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Abstract
Reversible computing is a computational paradigm in which computations are deterministic in
both the forward and backward direction, such that programs have well-defined forward and
backward semantics. In the present paper, we investigate the formal semantics of the reversible
functional programming language Rfun. We focus on inverse categories, which are categories
with an abstract notion of partiality and whose morphisms have partial inverses. We determine
in which inverse categories one can define a categorical object in which every term of the language
Rfun has a denotation. We axiomatize a class of categorical models of reversible computing, which
provide computationally adequate denotational semantics for Rfun, confirming the importance
of inverse category theory in the study of reversible computation.
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1 Introduction

Since the early days of theoretical computer science, the quest for the mathematical description
of (functional) programming languages has led to a substantial body of work. In particular,
much focus has been put on computationally adequate models, which equip programs with a
sound and complete denotational semantics.

In reversible computing, every program is reversible, i.e., both forward and backward
deterministic. But why study such a peculiar paradigm of computation at all?

While the daily operations of our computers are irreversible, the physical devices which
execute them are fundamentally reversible. In the paradigm of quantum computation, the
physical operations performed by a scalable quantum computer intrinsically rely on quantum
mechanics, which is reversible. Landauer [22] has famously argued, through what has later
been coined Landauer’s principle, that the erasure of a bit of information is inexorably linked
to the dissipation of energy as heat (which has since seen both formal [1] and experimental [8]
verification). On its own, this constitutes a reasonable argument for the study of reversible
computing, as this model of computation sidesteps this otherwise inevitable energy dissipation
by avoiding the erasure of information altogether.

And although its study can be motivated by issues raised by the laws of thermodynamics
which arguably constitute a theoretical limit of Moore’s law [26], reversibility arises not only
in quantum computing (see e.g., [3]), but also has its own circuit models [13, 32], Turing
machines [4,7] and other automata [20,21], and has seen applications in areas spanning from
high-performance computing [29] to process calculi [12] and robotics [30, 31], to name a few.
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2 Categorical models of reversible computing

Even if mainstream theoretical computer science has always put the focus on irreversible
computations, there is an increasing interest for the study of the reversible computing
paradigm through the lens of the theoretical computer scientist’s toolbox. The present work
provides a building block in the theoretical study of reversible computing, studied with the
mathematical methods provided by the theory of the semantics of programming languages:
we describe computationally adequate categorical models of reversible computing.

1.1 Reversible programming primer
Virtually all programming languages in use today (with some notable exceptions) guaran-
tee that programs are forward deterministic (or simply deterministic), in the sense that
any current computation state uniquely determines the next computation state. Few such
languages, however, guarantee that programs are backward deterministic, i.e., that any
current computation state uniquely determines the previous computation state. For example,
assigning a constant value to a variable in an imperative programming language is forward
deterministic, but not backward deterministic (as one generally has no way of determining
the value stored in the variable prior to this assignment).

Forward
non-determinism

Forward
determinism

Ś

Backward
non-determinism

Backward
determinism

Ś

Programming languages which guarantee both forward and backward determinism of
programs are called reversible. Though there are numerous examples of such reversible
programming languages (see, e.g., [17, 34]), we focus here on the reversible functional
programming language Rfun [33].

plus xx, yy fi case y of
Z Ñ txxyu
Spuq Ñ let xx1, u1y “ plus xx, uy in

xx1, Spu1qy

fib n fi case n of
Z Ñ xSpZq, SpZqy
Spmq Ñ let xx, yy “ fib m in

let z “ plus xy, xy in z

Rfun is an untyped reversible func-
tional programming language (see an
example program, computing Fibon-
acci pairs, to the right, due to [33])
similar in style to the Lisp family of pro-
gramming languages. As a consequence
of reversibility, all functions in Rfun are
partial injections, i.e., whenever some
function f is defined at points x and
y, fpxq “ fpyq implies x “ y. Being
untyped, values in Rfun come in the
form of Lisp-style symbols and constructors.

Pattern matching and variable binding is supported by means of (slightly restricted) forms
of case expressions and let bindings, and iteration by means of general recursion. Restrictions
on case expressions are there to ensure that the different branches (seen as morphisms) are
inverse compatible. That is, the syntax of Rfun ensures that the inverse of a case expression
is also a case expression.

In order to guarantee backward determinism (and consequently reversibility), Rfun
imposes a few restrictions on function definitions not usually present in irreversible functional
programming languages. Firstly, while a given variable may only appear once in a pattern (as
is also the case in, e.g., Haskell and the ML family), it must also occur exactly once in the body.
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plus´1 z fi case z of
txxyu Ñ xx, Zy
xx1, Spu1qy Ñ let xx, uy “ plus´1

xx1, u1y in
xx, Spuqy

fib´1 z fi case z of
xSpZq, SpZqy Ñ Z
z1 Ñ let xy, xy “ plus´1 z1 in

let m “ fib´1
xx, yy in Spmq

Secondly, the result of a func-
tion call must be bound in
a let binder before use; and
thirdly, the leaf expression of
any branch in a case expres-
sion must not match any leaf
expression in a branch preced-
ing it. Together, these three re-
strictions guarantee reversibil-
ity. One might wonder whether

these hinder expressivity too much; fortunately, this is not so, as Rfun is r-Turing complete [33],
that is: Rfun can simulate any reversible Turing machine [7].

txxyu “ xx, xy

txx, yyu “

"

xxy if x “ y

xx, yy if x ‰ y

A final peculiarity of Rfun has to do with duplication
of values. Even though values can be (de)duplicated
reversibly, the linear use policy on variables hinders
this. To allow for (de)duplication of values, a special
duplication/equality operator t¨u is introduced. Note
that this operator can be used both as a value and as a
pattern; in the former use case, it is used to (de)duplicate
values, and in the latter, to test whether values are
identical.

As a reversible programming language, Rfun has the property that it is syntactically
closed under inverses. That is to say, if p is an Rfun program, there exists another Rfun
program p1 such that p1 computes the semantic inverse of p. This is witnessed by a program
inverter [33]. For example, the inverses to addition and Fibonacci pair functions shown
earlier is given above.

1.2 Join inverse category theory
In Section 2, we focus on categorical structures in which one can conveniently model the
mathematical foundations of reversible computing. A brainchild of Cockett & Lack [9–11],
restriction categories are categories with an abstract notion of partiality, associating to each
morphism f : AÑ B a “partial identity” f : AÑ A satisfying f ˝f “ f and other axioms. In
particular, this gives rise to partial isomorphisms, which are morphisms f : AÑ B associated
with partial inverses f : : B Ñ A such that f : ˝ f “ f and f ˝ f : “ f :. In this context, a
total map is a morphism f : AÑ B such that f is the identity on A.

A restriction category in which all morphisms are partial isomorphisms is called an
inverse category. Such categories have been considered by the semigroup community for
decades [16,19,23], though they have more recently been rediscovered in the framework of
restriction category theory, and considered as models of reversible computing [5, 14,15,18].
The category PInj of sets and partial injections is the canonical example of an inverse
category. In fact, every (locally small) inverse category can be faithfully embedded in it [9].

In line with [5], we focus here on a particular class of domain-theoretic inverse categories,
namely join inverse categories. Informally, join inverse categories are inverse categories in
which joins (i.e. least upper bounds) of homomorphisms exist in such a way that the partial
identity of a join is the join of the partial identities, among with other coherence axioms.

In this setting, bimonoidal join inverse categories are join inverse categories equipped
with products X b Y and sums X ‘ Y for every pair of objects X and Y , together with
a natural isomorphism which distributes products over sums, and coherence axioms which



4 Categorical models of reversible computing

ensure the preservation of joins and partial inverses. Interestingly, every inverse category
embeds in such a bimonoidal join inverse category (see Theorem 13).

1.3 Categorical models of reversible computing

The major part of this work is devoted to the description of an axiomatization of categorical
models of reversible computing, following a recent keen interest for presheaf-theoretic models
in the semantics of quantum computing [24,27,28] and reversible computing [5].

In order to construct denotational models of the terms of the language Rfun, we adopt
the categorical formalism of bimonoidal join inverse categories. Since morphisms in inverse
categories are all partial isomorphisms, inverse categories have been suggested as models
of reversible functional programming languages [14], and the presence of joins has been
shown [5,18] to induce fixed point operators for modelling reversible recursion.

In short, Rfun is an untyped first-order language in which the arguments of functions are
organized in left expressions (patterns) given by the grammar l ::“ x | cpl1, . . . , lnq where
variables x and constructors c are taken from denumerable alphabets V respectively Σ. In
other words, a function definition f l fi l1 takes a pattern l as argument and organizes its
output as a pattern l1.

Our work involves an unorthodox way of thinking about the denotational semantics of
a function in a functional programming language to be explicitly constructed piecemeal
by the (partial) denotations of its individual branches. Categorically, this means that the
denumerable alphabet Σ is denoted by the (least) fix point of the functor F : X ÞÑ X ‘ 1,
which is given by algebraic compactness as the initial F -algebra [6] and corresponds to
the denotation of the recursive type of natural numbers. Then, every value cpl1, . . . , lnq is
naturally denoted by induction as a tree which has a root labelled by the symbol c, with a
branch to every subtree li for 1 ď i ď n. We detail this construction in Section 3.

Finally, in order to denote the duplication/equality operator and the case expressions
of Rfun, we investigate the notions of decidable equality and decidable pattern matching.
Recall that in set theory, a set is decidable (or has decidable equality) whenever any pair of
elements is either equal or different. By decidable equality, we mean that the equality of
two elements is decidable from a computability-theoretic point of view1. Similarly, decidable
pattern matching is the property which ensures that checking for some pattern in a given
sequence of indexes is a decidable computation. Those are two properties that we want to
hold, regardless of the terms that we are dealing with.

Section 4 is devoted to the study of decidability in join inverse categories. Interestingly, it
is sufficient to assume that the object 1 has decidable equality to obtain decidable equality for
all objects relevant to the denotational semantics (see Section 4.2). Moreover in join inverse
category theory, decidable equality implies decidable pattern matching (see Section 4.3).

We conclude in Section 5 with a definition of categorical models of reversible computing
as bimonoidal join inverse categories with decidable equality. Then, in any categorical model
of reversible computing C, Rfun expressions are denoted by elements of objects of C and
function definitions are denoted by maps in C, providing a denotational semantics for the
language Rfun [33] whose operational semantics can be associated to the following adequacy
theorem:

1 Note that we’re only talking about decidable equality of inductively constructed first order data, that is
data constructed using symbols and constructors. A more general notion of decidable equality would be
at odds with Turing completeness.
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§ Theorem 1. In any categorical model of reversible computing and under any programming
context, a program execution terminates if and only if its denotation is a non-trivial total
map.

This axiomatization gives for the first time (to our knowledge) reasonable axioms for
categorical semantics of reversible computing and paves the way to the quest for fully abstract
models of reversible computing, as much as it gives to the working computer scientist some
guidelines for the design of reversible functional programming languages and their compilers.

2 Join inverse category theory

Assuming prior knowledge of category theory, we introduce in this section the notion of join
inverse category, due to Cockett & Lack [9].

§ Definition 2. A restriction structure on a category consists of an operator mapping each
morphism f : AÑ B to a morphism f : AÑ A (called restriction idempotent) such that the
following properties are satisfied:

(i) f ˝ f “ f ,
(ii) f ˝ g “ g ˝ f for all g : AÑ C,

(iii) g ˝ f “ g ˝ f for all g : AÑ C,
(iv) g ˝ f “ f ˝ g ˝ f for all g : B Ñ C.

A category with a restriction structure is called a restriction category. A total map is a
morphism f : AÑ B such that f “ idA.

We recall some basic properties of restriction idempotents:

§ Lemma 3. In any restriction category, we have for all suitable f and g that

(i) f ˝ f “ f ,
(ii) g ˝ f “ g ˝ f ,

(iii) g ˝ f “ g ˝ f , and
(iv) g ˝ f ˝ f “ g ˝ f .

As a trivial example, any category is a restriction category when equipped with the trivial
restriction structure mapping f “ 1A for all f : AÑ B.

§ Definition 4. A morphism f : A Ñ B in a restriction category is a partial isomorphism
whenever there exists a morphism f : : B Ñ A, the partial inverse of f , such that f : ˝ f “ f

and f ˝ f : “ f :.

Note that the definite article – the partial inverse – is justified, as partial inverses are
unique whenever they exist.

§ Definition 5. An inverse category is a restriction category in which every morphism is a
partial isomorphism.

It is worth noting that this is not the only definition of an inverse category: historically, this
mathematical structure has been defined as the categorical extension of inverse semigroups
rather than as a particular class of restriction categories (see, e.g., [16, 19,23]).

§ Definition 6. A zero object in a restriction (or inverse) category is said to be a restriction
zero iff 0A,A “ 0A,A for every zero endomorphism 0A,A.

§ Definition 7. Parallel morphisms f, g : AÑ B of an inverse category are said to be inverse
compatible, denoted f — g, if the following hold:



6 Categorical models of reversible computing

(i) g ˝ f “ f ˝ g (ii) g: ˝ f : “ f : ˝ g:

By extension, one says that S Ď HompA,Bq is inverse compatible if s — t for each s, t P S.

More specifically, we focus in this paper on join inverse categories. The definition of such
categories relies on the fact that in a restriction category C, every hom-set CpA,Bq gives
rise to a poset when equipped with the following partial order: f ď g if and only if g ˝ f “ f .

§ Definition 8 ( [15]). An inverse category is a (countable) join inverse category if it has a
restriction zero object, and satisfies that for all (countable) inverse compatible subsets S of
all hom sets HompA,Bq, there exists a morphism

Ž

sPS s such that

(i) s ď
Ž

sPS s for all s P S, and s ď t for all s P S implies
Ž

sPS s ď t;
(ii)

Ž

sPS s “
Ž

sPS s;
(iii) f ˝ p

Ž

sPS sq “
Ž

sPSpf ˝ sq for all f : B Ñ X; and
(iv) p

Ž

sPS sq ˝ g “
Ž

sPSps ˝ gq for all g : Y Ñ A.

On that matter, it is important to mention that there are significant mathematical results
about join inverse categories. In particular, there is an adjunction between the categories of
join restriction categories and join inverse categories [5].

Let us conclude the introduction of this section with a few examples.
The category PInj of sets and partial injections is a canonical example of an inverse

category (even further, by the categorical Wagner-Preston theorem [9], every (locally small)
inverse category can be faithfully embedded in PInj). For a partial injection f : A Ñ B,
define its restriction idempotent f : AÑ A by fpxq “ x if f is defined at x, and undefined
otherwise. With this definition, every partial injection is a partial isomorphism. Moreover,
the partial order on homsets corresponds to the usual partial order on partial functions: that
is, for f, g P PInjpA,Bq, f ď g if and only if, for every x P A, f is defined at x implies that
g is defined at x in such a way that fpxq “ gpxq.

The category Set˚ of pointed sets and point-preserving functions has an analogous
restriction structure. Other examples of join inverse categories include: The category PTop
of topological spaces and partial homeomorphisms with open range and domain of definition.
Restrictions are given as in Set˚, and the existence of joins follows by the same construction as
in Set˚ (openness follows by the pasting lemma). Relatedly, the category DcpoK! of directed
complete partial orders and partial Scott homeomorphisms with open range and domain of
definition (recall that the Scott topology is generated by all downsets Ótxu “ ty | y ď xu) is
a join inverse category.

2.1 Bimonoidal join inverse categories

We now proceed to introduce our categorical model: bimonoidal join inverse categories.

§ Definition 9 ( [5, 14]). A join inverse category C with a restriction zero object 0 is said
to have a join inverse sum if it is equipped with a symmetric monoidal join restriction
functor ´ ‘ ´ : C ˆ C Ñ C (with left unitor λ‘, right unitor ρ‘, associator α‘, and
commutator γ‘) such that the restriction zero 0 is the tensor unit, and the morphisms given
by >1 “ p1A ‘ 00,Bq ˝ ρ

´1 : AÑ A‘B and >2 “ p00,B ‘ 1Aq ˝ λ´1 : AÑ B ‘A are jointly
epic, and their partial inverses >:1 : A‘B Ñ A and >:2 : B ‘AÑ A are jointly monic.
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This notion is intimately related to B. Giles’ notion of a disjointness tensor – it is simply
such a tensor required to preserve joins, so precisely what is described as a join-preserving
disjointness tensor in [5].

At this point, to define the notion of an inverse product (which first appeared in [14]),
we recall the definition of a :-Frobenius semialgebra (see, e.g., [14]), that we later use to
describe well-behaved products on inverse categories.

§ Definition 10. In a (symmetric) monoidal :-category, a :-Frobenius semialgebra is a pair
pX,µXq of an object X and a map µX : X bX Ñ X such that the diagrams below commute.

X b pX bXq pX bXq bX

X bX X bX

X

α

X b µX µX bX

µX µX

X

X bX

X bX

X b pX bXq

pX bXq bX

µX

µ:
X

α ˝ pµ:
X
bXq

α´1
˝ pX b µ:

X
q X b µX

µX bX

Formally, the leftmost diagram (and its dual) makes pX,µXq a semigroup, andpX,µ:Xq a
cosemigroup, while the diagram to the right is called the Frobenius condition. One says that
a :-Frobenius semialgebra pX,µXq is special if µX ˝µ:X “ idX , cospecial if µ:X ˝µX “ idXbX ,
and commutative if the monoidal category in which it lives is symmetric and µX ˝γX,X “ µX
(where γX,X : X bX Ñ X bX is the symmetry of the monoidal category).

Next, we recall the definition of a (join) inverse product.

§ Definition 11. An inverse category C is said to have an inverse product [14] if it is equipped
with a symmetric monoidal restriction functor ´ b ´ : C ˆC Ñ C (with left unitor λb,
right unitor ρb, associator αb, and commutator γb) equipped with a natural transformation
∆X : X Ñ X b X such that the pair pX,∆Xq is a special and commutative :-Frobenius
semialgebra for any object X. Additionally, one says that a join inverse category has a join
inverse product if it has an inverse product that additionally preserves joins.

When clear from the context, we omit the subscripts on unitors, associators, and com-
mutators. We are finally ready to define bimonoidal join inverse categories.

§ Definition 12. A join inverse category is bimonoidal if it is equipped with an join inverse
product pb, 1q and a join inverse sum p‘, 0q, such that there is a natural isomorphism of
join restriction functors X b pY ‘ Zq δ

ÝÑ pX b Y q ‘ pX b Zq (the distributor) natural in X,
Y , and Z, and a natural isomorphism X b 0 νX

ÝÝÑ 0 (the annihilator) natural in X.

Ab 0

0

AbB C bD
f b 0B,D

Ab ! fb !

νAν´1
A

The presence of the annihilator is of particular importance
in relation to Call-by-Value semantics, as it “eagerly evaluates”
the partiality of monoidal product maps (similar to the smash
product of topological spaces, dcpos, etc.), in the sense that
tensoring any f : A Ñ C with a zero map, i.e., f b 0B,D :
AbB Ñ CbD (or symmetrically), gives the zero map 0AbB,CbD
by commutativity of the diagram below, and unicity (up to
canonical isomorphism) of the zero object.

A particularly useful result in this regard is the following.

§ Theorem 13. Any inverse category can be faithfully embedded in a category of which is
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(i) a bimonoidal join inverse category,
(ii) algebraically ω-compact for join restriction functors.

Proof. See Appendix A.1. đ

The proof of this theorem uses a modified version of Guo’s completeness theorem for join
inverse categories [15] (see also [5]). In light of this, we assume our bimonoidal join inverse
categories from here on out to be algebraically ω-compact for join restriction endofunctors:
every join restriction endofunctor F has a fixpoint written µF (or alternatively µX.F pXq),
which is the initial F -algebra.

On a final note, it is worthwhile to stress that our definition of bimonoidality is fairly
similar to the notion of distributive join inverse category in Giles’ terminology [14, Sec. 9.2]:
there, the case of general joins is not considered and therefore there is no requirement of
join-preservation; however, for reasons unrelated to our approach, the existence of certain
pullbacks and pushouts of his related disjointness tensor are required.

3 Constructions on bimonoidal join inverse categories

In this section, we construct the object TS of all Rfun terms, allowing us to construct
the denotation liftpsq P TS for every variable x such that σpxq “ s, and the denotations
conscps1, . . . , snq P TS of left expressions cpl1, . . . , lnq where σ “ Zni“1σi and si is the
denotation of li (for each i). We refer the interested reader to Appendix B for the complete
presentation of our computationally adequate denotational semantics of Rfun. There, the
denotation rrtssσq of a term t depends on the program q associated to the term t and on
the substitution σ, a partial function which associates variables to symbols taken in a
denumerable alphabet.

3.1 Term representation
Now, we need to deal with the fact that values in the untyped functional programming
language Rfun are left expressions free of variables and duplication/equality [33], i.e. of the
form v :“ s | cpv1, . . . , vnq where s and c are taken from a denumerable alphabet Σ.

Then, to obtain an object of Rfun terms, we need to construct a denumerable object
S of symbols or base terms, each identified by a unique morphism 1 Ñ S where 1 is unit
of the inverse product – a monoidal natural numbers object suffices (up to isomorphism).
We define S to be the least fixed point of the locally continuous functor X ÞÑ X ‘ 1, via
algebraic compactness: In the following non-commutative diagram, every map µn ˝ >n`1
gives a unique symbol of S.

1

1‘ 11 1‘ 1‘ 1 ¨ ¨ ¨

S

id
>2

>3

¨ ¨ ¨

µ0
µ1

µ2

¨ ¨ ¨

Building up on Theorem 13 and using the join inverse product pb, 1q and join inverse
sum p‘, 0q, we can construct the object of Rfun terms as TS, where the functor T is defined
as follows:

T pXq “ µK.X b LpKq LpXq “ µK.1‘ pX bKq
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Intuitively, L maps an object X to that of lists of X, while T maps an object X to
nonempty finite trees with X-values at each node. In Set, the following are examples of
elements of T pXq (for some set X and a, b, c P X):

c b

c

a

ab b

c a b

p1q p2q p3q

Note that while every such tree is well-founded, the converse is not true, as well-founded
trees can be empty or have infinite breadth, neither of which are permitted by this definition.

The object TS then allows us to represent terms in Rfun very naturally, namely by their
syntax trees. As such, p1q above corresponds to the term c, p2q to the term bpcq, and p3q to
the term apb, apcq, bpa, bqq. Though this is often how untyped programming languages are
modelled, we do not formally require TS to be an universal object of the category, as long as
it is rich enough for Cp1, TSq to uniquely encode all values.

3.2 Tags
To construct new terms from simpler ones, and to decompose complex terms into its
constituent parts, we introduce a family of tagging and untagging maps indexed by symbols,
i.e., morphisms 1 Ñ S.

Let us start by defining maps tags : LTS Ñ TS and untags : TS Ñ LTS for every
symbol s : 1 Ñ S. The second map happens to coincide precisely with the partial inverse of
the corresponding tagging map. One can think of the partial inverse of a symbol s : 1 Ñ S
as its assertion asrts : S Ñ 1. intuitively, it is a partial map defined at a unique point
corresponding to the symbol it asserts.

LTS

1b LTS

TS

S b LTS

tags

λ´1

sb id

foldT

TS

S b LTS

LTS

1b LTS

untags

unfoldT

asrts b id

λ

Then, considering that untags ˝ tags is the identity on LTS, and that tags ˝ untags is
the restriction idempotent of untags and therefore below the identity by definition, the pair
ptags,untagsq is an embedding-projection pair2.

At this point, it is important to note that this construction provides a highly intuitive
representation of terms, which relies very naturally on pretty much all of the features of
a bimonoidal join inverse category. Following this observation, one can argue that the
categorical structure of bimonoidal join inverse categories is not just sufficient for modelling
Rfun, but also necessary for enabling a standard term construction.

2 tag is a restriction monic (with retraction untag, splitting the restriction idempotent of untag), and
in join restriction categories, restriction monics correspond 1-to-1 to embeddings of the induced CPO-
enrichment.
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Finally, it feels natural to conclude this section by the following observation: if one sees
S as a special case of polynomial functors [25, §3.2, Ex. 3.5], then the tagging operation
corresponds to the construction for trees with a specific root.

3.3 Symbols, values and assertions
With a construction of the object of symbols S and S-valued terms TS, we are finally ready
to consider suitable representations of values in full. Recall that symbols are morphisms
1 s
ÝÑ S with assertions S asrts

ÝÝÝÑ 1 as partial inverses.
Given a symbol s, it is clear that it may be lifted to a term consisting of just s with

no children. This lifting is given by the canonical morphism S lift
ÝÝÑ TS defined by the

composition

S b p1‘ pTS b LTSqqS b 1 S b LTS

S TS

ρ:

S b >1 S b foldL

foldT

lift

This gives a denotation of the simplest of terms – the ones consisting of just a symbol
s with no children – as compositions rrsssσq : 1 s

ÝÑ S lift
ÝÝÑ TS with corresponding assertions

TS lift:
ÝÝÑ S asrts

ÝÝÝÑ 1. More subtly, however, it also gives a representation of arbitrary terms,
given by describing their construction. Note first that there is a canonical morphism
1 nil
ÝÑ LTS given by 1 >1

ÝÑ 1 ‘ pTS b LTSq foldL
ÝÝÝÑ LTS. With this, we can construct

the map conscps1, . . . , sn`1q : 1 Ñ TS (where si : 1 Ñ TS for every i) in the following
commuting diagram, where the map itern is defined by induction: iter0 “ id1bLTS and
itern`1 “ pTSbn b foldLq ˝ pTSbn b >2q ˝ itern for every n P N.

1

1bn`1
b 1

TSbn`1
b LTS

TSbn
b p1‘ pTS b LTSqq TSbn

b LTS

1‘ pTS b LTSq

LTS

TS

–

s1 b ¨ ¨ ¨ b sn`1 b nil

TSbn b >2

TSbn b foldL

itern

foldL

tagc

conscps1, . . . , snq

In short: rrcpl1, . . . , lnqssσq “ conscprrl1ssσ1
q , . . . , rrlnss

σn
q q : 1 Ñ TS where σ “ Zni“1σi.

Alternatively, consc can be seen as a map TSbn Ñ TS which takes n left-expressions of
Rfun and gives back a left-expression labelled by c.

4 Duplication/equality operator and case expressions

In this section, we proceed to unveil the categorical constructions by which one can denote
the duplication/equality operator and the case expressions of the language Rfun. For that
purpose, in Section 4.1, we establish in inverse category theory a categorical property, called
decidable equality, under which we guarantee the existence of the well-behaved denotations of
duplication/equality operations, conceptualized as maps dupeqX : X‘pXbXq Ñ X‘pXbXq
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for the objects X. Then, we proceed to demonstrate in Section 4.2 that it is sufficient to
assume that the object 1 has decidable equality to obtain decidable equality for all objects
relevant to the denotational semantics. Finally in Section 4.3, we provide a proof that
decidable equality implies decidable pattern matching, a categorical property which ensures
that one can construct well-behaved denotations of case expressions. The construction of the
denotations of left-expressions tvu and case expressions is detailed in Appendix B.1.

4.1 Decidability in restriction category theory
In set theory, a set X is decidable (or has decidable equality) if any pair of elements is either
equal or different. This notion has the following analogue in restriction category theory.

§ Definition 14. In an inverse category with inverse products and (finite) joins, one says
that an object X has decidable equality if the restriction idempotent of the inverse of the
duplication map ∆:X onX is complemented: that is, if there is an orthocomplement restriction

idempotent ∆:X
K

such that ∆:X _∆:X
K

“ idXbX and ∆:X ˝∆:X
K

“ 0XbX .

We say that parallel morphisms in an inverse category f, g are disjoint, writing f K g iff
f ˝ g “ g ˝ f “ 0 and likewise for their partial inverses. Note that this is equivalent to saying
that f ˝ g “ 0, and strictly stronger than join compatibility as f — g iff f ˝ g “ g ˝ f and
likewise for their partial inverses.
§ Proposition 15. In an inverse category with inverse products and (finite) joins, every object
X with decidable equality admits duplication-equality by a natural involutive automorphism
dupeqX : X ‘ pX bXq Ñ X ‘ pX bXq.

Proof. See Appendix A.2 for the categorical construction of the map dupeqX . đ

In addition, say that an object X has decidable pattern matching if any value assertion
on X (i.e., any morphism of the form s: : X Ñ X for a total s : 1 Ñ X) has a complement
restriction idempotent s:

K
: X Ñ X such that s: ˝ s:

K
“ 0X,X and s: _ s:

K
“ idX,X .

And although assuming that the object TS has decidable equality is a reasonable assump-
tion given that this is the case – even constructively – in the categories PInj and Set˚, it is
good practice in an axiomatization to assume the least about the categorical models that
we intend to use. For that purpose, we assume in this paper that the unit 1 has decidable
equality and observe that the zero element 0 has decidable equality by definition. Then, it is
easy to see that X1 bX2 has decidable equality iff X1 and X2 have decidable equality.

In fact, it can be proven that objects formed from the operators 0, 1, b, ‘ and µ have
decidable equality and pattern matching when the unit 1 does. This is a very mild assumption
on the unit 1, as we only need to assume that it is trivial in the sense that the coduplicator
coincides with the unitors.

4.2 Decidable equality
In this section, it is proven that objects formed from the operators 0, 1, b, ‘ and µ have
decidable equality when 1 has. In more technical terms, we are going to show that if the
:-Frobenius semialgebra p1,∆:1q is complemented, then so does every :-Frobenius semialgebra
pX,∆:Xq for which X is formed from the operators 0, 1, b, ‘ and µ.

Establishing this result requires the introduction of the following terminology. Recall that
an inverse product is a monoidal tensor ´b´ with a natural transformation ∆X : X Ñ XbX

such that pX,∆:Xq forms a special commutative :-Frobenius semialgebra in each object X.
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§ Definition 16. One says that the unit 1 of an inverse product is trivial if the coduplicator
∆:1 : 1b 1 Ñ 1 coincides with the unitors λ : 1b 1 Ñ 1 and ρ : 1b 1 Ñ 1.

§ Definition 17. In an inverse (restriction) category which has (at least finite) joins, one
says that a morphism f : A Ñ B is domain complemented – or simply complemented – if
there exists a restriction idempotent fK : AÑ A satisfying f ˝ fK “ 0A,A (the empty join)
and f _ fK “ 1A,A.

Then, in an inverse category which has (at least finite) joins and inverse products, one
says that the :-Frobenius (semi)algebra pX,∆:

Xq is complemented if the multiplication
∆:X : X bX Ñ X is.

§ Proposition 18. In an inverse category with inverse products with a trivial unit, the triple
p1,∆:1q is a special, cospecial, commutative, and complemented :-Frobenius algebra.

Proof. Follows from the definition of the inverse product (see Appendix A.3). đ

From there, we call a functor affine when it is formed from the operators 0, 1,b and ‘.
In other words, affine functors are the functors generated by induction on the grammar

F,G ::“ 0 | 1 | F bG | F ‘G

From there, one can show the following proposition.

§ Proposition 19. Let F : C Ñ C be an inverse affine functor on a bimonoidal join in-
verse category C, and let the (special, commutative) :-Frobenius semialgebra pX,∆:

Xq be
complemented. Then the (special, commutative) :-Frobenius semialgebra pFX,∆:

FXq is
complemented as well.

Proof. By induction on the structure of F . See Appendix A.4 for a detailed proof. đ

Now, we can proceed to show that our fixpoint construction (via algebraic compactness)
is complemented.

§ Proposition 20. Let F : C Ñ C be an inverse affine functor on a bimonoidal join inverse
category C, and consider its unique fixed point µF . Then the (special, commutative)
:-Frobenius semialgebra pµF,∆:µF q is complemented.

Proof. By the construction of fixpoint by algebraic compactness [2,6] (see Appendix A.5). đ

Combining Proposition 18, 19 and 20, one can construct an orthocomplement for every
:-Frobenius semialgebra pX,∆:

Xq such that the object X is formed from the operators 0,
1, b, ‘ and µ. And therefore, objects formed from the operators 0, 1, b, ‘ and µ have
decidable equality when the object 1 has.

4.3 Decidable pattern matching
In this section, it is proven that decidable equality implies decidable pattern matching. In
more technical terms, we are going to show that for every object X formed from the operators
0, 1,b,‘ and µ, the pseudounital :-Frobenius semialgebra pX,∆X , ηXq is discrete whenever
the :-Frobenius semialgebra pX,∆Xq is complemented.
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§ Definition 21. A pseudounital :-Frobenius semialgebra pX,µ, ξq is a :-Frobenius semi-
algebra pX,µq equipped with a distinguished map ξ : 1 Ñ X making the diagrams below
commute.

X X

X b 1 X bX

ξ:

ρ´1

X b ξ

µ

X X

X bX 1bX

ξ:

µ:

ξ: bX

λ

Now, let’s consider that pX,µ, ξq is discrete if µ: and ξ: are complemented.

§ Lemma 22. Any :-Frobenius algebra pX,µ, ηq with a total counit η, i.e. with η: “ idXbX ,
is a pseudounital :-Frobenius semialgebra with pseudounit η, and discrete when µ is comple-
mented.

From this follows that p0,∆:
0, 01,0q is discrete as a :-Frobenius semialgebra, and that

p1,∆:1, id1q is so as well whenever it is a :-Frobenius algebra.

§ Proposition 23. Let pX,∆:

X , ξXq and pY,∆
:

Y , ξY q be discrete :-Frobenius semialgebras.
Then so are

(i) the product semialgebra pX b Y,∆:XbY , ξX b ξY ˝ λ´1q

(ii) the sum semialgebras pX ‘ Y,∆:X‘Y , >1 ˝ ξXq and pX ‘ Y,∆:X‘Y , >2 ˝ ξY q

Proof. Since we have previously shown that the coduplicators are complemented, it suffices
only to show that the postulated pseudounits satisfy the pseudounit conditions, and that
they are complemented. See Appendix A.6 for a detailed proof. đ

§ Proposition 24. Let F : C Ñ C be an inverse affine functor on a bimonoidal join inverse cat-
egory C, and let each (special, commutative) :-Frobenius semialgebra pFnp0q,∆:Fnp0q, ξFnp0qq
be discrete. Then so is pµF,∆:µF , ιn ˝ ξFnp0qq.

Proof. We have pιn ˝ ξFnp0qq: “ ξ:Fnp0q ˝ ι
:
n “ ι:n ˝ ξ

:

Fnp0q ˝ ιn and therefore pseudounitality
follows by commutativity of pseudounit diagram below, noting that the counit diagram is
analogous.

µF

µF b 1

Fn
p0q

Fn
p0q b 1

Fn
p0q

Fn
p0q b Fn

p0q

µF

µF b µF

ρ´1

ι:n b 1 Fnp0q b ξFnp0q ιn b ιn

∆:
µF

ι:n
ξ:
Fnp0q ιn

ρ´1 ∆:
Fnp0q

đ

As a corollary, any :-Frobenius semialgebra constructed using 0, 1,b,‘ and fixed points
is discrete.

5 Categorical models of reversible computing

In conclusion, taking our definitions and categorical constructions into account, we define
categorical models of reversible computing as follows.
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§ Definition 25. A categorical model of reversible computing is a bimonoidal join inverse
category with decidable equality (for TS).

In summary, we have introduced join inverse categories and constructed the categor-
ical semantics of the instructions of the language Rfun. With arguably weak categorical
assumptions, we have shown the strength of join inverse category theory in the semantical
study of reversible programming, leading us to the following adequacy theorem (proven in
Appendix B.2).

§ Theorem 26. In any categorical model of reversible computing and under any programming
context, a program execution terminates if and only if its denotation is a non-trivial total
map.
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A Omitted proofs

A.1 Proof of Theorem 13

In the following, recall that InvpCq for a restriction category C is the cofree inverse category,
i.e., the largest inverse subcategory of C; it is given on objects by objects of C, and on
morphisms by all partial isomorphisms (i.e., morphisms f for which there is a map f˚ such
that f ˝ f˚ “ f˚ and f˚ ˝ f “ f) of C. Similarly, TotalpCq is the subcategory of total
morphisms of C, given on objects by objects of C, and on morphisms by total morphisms
(i.e., morphisms satisfying f “ id) of C. For a restriction category C, SplitpCq denotes the
idempotent splitting (“Karoubi envelope”) of C with respect to all restriction idempotents,
i.e., morphisms e such that e “ e.

Let C be an inverse category, and let N denote the least stable system of monics containing
both {Mgap (as in [15]) and all duplicator monics xid, idy : X Ñ X ˆX in SetTotalpSplitpCqqop

,
and qC the resulting category of partial maps ParpSetTotalpSplitpCqqop

,N q.
The fact that the category C embeds faithfully in the category InvpqCq, which is join

inverse and algebraically ω-compact for join restriction functors, was previously shown in [15]
and [5] respectively.

As for (iii), we note that qC is classified (see, e.g., [10]), and since the category SetTotalpSplitpCqqop

has products respectively coproducts (as it is a topos), it follows by [15] respectively [10]
that the category qC has all finite restriction products respectively restriction coproducts,
and that restriction products are discrete since all diagonal maps are in N (see [14]).

Further, restriction products and coproducts distribute, and the restriction zero annihilates
restriction products, as they are constructed precisely by the products and coproducts of the
category SetTotalpSplitpCqqop

.
Since joins in the category qC are constructed as stable colimits of certain pullbacks

(specifically the M-amalgamable diagrams) in the category SetTotalpSplitpCqqop
, to show that

they are join preserving, it suffices to show that products and coproducts in the category
SetTotalpSplitpCqqop

preserve colimits of pullbacks (as all colimits are stable in a topos). That
the restriction product functors ´ˆX (and symmetrically) in the category qC preserve joins
thus follows by the fact that they are products in the category SetTotalpSplitpCqqop

(specifically
left adjoints), so they preserve colimits (by Freyd’s adjoint functor theorem), and commute
with arbitrary limits, specifically pullbacks. Similarly, that the same is the case for restriction
coproduct functors ´`X (and symmetrically) in the category qC follows likewise by the fact
that they are coproducts in the category SetTotalpSplitpCqqop

, and therefore are stable under
pullback (i.e., commute with pullbacks) and commute with arbitrary colimits.

Finally, since the category InvpCq is a join inverse category whenever the category C is
a join restriction category (see, e.g., [15]), it remains only to show that when the category
C is a distributive restriction category with Aˆ 0 – 0 for all A, then the category InvpCq
is a bimonoidal inverse category. Since the category qC has discrete restriction products, it
follows by [14] that these are inverse products in the category InvpqCq. Further, restriction
coproducts in the category qC define a disjointness tensor in the category InvpqCq as any
restriction coproduct has the restriction zero as unit (when it exists), the bifunctor ´`´
be monoidal (when it has a unit) and restriction preserving, and jointly epic coproduct
injections (which are further partial isomorphisms, so preserved in the category InvpqCq).
Since distributivity and annihilation are isomorphisms, these are preserved in the category
InvpqCq.
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A.2 Proof of Proposition 15
We construct dupeqX “ d1,X _ d2,X _ d3,X where the maps di,X are defined as follows:

X ‘ pX bXq

X bX X

X ‘ pX bXq X ‘ pX bXq

X bX X bX

X ‘ pX bXq X ‘ pX bXq

X X bX

X ‘ pX bXq

>
:
2

∆:

>1

d1,X

>
:
2

∆:
K

>2

d2,X

>
:
1

∆

>2

d3,X

Clearly, one can observe that d1 K d3 and d2 K d3 by >:1 K >
:
2, and d1 K d2 by ∆:

X “

∆:X ˝∆:X and ∆:X K ∆:X
K

. In the other direction, we notice that d:1,X “ d3,X , d:2,X “ d2,X ,
d:3,X “ d1,X . Thus they are pairwise disjoint by the exact same arguments as above, so the
set td1,X , d2,X , d3,Xu is a compatible set, and in turn their join dupeqX “ d1,X _d2,X _d3,X
exists.

Notice also that this makes dupeqX and involution, as

dupeq:X “ pd1,X _ d2,X _ d3,Xq
: “ d:1,X _ d

:

2,X _ d
:

3,X

“ d3,X _ d2,X _ d1,X “ d1,X _ d2,X _ d3,X “ dupeqX

To see that it is an automorphism, it suffices to show that dupeqX “ idX‘pXbXq .
Computing the restriction idempotents of the individual components (using the fact that

f ˝ g “ f ˝ g),

d1,X “ >1 ˝∆:X ˝ >
:
2 “ idX ˝∆:X ˝ >

:
2 “ ∆:X ˝ >

:
2

d2,X “ >2 ˝∆:X
K

˝ >
:
2 “ idXbX ˝∆:X

K

˝ >
:
2 “ ∆:X

K

˝ >
:
2

d3,X “ >2 ˝∆X ˝ >
:
1 “ idXbX ˝∆X ˝ >

:
1 “ ∆X ˝ >

:
1 “ idX ˝>:1 “ >

:
1.

But then

d1,X _ d2,X _ d3,X “ d1,X _ d2,X _ d3,X “ ∆:X ˝ >
:
2 _∆:X

K

˝ >
:
2 _ >

:
1

“ ∆:X ˝ >
:
2 _∆:X

K

˝ >
:
2 _ >

:
1

“ p∆:X _∆:X
K

q ˝ >
:
2 _ >

:
1

“ idXbX ˝>:2 _ >
:
1

“ >
:
2 _ >

:
1 “ >

:
2 _ >

:
1 “ idX‘pXbXq

so dupeqX is total, which was what we wanted.

A.3 Proof of Proposition 18
By the inverse product, we have that the triple p1,∆1,∆:

1q is a (special, commutative)
:-Frobenius semialgebra, so suffices to show that id1 serves as unit and counit, and that
the resulting :-Frobenius algebra is cospecial and complemented. Commutativity of the
(co)unitor diagram for the (co)monoid
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1b 1 1b 1 1b 1

1

idb id idb id

ρ λ
∆:1

1b 1 1b 1 1b 1

1

idb id idb id

ρ: λ:
∆1

follows precisely by the assumption that 1 is trivial, and the unit and counit diagrams for
:-Frobenius algebras reduces to showing that id “ ∆1 ˝λ “ ρ ˝∆:1, which follows by triviality
again. Cospecialness follows by ∆:1 “ ρ so ∆:1 “ ρ “ id, and hence by ∆1 total with a total

inverse, it is an isomorphism. Finally, since ∆:1 “ id, the only choice for ∆:1
K

is the zero
morphism 01b1,1b1 which satisfies the conditions.

A.4 Proof of Proposition 19
In the following, we reason by induction on the structure of F .

Case F pXq “ 0. By annihilation, we observe that 0 b 1 – 1 b 0 – 0 and therefore
p0,∆0,∆:0q is a (special, cospecial, commutative, complemented) :-Frobenius algebra with
unit 01,0 by argument analogous to that of Prop. 18.
Case F pXq “ 1. By Prop. 18.
Case F pXq “ F1pXq b F2pXq. We write Xi

def
“ FipXq. By induction, pX1,∆X1 ,∆

:

X1
q

and pX2,∆X2 ,∆
:

X2
q are complemented (special, commutative) :-Frobenius semialgebras.

By commutativity of the diagram (see [14])

X1 bX2 bX1 bX2

X1 bX1 bX2 bX2X1 bX2

∆X1bX2

∆X1 b∆X2

X1 b γX1,X2 bX2

we obtain that

∆:X1bX2

K

“ ∆:X1

K

b∆:X2

K

˝X1 b γ bX2

which can be seen (after some computation) to satisfy the conditions for a complement.
Case F pXq “ F1pXq ‘ F2pXq. We write Xi

def
“ FipXq. By induction, pX1,∆X1 ,∆

:

X1
q

and pX2,∆X2 ,∆
:

X2
q are complemented (special, commutative) :-Frobenius semialgebras.

Then >1 b >1 ˝∆X1 ˝ >
:
1 ď ∆X1‘X2 since

>1 b >1 ˝∆X1 ˝ >
:
1 “ >1 b >1 ˝ >

:
1 b >

:
1 ˝∆X1‘X2 “ >

:
1 b >

:
1 ˝∆X1‘X2

and ∆X1‘X2 ˝ >
:
1 b >

:
1 ˝∆X1‘X2 “ ∆X1‘X2 ˝ >

:
1 b >

:
1 ˝∆X1‘X2 “ >

:
1 b >

:
1 ˝∆X1‘X2

By an entirely analogous argument, >2 b >2 ˝∆X2 ˝ >
:
2 ď ∆X1‘X2 but then

p>1 b >1 ˝∆X1 ˝ >
:
1q _ p>2 b >2 ˝∆X2 ˝ >

:
2q ď ∆X1‘X2

and since

p>1 b >1 ˝∆X1 ˝ >
:
1q _ p>2 b >2 ˝∆X2 ˝ >

:
2q “ p>1 b >1 ˝∆X1 ˝ >

:
1q _ p>2 b >2 ˝∆X2 ˝ >

:
2q

“ >1 b >1 ˝∆X1 ˝ >
:
1 _ >2 b >2 ˝∆X2 ˝ >

:
2 “ ∆X1 ˝ >

:
1 _∆X2 ˝ >

:
2

“ ∆X1 ˝ >
:
1 _∆X2 ˝ >

:
2 “ >

:
1 _ >

:
2 “ id
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by totality of >i and ∆X1 and ∆X2 , it follows that

p>1 b >1 ˝∆X1 ˝ >
:
1q _ p>2 b >2 ˝∆X2 ˝ >

:
2q “ ∆X1‘X2

and so

p>1 ˝∆:X1
˝ >

:
1 b >

:
1q _ p>2 ˝∆:X2

˝ >
:
2 b >

:
2q

“ p>1 b >1 ˝∆X1 ˝ >
:
1q
: _ p>2 b >2 ˝∆X2 ˝ >

:
2q
:

“ pp>1 b >1 ˝∆X1 ˝ >
:
1q _ p>2 b >2 ˝∆X2 ˝ >

:
2qq
:

“ ∆:X1‘X2

giving us

∆:X1‘X2
“ p>1 ˝∆:X1

˝ >
:
1 b >

:
1q _ p>2 ˝∆:X2

˝ >
:
2 b >

:
2q

“ >1 ˝∆:X1
˝ >

:
1 b >

:
1 _ >2 ˝∆:X2

˝ >
:
2 b >

:
2

“ >1 ˝∆:X1
˝ >

:
1 b >

:
1 _ >2 ˝∆:X2

˝ >
:
2 b >

:
2

“ ∆:X1
˝ >

:
1 b >

:
1 _∆:X2

˝ >
:
2 b >

:
2 “ ∆:X1

˝ >
:
1 b >

:
1 _∆:X2

˝ >
:
2 b >

:
2.

As such, choosing

∆:X‘Y
K def
“ ∆:X1

K

˝ >
:
1 b >

:
1 _∆:X2

K

˝ >
:
2 b >

:
2 _ >

:
1 b >

:
2 _ >

:
2 b >

:
1

one realizes after lengthy but straightforward computations that this definition is, indeed,
the complement of ∆:X‘Y .

A.5 Proof of Proposition 20
By [2] (see also [6]), we obtain from algebraic compactness the commuting diagram

0 F p0q F 2
p0q ¨ ¨ ¨

0 F p0q F 2
p0q ¨ ¨ ¨

µF

! F p!q F 2
p!q

!: F p!:q F 2
p!:q

ι0 ι1

ι2

ι:0
ι:1

ι:2

where all ιn are embeddings (so restriction monics) with corresponding projections ι:n, further
satisfying that tιn ˝ ι:nunPN “ tι

:
nunPN is an ω-chain with supremum idµF .

Analogously to the inverse sum case, one can show that ιnb ιn ˝∆Fnp0q ˝ ι
:
n ď ∆µF since

∆µF ˝ ιn b ιn ˝∆Fnp0q ˝ ι
:
n “ ∆µF ˝ ιn b ιn ˝ ι

:
n b ι

:
n ˝∆µF

“ ∆µF ˝ ι
:
n b ι

:
n ˝∆µF “ ∆µF ˝ ι

:
n b ι

:
n ˝∆µF

“ ι:n b ι
:
n ˝∆µF
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and ιn b ιn ˝∆Fnp0q ˝ ι
:
n “ ιn b ιn ˝ ι

:
n b ι

:
n ˝∆µF “ ι:n b ι

:
n ˝∆µF .

Since all of these morphisms have a common supremum in the form of ∆µF , their join
exists and turns out to be precisely ∆µF because

ł

nPN

`

ιn b ιn ˝∆Fnp0q ˝ ι
:
n

˘

“
ł

nPN

´

ι:n b ι
:
n ˝∆µF

¯

“

˜

ł

nPN
ι:n b ι

:
n

¸

˝∆µF

“

˜

ł

nPN
ι:n b ι

:
n

¸

˝∆µF “

˜

ł

nPN
ι:n

¸

b

˜

ł

nPN
ι:n

¸

˝∆µF “ idµF b idµF ˝∆µF “ ∆µF .

As such,

∆:µF “
ł

nPN

´

ιn b ιn ˝∆Fnp0q ˝ ι
:
n

¯:

“
ł

nPN
ιn ˝∆:Fnp0q ˝ ι

:
n b ι

:
n “

ł

nPN
ιn ˝∆:Fnp0q ˝ ι

:
n b ι

:
n

“
ł

nPN
ιn ˝∆:Fnp0q ˝ ι

:
n b ι

:
n “

ł

nPN
∆:Fnp0q ˝ ι

:
n b ι

:
n

Finally, we observe that any embedding arising from an inverse affine functor is either an
isomorphism, a zero map, or a quasi-injection >i, so it follows that the restriction idempotent
of any projection ι:n has a complement (for zero maps, choose the identity; for isomorphisms
– which are total – choose the zero map; for >:1 choose >:2 and vice versa).

As such, choosing

∆:Fnp0q
K def
“

ł

nPN
∆:Fnp0q

K

˝ ι:n b ι
:
n _

ł

nPN
ι:n b ι

:
n

K

_
ł

nPN
ι:n
K

b ι:n

it follows by lengthy but straightforward computation that this satisfies the requirements for
a complement.

A.6 Proof of Proposition 23
Since we have previously shown that the coduplicators are complemented, it suffices only to
show that the postulated pseudounits satisfy the pseudounit conditions, and that they are
complemented.

For (i), we observe that

pξX b ξY ˝ λ´1q: “ λ ˝ ξ:X b ξ
:

Y “ λ ˝ ξ:X b ξ
:

Y “ ξ:X b ξ
:

Y “ ξ:X b ξ
:

Y .

and that the unit diagram commutes can be seen from commutativity of the diagram in
Fig. 1.

where the inner top trapezoid is what we want to show, and the outermost square
commutes precisely by the respective diagrams for the constituent semialgebras.

Commutativity of the counit diagram follows by analogous argument. It follows straight-
forwardly that ξ:X

K

b ξ:Y
K

is the complement of ξ:X b ξ
:

Y .
For (ii), we notice that

p>1 ˝ ξXq: “ ξ:X ˝ >
:
1 “ >1 ˝ ξX ˝ ξ

:

X ˝ >
:
1 “ >1 ˝ ξ

:

X ˝ >
:
1

and the commutativity of the unit diagram follows by the commutativity of the following
diagram
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X b Y b 1b 1

X b Y b 1

X b Y bX b Y

X b 1b Y b 1

X bX b Y b Y

X b Y

X b Y

X b 1b Y b 1 ξ:
X
b ξ:

Y

X b γ b 1

X b ξX b Y b ξY

X b Y b λ´1

X b Y b ξX b ξY

ρ´1

ρ´1
b Y b 1

X b γ b Y

∆XbY

ρ´1
b ρ´1

∆X b∆Y

Figure 1 Commutativity of the pseudounit diagram for inverse products.

X ‘ Y X X X ‘ Y

pX ‘ Y q b 1 X b 1 X bX

pX ‘ Y q bX

pX ‘ Y q b pX b Y q

pX ‘ Y q b pX b Y q

ρ´1

pX ‘ Y q b ξX

pX ‘ Y q b >1

∆:
X‘Y

>
:
1 ξ:

X >1

>
:
1 b 1 X b ξX

ρ´1 ∆:
X

>
:
1 b >

:
1

>
:
1 b >

:
1

where the center top square commutes precisely since it is the unit diagram for pX,∆:X , ξXq,
and the outer path is what we wanted to show. The unit diagram for pY,∆:

Y , ξY q is
identical (save for subscripts), and the counit diagrams are analogous. Finally, it follows

by straightforward computation that ξ:X
K

˝ >
:
1 _ >

:
2 is the complement of ξ:X ˝ >

:
1, and

symmetrically that ξ:Y
K

˝ >
:
2 _ >

:
1 is the complement of ξ:Y ˝ >

:
2.
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B Rfun: a language for reversible computing

The abstract syntax of the first-order functional language Rfun [33] can be summed up by
the following grammars.

Left Expressions l ::“ x | cpl1, . . . , lnq

Expressions e ::“ l | let lout “ f lin in e

| rlet lin “ f lout in e

| case l of tli Ñ eiu
m
i“1

Definitions d ::“ f x fi e

Programs q ::“ d1; . . . ; dn

Contrary to the original presentation of the language, the argument of a definition is
here a variable, and not a left expression. We recover the original expressivity of Rfun by
introducing some syntactic sugar: definitions f cpl1, . . . , lnq fi e will stand for the term

f x fi case x of cpl1, . . . , lnq Ñ e

It is important to recall before going any deeper in the presentation of Rfun that:
Function and variable identifiers do not belong to the same sort.
We suppose that programs in the same sequences of definitions have (pairwise) distinct
functional identifiers.
Recursive definitions of functions are not allowed.
In a left expression, a variable must appear exactly once (see [34]).
Domains of substitutions are (pairwise) disjoint.

Now a presentation of Rfun’s big step operational semantics is given, with expression
judgement xq, σy $ e ó v instead of the notation σ $q e ãÑ v from [33]. Concretely, the pair
of a program q and a substitution (i.e. partial function) σ constitutes a programming context
xq, σy. Then, the expression judgement xq, σy $ e ó v means that the expression e evaluates
to the value v in the context xq, σy. Let us write xq, σy $ e ó when there is some value v
such that xq, σy $ e ó v.

As for the pattern matching operations which guide the formation of subtitutions, we
replace v Ÿ l ù σ [33, Fig. 3, pp.19] by the more restrictive statement xq, σy $ l ó v. The
relation between those two kinds of expression is given by the following correspondance:

v Ÿ l ù σ
“““““““““““““
@q. xq, σy $ e ó v

This lead us to the following operational semantics which guarantees that computations are
reversible, notably through the use of the instruction rlet.

xq, tx ÞÑ vuy $ x ó v

tvu Ó“ v1 xq, σy $ l ó v1

xq, σy $ tlu ó v

xq, σ1y $ l1 ó v1 ¨ ¨ ¨ xq, σny $ ln ó vn

xq,Zni“1σiy $ cpl1, . . . , lnq ó cpv1, . . . , vnq

f xf fi ef P q xq, σy $ x ó v1

xq, σf y $ xf ó v
1 xq, σf y $ ef ó v

xq, σy $ f x ó v
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xq, σiny $ f lin ó vout xq, σout Z σey $ e ó v

xq, σouty $ lout ó vout

xq, σin Z σey $ let lout “ f lin in e ó v

xq, σouty $ f lout ó vin xq, σout Z σey $ e ó v

xq, σiny $ lin ó vin

xq, σin Z σey $ rlet lin “ f lout in e ó v

xq, σly $ l ó v1 xq, σlj Z σty $ ej ó v

j “ minti | @q. xq, σliy $ li ó v
1u

“ minti | @q. l1 P leavespeiq ^ xq,´y $ l1 ó vu

σl Z σt $q case l of tli Ñ eiu
m
i“1 ó v

B.1 Denotational semantics
In this section, we provide a computationally adequate denotational semantics of Rfun [33]
which relies on bimonoidal join inverse categories with decidable equality (and therefore
decidable pattern matching). Like its operational semantics, the denotational semantics of
Rfun depends on a given programming context.

Following the construction of the map lift in Sec. 3.3, the denotation of a variable x is
taken in the substitution σ, i.e.

rrxssσq “ liftpsq P TS with s def
“ σpxq

Following the construction in Sec. 3.3, the denotation of a left expression cpl1, . . . , lnq (where
n P N) is given by

rrcpl1, . . . , lnqss
σ
q “ conscprrl1ssσ1

q , . . . , rrlnss
σn
q q P TS where σ “ Zni“1σi

In particular, for tuples xl1, . . . , lny, seen as a syntactic sugar for xypl1, . . . , lnq:

rrxl1, . . . , lnyss
σ
q “ consxy ˝ rrpl1, . . . , lnqssσq P TS

Exploiting Sec. 4.1, we associate the left expression tlu with the following denotation,

rrtluss “ tagxy ˝ ιTS‘pTSbTSq ˝ dupeqTS ˝ rrlss ˝ dupeq
:

TS ˝ ι
:

TS‘pTSbTSq ˝ untagxy
: 1 Ñ TS ‘ pTS b TSq

where ιTS‘pTSbTSq “ pι1 ˝>
:
1q_pι2 ˝>

:
2q with ι

:

TS‘pTSbTSq complemented, since we required
decidable equality.

Let-expressions and Rlet-expressions are given as follows, for every f P q:

rrlet lout “ fplinq in essσq “ rrerfplinq{loutsss
σ
q

rrrlet lin “ fploutq in essσq “ rrerf
:plinq{loutsss

σ
q
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Case expressions are given their denotations via the presence of joins and decidable
pattern matching. Recall that we have embeddings ιn : TSbn Ñ TS with (complemented)
projections ι:n : TS Ñ TSbn from algebraic compactness and decidable pattern matching.
We associate patterns pi with restriction idempotents defined as follows:

t|x|u “ idTS

t|cpp1, . . . , pnq|u “ tagc ˝ ιn ˝ t|p1|u b ¨ ¨ ¨ b t|pn|u ˝ ι
:
n ˝ untagc

t|tpu|u “ tagxy ˝ ιTS‘pTSbTSq ˝ dupeqTS ˝ t|p|u ˝ dupeq
:

TS ˝ ι
:

TS‘pTSbTSq ˝ untagxy

where ιTS‘pTSbTSq “ pι1 ˝ >
:
1q _ pι2 ˝ >

:
2q.

Then, the denotation of case expressions can then be given by

rrcase l of tli Ñ eiuss
σ
q “

˜

ł

1ďiďn
rreiss

σi
q ˝ t|li|u ˝ t|l1|u

K ˝ ¨ ¨ ¨ ˝ t|li´1|u
K

¸

˝ rrlssσq

where the substitution σi is generated as in the operational case.
Consider pfx fi eq P q. Then rrfxssσq : TS Ñ TS is defined by

fixpr ÞÑ pX ÞÑ rrerx ÞÑ X, f ÞÑ rsssσq qq

where fix is an instance of the fixpoint operator on hom-sets

fix : pHompTS, TSq Ñ HompTS, TSqq Ñ HompTS, TSq

constructed by means of the join (see [5, 18] for details). This operator corresponds to
fixpoints over function identifiers, which is necessary to accomodate for the fact that the
operational semantics allow for recursive calls.

Finally, a program p ” d1; . . . ; dn is denoted by

rrpssσq “ rrd1ss
σ
q ˆ ¨ ¨ ¨ ˆ rrdnss

σ
q : TSbn Ñ TSbn

B.2 Computational adequacy
In the remaining part of this section, we show that bimonoidal join inverse categories with
decidable equality form a class of computationally adequate models of the language Rfun.

Firstly, one can observe that every value is interpreted as a non-trivial total map and
that the denotation is invariant up to a fixed context under our operational semantics, by
straightforward induction.

§ Lemma 27. Every value v is interpreted as a non-trivial total map rrvssσq : 1 Ñ TS in a
bimonoidal join inverse category with decidable equality. Moreover, for every expression e
such that the expression judgement xq, σy $ e ó v holds for some substitution σ and some
program q, the equality rressσq “ rrvssσq holds.

Recall that we write xq, σy $ e ó when there is some value v such that xq, σy $ e ó v.
Then Lemma 27 leads to the following soundness theorem, as an intermediary step towards
computational adequacy.

§ Theorem 28 (Soundness theorem). In any bimonoidal join inverse category with decidable
equality, for every expression e such that xq, σy $ e ó holds for some programming context
xq, σy, the denotational rressσq of the expression e is a non-trivial total map.
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Finally, we are required to prove that bimonoidal join inverse categories with decidable
equality are computationally adequate models of the language Rfun. Recall that in such
category, elements of an object X can be seen as maps 1 Ñ X. In any bimonoidal join
inverse category with dedicable equality C, we write rressσq Ó when the denotation (taken in
an object X of the category C) of an expression e under the programming context xq, σy is a
non-trivial total map 1 Ñ X.

§ Theorem 29 (Adequacy theorem). In any bimonoidal join inverse category with decidable
equality, for every expression e, the property xq, σy $ e ó holds if and only if rressσq Ó holds.

Proof. We already have one direction of the equivalence by Theorem 28. Therefore, to obtain
computational adequacy, one needs to show that in any bimonoidal join inverse category
with decidable equality, for every expression e under some context xq, σy, the property rressσq Ó
implies that there is a value v such that xq, σy $ e ó v. Let’s call it the adequacy property.
This is straightforward when e is a variable x. For the rest, one can obtain the intended
result by induction. In practice, we verify that rressσq is total by verifying that the equality
id1 “ rress

σ
q holds.

Consider a family tliu1ďiďn of left expressions under a family of contexts txq, σiyu1ďiďn
(with σ “ Zni“1σi) which satisfy the adequacy property. Now we consider a symbol c and
a left-expression e def

“ cpl1, . . . , lnq. In short, if the property rressσq Ó holds, then so does the
property rrlissσiq Ó for every i, since consc is a total map. In detail, keeping in mind that consc
can be seen as a total map TSbn Ñ TS (i.e. consc “ idTSbn) and that the projection maps
of join inverse products are also total:

rressσq Ó ùñ rrcpl1, . . . , lnqss
σ
q Ó ùñ id1 “ consc ˝ prrl1ssσ1

q b ¨ ¨ ¨ b rrlnss
σn
q q

ùñ id1 “
â

1ďiďn
rrlissσq ùñ @1 ď i ď n. id1 “ rrlissσ1 ðñ @1 ď i ď n. rrliss

σ
1Ó

Thus, for every i, by the adequacy property, there is a value vi such that xq, σiy $ li ó vi

and therefore the value v def
“ cpv1, . . . , vnq is such that xq, σy $ e ó v.

Similarly, consider the expression e def
“ tlu and assume that the property rressσq Ó holds and

that l satisfies the adequacy property. Then the property rrlssσq Ó holds since dupeqTS , tagxy
and ιTS‘pTSbTSq are total maps and untagxy “ tag:

xy
. Indeed, the map

rressσq “ rrtluss
σ
q : 1 Ñ TS ‘ pTS b TSq

is a total map as the disjoint join of a total map 1 Ñ TS and a total map 1 Ñ TS b TS. In
technical terms, the denotation of the expression e can be rewritten as follows:

rress “
ł

iPt1,2u
ϕi ˝ rrlss ˝ ϕ

:

i where ϕi
def
“ tagxy ˝ ιi ˝ >

:

i ˝ dupeq for i P t1, 2u

Therefore by the adequacy property, there is a value v such that xq, σy $ l ó v and therefore
the value v1 def“ tvu is such that xq, σy $ e ó v1.

Finally, by construction and straightforward induction, one obtains the adequacy property
for case expressions and (r)let-expressions. đ
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