive laws as a key property. First, we will need an auxiliary,
slightly modified version of opΛ. This is a necessity due to the possible difference
between ingoing and outgoing signature functors; when F =G and (ιF∗,G∗)X = id,
the definition below coincides with opΛ.

õpΛ

F∗X h−→ BG∗X

F∗F∗X
F∗〈(ιF∗,G∗)X ,h〉−−−−−−−−−→ F∗DG∗X

ΛG∗X−−−→ DG∗G∗X
(π2)G∗G∗X−−−−−−→ BG∗G∗X

.

Lemma 9 (Compositionality). The following diagram commutes:

F∗F∗X
õpΛ (opΛ h) //

µX

��

BG∗G∗X

BµX

��
F∗X

opΛ h
// BG∗X

Proof. We prove that the following diagram commutes:

F∗F∗X
(F∗)2〈id,h〉//

µX

��

F∗〈ι,opΛ h〉

��

õpΛ (opΛ h)

��

(1)

(4)

F∗F∗DX
F∗ΛX //

µDX

��
(2)

F∗DG∗X
ΛG∗X // DG∗G∗X

DµX

��

(π2)G∗G∗X//

(3)

BG∗G∗X

BµX

��
F∗X

F∗〈id,h〉
//

opΛ h

OOF∗DX
ΛX

// DG∗X
(π2)G∗X

// BG∗X

6.3 RULE FORMAT 99

Region (1) follows by naturality of µ, region (2) by the second condition of open
distributive laws, region (3) by naturality of π, region (4) follows by the third
coherence condition of Λ (for the first projection of Λ) together with the definition
of opΛ (for the second projection of Λ). The remaining two regions follow by
definition.

In light of Proposition 2, it is also possible to derive the operational model
directly from a GSOS rule by using fold. We will need the following lemma in
Section 6.5.2.

Lemma 10. Given morphisms k : X → Z,h : F(Y ×Z)→ Y and g : F∗X → Y for
some X ,Y,Z, there exists a unique morphism f that makes the diagram commute:

X
ηX //

k
��

F∗X

f
��

FF∗X
ψXoo

F〈g, f 〉
��

Z F(Y ×Z)
h

oo

Proof. Remark that h◦F〈g, f 〉= h◦F(g× id)◦F〈id, f 〉. Then apply the structural
recursion theorem with accumulators, i.e. Theorem 5.1 in [TP97].

Lemma 11. The operational model opΛρ h, where the distributive law is obtained
from a GSOS rule ρ, is equivalent to the unique morphism op′ρ h in following the
diagram:

X
ηX //

h
��

F∗X

op′ρ h
��

FF∗X
ψXoo

F〈ιX ,op′ρ h〉
��

BX
BηX
// BG∗X BG∗G∗X

BµX
oo FDG∗X

ρG∗X
oo

Proof. Consider the following expansion of opΛρ:

X
ηX //

〈id,h〉
��

F∗X

F∗〈id,h〉
��

FF∗X
ψXoo

FF∗〈id,h〉
��

DX
ηDX //

π2

��

DηX ""

F∗DX

Λ
ρ

X
��

FF∗DX

FΛ
ρ

X

��

ψDX
oo

DG∗X

π2

��
BX

BηX
// BG∗X BG∗G∗X

BµX
oo FDG∗X

ρG∗X
oo

100 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

The triangle commutes by the first coherence condition of Λρ, the rest follows by
definition. Since the above diagram commutes, we can conclude by Lemma 10
that the operational models are equivalent.

6.3.3 Operational conservative extensions
In this section we will consider two Open GSOS rules, the base language, and the
extended language. As a convention, we will write F+,G+ for the in- and outgoing
signatures (terms) of the extended language, respectively, and B+ for the behavior
functor of the extension. Going back to the example in Section 6.3.1, B+ could
be A+×X , where A+ is a larger set of labels, extended with new side-effects. An
example of this would be an extension for catching exceptions, in which case the
extended label set needs to encode changes to the exception state.

Assumption 1. We will assume in the rest of this chapter that the signature,
behavior and copointed behavior functors of the base and extended language are
chosen in such a way that there exist natural transformations ιF,F+, ιG,G+ , and
ιB,B+ . Moreover, we require that the signature inclusion natural transformations
commute as follows:

F
ι +3

ι

��

F+

ι

��
G

ι
+3 G+

It is easy to prove that the above diagram extends to the free monads generated
by the signature functors. We also have the obvious inclusion ιD,D+ : D⇒ D+ :=
id× ιB,B+ . Finally, we remark that G and F+ are not necessarily the same, as G
may refer to operations that are not (yet) defined by the extension.

We call an extension conservative when the base language, as included in the
extended language, retains its original behavior (see also [AFV99] for background
information):

Definition 3. Let ρ : FD⇒ BG∗ and ρ+ : F+D+⇒ B+G∗+ be Open GSOS rules.
Then ρ+ is a conservative rule extension of ρ if the diagram below holds.

FD

ρ

��

ιD +3 F+D
F+ι +3 F+D+

ρ+

��
BG∗

Bι

+3 BG∗+ ιG∗+

+3 B+G∗+

6.3 RULE FORMAT 101

Let Λ : F∗D⇒ DG∗ and Λ+ : F∗+D⇒ D+F∗+ be natural transformations. Then
Λ+ is a conservative (open) distributive law extension of Λ if the diagram below
holds.

F∗D

Λ

��

ιD +3 F∗+D
F∗+ι

+3 F∗+D+

Λ+

��
DG∗

Dι

+3 DG∗+ ιG∗+

+3 D+G∗+

In the rest of this chapter we will omit the word “conservative”, as everything we
do in this chapter is in this spirit.

Proposition 3. If ρ+ is an extension of ρ, then Λρ+ is an extension of Λρ.

Proof. The proof proceeds by induction on the terms. At the core of the induc-
tion proof, one is required to show that ρ̃′U ′ is an extension of ρ̃G∗ (recall from
Proposition 2 that ρ̃ is used as an intermediate step to obtain the distributive law
Λρ from a rule ρ). This can be proved by considering the two cases where we
post-compose the equality to be proved with the projections π1 and π2. In the first
case, the commutativity can be proved making use of Assumption 1. In the second
case, one makes use of the assumption that ρ′ is an extension of ρ. The full proof
has been carried out in COQ.

Proposition 4. Suppose that Λ+ is an extension of Λ. Let h : X→BX be arbitrary,
and fix h+ := (ιB,B+)X ◦h. Then it holds that opΛ+

is an extension of opΛ, i.e.:

F∗X

opΛ h

��

ιX // F∗+X

opΛ+
h+

��
BG∗X

BιX
// BG∗+X

ιG∗+X
// B+G∗+X

102 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

Proof. We prove that the following diagram commutes.

F∗X

F∗〈id,h〉
��

ιX //

(1)

F∗+X

F∗+〈id,h+〉
��

F∗+〈id,h〉
ww

F∗DX
ιDX

//

ΛX

��
(2)

F∗+DX
F∗+ιX

// F∗+D+X

(Λ+)X

��
DG∗X

DιX
//

(π2)G∗X

��

DG∗+X
ιG∗+X

//

(π2)G∗+X

��

D+G∗+X

(π2)G∗+X

��
BG∗X

BιX
// BG∗+X

ιG∗+X
// B+G∗+X

Region (1) follows by naturality of ιF∗,F∗+ , the triangle follows using the definition
of ιD,D+ , region (2) follows from Proposition 3, and the two squares at the bottom
follow from the naturality of π2.

6.4 Silent Transitions
Perhaps the most straightforward way to represent silent transitions is by mak-
ing them an option in the behavior, i.e. Id+B, so that left side means that the
program made a silent transition, and the right side means that a step was made
with “regular” behavior. However, the problem with this approach is that silent
transitions are made explicit, which can lead to some undesirable results. For
example, the terms seq skip x and x, although intuitively representing the same
thing, have different semantics. With the above choice for the behavior functor,
silent transitions are not truly unobservable. This section introduces a modified
construction of Klin [Kli04], which develops distributive laws and operational
models with truly unobservable silent transitions.

The approach we take in this section is to merge the rules of silent transition
rules with open distributive laws, yielding a new open distributive law, from which
an operational model with truly unobservable silent transitions is obtained. The
approach makes use of the existence of a least fixpoint, and we will therefore need
to assume that the underlying category is CPPO-enriched and that all morphisms
are strict (in addition to the usual properties of the underlying category as required
by the bialgebraic framework). A category is CPPO-enriched when its homsets,
say H, are CPPOs (these are (small) posets with a least element, which are closed
under LUBs ‘

⊔
’ and omega chains), and that composition is continuous in both

arguments. A morphism f is strict when both operations f ◦ and ◦ f preserve

6.4 SILENT TRANSITIONS 103

bottom elements. When all morphisms in the underlying category are strict, then
a natural transformation ⊥ between any two functors exists which consists of the
collection of bottom elements of the homsets.

An important fact that will be used in this section is Tarski’s theorem, which
asserts that for every continuous map Ψ : H→H, if Ψ f > f , then the least fixpoint
of Ψ above f exists, and it is given by Ψ∗ f :=

⊔
n∈N Ψn f .

The examples in this section are aimed at the category CPPO⊥, in which the
objects are CPPOs and the morphisms are continuous strict functions.

6.4.1 Silent transitions as unfolding rules
In this section we consider rules for silent transitions to be a natural transforma-
tion r0 : H ⇒ F∗H∗ (where F and H are signature functors), which sends each
operation to the term corresponding to the right-hand side of the silent transition.

Let us provide some examples. Set FX := seq(xy : X), and set HX := loop(x :
X), the signature functor for the looping operation. For the looping operation,
we define r0

H as follows (the H subscript indicates that it represents the silent
transitions belonging to the operations in H):

(r0
H)X : HX //

F∗H∗X
loop x

� // [seq x [loop x]H]F

Thus, a silent transition made by loop x is turned into a sequencing of its argument
x with loop x.

The mapping for seq can be defined with the help of an auxiliary functor FV :=
F(V + Id), where V := skip (= 1) stands for the coproduct of all values that occur
on the left-hand side of silent transition rules for seq, which is only skip in this
case. We can define r0

FV
for all objects X as follows:

(r0
FV
)X : FV X // F∗F∗V X

seq (κ2 x) (κ2 y)
� // [seq [x]FV [y]FV]F

seq (κ1 skip) (κ2 y)
� // [[y]FV]F

seq (κ2 x) (κ1 skip)
� // [[x]FV]F

seq (κ1 skip) (κ1 skip)
� // ⊥

Note that the free monad generated by FV consists of the terms in which each value
is preceded by an operation. We have deliberately avoided using the coproduct
F +V as the signature functor, as that would have required us to consider skip to
have computational behavior (however, it is easy to prove that F∗V +V ∼=(F+V)∗).

104 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

The following definitions show how, by making use of Tarski’s least fixpoint
construction, the above rules can be (infintely) unfolded. We start off by obtaining
a single-step unfolding of a term H∗ from r0 (recall from Section 6.2 that φF :=
ψF ◦FηF).

Definition 4. Let F,H be arbitrary signature functors and assume a natural trans-
formation r0 : H⇒ F∗H∗ such that (recall that φF : F ⇒ F∗ := ψF ◦FηF):

r0 ◦ ιF,H = F∗ηH ◦φF .

A regular unfolding rule is a natural transformation induced by r0 as follows:

r
H r0

=⇒ F∗H∗

H∗ κH==⇒ Id+HH∗
ηF+(r0)H∗======⇒ F∗+F∗H∗H∗

[F∗ηH ,F∗µH]
========⇒ F∗H∗

.

The condition on r0 essentially means that any operations that have no defined
silent transitions should be left untouched. Let us verify that this holds for seq as
an example:

seq x y
_

(ιF,FV)X

��

� (φF)X // [seq x y]F_

F∗(ηFV)X

��
seq (κ2 x) (κ2 y) �

(r0
FV

)X

// [seq [x]FV [y]FV]F

The next step is to define the (infinite) unfolding r from r (recall that ⊥ below
is the collection of bottom elements of all homsets).

Definition 5. The natural transformation v : H∗⇒ Id := [id,⊥]◦κH is called the
variable classifier. The infinite unfolding of r is defined (for any object X) as:

rX : H∗X → F∗X := Φ
∗
X (ηX ◦ vX),

which is a least fixpoint of the auxiliary function Φ:

Φ
H∗

f
=⇒ F∗

H∗ r
=⇒ F∗H∗

F∗ f
==⇒ F∗F∗

µ
=⇒ F∗

.

The variable classifier is used to query whether a given term is a variable. One
can show that the above fixpoint rX is well-defined in a CPPO-enriched category,
and that r is a natural transformation, see [Kli04].

We compute a few examples based on the silent rules earlier in this section:

6.4 SILENT TRANSITIONS 105

• r [seq skip (seq skip x)]FV = [x]F ;

• r [seq skip skip]FV =⊥ (because seq skip skip has no rule);

• r [loop x]H = [seq x (seq x (seq x . . .))]F

Note that r cannot be applied directly to a value, e.g. r (skip) is not well-defined,
because FV = F(V + Id) enforces that values are always preceded by an operation.

Lemma 12 (Klin [Kli04]). Let F and H be signature functors and r : H∗⇒ F∗ be
an infinite unfolding rule as in Definition 5. Then r ◦ηH = ηF .

Lemma 13 (Klin [Kli04]). Let F and H be signature functors. Any infinite
unfolding r : H∗⇒ F∗ obtained, using Definition 5, from a regular unfolding rule
r : F∗⇒ F∗H∗ is a monad morphism.

We incorporate the infinite unfolding into a distributive law by setting:

Λ
r

H∗D rD=⇒ F∗D Λ
=⇒ DG∗

.

Proposition 5. Let r be as in Lemma 13. Then Λr is an open distributive law.

Proof. It is obvious that Λr is natural, as it is a composition of two natural tran-
formations. We will verify the three conditions of open distributive laws.

The first condition follows from

Λ
r ◦ (ηH)D = Λ◦ rD ◦ (ηH)D

= Λ◦ (ηF)D

= DηG,

by making use of Lemma 12, and the first coherence condition of Λ.
For the second condition, consider the following diagram, while expanding

the definition of Λr:

H∗H∗D
H∗rD +3

µD

��

(1)

H∗F∗D H∗Λ +3

rF∗D
��

(2)

H∗DG∗

rDG∗

��
F∗F∗D F∗Λ +3

µD

��
(3)

F∗DG∗
ΛG∗ +3 DG∗G∗

Dµ
��

H∗D
rD

+3 F∗D
Λ

+3 DG∗

106 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

Region (1) commutes due to r being a monad morphism, region (2) commutes by
the naturality of r, and region (3) commutes by the second coherence condition of
Λ.

We now prove the third condition. We claim that ιF∗,G∗ ◦ r is a valid inclusion
morphism. Making use of naturality of r and the third coherence condition of Λ

we can see that the following diagram commutes:

H∗D
rD +3

H∗π1
��

(nat.)

F∗D Λ +3

F∗π1
��

DG∗

(π1)G∗
��

H∗
r

+3 F∗
ι

+3 G∗

This proves the third condition and thereby completes the proof.

6.4.2 Unfolding rule extensions
In this section we define what extensions of unfolding rules are and prove an ex-
tension theorem for operational models based on unfolding rules, a generalization
of Proposition 4. A corollary of this theorem is that the operational model opΛr is
an extension of the operational model opΛ, i.e. adding rules for silent transitions
is a proper extension of a pre-existing set of GSOS rules.

Throughout this entire section, H,H+,F,F+,G and G+ are signature functors,
and B and B+ are behavior functors. As in Assumption 1, we assume the existence
of the usual inclusion functors.

Definition 6. Suppose that we have unfolding rules r : H∗⇒F∗H∗ and r+ : H∗+⇒
F∗+H∗+. Then r+ is an unfolding rule extension of r if the following condition is
satisfied:

H∗

r

��

ι +3 H∗+

r+
��

F∗H∗
F∗ι

+3 F∗H∗+ ιH∗+

+3 F∗+H∗+

Lemma 14. Let vF : F∗ ⇒ Id and vH : H∗ ⇒ Id be variable classifiers. Then
vH ◦ ιF∗,H∗ = vF .

Proof. The proof follows from the following derivation:

vH ◦ ιF∗,H∗ = [id,⊥]◦κH ◦ ιF∗,H∗

= [id,⊥]◦ (id+(ιF,H ◦FιF∗,H∗))◦κF

= [id,⊥]◦κF

= vF .

6.4 SILENT TRANSITIONS 107

Note that the second step follows by the definition of ιF∗,H∗ .

Lemma 15. Suppose that r : H∗⇒ F∗ and r+ : H∗+⇒ F∗+ are infinite unfolding
rules, obtained from the unfolding rules respectively r : H∗ ⇒ F∗H∗ and r+ :
H∗+⇒ F∗+H∗+, and suppose that r+ is an extension of r. Then r+ ◦ ιH∗,H∗+ = ιF∗,F∗+ ◦
r.

Proof. We proceed by fixpoint induction on Φ (recall Definition 5).

Base case. Making use of Lemma 14 in the second step:

ηF+ ◦ vH+ ◦ ιH∗,H∗+ = ηF+ ◦ vH

= ιF∗,F∗+ ◦ηF ◦ vH .

Induction step. Assume that (ιF∗,F∗+)X ◦ f = g◦ (ιH∗,H∗+)X for some f : H∗X →
F∗X and g : H∗+X → F∗+X . Now consider the following diagram:

H∗X
ιX //

rX

��

Φ f

//

(1)

(3)

H∗+X

(r+)X

��

Φg

oo

(2)

F∗H∗X
F∗ιX //

F∗ f
��

(4)

F∗H∗+X
ιH∗+X

//

F∗g
��

(5)

F∗+H∗+X

F∗+g

��
F∗F∗X

F∗ιX

//

µX

��
(6)

F∗F∗+X
ιF∗+X

// F∗+F∗+X

µX

��
F∗X

ιX
// F∗+X

Regions (1) and (2) follow from the definition of Φ, region (3) is the assumption
of this lemma, region (4) is the induction hypothesis, region (5) follows from the
naturality of ιF∗,F∗+ , and region (6) follows from the fact that ιF∗,F∗+ is a monad
morphism.

This completes the proof.

Theorem 3 (Extension). Let Λ+ : F∗+D+ ⇒ D+G∗+ be an open distributive law
which is an extension of Λ : F∗D⇒ DG∗, and suppose that the unfolding rule
r+ : H∗+⇒ F∗+H∗+ is an extension of r : H∗⇒ F∗H∗. Then op(Λ+)

r+ is an extension
of opΛr .

108 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

Proof. As in Proposition 4 assume arbitrary h : X→BX , and set h+ := (ιB,B+)X ◦ h.
We prove the theorem by showing that everything in the following diagram com-
mutes:

H∗X
ιX //

rX

��
opΛr h

//

(1)

H∗+X

r+X

��
op(Λ+)r+ h+

oo

F∗X
ιX

//

opΛ h

��

F∗+X

opΛ+
h+

��
BG∗X

BιX
// BG∗+X

ιG∗+X
// B+G∗+X

Region (1) commutes by Lemma 15; the other three regions commute by Proposi-
tion 4. Note that for the two side regions we instantiate ιH∗,F∗ with r and r+. This
is permitted, as the only requirement about ιH∗,F∗ by Proposition 4 is that it is a
natural transformation.

Corollary 1. Suppose that Λ : F∗D⇒ DG∗ is an open distributive law and that
r+ : H∗+⇒ F∗H∗+ is a regular unfolding rule. Then opΛr+ is an extension of opΛ.

Proof. Set r : F∗ ⇒ F∗F∗ to be [ηF∗ ◦ η,φF∗] ◦ κ. It then follows that r = id,
see Klin [Kli04, p.29], and therefore opΛr h = opΛ h for any h : X → BX . Because
r+ is regular, from Lemma 9 in [Kli04] it follows that r+ is an extension of r, i.e.:

F∗
ι +3

r

��

H∗+

r+
��

F∗F∗
F∗ι

+3 F∗H∗+

Using the above two observations, from Theorem 3 it then follows that opΛr+ is
an extension of opΛ (instantiating H = F , F+ = F , G+ = G, and B+ = B).

6.5 Algebraic Laws
In favor of scalability, it is desirable that bisimulation relations that were es-
tablished in a base language also hold in any extension of the base language,
because this prevents one from having to redo the arduous task of re-verifying
each bisimulation relation in the extended language. However, whether this holds
depends on the precise definition of bisimulation one chooses to work with.

6.5 ALGEBRAIC LAWS 109

A straightforward variation of the standard notion of bisimulation would be to
demand that all substitutions of variables with closed terms are again bisimula-
tions, this is also called Closed-Instance bisimulation (CI-bisimulation). It turns
out that CI-bisimulations are not preserved by language extensions. Counterex-
amples pointing out this fact can be found in [MMR10].

FH-bisimulations, introduced by De Simone [DS85], are more general than
CI-bisimulations and do take into account that the variables of the terms in ques-
tion may exhibit arbitrary behavior. FH-bisimulations have been studied in the
context of transition systems, but not in the context of coalgebras. We introduce
FH-bisimulations here, adapted to our coalgebraic setting. An important way in
which FH-bisimulation differs from the standard notion of bisimulation is that
FH-bisimulations require the state-space to consist of terms, and that the coal-
gebras are operational models. It was proved by Mosses et al. [MMR10] that
FH-bisimulations are indeed preserved by conservative language extensions; we
will prove the same result in our coalgebraic setting in Section 6.5.1.

Definition 7 (Extended FH-bisimulation). Let Λ : FD ⇒ DG be an open dis-
tributive law. A relation 〈R,π1,π2〉, where π1,π2 : R→ F∗X, is an extended FH-
bisimulation relation if for every environment h : X→BX, there exists γh : R→BR,
called the B-structure, such that the following diagram commutes:

F∗X

opΛ h
��

R

γh

��

π1oo π2 // F∗X

opΛ h
��

BG∗X BF∗X
BιX

oo BR
Bπ1
oo

Bπ2
// BF∗X

BιX

// BG∗X

When the set of rules is closed, i.e. F = G, and (ιF∗,G∗)X = id, then the
above diagram can be read as an Aczel-Mendler bisimulation. If additionally
we consider the terms to be closed, then the above definition coincides with the
standard definition of a bisimulation relation R on the coalgebra opΛ. Since it is
possible that F = G, but (ιF∗,G∗)X 6= id, we introduce a technical variation:

Definition 8 (FH-bisimulation). Let Λ : FD⇒DF be a(n) (open) distributive law.
A relation 〈R,π1,π2〉 with π1,π2 : R→ F∗X is an FH-bisimulation when for all
h : X → BX, 〈R,π1,π2〉 is an Aczel-Mendler bisimulation for the coalgebra opΛ h.
We say that the terms t,u : F∗X are FH-bisimilar if there exists an FH-bisimulation
relation R such that t Ru.

Only Theorem 4 in this section will involve extended FH-bisimulations, the other
results are about FH-bisimulations.

Since FH-bisimulations relate terms, we call a pair of such terms an algebraic
law. Examples of algebraic laws can be found by unfolding silent transition rules:

110 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

seq skip x = x and loop x = seq x (seq x ...). The following proposition formalizes
this.

Proposition 6. Let r : H∗ ⇒ F∗ be an infinite unfolding rule (with H and F as
in Section 6.4), and Λ : F∗D⇒ DH∗ be an open distributive law. Then for any
t : H∗X, it holds that t and (ιF∗,H∗)X (rX t) are FH-bisimilar, i.e. every term is
FH-bisimilar to its infinite unfolding.

Proof. Set
R := {〈t,(ιF∗,H∗)X (rX t)〉 | t : H∗X}.

We claim that 〈R+H∗X , [π1, id], [π2, id]〉 is an FH-bisimulation (in the category
Set, the corresponding relation would be the union of R with the reflexive rela-
tion). This claim implies the present proposition.

The proof proceeds by considering each side of the coproduct as a separate
case. The right-hand side is easy: for any h : X → BX , take γh = Bκ2 ◦opΛ h to be
the B-structure. This leaves us with the left-hand side of the coproduct.

We claim that

γh
R

π1−→ H∗X
opΛr h−−−−→ BH∗X

Bκ2−−→ B(R+H∗X)

is a valid B-structure for the R-case. We verify the left-hand side of the FH-
bisimulation diagram:

B[π1, id]◦ γh = B[π1, id]◦Bκ2 ◦opΛr h◦π1

= B([π1, id]◦κ2)◦opΛr h◦π1

= B(id)◦opΛr h◦π1

= opΛr h◦π1.

For the right-hand side we first recall two facts:

• opΛr h = opΛ h◦ rX (by Proposition 4, see also Theorem 3);

• rX ◦ (ιF∗,H∗)X = id (Lemma 13 in [Kli04]).

6.5 ALGEBRAIC LAWS 111

Using these facts, we can prove:

B[π2, id]◦ γh = B[π2, id]◦Bκ2 ◦opΛr h◦π1

= B([π2, id]◦κ2)◦opΛr h◦π1

= B(id)◦opΛr h◦π1

= opΛr h◦π1

= opΛ h◦ rX ◦π1

= opΛ h◦ rX ◦ (ιF∗,H∗X)X ◦ rX ◦π1

= opΛ h◦ rX ◦π2

= opΛr h◦π2.

This validates the claim and therefore the proof is completed.

6.5.1 Preservation of algebraic laws
We now prove that algebraic laws are preserved by conservative language exten-
sions. This result makes use of Theorem 3, which says that operational behavior is
preserved by conservative extensions. As in Mosses et al. [MMR10], we will need
the assumption that the extension adds no new behavior, meaning that the behavior
functors of the base and extended language are the same. Counterexamples that
show why the theorem without this assumption fails can be found in [MMR10].

Theorem 4 (Preservation). Suppose that Λ+ : FD⇒ DG is a conservative exten-
sion of Λ : F+D⇒ DG+. Furthermore, suppose that 〈R,π1,π2〉 is an extended
FH-bisimulation relation on opΛ, where π1,π2 : R→ F∗X. Then

〈R,(ιF∗,F∗+)X ◦π1,(ιF∗,F∗+)X ◦π2〉

is an extended FH-bisimulation on opΛ+
.

Proof. Let h : X → BX be arbitrary. The theorem assumes that 〈R,π1,π2〉 is an
extended FH-bisimulation, which means that for any h, there exists a morphism
γh : R→ BR satisfying the diagram of Definition 7. We claim that γh is also a
valid B-structure for the extended FH-bisimulation relation to be proved in this
theorem.

Due to its symmetry, we verify the extended FH-bisimulation diagram for π =
π1,π2:

112 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

R π //

γh

��

(1)

F∗X
ιX //

opΛ h
��

(2)

F∗+X

opΛ+
h

��

BG∗X
BιX

++
(3)

BR
Bπ

// BF∗X
BιX

//

BιX

OO

BF∗+X
BιX

// BG∗+X

Region (1) commutes by the assumption that R is an extended FH-bisimulation on
opΛ, and region (2) commutes by Theorem 3. Region (3) commutes by Assump-
tion 1. This finishes the proof.

6.5.2 Combining algebraic laws
Similar to standard bisimulations, there exists a greatest FH-bisimulation relation,
notation FH↔, which is the union of all FH-bisimulations, i.e for t,u : F∗X ,

t FH↔ u ⇐⇒ ∃〈R,π1,π2〉 such that R is an FH-bisimulation, and t Ru.

The relation FH↔ itself is an FH-bisimulation relation, in fact, it is an equivalence
relation.

We shall use the notation t[f] := µX(F∗ f t) for the substitution of a map
f : X → F∗X in a term t.

Proposition 7 (Instantiation). For any t : F∗X and f : X → FH↔ (a map assigning
FH-bisimilar pairs of terms to variables), t[π1 ◦ f] and t[π2 ◦ f] are FH-bisimilar.

Proof. We claim that

〈F∗FH↔, µX ◦F∗π1, µX ◦F∗π2〉

is an FH-bisimulation relation. The FH-bisimilarity in the present proposition is
implied by this claim, because (F∗ f) t : F∗FH↔, and µX(F∗π((F∗ f) t)) = t[π ◦ f],
for π = π1, π2.

Suppose that we are provided with some h : X → BX . The diagram below
shows that

opΛ γh : F∗FH↔ −→ BF∗FH↔

is a B-structure that satisfies the FH-bisimulation diagram for F∗FH↔, in which γh is
a B-structure derived from the fact that FH↔ itself is an FH-bisimulation. Due to its

6.6 RUNNING THE OPERATIONAL SEMANTICS 113

symmetry, we show the diagram for π = π1,π2. To avoid confusion between the
names π2 : FH↔→ F∗X and π2 : D⇒ B, we shall call the latter πD

2 in the diagram
below.

F∗FH↔ F∗π //

F∗〈id,γh〉
��

opΛ γh

//

(5)

(1)

F∗F∗X
µX //

F∗〈id,opΛ h〉

��

opΛ (opΛ h)

~~

(4)

F∗X

opΛ h

��

F∗DFH↔
F∗Dπ

//

Λ FH↔
��

(2)

F∗DF∗X

ΛF∗X

��
DF∗FH↔

DF∗π
//

(πD
2)

F∗
FH↔
��

(3)

DF∗F∗X

(πD
2)F∗F∗X

��
BF∗FH↔

BF∗π
// BF∗F∗X

BµX
// BF∗X

Regions (1-3) follow respectively from the fact that FH↔ is an FH-bisimulation, and
that Λ and πD

2 are natural transformations. Region (4) follows from composition-
ality of the operational model, i.e. Lemma 9, and note that because F = G and
(ιF∗,G∗)X = id, we have õpΛ (opΛ h) = opΛ (opΛ h). Finally, region (5) follows by
definition.

We leave proving that for any t,u : F∗X such that t FH↔ u implies t[π2 ◦ f] FH↔
u[π2 ◦ f] as an open problem. Together with the Instantiation proposition above,
one could then derive, by making use of the fact that FH↔ is transitive, that t[π1 ◦
f] FH↔ u[π2 ◦ f], which would show that FH↔ is substitutive [Ren00]. In [MSvE13]
the author has proved this under the rather strong assumption that X and F∗X are
isomorphic.

6.6 Running the operational semantics
This section highlights another application of Theorem 3.

We first recall an important notion of the theory of coalgebra. Final coalgebras
are pairs 〈Z, ζ : Z → BZ〉 which enjoy the property that there exists an operator
unfold : (X → BX)→ X → Z, which maps a coalgebra c to the unique coalgebra
homomorphism from c to ζ. Here Z is the greatest solution to the equation X ∼=
BX . In case of the leading example BX := A×X , the object of the final coalgebra

114 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

would be an infinite stream of A’s. We will assume that B and B+ have been
chosen such that they indeed have final coalgebras.

When the rules are closed, then opΛ h is a coalgebra and we can “run” the
operational semantics by unfolding it, i.e for any final coalgebra 〈Z,ζ〉, signature
functor F and (open) distributive law Λ : FD⇒ DF , define:

runΛ h : F∗X → Z := unfold(opΛ h).

Set ιZ,Z+ := unfold((ιB,B+)Z ◦ζ). We can prove that running the extended opera-
tional model is faithful to running the base model.

Proposition 8. Suppose that Λ : F∗D⇒ DF∗ and Λ+ : F∗+D⇒ DF∗+ are (open)
distributive laws, and that Λ+ is an extension of Λ. Then for all h : X → BX it
holds that

F∗X
runΛ h //

ιX

��

Z

ι

��
F∗+X

runΛ+ h+
// Z+

Proof. Let h : X → BX be arbitrary, and consider the following diagram of B+-
coalgebras:

〈F∗X ,(ιB,B+)X ◦opΛ h〉 runΛ h //

(ιF∗,F∗+
)X

��

〈Z,(ιB,B+)Z ◦ζ〉

ιZ,Z+

��
〈F∗+X ,opΛ+

h+〉 runΛ+ h+
// 〈Z+,ζ+〉

By definition, runΛ+ h+ and ιZ,Z+ are B+-coalgebra homomorphisms, runΛ h is
a B+-coalgebra homomorphism by making use of its definition together with
naturality of ιB,B+ , and (ιF∗,F∗+)X is a B+-coalgebra homomorphism by Theorem 3
and naturality of ιB,B+ . Because Z+ is final, the above diagram commutes, and
hence the diagram in the statement of the present proposition commutes.

6.7 Related Work
The results in this chapter were developed within the bialgebraic semantics frame-
work, a body of research initiated by Turi and Plotkin [TP97].

6.7 RELATED WORK 115

FH-bisimulations were originally introduced by De Simone [DS85]. The
theorems in Section 6.5, which prove that FH-bisimulations are preserved by con-
servative extensions, transfer the original results, obtained in the more traditional
set-theoretic approach to SOS by Mosses et al. [MMR10], to Turi and Plotkin’s
bialgebraic framework [TP97]. There are a number of differences between the
work of Mosses et al. and the present chapter. First, in this chapter we were
forced to be quite explicit about the various signature functors involved in the
operational rules and their extensions, due to the way we applied the bialge-
braic framework. Second, by developing the theory in the present chapter for
arbitrary behavior functors, we avoided being specific about side-effects of each
language. For example, we expect that our work is general enough to support
MSOS-style descriptions (see Chapter 4), although verifying this is left for future
work. Finally, the bialgebraic framework, which is rooted in category theory,
makes it easy to approach proofs in a very structured manner. For example, in
the proof of the Preservation Theorem (Theorem 4), the use of the Extension
Theorem (for unfolding rules) (Theorem 3) can be seen as a drop-in replacement
of Proposition 4. This replacement generalizes the Preservation Theorem so that
it holds that e.g. the algebraic law seq skip x = x is preserved by any conservative
extension (in which the behavior functor is the same), and vice versa, that adding
an algebraic law (through the addition of a silent rule) preserves any pre-existing
algebraic laws.

The dichotomy between value terms and computational terms was emphasized
by Churchill and Mosses [CM13], who introduce a rule format built on the tyft
format, which has built-in rules to deal with silent transitions. They provide a
variant of bisimilarity, and prove that it is a congruence in the resulting transi-
tion system. The distributive law Λr of Section 6.4 has similar characteristics,
through the infinite unfolding of silent transitions. This law is a variant of the one
introduced by Klin [Kli04].

An alternative to considering only free monads as in the present chapter, is to
quotient the term monad by the algebraic laws. Bonsangue et al. [BHKR13] prove
that if Λ respects the algebraic laws, then there is a unique distributive law Λ′ such
that the quotient map is a well-behaved translation from Λ to Λ′. After the work in
this chapter was developed, several authors have proposed frameworks to handle
silent steps in a coalgebraic setting [SW13, BMSZ14]. The focus of both papers
was to recover known language semantics of automata and transition systems, but
they have not explored at all the connections with bialgebraic semantics.

A modular variant of GSOS has been provided by Jaskelioff et al. [JGH11]
as part of a HASKELL implementation of the bialgebraic framework. They dis-
tinguish ingoing from outgoing signatures, as in the present chapter, but consider
the outgoing signature as an abstract parameter of each modular rule, and add
type-class constraints to ensure the inclusion of certain operations in the outgoing

116 MODULAR BIALGEBRAIC SEMANTICS AND ALGEBRAIC LAWS

signature.
Watanabe [Wat02] provides an interpretation of operational conservative ex-

tensions [AFV99] in terms of distributive laws, and proves a variant of Theorem 4,
but does not treat the difference between ingoing and outgoing signatures.

6.8 Conclusions
We have provided an operational rule format, tailored to the modular description
of programming languages. The semantics supports truly unobservable transi-
tions, as generated by rules for silent transitions. We have proved that algebraic
laws are preserved by conservative extensions of the operational semantics, and
that algebraic laws are substitutive. Our work has been developed within the bial-
gebraic framework [TP97], making it amenable to implementation in a theorem
prover [MS13].

In future work we wish to ease the condition in Section 6.5.2 on the distributive
law, enabling the substitutivity of algebraic laws for a wider range of silent tran-
sition rules. We would also like to explore applications to software verification.
In particular, one can view the operational rules of programming languages as
pointwise extensions in the sense of [HK11]. We expect that this will lead to
a structured way to obtain sound Hoare logics for trace-based semantics such
as [NU10].

Acknowledgments. The inspiration for this work arose from consultation with
Peter D. Mosses by the author. Without his support this work would not have been
possible. The author is also grateful to Alexandra Silva whose sharp comments
helped improve this chapter.

Bibliography

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis,
Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The PoplMark chal-
lenge. In Joe Hurd and Tom Melham, editors, Proceedings of
the 18th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’05), volume 3603 of LNCS, pages 50–65.
Springer, 2005. Cited on page 49.

[ACGI11] Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac, and Anna
Ingolfsdottir. PREG Axiomatizer – A ground bisimilarity checker
for GSOS with predicates. In Andrea Corradini, Bartek Klin,
and Corina Cı̂rstea, editors, Proceedings of the 4th Conference
on Algebra and Coalgebra in Computer Science (CALCO’11),
volume 6859 of LNCS, pages 378–385. Springer, 2011. Cited
on page 86.

[AFV99] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural oper-
ational semantics. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, pages 197–292. Elsevier,
1999. Cited on pages 100 and 116.

[AM89] Peter Aczel and Nax Mendler. A final coalgebra theorem. In
Category Theory and Computer Science, pages 357–365. Springer,
1989. Cited on page 91.

117

118 BIBLIOGRAPHY

[Bar03] John Barnes. High Integrity Software: The Spark Approach to
Safety and Security. Addison-Wesley, 2003. Cited on page 7.

[Bar04] Falk Bartels. On generalised coinduction and probabilistic speci-
fication formats. PhD thesis, Vrije Universiteit Amsterdam, 2004.
Cited on pages 68, 80, 81, 85, 86, and 96.

[BBHI05] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland.
Rippling: meta-level guidance for mathematical reasoning. Cam-
bridge University Press, 2005. Cited on page 45.

[BCO06] Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. Smallfoot:
Modular automatic assertion checking with separation logic. In
Frank de Boer, Marcello Bonsangue, Susanne Graf, and Willem-
Paul de Roever, editors, 4th International Symposium on Formal
Methods for Components and Objects (FMCO’05), volume 4111
of LNCS, pages 115–137. Springer, 2006. Cited on page 47.

[BHKR13] Marcello M. Bonsangue, Helle H. Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting distributive laws. In Proceedings of the
5th Conference on Algebra and Coalgebra in Computer Science
(CALCO’13), volume 8089 of LNCS, pages 95–109. Springer,
2013. Cited on page 115.

[BHLP09] Yves Bertot, Gérard Huet, Jean-Jacques Lévy, and Gordon Plotkin,
editors. Theorem proving support in programming language
semantics, chapter 15, pages 337–361. Cambridge University
Press, 2009. Cited on pages 58 and 68.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach,
volume 4334 of LNCS. Springer, 2007. Cited on page 5.

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t
be traced. Journal of the ACM, 42(1):232–268, 1995. Cited on
pages 3 and 68.

[BMSZ14] Filippo Bonchi, Stefan Milius, Alexandra Silva, and Fabio Zanasi.
How to kill epsilons with a dagger – a coalgebraic take on systems
with algebraic label structure. CoRR, abs/1402.4062, 2014. Cited
on page 115.

[Bor00] Richard Bornat. Proving pointer programs in Hoare logic. In
Roland Backhouse and José Oliveira, editors, 5th International

BIBLIOGRAPHY 119

Conference on Mathematics of Program Construction (MPC’00),
volume 1837 of LNCS, pages 102–126. Springer, 2000. Cited on
pages 34 and 46.

[BP05] Javier Blanco and Castro Pablo. A semantics for proving class
correctness. unpublished, 2005. Cited on page 46.

[Bur72] Rodney Burstall. Some techniques for proving correctness of
programs which alter data structures. In Machine Intelligence 7,
pages 22–50. Edinburgh University Press, 1972. Cited on pages
34 and 47.

[CB07] Fabricio Chalub and Christiano Braga. Maude MSOS Tool.
Electronic Notes in Theoretical Computer Science, 176(4):133–
146, 2007. Cited on page 64.

[CKS07] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The
Java memory model: Operationally, denotationally, axiomatically.
In Rocco De Nicola, editor, Proceedings of the 16th European
Symposium on Programming (ESOP’07), volume 4421 of LNCS,
pages 331–346. Springer, 2007. Cited on page 53.

[CM13] Martin Churchill and Peter D. Mosses. Modular bisimulation
theory for computations and values. In Frank Pfenning, editor,
Proceedings of the 16th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS’13),
volume 7794 of LNCS, pages 97–112. Springer, 2013. Cited on
pages 54, 92, and 115.

[DCB11] Benjamin Delaware, William Cook, and Don Batory. Product
lines of theorems. ACM SIGPLAN Notices, 46(10):595–608, 2011.
Cited on pages 55 and 64.

[DDH72] Ole-Johan Dahl, Edsger W. Dijkstra, and C.A.R. Hoare. Structured
programming. Academic Press, 1972. Cited on page 1.

[DKSO13] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and
Bruno C.d.S. Oliveira. Modular monadic meta-theory. In Pro-
ceedings of the 18th ACM SIGPLAN international conference on
Functional programming (ICFP’13), pages 319–330. ACM, 2013.
Cited on page 64.

[DMvEP08] Maarten De Mol, Marko van Eekelen, and Rinus Plasmeijer.
Proving properties of lazy functional programs with Sparkle. In

120 BIBLIOGRAPHY

Zoltán Horváth, editor, Revised and selected lectures of the 2nd

Central European Functional Programming School (CEFP’08),
volume 5161 of LNCS, pages 41–86. Springer, 2008. Cited on
page 6.

[DOS13] Benjamin Delaware, Bruno C.d.S. Oliveira, and Tom Schrijvers.
Meta-theory à la carte. ACM SIGPLAN Notices, 48(1):207–218,
2013. Cited on page 64.

[DS85] Robert De Simone. Higher-level synchronising devices in Meije-
SCCS. Theoretical Computer Science, 37:245–267, 1985. Cited
on pages 89, 109, and 115.

[FM07] Jean Christophe Filliâtre and Claude Marché. The
Why/Krakatoa/Caduceus platform for deductive program
verification. In Werner Damm and Holger Hermanns, editors,
Proceedings of the 19th International Conference on Computer
Aided Verification (CAV’07), volume 4590 of LNCS, pages
173–177. Springer, 2007. Cited on pages 34 and 47.

[FPT99] Marcelo Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract
syntax and variable binding. In Proceedings of the 14th Symposium
on Logic in Computer Science (LICS’99), pages 193–202. IEEE,
1999. Cited on page 86.

[HHM+10] Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nip-
kow, Steven Obua, and Roland Zumkeller. A revision of the proof
of the Kepler conjecture. Discrete and Computational Geometry,
44:1–34, 2010. Cited on page 6.

[HJ99] C.A.R. Hoare and He Jifeng. A trace model for pointers and
objects. In Rachid Guerraoui, editor, Proceedings of the 13th Euro-
pean Conference on Object-Oriented Programming (ECOOP’99),
volume 1628 of LNCS, pages 1–17. Springer, 1999. Cited on page
46.

[HJ11] Ralf Hinze and Daniel W.H. James. Proving the unique fixed-
point principle correct: An adventure with category theory. In
Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming (ICFP’11), pages 359–371. ACM,
2011. Cited on pages 68, 85, and 86.

BIBLIOGRAPHY 121

[HK11] Helle Hvid Hansen and Bartek Klin. Pointwise extensions of
GSOS-defined operations. Mathematical Structures in Computer
Science, 21(2):321–361, 2011. Cited on page 116.

[HM07] Thierry Hubert and Claude Marché. Separation analysis for deduc-
tive verification. In Workshop on Heap Analysis and Verification
(HAV’07), pages 81–93, 2007. Cited on pages 34, 45, and 47.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, 1997. Cited on pages
14, 23, and 27.

[Hol06] Gerard J. Holzmann. The power of 10: Rules for developing
safety-critical code. IEEE Computer, 39(6):95–97, 2006. Cited
on pages 18 and 28.

[Hui01] Marieke Huisman. Reasoning about Java Programs in Higher
Order Logic with PVS and Isabelle. PhD thesis, University of
Nijmegen, 2001. Cited on page 6.

[Hur10] Chung-Kil Hur. Heq: A COQ library for heterogeneous equality.
Informal presentation at the 2nd Coq workshop, 2010. Cited on
page 62.

[Hut98] Graham Hutton. Fold and unfold for program semantics. In
Proceedings of the 3rd ACM SIGPLAN International Conference
on Functional Programming (ICFP’98), pages 280–288. ACM,
1998. Cited on pages 68 and 85.

[IEC96] IEC. Functional safety: Safety related systems, International
Standard IEC 61508, International Electrotechnical Commission,
Geneva, Switzerland, 1996. Cited on page 14.

[Jac12] Bart Jacobs. Introduction to coalgebra: Towards
mathematics of states and observations. In preparation,
version 2.0. 2012. http://www.cs.ru.nl/B.Jacobs/CLG/
JacobsCoalgebraIntro.pdf. Cited on pages 90 and 91.

[JGH11] Mauro Jaskelioff, Neil Ghani, and Graham Hutton. Modularity and
implementation of mathematical operational semantics. Electronic
Notes in Theoretical Computer Science, 229(5):75–95, 2011.
Cited on pages 68, 85, and 115.

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

122 BIBLIOGRAPHY

[Jia94] Xiaoping Jia. ZTC: A Type Checker for Z – User’s Guide. Institute
for Software Engineering, Department of Computer Science and
Information Systems, DePaul University, Chicago, USA, 1994.
Cited on page 14.

[Joy10] Jeff Joyce. Use of machine-assisted theorem-proving as a means
of verifying critical software in the context of RTCA DO-178C.
In Workshop on Theorem Proving in Certification, December 6–7,
2010, Cambridge, UK, 2010. Cited on page 7.

[JP08] Bart Jacobs and Frank Piessens. The VeriFast program verifier.
Technical Report CW-520, Katholieke Universiteit Leuven, Bel-
gium, 2008. Cited on page 47.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and
(co)induction. EATCS Bulletin, 62:62–222, 1997. Cited on page
71.

[JSGB98] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java
Language Specification. Addison-Wesley, 1998. Cited on page 3.

[JVDBH+98] Bart Jacobs, Joachim Van Den Berg, Marieke Huisman, Martijn
van Berkum, Ulrich Hensel, and Hendrik Tews. Reasoning
about Java classes (preliminary report). ACM SIGPLAN Notices,
33(10):329–340, 1998. Cited on pages 5, 6, and 36.

[Kar96] Pim Kars. The application of Promela and SPIN in the BOS
project. In Jean-Charles Grégoire, Gerard J. Holzmann, and
Doron A. Peled, editors, Proceedings of the 2nd Workshop on
the SPIN Verification System (SPIN’96), volume 32 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
Rutgers University, 1996. Cited on page 27.

[Kli04] Bartek Klin. Adding recursive constructs to bialgebraic semantics.
Journal of Logic and Algebraic Programming, 60:259–286, 2004.
Cited on pages 89, 102, 104, 105, 108, 110, and 115.

[Kli11] Bartek Klin. Bialgebras for structural operational semantics: An
introduction. Theoretical Computer Science, 412(38):5043–5069,
2011. Cited on pages 68, 69, 80, 81, 85, and 90.

[KSM13] Matt Kaufmann and J. Strother Moore. ACL2 Version 6.1, 2013.
http://www.cs.utexas.edu/users/moore/acl2/. Cited on
page 5.

http://www.cs.utexas.edu/users/moore/acl2/

BIBLIOGRAPHY 123

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Com-
munications of the ACM, 52(7):107–115, 2009. Cited on pages 6
and 28.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers
and modular interpreters. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’95), pages 333–343. ACM, 1995. Cited on
page 4.

[LPW00] Marina Lenisa, John Power, and Hiroshi Watanabe. Distributivity
for endofunctors, pointed and co-pointed endofunctors, monads
and comonads. Electronic Notes in Theoretical Computer Science,
33:230–260, 2000. Not cited.

[LPW04] Marina Lenisa, John Power, and Hiroshi Watanabe. Category
theory for operational semantics. Theoretical Computer Science,
327(1-2):135–154, 2004. Cited on page 84.

[LSVE08] Leonard Lensink, Sjaak Smetsers, and Marko Van Eekelen. Ma-
chine checked formal proof of a scheduling protocol for smartcard
personalization. In Stefan Leue and Pedro Merino, editors,
Proceedings of the 12th International Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS’07), volume 4916 of
LNCS, pages 115–132. Springer, 2008. Cited on page 2.

[Mey03] Bertrand Meyer. Towards practical proofs of class correctness. In
Didier Bert, Jonathan P. Bowen, Steve King, and Marina Waldén,
editors, Proceedings of the 3rd International Conference of B and
Z Users (ZB’03), volume 2651 of LNCS, pages 359–387. Springer,
2003. Cited on pages 9, 31, 32, 34, 35, and 46.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In
John Hughes, editor, Proceedings of the 5th ACM Conference on
Functional Programming Languages and Computer Architecture
(FPCA’91), volume 523 of LNCS, pages 124–144. Springer, 1991.
Cited on page 74.

[MMR10] Peter D. Mosses, Mohammad Reza Mousavi, and Michel A.
Reniers. Robustness of equations under operational extensions.
In Sibylle Fröschle and Frank D. Valencia, editors, Proceedings of
the 17th International Workshop on Expressiveness in Concurrency

124 BIBLIOGRAPHY

(EXPRESS’10), EPTCS, pages 106–120, 2010. Cited on pages 89,
109, 111, and 115.

[MN05] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. Information and Computation, 199:200–227,
2005. Cited on pages 45 and 46.

[MN09] Peter D. Mosses and Mark J. New. Implicit propagation in
structural operational semantics. Electronic Notes in Theoretical
Computer Science, 229(4):49–66, 2009. Cited on pages 64 and 65.

[Mog89] Eugenio Moggi. An abstract view of programming languages.
Technical Report ECS-LFCS-90-113, University of Edinburgh,
1989. Cited on page 4.

[Mos04] Peter D. Mosses. Modular structural operational semantics.
Journal of Logic and Algebraic Programming, 60:195–228, 2004.
Cited on pages 4, 50, 54, 60, and 65.

[Mos06] Peter D. Mosses. Teaching semantics of programming languages
with Modular SOS. In Teaching Formal Methods: Practice
and Experience, Electronic Workshops in Computing. BCS, 2006.
Cited on page 64.

[Mos09] Peter D. Mosses. Component-based semantics. In Proceedings of
the 8th International Workshop on Specification and Verification
of Component-Based Systems (SAVCBS’09), pages 3–10. ACM,
2009. Cited on pages 9, 49, 50, 52, and 88.

[MPM05] Claude Marché and Christine Paulin-Mohring. Reasoning about
Java programs with aliasing and frame conditions. In Joe Hurd
and Tom Melham, editors, Proceedings of the 18th Interna-
tional Conference on Theorem Proving in Higher Order Logics
(TPHOLs’05), volume 3603 of LNCS, pages 179–194. Springer,
2005. Cited on page 47.

[MRG07] Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso
Groote. SOS formats and meta-theory: 20 years after. Theoretical
Computer Science, 373(3):238–272, 2007. Cited on page 3.

[MS13] Ken Madlener and Sjaak Smetsers. GSOS formalized in Coq. In
Proceedings of the 7th International Symposium on Theoretical As-
pects of Software Engineering (TASE’13), pages 199–206. IEEE,
2013. Cited on pages 10, 88, and 116.

BIBLIOGRAPHY 125

[MSvE10] Ken Madlener, Sjaak Smetsers, and Marko van Eekelen. A
formal verification study on the Rotterdam storm surge barrier.
In Jin Song Dong and Huibiao Zhu, editors, Proceedings of the
12th International Conference on Formal Engineering Methods
(IFCEM’10), volume 6447 of LNCS, pages 287–302. Springer,
2010. Cited on page 8.

[MSvE11] Ken Madlener, Sjaak Smetsers, and Marko van Eekelen. Formal
component-based semantics. In Michel A. Reniers and Pawel
Sobocinski, editors, Proceedings of the 8th Workshop on Struc-
tural Operational Semantics (SOS’11), volume 62 of Electronic
Proceedings in Theoretical Computer Science, pages 17–29, 2011.
Cited on page 9.

[MSvE13] Ken Madlener, Sjaak Smetsers, and Marko van Eekelen. Modular
bialgebraic semantics and algebraic laws. In Proceedings of the
17th Brazilian Symposium on Programming Languages (SBLP’13),
volume 8129 of LNCS, pages 46–60. Springer, 2013. Cited on
pages 11 and 113.

[Niq09] Milad Niqui. Coalgebraic reasoning in Coq: Bisimulation and the
λ-coiteration scheme. In Proceedings of TYPES’08, volume 5497
of LNCS, pages 272–288. Springer, 2009. Cited on page 85.

[NU10] Keiko Nakata and Tarmo Uustalu. A Hoare logic for the coin-
ductive trace-based big-step semantics of While. In Andrew D.
Gordon, editor, Proceedings of the 19th European Symposium on
Programming (ESOP’10), volume 6012 of LNCS, pages 488–506.
Springer, 2010. Cited on page 116.

[Ohe01] David von Oheimb. Analyzing Java in Isabelle/HOL: Formal-
ization, Type Safety and Hoare Logic. PhD thesis, Technische
Universität München, 2001. Cited on page 6.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A
prototype verification system. In Deepak Kapur, editor, Proceed-
ings of the 11th International Conference on Automated Deduction
(CADE’92), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752. Springer, 1992. Cited on pages 5 and 15.

[OSRS01] Sam Owre, Natarajan Shankar, John M. Rushby, and Dave
Stringer-Calvert. PVS language reference (version 2.4). Technical

126 BIBLIOGRAPHY

report, Computer Science Laboratory, SRI International, 2001.
Cited on page 32.

[Owe08] Scott Owens. A sound semantics for OCaml light. In Sophia
Drossopoulou, editor, Proceedings of the 17th European Sympo-
sium on Programming (ESOP’08), volume 4960 of LNCS, pages
1–15. Springer, 2008. Cited on page 64.

[Owr06] Sam Owre. Random testing in PVS. In Workshop on Automated
Formal Methods, Seattle, USA, 2006. http://fm.csl.sri.com/
AFM06/papers/5-Owre.pdf. Cited on page 25.

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume
828 of LNCS. Springer, 1994. Cited on page 6.

[Plo81] Gordon D. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, Aarhus University,
1981. Reprinted in Journal Logic and Algebraic Programming
60–61:17–139, 2004. Cited on page 2.

[PP02] Gordon Plotkin and John Power. Notions of computation deter-
mine monads. In Mogens Nielsen and Uffe Engberg, editors,
Proceedings of the 5th International Conference on Foundations
of Software Science and Computation Structures (FOSSACS’02),
volume 2303 of LNCS, pages 342–356. Springer, 2002. Cited on
page 4.

[RBN10] Stan Rosenberg, Anindya Banerjee, and David A. Naumann. Local
reasoning and dynamic framing for the composite pattern and
its clients. In Gary T. Leavens, Peter O’Hearn, and Sriram K.
Rajamani, editors, Proceedings of the 3rd international Conference
on Verified software: Theories, Tools, Experiments (VSTTE’10),
volume 6217 of LNCS, pages 183–198. Springer, 2010. Cited on
pages 32 and 47.

[Ren00] Arend Rensink. Bisimilarity of open terms. Information and
Computation, 156(1):345–385, 2000. Cited on pages 89 and 113.

[Rey02] John Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Symposium on Logic in
Computer Science (LICS’02), pages 55–74. IEEE, 2002. Cited
on pages 32, 45, and 47.

http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf

BIBLIOGRAPHY 127

[Ruy01] Theo Ruys. Towards Effective Model Checking. PhD thesis,
University of Twente, 2001. Cited on page 27.

[Saa97] Mark Saaltink. The Z/Eves system. In Jonathan P. Bowen,
Michael G. Hinchey, and David Till, editors, Proceedings of the
10th International Conference of Z Users (ZUM’97), volume 1212
of LNCS, pages 72–88. Springer, 1997. Cited on page 19.

[Sco70] Dana S. Scott. Outline of a mathematical theory of computation.
Technical Report PRG-2, Oxford University Computing Labora-
tory, 1970. Cited on page 3.

[Slo99] Oscar Slotosch. Overview over the project quest. In Proceedings of
the International Workshop on Current Trends in Applied Formal
Methods (FM-Trends’98), volume 1641 of LNCS, pages 346–350.
Springer, 1999. Cited on page 27.

[SO08] Matthieu Sozeau and Nicolas Oury. First-class type classes. In
Proceedings of the 21st International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’08), volume 5170 of
LNCS, pages 278–293. Springer, 2008. Cited on pages 55 and 77.

[Spi89] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall
International Series In Computer Science, 1989. Cited on page
14.

[SS71] Dana S. Scott and Christopher Strachey. Toward a mathematical
semantics for computer languages. Technical Report PRG-6,
Oxford University Computing Laboratory, 1971. Cited on page
3.

[STT+09] Erik Schierboom, Alejandro N. Tamalet, Hendrik Tews, Marko van
Eekelen, and Sjaak Smetsers. Preemption abstraction. In Marı́a
Alpuente, Byron Cook, and Christophe Joubert, editors, Proceed-
ings of the 15th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS’09), volume 5825 of LNCS,
pages 149–164. Springer, 2009. Cited on pages 2 and 27.

[SvdW11] Bas Spitters and Eelis van der Weegen. Type classes for mathemat-
ics in type theory. Mathematical Structures in Computer Science,
21:1–31, 2011. Cited on pages 61 and 78.

[SW13] Alexandra Silva and Bram Westerbaan. A coalgebraic view
of ε-transitions. In Reiko Heckel and Stefan Milius, editors,

128 BIBLIOGRAPHY

Proceedings of the 5th Conference on Algebra and Coalgebra in
Computer Science (CALCO’13), volume 8089 of LNCS, pages
267–281. Springer, 2013. Cited on page 115.

[Tam06] Alejandro N. Tamalet. Yet another semantics for proving class
correctness. Master’s thesis, Universidad Nacional de Rosario,
Argentina, 2006. Cited on pages 9 and 46.

[The12] The Coq Development Team. The Coq Proof Assistant Reference
Manual for Version 8.4, 2012. http://coq.inria.fr. Cited on
pages 5, 50, and 68.

[TM10] Alejandro N. Tamalet and Ken Madlener. Reasoning about
assignments in recursive data structures. In Jim Davies, Leila
Silva, and Adenilso da Silva Simão, editors, Proceedings of the
13th Brazilian Symposium on Formal Methods (SBMF’10), volume
6527 of LNCS, pages 161–176. Springer, 2010. Cited on page 9.

[TP97] Daniele Turi and Gordon D. Plotkin. Towards a mathematical
operational semantics. In Proceedings of the 12nd Symposium
on Logic in Computer Science (LICS’97), pages 280–291. IEEE,
1997. Cited on pages 3, 67, 69, 72, 81, 85, 88, 89, 91, 99, 114,
115, and 116.

[Tue09] Thomas Tuerk. A formalisation of Smallfoot in HOL. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors, Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’09), volume
5674 of LNCS, pages 469–484. Springer, 2009. Cited on page 47.

[TWC01] Jan Tretmans, Klaas Wijbrans, and Michel Chaudron. Software
engineering with formal methods: The development of a storm
surge barrier control system revisiting seven myths of formal
methods. Formal Methods in System Design, 19(2):195–215, 2001.
Cited on pages 14 and 27.

[vdBJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for
Java and JML. In Tiziana Margaria and Wang Yi, editors, Proceed-
ings of the 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’01), volume
2031 of LNCS, pages 299–312. Springer, 2001. Cited on page 7.

[vETHSU08] Marko van Eekelen, Stefan Ten Hoedt, René Schreurs, and
Yaroslav S. Usenko. Analysis of a session-layer protocol in

http://coq.inria.fr

BIBLIOGRAPHY 129

mCRL2. In Stefan Leue and Pedro Merino, editors, Proceedings of
the 13th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’08), volume 4916 of LNCS, pages 182–
199. Springer, 2008. Cited on page 2.

[vHPPR98] Friedrich W. von Henke, Stephan Pfab, Holger Pfeifer, and Harald
Rueß. Case studies in meta-level theorem proving. In Jim
Grundy and Malcolm C. Newey, editors, Proceedings of the 11th

International Conference on Theorem Proving in Higher Order
Logics (TPHOLs’98), volume 1479 of LNCS, pages 461–478.
Springer, 1998. Cited on page 46.

[VJP12] Frédéric Vogels, Bart Jacobs, and Frank Piessens. Featherweight
VeriFast: Extended version. Technical Report CW-614, Katholieke
Universiteit Leuven, Belgium, 2012. Cited on page 47.

[Wat02] Hiroshi Watanabe. Well-behaved translations between structural
operational semantics. Electronic Notes in Theoretical Computer
Science, 65(1):337–357, 2002. Cited on page 116.

[WBRG08] Klaas Wijbrans, Franc Buve, Robin Rijkers, and Wouter Geurts.
Software engineering with formal methods: Experiences with the
development of a storm surge barrier control system. In Jorge
Cuellar, Tom Maibaum, and Kaisa Sere, editors, Proceedings of
the 15th International Symposium on Formal Methods (FM’08),
volume 5014 of LNCS, pages 419–424. Springer, 2008. Cited on
page 27.

[Win93] Glynn Winskel. The formal semantics of programming languages:
an introduction. MIT Press, 1993. Cited on page 3.

Summary

This thesis contributes a number of techniques in formal reasoning about the
correctness of computer software, a foundational subject in computer science.
It does so in the context of theorem provers: software which assists with logical
reasoning on a computer.

Before one can reason about the correctness of a piece of software, a formal
description of its meaning is needed, also called its semantics. It is widely agreed
that providing descriptions in well-known styles of semantics such as operational
or denotational semantics is a difficult task when it concerns programs written in
mainstream programming languages such as C, C++ or JAVA. Such languages
involve a mixture of different types of computational behavior and other details
which prevents concise description. One may opt to leave out some detail and
thereby reason about a lightweight version of the full semantics, if the program
under verification does not use all features of the language. Verification based
on lightweight models may not be conclusive about the correctness of software,
but can help to find issues that have escaped manual code review or a traditional
software testing process.

In Chapter 2 a crucial component of BOS, a large safety-critical system that
decides when to close and open the Maeslantkering, a storm surge barrier near
the city of Rotterdam in the Netherlands is verified. This case-study is based
on a lightweight semantics, formalized and verified in the theorem prover PVS. It
uncovers several mismatches between its specification and implementation (which
have now been fixed in the source code), even though the code has been subjected
to a thorough review process.

Chapter 3 develops a framework to reason about how an assignment may affect
a recursive data structure. A number of rules are provided that describe when and
how a path in the heap is (or is not) modified by an assignment. These rules can

131

132 Summary

be used to prove the correctness of programs. A key aspect of this approach is that
by applying these rules one does not need to reason inductively: the induction is
encapsulated in the rules.

An active research topic is enabling scalability of programming language se-
mantics through modularity, i.e. by obtaining it from a combination of language-
independent pieces. Conversely, a modular semantics allows one to scale down to
a lightweight version, which has a formal correspondence to the full semantics.

Chapter 4 proposes a technique to encode semantics in a modular fashion
in theorem provers, based on a variant of operational semantics. An essential
ingredient is that the rules that define the operational semantics can be described
in a way independent of other rules that may or may not exist. This way, a base
language can be extended with new rules to provide additional features.

Chapter 5 provides a partial formalization of bialgebraic semantics, originally
proposed by Turi and Plotkin, in the theorem prover COQ. An important aspect of
formalization is that it unifies operational and denotational semantics within the
logic of COQ, under the condition that the models of both semantics are derived
from a rule format called GSOS. This allows one to interchange these styles of
semantics within COQ, thereby profiting from either of their characteristics.

Modularity in the bialgebraic framework is treated in Chapter 6. A variant
of the GSOS rule format is proposed, which supports the language-independent
description of operations. It is proved in this chapter that conservatively adding
new operations to a language results in well-behaved translations from the base
language to the extended language, that algebraic laws are preserved by language
extensions, and that algebraic laws can be instantiated.

Samenvatting

Dit proefschrift contribueert een aantal technieken om formeel te redeneren over
de correctheid van computer software, een fundamenteel onderwerp in de infor-
matica. Het doet dit in de context van bewijsassistenten: computer programma’s
die de gebruiker in staat stellen logisch te redeneren op een computer.

Alvorens men in staat is te redeneren over de correctheid van een programma,
is een formele beschrijven van het programma nodig, wat ook wel de semantiek
van het programma wordt genoemd. Men is het er over eens dat het geven van
beschrijvingen in gangbare stijlen zoals operationele en denotationele semantiek
een complexe taak is, als het gaat om programma’s geschreven in veelgebruikte
talen zoals C, C++ of JAVA. Zulk soort talen maken gebruik van combinaties van
verschillende soorten computationeel gedrag of er zijn andere details die het lastig
maken een elegante, beknopte beschrijving te geven. Men kan er voor kiezen de
beschrijving te vereenvoudigen en daarmee te redeneren over een lichtgewicht
versie van de volledige semantiek, indien het programma dat wordt geverifieerd
niet gebruik maakt van alle attributen van de programmeertaal. Verificatie geba-
seerd op lichtgewicht modellen stelt de gebruiker niet altijd in staat het bestaan
van fouten volledig uit te sluiten, maar kan wel helpen fouten te vinden die aan
een handmatige revisie van de programmacode of een traditioneel software test-
proces zijn ontglipt.

In hoofdstuk 2 wordt een cruciaal component van BOS (Beslis en Ondersteu-
nend Systeem) geverifieerd. Dit is een groot kritiek systeem dat beslist wan-
neer de Maeslantkering moet worden geopend of gesloten. De Maeslantkering
is een stormvloedkering gebouwd in de omgeving van Rotterdam. Deze case-
study is gebaseerd op een lichtgewicht semantiek die is geformaliseerd in de
bewijsassistent PVS. In de case-study zijn een aantal punten ontdekt waarop de
specificatie verschilt van de implementatie (deze verschillen zijn nu gerepareerd in

133

134 Samenvatting

de broncode). Opmerkelijk is dat de broncode was onderworpen aan een grondige
herziening.

Hoofdstuk 3 ontwikkelt een raamwerk om te redeneren over hoe toekenningen
(van bijvoorbeeld waarden aan variabelen) invloed kunnen hebben op een recur-
sieve datastructuur. Een aantal regels worden voorgesteld die beschrijven hoe een
pad dat wordt doorlopen van pointers in het geheugen al dan niet wordt veranderd
door een toekenning. Deze regels kunnen worden gebruikt om de correctheid van
een programma te bewijzen. Een belangrijk aspect van de gebruikte benadering is
dat bij het toepassen niet wordt geredeneerd met behulp van inductie; de inductie
is ingekapseld in de regels zelf.

Een actief onderzoeksonderwerp is de schaalbaarheid van semantiek van pro-
grammeertalen door middel van modulariteit. In andere woorden, het creëren
van schaalbaarheid door de semantiek als een combinatie van taal-onafhankelijke
delen te beschrijven wordt actief onderzocht. Andersom kan een modulaire se-
mantiek worden gebruikt om terug te schalen naar een lichtgewicht semantiek,
welke een formele correspondentie heeft met het volledige model.

In hoofdstuk 4 wordt een techniek beschreven die men in staat stelt semantiek
op een modulaire manier te formaliseren in een bewijsassistent, gebaseerd op een
variant van operationele semantiek. Een belangrijk ingrediënt is dat de regels die
de operationele semantiek definiëren, onafhankelijk van welke andere regels al
dan niet bestaan, kunnen worden beschreven. Dit stelt de gebruiker in staat een
programmeertaal uit te breiden.

Een partiële formalisatie van bialgebraı̈sche semantiek in de bewijsassistent
COQ wordt ontwikkeld in hoofdstuk 5. Bialgebraı̈sche semantiek zelf is voor-
gesteld door Turi en Plotkin. Een belangrijk aspect van de formalisatie is dat
het operationele en denotationele semantiek verenigt binnen de logica van COQ,
onder de voorwaarde dat de modellen van beide stijlen van semantiek zijn afge-
leid van een verzameling regels die zijn gecodeerd in het GSOS formaat. Deze
formalisatie stelt de gebruiker in staat beide stijlen onderling uit te wisselen bin-
nen COQ, en daarmee voordeel te doen van de karakteristieken die beide stijlen
bevatten.

Modulariteit in het bialgebraı̈sche raamwerk wordt behandeld in hoofdstuk 6.
Een variant van het GSOS regel-formaat wordt voorgesteld die ondersteuning
biedt voor het taal-onafhankelijk beschrijven van operaties. In dit hoofdstuk wordt
bewezen dat het toevoegen van conservatieve nieuwe operaties aan een taal re-
sulteert in afbeeldingen tussen de basis-taal en zijn uitbreiding die zich goed
gedragen. Daarnaast wordt bewezen dat algebraı̈sche wetten worden behouden
door taal uitbreidingen en dat algebraı̈sche wetten instantieerbaar zijn.

Curriculum Vitae

Ken Madlener was born on the 24th of March in Zevenaar, the Netherlands. He
started his studies in informatics in 2000 at the Avans University of Applied
Sciences in ’s-Hertogenbosch. After obtaining his bachelor’s degree in 2004, he
continued his studies at the Radboud University Nijmegen in computer science,
and obtained a master’s degree in 2008. From 2006 to 2008 he also studied math-
ematics at the Radboud University Nijmegen, for which he obtained a bachelor’s
degree in 2008. In September 2008, Ken started as a Ph.D. student at the Institute
for Computing and Information Sciences, at the Radboud University Nijmegen,
where he was supervised by prof. dr. Marko van Eekelen and dr. Sjaak Smetsers.
The topic of his Ph.D. thesis is formal reasoning about the correctness of computer
software.

135

	Acknowledgements
	Introduction
	Programming Language Semantics
	Lightweight semantics
	Modularity in semantics

	Theorem Provers
	Formalization of semantics in theorem provers

	Future Work
	Overview and Contributions

	A Verification Study on the Rotterdam Storm Surge Barrier
	Introduction
	The Considered Component: DEW
	Z specification

	Formal Analysis
	Translation of C++ to PVS
	Communication with the hydraulic-model evaluator
	Verification

	Validation of the Specification
	Decision based on incomplete information
	Critical excesses

	Case-study Evaluation
	Related Work
	Future Work: Certified Lightweight Semantics
	Conclusions

	Reasoning About Assignments in Recursive Data Structures
	Introduction
	Preliminaries
	The Model
	The heap
	Expressions, statements and compositions
	Assignments

	The Effect of Assignments on Multidot Expressions
	Looking at the heap before the assignment
	Looking at the heap after the assignment
	PVS formalisation

	Linearised Abstractions
	Paths
	Example: verification of an in-place list reversal algorithm
	Other data structures

	Evaluation and Future Work
	Related Work
	Local reasoning

	Conclusions

	Formal Component-Based Semantics
	Introduction
	Component-Based Semantics
	Modular SOS

	Formalization
	Types for transition relations
	Grammar
	Semantics

	Labels
	Formalization of labels

	Example of Modular Proof
	Related Work
	Conclusions and Future Work

	GSOS Formalized in Coq
	Introduction
	A Simple Stream Language
	Operational semantics
	Denotational semantics

	Framework
	Generic terms
	Distributive laws
	Operational and denotational models

	Coq Formalization
	Equational reasoning with setoids
	Dependent types for generic terms
	Theory about terms

	Proving the Adequacy Theorem
	Adequacy theorem for rules in simple format
	The GSOS format
	From GSOS to distributive laws
	Adequacy theorem for the GSOS format

	Related Work
	Conclusions

	Modular Bialgebraic Semantics and Algebraic Laws
	Introduction
	Preliminaries
	Rule Format
	Example
	The Open GSOS format
	Operational conservative extensions

	Silent Transitions
	Silent transitions as unfolding rules
	Unfolding rule extensions

	Algebraic Laws
	Preservation of algebraic laws
	Combining algebraic laws

	Running the operational semantics
	Related Work
	Conclusions

	Bibliography
	Summary
	Samenvatting (Dutch Summary)
	Curriculum Vitae

